oy . ‘ s _ TG 3

for the like price, take than thirteen ka ‘mes char
and give mqmckly two parts of rice with one ”"-5-*;.;_
ney- -beans ; for we must mnake a hasty meal and depn

since my eoutpamon will proceed onwards. '

Statement: § }. Mixed sum }3. .
- ;o4 pit
The prices, §, }, multiplied by the porions §, }, and
divided by the goods §, §, make 4, }, the som of which
is §§. Dy this divide the same fractions #, }, taken
into the mixed sum }; and the portions §, 1-, taken
into that mixed sum }}. There resuls the prices of -
the rice and kidney-beans, } and §4 of a dramma ; or
10 kdkinis and 13} shells for the rice, and 2 kdsins and
6§ shell« for the kidney-beans; and the gquantities are
vz and 3% of a mdna of rice and kidney-beans respec.
tively.
[ Let 2 denote the mdnas of kidmy-
Then 22 will donote the mému of rice. P
Now the price 3 of a dramma ; i,
2mxt}+arx{~=}{, : ¥
Whenee # ( 4 +4) =ik
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~of their gems. J G ‘; &

.. (, 98" )
98, Example. If a pala of | camphor may be
had for two nishkas, and a pala of sandal-wood® for the
eichth part of a dramma, and half a pala of ale-wood*
also for the eighth of a dramma, good merchant, give me
the value of one nishka in the proportions of one, sixteen
and eight ; for I wish to prepare a perfume.
Statement : 32 § 4. Mixed sum 16.
1k - § ;
116 8

Answer. Prices: drammas, 14§, §, §.
Quantities : palas, §, 7%, 35

SECTION 1V. |

99. Rule. Problem concerning a present of gems.’

From the gems subtract the gift multiplied by the per-
sons ; and any arbitrary number being divided by the
remmndere, the quotients are numbers expressive of the
prices. Or the remainders being multiplied together,
the product, divided by the several reserved remamdere,
gives the values in whole numbers.

[ The reason for the rule will appear from the solution’of the
example in § 100, to which the rule specially refers.]

100. Example. Four jewellers, possessing respec-
tively eight rubies, ten sapphires, a hundred pearls, and

- five diamonds, presented each from his own stock, one

apiece to the rest in token of regand and gratxﬁeatwn at

P meeting ; and they thus became owners of stock of pre-

cisely equal value. Tell me severa]]y, friend, the pneen

Sl ;‘1
t Chondans ; sentalnes albem, PSR i P
* Aguru ; aquillaria agallochum. A )
'mpwblanhmMMm m.aum;immm !

.
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Statement : rub. 8 ; sapph. 10; pearls 100 ; diam. 5 ;
gift 1 3 pauons,gl.r : |

Here, the product of the gift 1 by the persons 4,
viz., 4, being severally subtracted, there remain rubies 4,
sapphires 6, pearls 96, diamond 1. Any number arbi-
trarily assumed being divided by these remainders, the
quotients are the relative values. Taking it at random,
they may be fractional values ; or by judicious selec-
tion, whole numbers Thus, put 96; and the prices
thence deduced are 24,16, 1, 96 ; and the equal stock
233.

Or the remainders being multiplied together, and the
product severally divided by those remainders, the
prices are 576, 384, 24, 2304 ; and the equal amount
of stock (after interchange of presents) is 5592.

[ Let the relative values of a ruby, sapphire, pearl, and dia-
mond be respectively z, y, z, w. Then we shall evidently get
from the conditions of the problem the fcllowing equations ==

ox +y+s+w '
=Ty+a+z4w "
; =9Tz+2+y+w
=2w+z+y+z .
S A =6y=96z=1w="Fk suppose ; then w=§,y= g, 2=§%, w=k,

Putting k=L. C. M. of 4, 6, 96, i.., 96, we get the least .
integral values of #, y, z, w, viz., 24, 16, 1, 96 ; and putting &
= product of 4, 6, 96, we get for =, y, z, w, the values 576, 384,
24, 2304, '
The reason for the rule in § 99 will be evident from theabove |
algobraical .ol%:pn The coefficients of @, y, &o. in- the final |

equations wiil be : 4 |

@ no. of the respective gems—the no. of that gem given
person X the 1o. of persons altogether. | :

ere were 9 rubies, and each presented 2
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from his packet to each of the rest, the coefficient of 2 in the

left hand side of the first equation would have been 3 ; and

that of « in the right hand side would have been 23 thus

- the coefficient of & in the simplified equations would have been

 fineness of the massis, If the twenty mdshas above |

1, i.c., 9 -4 x 2, which agrees with the rule in § 99.

Stryadésa cites the Vija-ganita for the solution of the pro-
blem. Ranganitha gives an arithmetical explanation which.
however, is meaningless add obscure.]

SECTION vV,
ALLIGATION,!

101. Rule’ The sum of the products of the touch?
and (weight of several pareels)* of gold  being divided
by the aggregate of .the gold, the touch of the miss is
found : or (after refining) being divided by the fine gola,
the touch is ascertained ; or divided by the touch, the
quantity of purified gold is.determined. _

[This is simply the ordinary rule for alligation medigl. We

may consider the prices per mdsha.of the several kinds of gold
as proportional to the fineness. The reason for the rule is obyvi-

ous. |
102—103. Example. Parcels of gold weighing
severally ten, four, two and four mdshas, and of the

fineness of thirteen, twelve, eleven and ten respectively,

|

being melted together, tell me quickly, merchant, who

.art conversant with the computation of gold, what the

' Suvarna-ganrita, computation of gold, that is, of Ih wdght. and ﬂn&lg

alligation medial, '

? To find the fineness produced by m:xbure of parcels of gold ; and, &ﬁor
refining, to find the weight, if the fineness be known ; and the fineness, if
the waight of refined gold be given.—Gan.

3 Varna, colour of gold on the touchstone; hemud gold w,nﬁmd\

by that touch. Bee § 77. * The degrees of ﬂmm‘lnm as the wdghs

is reduced by refiniug. ”-—Gan
‘ Gang,



( 59)

described be reduced to sixteen by refining, tell me in-
stantly the touch of the purified mass. O, if its purity
when refined be sixteen, prithee, what is the number to
~which the twenty mdshas are reduced ?
Statement : touch 13 12 11 10 ;

weight 10 4 2 4,
Answer': after melting, fineness 12 ; weight 20.

After refining, the weight being sixteen mdshas, the
touch is 15. The touch being sixteen, the weight is 13,

104. Rule From the acquired fineness of the
mixture, taken into the aggregate quantity of gold,
subtract the sum of the products of the weight and
fineness (of the parcels, the touch of which is known),
and divide the remainder by the quantity of gold of un-
known fineness ; the quotient is the degree of its touch.®

105. Example. Eight mdshas of ten, and two of
eleven by the touch, and six of unknown fineness, being
mixed together, the mass of gold, my friend, became of
the fineness of twelve ; tell the degree of unknown
fineness.

Statement : 10 11 Fineness. of the mixture 12,

: 828 ' |

Answer : degree of the unknown fineness 15.

[Let « denote the.unknown fineness. Then, (8424 6)x 12
=8X1042x 1146 X o,

vhenoo = B+2:6)X 18 28X 1042 11) . iy reqgon for

the rule in § 104 is obvious, ] |

' Products 130, 46, mw 'rlnumno divided by 20, gives 12; divid- |
od by 16, W\
* To the'lmnuno! a;arddtmknowndegreeot purity mixed
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106. Rule! The aeqmred finepess of the mixture

*  being multiplied by the sum of the gold (in the known

parcels), subtract therefrom the aggregate products of
the weight and fineness (of the parcels): divide the
remainder by the difference between the fineness of the
gold of unknown weight and that of the mixture, the
quotient is the weight of gold that was unknown.

107. Example. Three mdshas of gold of the touch
of ten, and one of the fineness of fourteen, being mixed
with some gold of the fineness of sixteen, the degree
of purity of the mixture, my friend, is twelve. How
many mdshas are there of the fineness of sixteen ?

" Statement : 10 14 16. Fineness of the mixture 12,
B
Answer : masha 1.
[Let # denote the number of mdshas required.
Then, (3+1+'r)x12 3x104+1xX144+2x106;
_(B+1)x138 - (3x10+1x14)
16 -~ 12
whence the rule in § 106.]

108, Rule.” Subtract the effected fineness “from
that of the gold of a higher degree of touch, and that
of the one of lower touch from the effected fineness ;
the differences, multiplied by an arbitrarily assumed
number,; will be the weights of gold of the lower and

‘higher degrees of purity respectively.

109. Example. Two ingots of gold, of the wnch '-
of sixteen and ten respectwely, bemg mixed tOgether

' To find the weight of a parcel of known fineness, but unknown mhﬁ,
mixed with other parcels of known weight and fineness.—Gan. :

* To find the weight of swopsroohot given fineness uul unkmn.
weight.~~Gan. and Stdr. The pmblm is anindomminlhcne,u hl.nw

'by t&xm

-
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the ‘gold became of the fineness of twelve. Tell me '

friend, the weight of gold in both lumps.
Statement : 16, 10. Fineness resulting 12.

Putting one, and proceeding as directed, the weights

of gold are found, mdshas 2 and 4. Assuming two,
they are 4 and 8. Taking half, they come out 1 and 2.

Thus, manifold answers are obtained by varying the' '

assumption,
[Let z and y be the weights required.
Then, 2 X 16 4y x 10 = (z 4+ y) x 12 ;

s (16—12) = (12-=10) x ¥ 3
z _112-10
v =i6-12°

foa=(12% 10) k, y = (16—=12) L,
where £ is any positive quantity.
The general solution in positive integers evidently is, 2 =
k, y = 2k, where k is any positive integer.
The reason for the rule in § 108 is obvious. |

SECTION VI.

PERMUTATIONS AND COMBINATIONS.
110—112. Rule': three stanzas.

Let the ﬁgures from one upwards, differing by one,
put in the inverse order, be divided by the same (arith-

meticals) in direct order ; and let the subsequent be

multiplied by the precedmg, and the next. following
by the foregoing (result). The several results are the

changes, ones, twos, threes, &c. This is termed a

‘%Mthnpnl&bhpommﬁma long and short syllables in prosody ;
: - pinphrm,mhﬁomo!m,&o lnmulo;

R e
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‘general rille! It serves in prosody, for those versed
therein, to find the variantions of mefre ; in the arts (as
in architecture) to compute the changes upon apeﬁea
(of a building) ; and (in music) the-scheme of musi--
cal permutations’; in medicine, th combinations of
different savours. For fear of’ proli ity, this is not
(fully) set forth.

[The reason for the rule will appear from the solution of the
example which follows. ]

113. A single example in prosody. In the per-
mutations of the Gdyatri metre,® say quickly, friend,
how many the possible changes of the verse are ; and
tell severally, how many the permutations are wu.h
one, (twe, three,) &e., long syllables.

Here the verse of the Guuatri stanza comprises six
gyllables. Wherefore, the figures from one to six are
set down, and the statement of them, in direct ahd

fli 3 g i’ g é Proceeding as direc.ed,

\

inverse order is

the results are :—changes with one long sylluble, 6 ;
with two, 15 ; with three, 20 ; with four, }5 ; with five,
6 ; with six, 1 ; with all short, 1. The sum of

is the whole number of permutations of the vemh; Bﬁ

* Commentators appear to interpret this as a name of the role M
tanght ; sdd@hdrana, or sidhdrann-chhaudoganita, geveral rule of prosedian
permutation, subject to modiflention in particnlsr instances, ns in‘u:wh,'
Wbt wapodtilimeibod CaniaRaneng) M. b 1 and 53_

* Khanda-mern, u cortaiu scheme <G f:!:!nplmibr‘
othw commentators ; but the translator hnuh .um.mw mnnmnt whb
ﬁolmdmﬁohmm&ﬂitmdhﬂm .

* The @dyatr metre in snored prosody is nﬂphtemrhi'"
wﬁm-mmmmmﬂﬁuw Brahmanies
‘onlled @dyatrs [ Nigreda, Nandala n.ammm.rﬂm:—wy.
-'ﬂiil,matﬁl. hﬁhthgpwdm etry, the same &

 wyliables in distributed in & tetrastic ; aud the verse consequently.
ﬂxdymuq- (ummx,nma AR
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In like manner, setting down the numbers of the
whole tetrastie, in the mode directed, and finding the
changes with one, two, &c., and summing them, the
permutations of the entire stanza are found,
viz., 16777216.

In the same way may be found the permutations of
all varieties of metre, from Ukthd (which consists of
monosyllabic verses) to Utkriti (the verses of which
contain twenty-six syllables).!

[In the Gdyatri metre, the number of syllables is 6. In
finding the number of changes with one long and the
rest five short syllables, we have to find the permautations
of 6 things taken all at a time, when one of them is of one
kind, and the rest, of another kind. Hence the number of

changes == , which is precisely the namber of combi-

6
5
nations of 6 things taken 1 at a time. Similarly, in finding the
number of changes with two long, and thérefore the rest four

short, we get the number = E l , and so on ; thos finally

the total number of changes=sum of combinations of 6 things
taken 1, 2, 3, 4, 5, 6, at a time + 1 (with all shorl syllables)
=(2°-1)4 1 = 64.
6 6 6 "~ 6x5

N"w! B odl [E e 2 77 R

—

Hence the reason. for the rule is clear.
If the aggregate number of changes only is wanted, this
can be found at once from the proposition, viz., the total num-
ber of combinations of 7 things taken 1, 2, 3......n at a time
=2_1 (see Todhunter’s Algehra, art. 515). This proposxtmn
lsglvenmaaonpreteahapem§130 -131. .

. _'_ii_!__ 2 .
| \1&. Res., vol. X, pp. 468—478,
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Blmilarly, taking the whole tetrastic, i.., 24 syl]nhlos, the

« total number of changes = (2%—1) + l‘(mth all short sylla-

bles) = 16777216.]
114. Example. In a pleasant, spacious and elegant

edifice, with eight doors,’ constructed by a skilful archi-

tect, as a palace for the lord of the land, tell me the
permutations of apertures taken one, two, three, &e.’
Sa.y, mathematician, how many are the combmatwns
in one composition, with ingredients of six different
tastes, sweet, pungent, astringent, sour, salt and bitter,"
taking them by ones, twos, threes, &c.

Statement, first example :

87654321 ¢

12345678 -

Answer : the number of ways in which the doors
may be opened by ones, twos, threes, &c., is 8, 28, 56,
70, 56, 28, 8, 1, respectively. And the changes on the
apertures of the octagonal palace® amount tu 255.

Statement, second example :

654321

123456°

Answer : the number of various preparations’with
ingredients of divers tastes is 6, 15, 20, 15, 6, 1.°

[In the first example, the total number of variations= 2°
- 1=255. The case of all the windows being shut is not taken

' Mishd, aperture for the admission of air; a eioot or window; (u.ﬁé
with gardisha.—Gavn,) A portico or terrace, (bhuimi- ahuh.o—-ﬁmg aod
Sir.)

* The variations of one window or portico open (or terrace unmfed)

‘and the reat closed ; two open, and the rest shut ; and so forth,

* Amara-kosha, swarga-varga, 147. = D \
¢ An octagonal building, with eight dotmor windows or pnrtlnuwhr

‘races facing the eight cardinal points of the horizon, is meant —Gan,

* Total number of mmmmnea —Gang.

"
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mto aooount : oﬂlomse the tobal number of vamtxons wonld
be 256. ad

Tim second example from its very nature is a case of combi-

pations and not of permutations, i.e., we have to find the num-
ber of combinations of 6 things taken 1, 2......6 at a time,
The rule in §110—112, however, equally applies, as has been

explained above. The total number of combinations in this
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CHAPTER V. '
PROGRESSIONS.

SECTION 1.
ARITHMETICAL PROGRESSION.

115. Rule® Half the period® multiplied by the
period added to unity, is the sum of the arithmeticals
one, &e., and is named their addition.* This, being
multiplied by the period added to two, and beirg divid:
ed by three, is the aggregate of the additions.”

Y Sredlif, a term employed by tue older nuthors for any set of distinet subs.
tances or other thinge put together,—Gan, It signifies sequence or progres-
gion, Sredhi-vyevaldra, nscertainment or determiustion of pmgruniom

. 2 T find une sums of the arithmeticals, Gan,

“ 3 pagit, the plwe —Gan, Any one of the fignres or digits, bei.ng that of
wnioh the sum is required.—Sdr, The last of the numbers o be Iummed -
Mano. Ses below, note to §110.

% Sankalita, the first snm or addition of arithmetioals, wnmkya.
aggregate of additions, summed sums or second sum.

* The first figure is unity. The sum of that and the period bsing halved,
is the middle figure, As the figures decrease behind it,aomyinm
before it: wherefore the middle figure, multiplied by the period, is the sum
of the figures one, &c., continued to the period. The only proof of the rule
- for the aggregate of sums is acceptation.—Gan, [This last remark is not

- gorrech. The proof of the formula for the sum of the first » arithmeticsls

given by Ganesa doss not uppl:whpzeuhm, bhhnqmuﬂ@lhomodx

fied. In that case, the sum of any two terms equidistant from the fitst

‘and last =»-1; whence the sum of » terms evidenily =} (n+l’),—-‘gﬂ,] It
tollnting

“d‘muhn Mlnmbermtﬁphdhythen
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[1 +2}—3.:~u.t0n terms = w%-k_l). B] “ the a‘ggregate
'+ the additions,” the author evidently means the sum of n terms

¥ the series whose nth term is  n (n+1), in other words, the
am of n triangular numbers. This sum is } n (n+1) (n42)

~n(D) 242 See Todhunter's Algebra, Art. 666. The

reason for the rule is obyious.]

116, Example. Tell me quickly, mathematician,
the sums of the several (progressions of) numbers one,
&c., continued to nive ; and the summed sums of those
numbers.

Statement : arithmeticals : 1234567 8 9.

Answer : sums : 1.3 6 10 15 21 28 36 45,

Summed gums : 1 4 10 20 35 56 84 120 165.

117. Rale! ‘t'wive the period added to ome and
divided by three, being multipicd by the sum (of the
arithmeticals), is the sum of the squwres. The sum
of the cubes of the numbers one, &c., is pronounced
by the ancients equal to the square of the addition. .

[1=+2!+ ...... +n,=n(n+16) (2%-‘-]) . ‘ | & . 3:-:
> _n(ntl) 2m+1 '
- -
2
B Eost ... +n® n.{’-"—-(—n—%'il} . See Todhunter’s Al-

gebra, Arts. 460, 461.]

118. Example. Tell promptly the sum of the
Squares, and the sum of the cubes, of those numbers,
if lishy mind hmqnmm with the oy of summation.

itement 3 5;6789 4,!

L 1 ' squares, 285. Sum of cubes, 2025». #
e o omnl  le f C R : |

5.,‘:,"30 ot ’m ando! oube-.-(hn uad..ad.r. MY

= i .. L 1
W W S .
—&-: I-___‘-_, ‘...f.‘r:?...? ..’._. . g ,_1“"7 " !
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119, Rule! The mcren.ie m ltlp'hed by the penod
less one, and added to the first quantity, is the»amnﬁnt.

- W
o

of the last? That, added to ﬁae first, and halved, i

the amount of the mean ; which multiplied by

period is the amount of the whole, and is. denominatec

(ganita) the computed sum.
[Consider the series a, a+b, a+2b...... The ath term=a+

a1
18

If n be even, there will be two middle-terms,
n+2

(n=1)b. If n be odd, middle term="1= th term=

2a+4(n—1)b
g

viz., "‘2] th and th terms, and the mean amount =average of

. these two terms =§ 2 th term + % of common differenre

-E-F-( i 1) b+ = M:.%ﬂ’ . And the sum of n terms

3 {2a+(n-m‘f

Thus tue rufe holds good whether n be odd or even. The
authar woes not notice that the first part 6f the rale in § 115 is
only a particular case of the present rule.] _

120. Example. A person, having given four dram-
mas to priests on the first day, proceeded, my friend,
to distribute daily alms at a rate increasing by five a

~ Y Where the increase is arbitrary. —Gang. In snch cases, to find the lut
term, mean amount, and sum of the progression,—S8ir. From first term,
common difference and period, to find the whele munt, &e, —G'&

® Adi and mukha, vadana, vakira, and qhnr synonyms of face—the ini-
tinl quantity of the progreesion, the first term: (M,h'om whioh as aa
origin the sequence commences,—Biir.)

Chaya, prachaya or uttara—the more (adhika—Sir,) or augment W’“

'—aug)wwmmhmmmmmmmm ﬁ

‘the last term. Madhya, the middle term. Pada or gachekha, the

‘the number of terms : (wmdmuthsmmmohq-ﬂﬁ
‘dhana, sredhs- or ganita—the amount of the whole, the @'ﬂ:‘ﬂl‘
progression, ‘It called. ganita, because & h found W’W
(ganand) —Gan, . ;

: :;.l'

B
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day. Say qmckly how many were given by him in half
a month.

Statement : initial quantity 4 ; com. diff. 5; penod 15.

Here, first term 4. Middle term 39. Last term 74.
Sum 585.

121.  Another example.! The initial term being
seven, the increase five, and the period eight, tell me
what the magnitudes of the middle and last terms are,
and what the total sum is.

Statement first term 7 ; com. diff. 5 ; period 8.

Answer : mean amount 49, Lastterm 42. Sum 196.

Here, the period consisting of an even number of
days, there is no middle day ; wherefore half the sum
of the days preceding and following the mean place,
must be taken for the mean amount: and the rule is
thus proved.

[See note to § 119.] p

122. Rule’: half a stanza. The sum of th¢ pro-
gression being divided by the period, and half th .com-
mon difference maltiplied by one less than the number
of terms, being subtracted, the remainder is the initial

quantity.’

(=54 2a4(n =15 } —u{a+-——b} et

whence the rule. ]

123, Example. We know the sum of the progres-
sion, one hundred and five ; the number of terms, seven ;
the i Increase, three tell us, dea.r oy, the initial quantity,

'To miud&hmo!moven nnmhro!tom- whmthmm
| term (but & mean amount).—Gan.
Mamm;ﬂmhhd&hemm—ﬂu

'wmm—en.mm
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Statement : com. diff. 3 ,penod 7 ; sum 105.

Answer : first term, 6. \

Rule'; half a stanza® The sum being divided by the
period, a.nd the first term snbtracted from the quotient,
the remainder, divided by half of one less then the
number of terms, will be the common difference.’

[s=n{a+n lb} {—--—} -§—1==b whence the rule.)

124. Example. On an expedition to seize his ene-
my’s elephants, a king marched two yojanas the first
day. Say, intelligent calculator, with what iereasing
rate of daily march he proceeded, he reaching his foe's
city, a distance of eighty yojanas, in a week.

Statement : first term 2 ;.period 7 ; sum 80.

Answer : com. diff. 22.

125. Rule.* From the sum of the progreamon mul-
tiplied by twice the common increase, and added to the
square of the difference between the first term and half
that iacrease, the square root being extracted, this root

~—1e8s the first term and added to the (a.bove-mentloned)'
portlon of the increase, being divided by the i increase,
is pronounced® to be the period.

[The translation is rather obscure. A clearer rendering would
be as follows :—* The sum of the progression multiplied by
twice the common increase, being added to the square of the

' The first term, period and sum being known, to ﬂn& the oomm differ-
ence which is unknown.—Gan.
* 8econd balf of one, the first half of which oonhinultho pnoeduw
'Thshmhshohoonverwd the teroplng.—&an. f
* The first term, mmmdiﬂmwudm bohgknown, tohdtbo
- poriod which is unknown.—Gan. aw
* By Brahmagupta and the rest.—Gan,
~ 'The rules are substantially the same; hmmmmﬁe
solution of the guadratic Mhﬁonmhulbby Sridhara (cit
in W}a-yam ﬁlﬂ)tld\wm o) T

3 -.i -I ‘ LR J | y *
¢ : s : -l L Foigg 4
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difference between the first term and half that inerease, the
square root of the result is extracted ; this root less, &e.”

We have s=f{ 2a + (n—- 1)3,} :

b=2a+ 4/{ (2a— b)’+8.sb >
2b
(Todhunter’s Algebra, Art. 454)

-..—.!'5{ g-ai a\/{(a - -2)’+2sb }, whence the rule,
the upper sign only being taken by the author. He does not
discuss the meaning of the two values of n.]

126: Example. A person gave three drammas on
the first day, and continued to distribute alms increas-
ing by two (a day) ; aud he thus bestowed on the priests
three hundred and sixty drammas : say quickly in how
many days.

Statement : first term 3 ; com. diff. 2 ; sum 360.

Answer : period 18.

whence n==

Secrion II.
GEOMETRICAL PROGRESSION.

127. Rule': a couplet and a half. The period being
an uneven number, subtract one, and note ‘ multiplica-
tor’; being an even onme, halve it, ‘and note ‘ square,’
until the period be exhausted. Then the produce aris-
ing from maultiplication and squaring (of the common
maultiplier) in the inverse order from the last,’ being
lessened by one, the remainder divided by the common

'Toﬂnd.thomdnam:aﬂon the increase being a multiplier.~Gan.
In other words, to find the ummw |
* The last note is of course “muiliplicator.) For in exhausting the num-
ber of the period (when odd) you arrive at Iast at unity, an aneven number,
The m multiphier (the common multiplicator of the progression) is
rm last plnce ; and the operations of aaningndmnlﬂ-
mh ﬁnudtnfholnqmtho!mmvt the notes, —

-.rr? 4 ” ¥ '.'c" A
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multiplier less one, and multiplied by the initial quan.
tity, will be the sum of a progression increasing by 8
common multiplier.'

[Let a denote the first term and » the common ratio. Then,
atars...... ..+ar“'l=a—(—7:—-_—-1—). The first part of the rule

r—1
is clomsily and obscurely stated. It is difficult to make out
what the author means. He wants us to find »*. Now if a is
even and therefore of the form 2m, we can find »* by first squar-
ing », then squaring the square, and so on m times. If = is
odd and therefore of the form 2m+1, we can find »* by first
finding »*™ as before, and then multiplying the result by .
This is probably what the author means by the words multiply-
ing and squaring. See the explanation of Ganesa in the foot-
notes. |

128. Example. A person gave a mendicant a couple
of cowry shells first, and promised a twofold increase
of the alms daily. How many nishkas did he give in
a month 7

Statement : first term, 2 ; increasing multiplier, 2 :
period, 30.

Answer : 2147483646 cowries; or 104857 nishkas,
9 drammas, 9 panas, 2 kdkinis, and 6 shells.

129. Example. Theinitial quantity being two, my
friend ; the daily augmentation, a threefold increase ;
and the period, seven ; say what the sum in this case is.

) The effect of squaring and multiplying, as directed, is the same as the
continued muitiplication of the multiplier for as many times as the num-
ber of the period. For dividing by the multiplier the product of the multi-
plication continued to the uneven number, equals the product of multipli-
‘cation continued to one less than the number; and the extraction of the
square root of a product of mult.ipuuﬁon continued to the even number,
equals continued multiplication to half that number, Conversely, -qu:iﬂ'

and multiplying equals multiplication tordoublo and tum mtlnn,—
Gan, |

-
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Statement : ﬁ:rst. term, 2 ; increasing miﬂmpﬁer,
period, 7.
Answer : sum, 2186.

130—131. Rule :* acouplet and ahalf. The num-
ber of syllables in a verse being taken for the period,
and the increase twofold, the produce of multiplication
and squaring (as above directed, § 127) will be the
number (of variations) of like verses.* Its square, and
square’s square, less their respective roots, will be (the
variations) of alternately similar and of dissimilar verses.
(in tetrastics).’ - |

[The rule refers specially to the example in § 132. It is a
statement in a concrete shape of the following proposition s—
The total number of combinations of n things taken, 1, 2, ... n
sta time=2"=1. (See note to § 113).] '

132. Example. Tell me directly the number (of

! Incidentally introduced in this place, showing & computation serviceable
in prosody.—Str. and Mano, To calonlate the varintions of verse, which
are also found by the snm of permutations (§115).—Gan,

*Banskrit prosody distingnishes metre in which the four verses of tha -
stanza nre alike, or the alternnte ones only so, or all'four dissimilar, Asiut,
Res,, Vol, X, eyn. tab., v, vi and vii.

*The number of possible varietins of verse found by the rule of per-
mutation (§113) is the same as the continued multiplication of two : this
number being taken, becauee the varieties of syllables are so many, long
and short, Accordingly this is assumed for the common multiplier. The
product of its centinued multiplication is to be found by this method of |
squaring and multipiying (§127) ; sesuming for the period a number equal
to that of syllables in the verse. The varieties of similar verses are tho
same as those of one verse conteining twice as many syllables ; and the
ohnphmwm are the same ns those of one verse comprising

as many #yllables, exoepting, however, that these permutations
ﬂmwhhnﬂaﬁu,mp:&nd thoso of like mnd half-

Wherefore the number first found is squared, and this again
nding to twice or four times tha anmber c&ﬂtﬁlt
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vanettes) of like, alternately hlte, dnd thssmnlar verses
respectively, in the metre named anushtubh.
Statement : increasing multiplier, 2 ; period, 8.

- Answer : variations of like verses, 256 ; of alternately

alike verses, 65280 ; of dissimilar Verses, 4294901760,
[The total number of syllables in the four charanas of ‘the
anushtubh metre being 32 (8 to each charana), the possible varie-
ties of arrangements of long and short syllables in the metre
are 2%2=4294967296. (See note to § 113). These evidently
include cases of (a) all like, and (4) alternately like charanas.
To find the niumber of these cases, we find the number of varie-
ties of the syllables in two charanas ; which pumber is 2'% or
655636, It is clear that if we place each ene of these varie-
ties under itself, we shall get all the cases included in (a)
and (b). Henee the total number of cases in (a) and (b)is
65536. Of these the number of cases in (a) clearly is the num-
“ber of varieties that may occur in one charana = 2%=256. Con-
sequently the number of cases in (b) is 65536 — 256 or 65280.
Snbtractmg 65536 from 4204967206 we get 4294901769,
which is considered gs the number of dissimilar verses or
charanas. It is to be observed, however, that these last include
cases in which the first two charanas are like, as also the last
two ; or cases in which the first two are like, but the last two

onlike ; and so forth. These cases are not separahely con-
sidered.]

! Asiat. Res., Vol. X, p. 438 ; eyn. tab., p. 469,




CHAPTER VL
PLANE FIGURE:!
133. Rule. A—side’ is assumed. The other gide in

! Kahotra-vyavohdra, determination of plane figure. Kilotra, as ex-
pounded by Gnnesa, gignifies plane surface bounded by’ llnu,ihllﬂﬁw
ourved ; a8 triangle, &e. Vyavaldra is the nscortpinment of its dimens
siong, as dingonal, perpendicular, area, &e. Ganesa says plane fignre is four-
fold ; triangle, quadrangle, cirole and bow. Triangle (fryasra, trikowa or
mm;a) is a figure containing (¢ri) three (asra or kona) angles, snd conaist-
ing of a& many (bhwja) sides, Quadrangleor tetragon (ehaturasra, ohatushs
kona, okaturblmja), is & figure comprising (chatur) four ( asra, ke.) angles
or gides. Ths circle and bow, he observes, need no definition, Triangle s
either (jdtya) right-angled, as that which is first treated of in the text ; or
it is (¢réblnja) trilateral (and oblique) like the frait of the sringdta (Trapa
natans), This again is distioguished according as the (lamba) perpendicular
falls within or without the figure : vir., antarlamba, soute-angled ; bakir.
lamba, obtnse-nugled. Quadrangle also is in‘the first place twofold : with
equal, or with unequal, diagonals. ['This is not & proper elassification.—Hd,]
The first of these, or equidlngonal tetragon (ml&m). comprises ﬁﬂ!
distinedions : 18, sama-chaturblyjo, equilateral,. a ngum 2d. viskamas
chaturdhnja, a trapezium ; 8d. dyala-dirgha-chaturasra, an obligue psralle-
logram ; [this is not cerrect; for a parallelogram with eqoal dingonals must
be either a rectangle or a square, so that this 3d. eannot be a distinet
-p.d......u.] 4th. dyata-samalamba, oblong with equal perpendiculars,

i4., & rectavgle. The second sort of quadrangle, or the tetragon with un-
Oq'ull dingonals (vishamakarna), embraces six sorts : 1st. sama-chatwrblags,
qu‘m‘ﬂ, 2d. sama-tribluyje, huving three equal sides; 8d,
mmm mﬂ-uug wmmonqmﬂdﬁ.amm.
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the rival direction is called the upright,' whether in
a triangle or tetragon, by persons conversant with the
subject.

134. The square root of the sum of the squares of
those legs is the diagonal.? The square root, extracted
from the difference of the squares of 'the diagonal and
side, i the upright ; and that, extracted from the differ-
ence of thesquares of the diagdnal and upright, is the
gide.”

[Enelid L. 47.] .

135 Twice the product of two quantities, added
to the square of their difference, will be the sum of their
squares. The product of their sum and difference will
be the difference of ‘their squares : as must be every-
where understood by the intelligent calculator.’

! Bitber leg being selected to retain this appellation, the others are
distinguished by dilferent DAMEs. That which proceeds in fhe opposite
direction, meaning at right angles, is called koti, wohehbrdya, uohohhiitd,
or any other term signilying upright or elevated, Both are alike sidesof
the triangle or of the tetragon, differing only in assumed situation snd
nawme,—Gan, and 8ar,

3 A thread or oblique line from the two extremities of the legs, joining
them, i the karna, also termed sruti, sravana, on any other word gignily-
ing ear, It is the disgonal of a tetragon.—Siir., Rang., &c. Or, in the onse
of a triangle, it is the diagonal of the parallelogram, whereof the triangle
48 the half: and is the hypotennse of a right-angled triangle.

" The rule concerns (jdtya) right-angled trisngles. The proof is
given both algebraicully and geometrically by Ganesa (vpopatti avyakta-
kriyayd, proof by nlgebra ; kiletragatopapatti, geometrical demonstration];
and the algebraical proof is also given by Siryadisa, Ranganftha cites one
of those demionstrations from his brother Kamalikara, and the other from
his father Nrisinha, in the Vdrtika, or oritical remarks on the ( Fdsond)
annotations of the Siremani ; and censures the Sringdra-tilaka for denying
any proof of the rule besides experience, Bhiskara has himself given a
demonstration of the rale in his Wﬁ-ycni-ta.i 146,

4+ A stanza of six charanas of anushtubh metre.

* Ganess here also gives both an algebraic and a geometrisal proof of z
latter rule ; Muﬂmm‘ndmoﬂyo!mm Bee Vija-ganita
§ 148, whanoe the latber demonstration is horrowed ; and lu{,m&a
first of the rules is given and imm(ﬁ. ..

. ’.“‘
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Geomotncal proofs ofthese: formulse are farnished by Eue. II. 4
5and 9. The object of introducing them here is to facilitate the .

calculations required in § 134.]

136. Example. Where the upright is four and
the side three, what is the hypotenuse? 'Tell me
also the upright from the hypotenuse and side; and
the side from the upright and hy-

_ N
potenuse. J B
o i | g2
3

‘Statement : side 3 ; upright 4.

Sum of their squares 25. Or, the product of the
sides, doubled, 24 ; square of the difference, 1 ; added .
together, 25. The square root of this is the hypotenuse 5.

Difference of the squares 5 and 3 \
is 16. Or the sum 8 multiplied by 3! 5
the difference 2, makes 16. Its \ g
square root is the upright 4. ' T T o

Difference of squares, found as \. 29 ,
before, 9. Its square root is the-  * _\-5 i
side 3 P

8% 137. Example Where the side measures three and "

a quarter, and the upright, as much; tell me qmckly.,
mathematician, what the length of the hypotenuse is.

Statement : side 4% ; upright 22, Sum of the squams
488 or 142, Since this has no (aa- »
signable) root, the hypotenuse is a [’\
suul. A met] of finding its ap- i EeG <
32 m e -T 8,

‘ |
.

=
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denominator,’ multxphed by any L square number

assumed, extract the square root : that, divided by the
~ _denominator taken into the root of the multiplier, will
~ - be an approximation. :

The square of the above hypotenuse, 1§ ( is pro-
posed). The product of its numerator and denomina-
tor is 1352. Multiplied by a myriad (the square of a
hundred) the product is 13520000. Its root is 3677
nearly.” This divided by the denominator taken jato
the square root of the multiplier, viz., 800, gives the
approximate root 4§33. Itis the hypotenuse. So in
every similar instance.

/a \/axb-Ja.XbXC

q/ b be

The object of multiplying the product of numerator and deno-
minator by a large square number (being some power of ten,
as the above process shows), and then taking the square root
approximately is practically to get the square root to a certain
number of decimal places. Bhésksra, however, does not use the
decimal notation which was probably not known in his time, and

; expreﬁaes the result-as a fraction. In the above example, the
| result ohta.med will be found to be correct to twe demmal

| -,-,5'; ‘- «139 Rule * A side is put. From that multiplied

‘b’y twice some assumed number, and divided by one less
- than the square of the assumed number, an upright 's
obtained. This, being set apart, s multlphed by the

arbw number, g.nd the sule as put is subtracw |

' If the surd be not" a.ttaﬂon. uibymy be put !ortho dnnmmwr,
and the rule holds good.—Gan, |
% The remainder being unnoticed. 1 '

: Either the side or upright being given, to find the ‘other mm-.—
ﬂi: To find the upright and hypotenuse from the side ; or the M
25 mﬁonprlcht.—ﬁn mprmm etermi

15 Lag # 1 . | - . 4 "':.'.
b L SR T s et by T K Pl & s~
' o | ! 140 v - WL R et e § 4
4 ’. r), Koih s : tate ) . 3 ’r o o e et 1
‘ \ L S L r i Nl e * - P VRS N «
" ﬂ Al Cad L Hp h % s AR i "o ‘:" ‘T e ke "t. b k
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the remainder will be the hypotenuse. * Such a triangle
is termed right-angled.' ,

[Iatadenotethegwenside,andnﬂmmmednamber

Then proceeding by the rule, we get %— for upright, and

’ t+1 ,
:f TXA—0=a gy for hypotenuse. To verify this we have

% (;"_:i) 5 W{(“'*l)‘+ w} p e}(_;g%-l%%)_'

2. 1\2
(a ’-‘-,:—i—) . The proof of this rule given by Siryadisa

n -
shows how these expressions for the upright and hypotenuse are
arrived at, although it is rather difficult to follow it. The quan~
tities 2n, n*=1, #*+1 may be taken to represent the upright,
side and hypotenuse of a right-angled triangle, becaunse (2n)*
+(@* = 1)* = (n* + 1. Now consider another right-angled
triangle similar to the above, the side being a. Then, since the
sides of the two triangles are proportional, the upright of the
second triangle will obviously be ;—?_“:’3-1-
right of the first triangle = its side 4 its hypotenuse, so nx up-
right of the second triangle=1its side 4 its hypotenuse. Thus,
n,f inl = a + hypotenuse, whence hypotenuse = n X -%ﬂli- :

~a. Thus we see how the expressions are got.]-

140. Or a side is put. Its square, divided by an
arbitrary number, is set down in two places : and the
arbitrary number being added and subtracted, and the
sum and difference halved, the results are the hypote-
nuse md upﬂght’ Or, in like manner, the side and

R N
l‘Oolo umj,heword Wu..nubmmmwwpndin
’_ 18 'W““"l"‘-—u] |
* Agsume any numb for the difference batween the upright and hypote-
fFerence Mqum (which is equal to the square of the
seing divided by that assumed difference, th: quotieut is the
J & ‘ WM M&h dlm of ﬁtmﬁ'

. Again, as n X up-

nx




i .

‘_.l_;.,: &

hypotenuse may be deduced from the upright. Both
results are rational quantities.
[Let @ denote the given side, and n the assumed number.

Then by the rule we have § ( — +n) for hypotenuse, and }

2—71 )2

— —n) for upright. To verify thic we have a"-H

2
'40,27;2-{-(0 _n2)2 (a +n2)2 { (%-l—n)} . Ganesa

42 4n*
gives an elegant demonstration of this rule, based on the fact
that the assumed number = is thedifference between the hypote-
nuse and upright, as is obviously the case. See foot-note.]
141. Example. The side being in both cases
twelve, tell quickly by both methods, several uprights

and hypotenuses, which shall be rational numbers.

Statement : side 12 ; assumption 2. The side, multi-
plied by twice that, viz., 4, is 48. Divide by the square
of the arbitrary number less one, wviz., 3, the quotient
is the upright 16. This upright multiplied by th-
assumed number is 32, from which subtract the given
side ; the remainder is the hypotenuse 20,

Assume 3. The upright is 9, and the hypotenuse
15. Or, putting 5, the upright is 5, and the hypote-
nuse 13.

By the second method: the side, as put, 12, Its
square 144. Divide by 2, the arbitrary number being 2,
the quotient is 72. Add and subtract the arbitrary
number, and halve the sum and difference. The hypote-
nuse and upright are found viz., hypotenuse 37, up-
right 35. :

)
- A

equal to the pmlmdthemmddlhmofﬁqm IBB). x:
uprightmdlm-mﬂeﬂ:m!mdbymm
(sw).-ﬂnn. .

ey

-~
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Assume 4. The upright is 16, and the hypotenuse 20.
Assuming 6, the upright is 9, and the hypotenuse 15.!

142. Raule* Twice the hypotenuse taken into an
arbitrary number, being divided by the square of the
arbitrary number added to one, the quotient is the up-
right. This taken apart is to be multiplied by the
number put : the difference between the product and the
hypotenuse is the side.

Let a denote the hypotenuse, and n the assumed number.
2an

Then, by the rule, the upright is T and the side, ;%—j%-a
=a :: :_} For (n?:.nl)’_l_ ( :;I%)z-ag. The proof of this
rule given by Sturyaddsa is exactly similar to that of the rule
in §139. See note to §139.]

143. Example. The hypotenuse being measured by
eighty-five, say promptly, learned man, what upmghts
and sides will be rational.

Statement : hypotenuse 85. This doubled is 170,
and multiplied by an arbitrary nuwmber two is 340,
This, divided by the square of the arbitrary number .
added to one, viz., b, is the upright 68. This upright
multiplied by the arbitrary number makes 136 ; and
subtracting the hypotenuse, the side comes out 51. Or
putting four, the upright will be 40, and the side 75.

' 144. Rule. Or else the hypotenuse is doubled and
divided by the square of an assumed number added to
one. Tho  hypotenuse leiu that quotient is the upright.

'In-llko' " ner, it the uprizh’bbogim 16, its square 256 divided by the
, unmber 2 is 123, The arbitrary number, subtracted and sdded,
 and 130; wh ,'dmud givo the side 63, and the hypotenuss

it given, to find m side and upright in rationsl
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The same quotwnt multiplied by t{he assumed number
is the side.!

The same hypotenuse 85. Putting two, the up-
right and side are 51 and 68. Ou, with four, they are
75 and 40, '

Here the distinction between side and upright is in

name only, and not essential.
2a n*—1 ,

—-;E—-+—i-a;--—-—‘8+1 for
apright, and 22" for side. Verifiction as in § 142. To see

how these expressions are arrived at, take 2n, #»*—1 and »*41
for the side, upright and hypotenuse of a right-angled triangle,
and proceed as in § 139, note. ]

145. Rule’ Let twice the product of two assumed
numbers be the upright ; and the difference of their
squares, the side : the sum of their squares will be the
hypotenuse, and a rational number.

[Let a and & be the assumed numbers.

Then 2ab is the upright, and a®—5* the side. The hypote-
nuse is o/ (%ah)*+(a*— %) = a® 41"

Thus the three sides are all rational. Ganesa givesa proof
of this rule after the manner of the ¥{ju-ganita ; bat it is very
obscure and cannot be easily followed.]

146. Example. Tell quickly, friend, three unmbets,
none being given, with which as upright, side and hy-
potenuse, a right-angled trisngh may be. (Gonmmed.)

[Taking @ and # asin § 142, we get a

'T&M&ommmw:mwowmﬁa,wng
ml;hsbaoﬁuutmwoahdnuol@@m the same nnm-
Mmﬂhtﬂﬂo:ﬁuﬁwmmtﬂﬁmhﬂhr
the upright and side by the other.
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Let two numbers be put, 1 and 2. From these, the
side, upright and hypotenuse are found, 4, 3, 5. 'Or,
putting 2 and 3, the side, upright and hypotenuse
deduced from them are, 12, 5, 13. Or let the asswmed
numbers be 2 and 4 : from which will result 16, 12, 20.
In like manner, manifold (answers are obtained).

147. Rule! The square of the ground intercepted
between the root and tip is divided by the (length of
the) bambu, and the quotient severally added to, and
subtracted from, the bambu : the moieties (of the sum
and difference) will be the two portions of it represent-
ing hypotenuse and upright.’

[The rule bears reference to the example which follows.

Let a denote the height of the bambu,
b, the distance between root and tip, and
« the height at which the bambu is broken.

Then, ¥*=(a--z)*—

b P 1
o (a_w.)_l_wn(a—.r)—w e O

L oe
e E-(a .’Z})-—- aZ

als0 @ = (a—z) 4, identically. - .
2
Hence } a+i—;—) =q~—a or hypotenuse, and } (a-g—') = Or

upright, whence the rule. The above proof is the same as that
given by Ganesa. See foot-note.]

' The sum of hypotenuse and upright being known, as also the side, to
discriminate the hypotenuse and upright.—Gan,

*The height from the root to the fracture is the upright. The remaining
portion of the bamba is the hm . The whole bambu, therefore, is
the sum of Jl;pomm and upright, The ground intercepted between the
the side: it is equal to the square root of the difference
bem ﬁn _m £ the hypotenuse and upright. Hence t-holqm of

| md diﬂmndmm nyﬁghtmdhypotenuom
urre: _“(i“)-ﬂan. . J

. . N .
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148. Example. 1f a bambu, m i uring thirt‘y-'two
cubits and standing upon level ground, be broken in
one place by the force of the wind, and the tip of it

meet the ground at sixteen cubits : say, mathematician,
at how many cubits from the root it is broken.

Statement. Bambu 32. Interval
between the root and tip of the 20
bambu, 16. It is the side of the ad
triangle. Proceeding as directed, 12\%
the upper and lower portions of the o
bambu are found to be 20 and 12.

149. Rule.! The square (of the height) of the
pillar is divided by the distance of the snake from his
hole ; the quotient is to be subtracted from that dis-
tance. . The meeting of the snake and peacock is from
the snake's hole half the remainder, in cubits.

150. Example. A snake’s hole is at the foot of a
pillar, nine cubits high, and a peacock is perched on its
gummit. Seeing a snake at the distance of thrice the
pillar gliding towards his hole, he pounces obliguely
upon him. Say quickly at how many cubits from the
snake’s hole they meet, both proceeding an equa!
distance.

Statement. Pillar 9. It is the up-

right. Distance of the snake from [\,
his hole, 27. It is the sum’ of k 15

~ hypotenuse and side. Proceeding A

X

L . -

-

' The sum of the side and hypotenuse being hown,uﬂoo npﬂ‘!lt.
mwmmmmm-ﬂo.—mmmw
ibpmnphwhlphtuumn mpmhhmﬁﬂdh
preceding rule, ol R -

oy
4+

8‘

LN e
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as directed, the dlat.o.nee ‘between the hole and the place
of meeting is found to be 12 cubits.'

[The principle of the rule in § 149 is, as Colebrooke observes,
and as is also evident from the example in §150, the same as
that of the rule in § 147. The peacock is supposed not to
change his direction, and to pounce in such a direction that the
distance traversed by him being the hypotenuse of a right-
angled triangle, is equal to the distance traversed by the snake.
Practically, however, such a thing does not happen ; but the
bird of prey changes its direction at every instant, and desecribes
a curved path known as the curve of pursuit. See Tait and
Steele’s Dynamics of a Particle, Art. 33.

Let a denote the distance of the snake from the hole, b the
height of the pillar, and » the distance required.

Then, »*=(a—a)*—2?% whence as in § 147, =} (a-—-')
Hence the rule. ]

151. Rule? The quotient of the square of the side
divided by the difference between the hypotenuse and
upright is twice set down ; and the difference is sub-
tracted from the quotient (in one place) and added to
it (in the other). The moieties (of the remainder and
sum)"are in their order the upright and hypotenuse,®

This* is to be generally applied by the intelligent
mathematician.

.
T

' Subtracted from the sum of hypotenuse and side, this leaves 15 for the
bypotenuse. The snake had proceeded the same distance of 15 cubits to-
wards his hole, as the peacock in pouncing upon him. Their progress is
therefore equal —Sdr.

! The diﬂamw the h)potum i upright heing kuown, as
_ ‘I:Dﬁnﬁ, ﬂudth?nmmmdhnmm—ﬂm

The - n _'dhﬁnntlymtonhmdulprmdlngrnle,h

" Boginaiag from the instance of the broken bambu (§ 147) and including
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- § 147,.2:::}(;—&),311(1 a-l--tﬂi(?'l'a).

- -!'.w':ﬂ"?

d rl" : n" ’

[The demonstration of the rule in 8147 applies to this rule
as Granesa observes. ,

Let a denote the difference between
hypotenuse and upright, b the side, and «
the upright. |

Then, = (a+a)*—2° whence as in

Hence the rule. ]

152. Friend, the space between the lotus (as it
stood) and the spot where it submerged, is the side.
The lotus as seen (above water) iz the difference
between the hypotenuse and upright. The stalk is
the upright, for the depth of water 18 measured by it,
Say, what the depth of the water is."

153. Example.” In a certain lake swarmmg with
raddy geese® and cranes, the tip of a bud of lotus was
geeu o spau avove the surface of the water. Forced by
the wind it gradually advanced, and was submerged at
the distance of two cubits. Compute qumkly, mathe-
matician, the depth of the water. - |

Statement. Diff. of hypotenuse
and upright, 3 cubit. Side 2 cubits. 5‘
Proceeding as directed, the upright 1"'[ T
is found 12. It is the depth of the

water. Adding to it the helght of t,he bnd the hypo
tenuse comes out 11, . \

* The sides constituting the figute in the example which follows, are

here set forth, to assist the approbension of the studeut.—Sdr. and Gan.
srm example is inserted in Barnard Smith's Arithmetio, M
3 Aw Om
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[Let O be the root of the lotus, A its = .

tip, and € the point on the surface of the

water where it is submerged. Then, ;_\ c
while it advances by the force of the A
wind, O remaing fixed, and the lotus de-

scribes an ar¢ of a circle, of which O is A

the centre, and OA the radius. Hence

(0C=0A. Then, as the author himself explains in § 152,
the solation will follow from the method of § 151, where we
have only to substitute } for a, and 2 for 2.]

154. Rule.! The height of the tree multiplied by its
distance from the pond, is divided by twice the height
of the tree added to the space between the tree and the

pond : the quotient will be the measure of the leap.
[The rule refers to the example which follows.
Let D be the top of the tree, and B C
the position of the pond. The first ape is '
supposed to descend from /) to A, and D
then to go from A to B; while the a
second ape is supposed to jump vertically
upwards from /) to C, and then to leap A———-E-:\B
directly from C to B. Now let AD=a, "
AB.«b, and CD =gz, which is required. Thon by the qnestlan, :

we have 244/ (a+e)+P=a+b;
S (at 2P+ VP=(a+0)*-2 (a4b) .z+z',

whence Te= ?%?} Hence the rule.]

155. Example. From a treea hundred cubits high,
an ape descended and went to a pond two hundred
cubits distant : while another ape, vaulting to some
height off the tree, proé'eeded with velocity diagonally

F

'Thnm hmmﬁummﬁmd the upright being
bdngknm as also the side : todhnriniuh
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to !;ha same spot. If the space travelled by them be
equal, tell me quickly, learned man, the height of the
leap, if thou have diligently studied caleulation.

Statement. Tree 100 cubits. Distance of it from
the pond 200. Proceeding as dlrec;ed, the height of
the leap comes out 50.

156. Rule! From twice the square of the hypote-
nuse subtract the sum of the upright and side multi-
plied by itself, and extract the square root of the re-
mainder, Set down the sum twice, and let the root be
subtracted in one place and added in the other. The
moieties will be measures of the side and upright.”

[Let @ denote the sum of side and
upright, and & the hypotenuse. Also let

@ denote the upright. Then we bave xR

evidently, (a—#)*+a*=0* ; @ \

S 2t —2an -at—bE=0), i s be
-7 = a—

2 /25— gt
If we take the upper sign, then a—z --———%—L and

! Hypotenunse being known, 88 also the som of the side and vpright, or
their difforence ; to discriminate those sides—Gan.

® In Jike manner, the difference of the side and upright being given, the
same rule it applicable.—Gau, [A slight variation will be necessary ; see note
to § 168.—EDp,] The principle of the rule is this: the sqnare of the
nunee is ‘sum of the squares of the sides. Ddbtho.ﬁholﬂ:aw
wtthtmweproductotwummdhuwmwo”hum:uﬂl
with the same subtracted is the square of the difference, Bmumd!in‘
equal quentitios atfirmative and negative, twice the square of the hypote-
puse will be the sum of the squares of the sum and difference. Therefore,
Wn;hmwiumqmﬂmmumwdﬁo““
remainder is the qmotmm;cmm&, subtracting the
square of the difference, the reaidue is the square of the sum. The aquare
maumumdm wm-mm-u-mmwmmu
gonourrence,.—Gan

£ 1 = . : ..- ‘-.
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evident that we may take either sign. The reason for the rale
is obvious. The method of solving an adfected quadratic equa~
tion by completing the square has been mentioned before.
See §§ 62--63. Interesting geometrical interpretations of the
expressions for # and a—x are given by Ganesa and Siuryaddsa.

See foot-note. ]

157, Example. Where the hypotenuse is seven
above ten ; and the sum of the side and upright, three
above twenty ; tell them to me, my friend.

Statement : Hypotenuse 17 ; sum of side and up-
right 23. Proceeding as directed, the side and upright
are found 8 and 15.

158. Example.! Where the difference of the - side
and upright is seven, and hypotenuse is thirteen, say
quickly, eminent mathematician, what the slde and up-
right are.

Statement : hypotenuse 13 ; dlﬂ'erence of side and up-
right 7. Proceeding as dlrected the side and upright
come out 5 and 12.

[Let » denote the upright, and a the
diff, between upright and side, the up-
ngh'i being supposed > side. Then z—a -
will denote the side ; and we evidently 2 \b
have 2 + (x~a)*=1% whence as in §156,

a+4/200—a® |

2= 3 But here we must

if we take the lower sign, then a— My

take the upper sign alone, since 2~a is necessarily positive,

Thuswehm.f-‘- '2 ~ +“ i;and.e-a-"/%’_;'—a

l 1 \ o

e %

'Mmf'oo!thibon'thedlmofﬂnedd es is given, is
mb;sum t noticed by Ganesa, Copies of the MW

R
: :
:;:1; Y Ny e .3 ’ ot £ 3
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AFr;ma these values it 1s dear that 'tbeuae in § 156 must be

slightly varied in order to be applicable to the present case.]

159. Rule! The product of two erect bambus
being divided by their sum, the quotient is the per-
pendicular® from the junction (intersection) of threads
passing reciprocally from the root (-of]a one) to the tip
(of the other). The two bambus, multiplied by an as-
sumed base, and divided by their sum, are the portions
of the base on the respective sides of the perpendicular.

[From similar triangles (see figure) we have

g
a .r,+lq’ a

g

b -7,'+y i T y_

) . | ab
S P (n +b)“ 1, and .. p’u_-li-‘!f
Thus p is independent of 2 and y. provided a and 1 be given.
Again, let #+y =k, any assumed number.
ok ale
Then .?‘SLF; ol a—_’_—z,
bl
atbd

This rule shows that the property of similar triangles was
known. See Bhiskara’s remark at the end of -§ 160, and the
proof given by Ganesa, cited in the foot-note, which is slightly
different and more cumbrons.]

160. Example. Tell the perpendicular drawn fiom
the intersection of strings stretched mutually from the
roots to the summits of two bambus fifteen and ten
cubits high, standing upon ground of unknown extent.

i Having taught fally the method of finding the sides in & right-augled
trinngle, the author next propounds a special problem.—Gan. To find the -
perpendiculir, the base being unknown.—Sdr, ~ o

and yu%"’-

F ]
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Statement : bambus 15, 10. The perpendicular is

g =

found 6. ! e

Next to find .
the segments of '
the base. Let g 5 o %
pn 70
the ground be 6

assumed 5 ; the
segments come out 3 and 2. Or putting 10, they are 6
and 4. Or taking 15, they are 9and 6. See the figures.
In every instance the perpendicular is the same,' viz., 6+

The proof is in every case by the rule of three : if
with a side equal to the base, the bambu be the upright,
then with the segment of the base, what will be the
upright ?*

161. Aphorism.! That figure, though rectilinear,
of which sides are proposed by some presumptuous

! However Lthe base may vary by assuming n greater or less quantity for
it, the perpendicular will always be the same —Gan,

* On each side of the perpendicalar, are segments of the base relative to
the greater and smaller bambus, and Inrger or less analogously to them,
Henoe this proportion: * If with the sum of bthe bambug, bhis sum of the

segraéuts equal to the entire base be obtained, then, with the smaller bambu, =

what is bad 1" [This proportion cannot be ab once oblninéd ensily, but may. -
be got by dividing corresponding members of the first two eqnations in the

note to §169, wheuce we have § =2, and therefore <=2 2L _Ep ) The

[

answer gives the segment which ﬁ relative to the lm.t zmtn. Again: “I1f
with a side equsl to the whole bnse, the higher bambu be the npright, then
with a side equal to the segment found as aboye, what is had I The answer
gives the perpendionlar let fall from the intorsection of the threads. Hers a
multiplicator and s divisor equal to the entire buse are both cancelled as
equsl and conteary : and there remain the product of the two bambus for
nmw,zi;_m for denominator, Hence the rule—Gun.

i
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person, wherein one side' exceeds or equals the sum of -
the other sides, way be known to be no figure.

+  [This follows from Buclid I. 20. Amy side of a triangle or
‘of any polygon must be less than the sum of the remaining sides.
Hence the numbers 2, 3, 6, 12 cannot rapr-esent the sides of a
quadrilateral.]

162. Example. Where sides are proposed two, three,
six and twelve in a quadrilateral, or three, six and nine
in a triangle, by some presumptuous dunce, know it to
be no figure.

Statement. The figures are both incongruous. Let
straight rods exactly of the lengths of the proposed sides
be placed on the ground, the incongrnity will be ap-
parent.’

163—164. Rule’® in two couplets. In a triangle, the
sum of two sides being multiplied by their difference,
is divided by the base® ; the quotient is subtracted from,
and added to, the base which is twice set down : and
being halved, the results are segments corresponding to
those sides.’

—=T

" The principal or greatest side.—Gan. Kaum, Rang, _

# The rods will not meet,—8Siir,

*In any triangle to find the perpendioum segments and aren. Thisis
introdnetory to a fuller conrideration of areas,—Gan. and Sidr. \ _

* Bldvmi, biui, ku, mahi or any other term signifying enrth ; the ground
or base of u trivvgle or other plane figure. Any one of the sides is for
the base, and the rest are termed simply sides. emmmmw
the greatest side. See note § 168, .

Lamba, §o.; the perpendicular. Bee mg 159. Abdand, ohm :
segment of the base made by the perpendioular, These are torms intro
by evrlier writers, These sogments are internal in av sente-nngled triax
bub 1l in an obtuse-angled one. MM kshotra-phala, sama-
Loshtha-miti » the measure of ﬁhmmwsrnmamﬂ quars
of the ssme denomiuation (a8 cubit, fathom, fager, &o.) in which
mension of w:wnm;mmww._ _
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The square root of the difference of the squares of the
side and its own segment of the base becomes the per-
pendicular. Half the base muluphed by the perpendl-

cular’ is in a triangle the exaet” area.’
[#4y is given, as also @ and b,
We have a®—P=2z—y*,

’

FiN

A )

at—1t <

% +y=m-y.

Ther (2-+y)+ (x—=y) =2z,
and (z4-y)=(r=y)=2y ;
and half of these results give « and y. w

Also perpendicular = 4/a° - 2%,
and area = § % base x altitude.

! Or hal? the perpendicular taken into the buse.—Gan.

* Sphutaphala, distivet or precise area; opposed to asphuta—or sthila-
phala, indistinoct or gross area. See § 167,

* Demonntration [o both the right-angled trinngles formed in thé pro-
posed triangle, one on eacli side of the perpendicnlar, this line is the upright ;
the gide i€ hypoteuuse, and the correspondiog sexment is side. Hence, sub-
tracting the square of the perpeudicular from the square of the side, the
remaindaris the square of the segment, 8o, subtracting the square of the
other side, there remnains tha square of the segment answering to it. Their
difference is the difference of the squares of the segments, and is aqual to
the difference of the squares of the sides, since an equa! quaatity bins been

tuken. from each ; for auy two quavtities less an equal quantity have the

sume difference. It is equal to the product of the sum and differeuce of the

sinple qaaatities. Thecefore, the sum of the sides multiplied by their differ-
ence jn the differencs of the sqnares of the segments. DBut the base is the
sum of the segments, The difference of the squares, divided by thas, is the
differenceof the serments, From which by the rule of concurrence (§ 55; the
segments are found. >

The square root of the differeuce between the squares of the side and seg-
ment (taken as hypotenuse and side) is the upright or perpendicalar,

Dividing the trisngle by » line across the
middle (of the perpendicular), placing
the MW" of the uppu portion .
by the perpendiculac on the mu&or the
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'l'l:enboversprnaﬁall‘rthad given by Ganesa,
ﬂﬂ:ongh it is rather long as it is exprpqad in words. ]

165. Example. In a triangular figure in which the
base is fourteen and,its sides thirteen and fifteen, tell
quickly the length]of the perpendicular, the segments,
and the dimension by like compartments termed area.

Statement : base 14; sides
13 and 15. Proceeding as
directed, the segments are 15/ | \®
found, 5 and 9 ; the perpendi-
calar, 12 ; the area 84. 7%

166. Example. In a triangle, wherein the sides
measure ten and seventeen, and the base nine, tell me
promptly, expert mathematician, the segments. perpendi-
cular, and area.

Statement ; base 9 ; sides 10 and 17. By the rule in
§163, the quotient found is 21. This eannot be sub-
tracted from the base ; wherefore
the base is subtracted from it.

Half the remainder is the seg-
ment, 6, and is negative, that is h A

to say, in the contrary direction.! O "o
+ (Seefigure.) Thus the two sggmmh are found 6 and 15.

perpendicnlar is just so much, humlhtﬁn:h also, the base
© multiplied by half the perpendicular is the aren.—Gan.
' r&em!ﬂﬁwwm&hwm&a“quMn
wo omit it here.—EDp.] N
- 'mmmmmmmﬁummgmmm
¢ - ing of the side exceeding the base, the quotient fonnd by the
163 cannot bd taken frowm the base ; for both origins of
oy uwwmwwmmmm eref
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hthwayl tao, tlmperpenaich]umd
out8. ‘ﬁfeﬁam 36.

[As the ‘commentators obsérve, the segments of ibo"hn ,'
‘made by the perpendicular in an obtuse-angled triangle are ex-
jemd .and their algebraical suin is their arithmetical diﬁum] '

167. Rule.! Half thesum of all the sides is set down
in four places ; and the sides are severally subtracted.
The remainders being mnltnpheﬂ Wgﬁhﬂ'i?e‘squm'e :

e

root of the produet is the avea inexact in _

lateral, but pronounced exact in the triangle.! Mg
[Tet ¢ denote the sermi-perimeter of a tnangla. Then | aren

=4¢/s (5—a) (s—b) (s—c). See Todhunter’s 'I‘ngononwh-y

Art. 247. This rule does not upplyto the case ofaqunlﬁﬁhul. -

Iu fact, a quadrilateral in general is not detau&inqd hy the

~ - S

~When the sum of the segments is to be taken, ns they have oontruy ﬂm'
‘affirmative and negative, the difference of the quantitios is that sum.—Str,
See Vij-gan. §5.

"1 For finding the gross aven of a quadrilaternl, and, by extension of the rale,
ﬂ:e exact area of a traugle—Gan, For finding the aren by a method deli.
vered by Sridhaca- Rang,

* If the three remninders be added together, threir sum is equal to w
the sum of all the sides. The product of the continued nnlt!plluﬁmut- ,
tha ¢ remnainders being taken into the snm of those mmq
mﬁ?m obtained is equal to the product of the square of the mﬁ

Fdicular taken into the square of half the base. [Itis not mhiudlwwﬂm }
uuu cass. The Lust me prodnot=

ii‘-l(a-l- "') }, (hlenr oumwlmmlfn. and f—

applying §169—164) = —-:45';:-"—1"'- =si ki) b =o) - D) }
fi-h-a) -cu-‘)(a-b}(s—¢)=,tl-q(t-mp—e)u{-¢+c-m-¢.;-u]
M Ja s squpre’ mﬂws'!or__nq:__ : WW‘&WW:

quace. The sq r extra .mwmumm |
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fonr sides ‘dlotie “withott-4a asngle, whereas 4 triangle is deter-
mined by its three sides,  Hence it is mcor t to say that the
expression derived from the above rule repres resénts the gross area

of a quadnlateral See note to §§169—170. The proof of the
rule given by Siiryadisa is not at all clear. See foot~note. ]

168. Example. In a quadrilateral %gure, of which
the base' is fourteen, the summit’ nine, the flanks
thirteen and twelve, snd the perpendicular twelve, tell
the area as it was taught by the ancients.

Statement : base 14 ; summit 9 ; sides 13 and 12
perpendicular 12. By the method P
directed, the result obtained is the
surd 19800, of which-the approxi-
mate root is somewhat less than
141. That, however, is not in this
figure the true area. But, found by
the method which ‘will be set forth (§ 175), the true,
area is 138,

~
- _@ -

Su

Statement of the triangle before
) 75
instanced (§ 165). _ i3
By the (present) method the area \ ]
comes out the same, viz., 84. -

169—170. Aphorism comprised in a stanza and a
half. ~ Since the diagonals of the quadrilateral are
indeterminate, how should the area be in this case
determinate ? The dmgonnls found as ‘assumed by the
ancients® do not answer in another case. Wlth thﬂ

L

) mgrmot tlge four sides huned the base —Gan. This definition

is, bowever, too restricted. See §§178, 185, .

- * Mukha, vadana, or any other wmﬁdmoﬂngm tho PO :.' o
v ihebmt.hummiﬁ : : _ d@l X
o By&ﬁhuuﬂﬁemb—@u

_ - : 1 ' .';.'."',
i BN = Tt e
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- same sides, there are other diagonals ; and the aren of
the figure is accordingly manifold.

For, in a quadrilateral, opposite angles being made ﬁtf ,_
approach, contract their diagonal as they advance in-
wards : while the other angles receding outwards leng-
then their diagonal. Therefore it is said that with the

- same sides there are other diagonals.

171. How can a person, neither specifying one of
the perpendiculars, nor either of the diagonals, ask the
rest?' Or how can he demand a determinate area,
while they are indefinite?

172. Such a questioner is a blundering devil.?
Still more so is he, who answers the question. For
he considers not the indefinite nature of the lines® in a

quadrilateral figure.

[The four sides alone without an angle do not determine the
quadrilateral in general, and the area is consequently indeter-
minate.,  For, take 485 as one side ;

and with centre A and radius equal to 2{
another side describe a circle ; take . '

any pvint D in the circumference, and S

join AD. With D), B as centres and Al
radii equal to the other two sides,
describe circles cutting each other in <4 / 8
C. Join CB, CD. Then ABCD is the quadrilateral which is
_indeterminate, since the angle BAD being not given, the point
D may be taken anywhere in the circumference of the first de-
- scribed circle. Hence with the same sides, the diagonals may
?--mry. But if the perpendlcuhr fmmD to the line AB be given,
“or if the dugonal BD be gwen, it is easy to see that the point
D bmmea l( ﬁxedxpomt in the'mrcnmferenoe of the first de-

—~—

» T .
g ¢ ]
xr.""::l J* a
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'Mmbedv mrcle, and so the quadnlateral is ermmate fn the

case of a trapezium, it is easily seen that the four sides being

given, the distance between two paralled sides is known, and so

the figure is determinate, The rule in §167, however, is equal-
ly inapplicable to this case.]

178—175. Rule' in two and a half stanzas. Let
one diagonal of an equilateral tetragon be put as given.
Then subtract its square from four times the square of
the side. The square root of the remainder is the
measure of the second diagonal.

The product of unequal diagonals multiplied together,
being divided by two, will be the precise area in an
equilateral tetragon: In a regular one with equal
diagonals, as also in an oblong,” the product of the
side and upright will be so.

In any other quadrilateral with equal perpendiculars,
the moiety of the sum of the base and summit, mul-
tiplied by the perpendicular (is the area).

[In an equilateral tetragon, the diago-
nals bisect each other at right angles. g
Hence (see figure), x = 4/1—a® ;
. 2z=unknown diagonal= , /4}*—44?, g

{

The-area of the above figure+is evidently equal to half the
product of the diagonals. The gther propositions stated above
are woll known elementary geometrical results. By “a quadris
lateral with equal perpendmuhm, the.author means a t:upe L\

zium.

' In an equilateral tetragon, one diagonal being given, to find the ae«‘hd?
diagonal and the area ; also in an equiperpendieunlar tetragon (trapezinm) l?
find the area.—~Gan. Equilateral tetragons are two-fold : with equal and
with unequal diagonals, The first rule regards the quﬂbﬂ M\
with unequal diagonals (the rhombus),—Sir,

jym, .m quadrilateral which mmﬂm nu-.-—m

b .._-..

. [ v ‘.‘.‘ -!1”
= T= sl L}
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176, Example. Mathematician, tell both diagonals
and the area of an equilateral quadrangular figure whose
side is the square of five: and the area of it, the
diagonals being equal: also (the area) of an oblong, the
breadth of which is six and length eight.

Statement of the first figure
(rhombus). Here, assuming one
diagonal 30, the other is found
40 ; and the area is 600.

Or put one diagonal 14; the |
otheris found 48 ; and the area
is 336. See figure.

Statement of the second figure
(square).

Here, taking the square root of
the sum of the squares (§ 134),

the diagonal comes out as the
surd /1250, alike both ways. The area is 625,

25

25

~ Statement of the third figure (ob- - 4| —J
long). Area 48. i

~ 177. Example. Where the summit is eleven, the

base twice as mueh as the summit, the flanks thirteen
and twenty, and the perpendicular twelve ; say what
- the area will be.

1!

Statement :

. Thegrau areq, (§167) is 250,
’Bhe tme area (§\75) is 198.
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< Or mnkmg three portaons Tof the | 4
ﬁgure, and severally finding their _ 4
areas, we get 30, 72, 96 (see ) |72
figure); and summing up we get
for the total area 198 as before. N

[The four sides of the trapezium l:ne:ir:xgl given, the perpendi-
cular is necessarily known. ]

178. Another example.. Declare the diagonal, per-
pendicular and dimensions of the area, in a figure of
which the summit is fifty-one, the base seventy-five, the
left side sixty-eight, and the other side twice twenty.

179. Aphorism showing the connection of area, per-
pendicular and diagonal. If the perpendicular be known,
the diagonal is so ; if the diagonal be known, the per-
pendicular is so. If they be definite, the area is deter-
minate. For, if the diagonal be indefinite, so is the
perpendicular. Such is the meaning.

179 continued. Rule for finding the perpendlcular |
In the triangle within the quadrilateral, the perpendi-
cular is found as before taught (§163—164) ; the dia-
gonal and side being sides, and the Jei
base, a base. . :

Here, “to find the perpendicular,
a diagonal proceeding from the
extremlt.y of the left side to the
origin of the right one is assumed . %

to be 77 ; see figure. By this a triangle is constltnbed
within the quadrilateral. In it that diagonal is one
side, 77 ; the left side is another, 68 ; the base continues
such, 75, Then, proceeding by the uld (§§163-1,s4j}

'muqomwumngimcmm—eu. ' A

. '\"

.\
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the segments are found, lg-t and £31; and the perpendl- |

cular, 298,

[The problem given is indeterminate, unless a dmgonal. oran
angle, or a perpendicular distance be given. So one diagonal

is supposed to be 77. The process then adopted is the same as
that shown in the note to §§163—164.]

180. Rule to find the diagonal, when the perpendih'
cular is known. :

The square root of the difference of the squares of
the perpendicular and its adjoining side is pronounced
the segment. The square of the base less that segment
being added to the square of the perpendicular, the
square root of the sum is the diagonal.

In the above quadrilateral, the perpendicular from
the extremity of the left side is put 20, Hence the
segment is found 1§%; and by the rule (§180) the
diagonal comes out 77.

[''he reason for the rule is manifest. ]

181—182. Rule to find the second diagonal : two
stanLas. :

In this figure, first a diagonal is assumed." In the
two triangles situated one on each side of the diagonal,
this diagonal is ‘made the base of each ; and the other
sides are given : the perpendiculars and segments’ must
be found. Then the square of the difference of two
gegments on the same side’ being added to the square
~of the sum of the perpendiculars, the square root of

Ll

¢ | -
'-'l_it.hgr arbitrarily (see §188) or as given by the conditions of the quees-

and the four segments,—Gan. 3
of two segments measured from the same extre-
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the sum of those squares will be the \second diagonal
in all tetragons.’

In the same quadrilateral, the leilgth of the diagonal
passing from the extremity of the left side to the origin
of the right one, is put 77. Within the figure cut by
that diagonal line, two triangles are formed, one on each
side of the diagonal. Taking
the diagonal for the base of each,
and the two other sides as given,
the two perpendiculars and the ¢
several segments must be found
by the method before taught.
Thus the perpendiculars ared  H % B
found, 24 and 60. Segments of the base made by the
former, 45 and 32 ; those made by the latter, 32 and 45.
Difference of the segments on the same side (that is, se
much of the base as is intercepted between the perpen-
diculars) is 13. Its square 169. Sum of the perpen-
diculars 84. Its square 7056. Sum of the squares
7225. Square root of the sum 85. It is the length of
the second diagonal. So in every like instance.

-

- %

11In the figure which is divided by the'diagonal line, two triangles are |
contained, one on each side of that line; and their perpendiculars, which
fall one on each side of the diagonal, are thence found. The dd!erenoo
beween two segments on the same side willbe the interval between the
perpendiculars. It is ‘taken as'the upright of a triangle. Producing (see
above figure) one perpendicular by the addition of the other, (i. c., drawing
€@ perpendicular to 4 F produced), the sum (4 @)is made the side of the
triangle. The second diagonal (AC) is hypotenuse. A triangle (460C) is
thus formed. From this is deduced, that the sguare root of the sum of tho
squares of the upright (which = 0€¢ = EF= BF — BE) and side (which
= AG w AF 4 CF) will be the second diagonal : and the mlokému.’
trated.—Gar.

Tn an equilatersl tetragon, thereis no interval b&mﬁhnmm ;\
mdmmdﬁmlhhmdmmm—m :

& ¥ , -1 .‘
"“."' vk pat
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[The reason for the rule will be clear from the explanation
given by Ganesa, cited in the foot-note. In the particalar ex-
ample chosen, it happens (see above figure) that DF=FEB,
but this need not always be the case. Tt also happens from
the values of AB, BC, CA, that the angle ABC is a right
angle. |

183. Rule restricting the arbitrary assumption of a
diagonal : a stanza and a half. The sum of the shortest
pair of sides containing the diagonal being taken asa
base, and the remaining two as the legs (of a triangle),
the perpendicular is to be found : and, in like manner,
with the other diagonal. The diagonal cannot by any
~means be longer than the corresponding base, nor
shorter than the perpendicular answering to the other.

Adverting to these limits, an intelligent person may
assume a diagonal.

For a quadrilateral, contracting as the opposite angles
approach, becomes a triangle ; wherein the sum of the
least pair of sides about one angle is the base, and the
other two are taken as the legs. The perpendicular is
founu in the manner before taught. Hence the shrink-
ing diagonal cannot by any means be less than the per-
pendicular ; nor the other be greater than the base. It
is 80 both ways. This, even though it were not men-
tioned, would be readily perceived by the intelligent
student.
 [What the author intends to say is (see figure fo §§ 181-182)
that the diagonal BD cannot be longer than DC + BC, but
always shorter ; nor can it be shorter than the perpendicular

Dﬂ’mhmys mgu (Enclid, I 20 and 19). The first

184, -B’nle to'ﬁ_ndthm Mfam The.

i'-"- : reR, I o
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- 1.
sum of the areas of the two triangles on either side of
the diagonal is assuredly' the area in this figure.

In the figure last specified, the areas of the two
triangles are 924 and 2310. The sum of these is 3234,
the area of the tetragon. |

[The area of the triangle- BCD (see figs. to §§ 181—182) is
924, and that of the triangle ABJD is 2310. ]

185—186. Rule: two stanzas. Making the differ-
ence between the base and summit of a {trapezium or)
quadrilateral that has equal perpendiculars, the base
(of a triangle), and the sides (its) legs, the segments
of it and the length of the perpendicular are to be
found as for a triangle. From the base of the trape-
zinm subtract the segment, and add the square of the
remainder to the square of the perpendicular ; the square
root of the sum will be the diagonal.

In a (trapezium or) quadrilateral that has equal per-
pendiculars, the sum of the base and least flank is
greater than the aggregate of the summit and other flank.

[The rule gives the method of finding the diagonalsnf.-a
trapezium the sides of which are given. It is demonstrated by
Ganesa in the following manner :—

Let the two triangles
ABE, DFC be united into 4 D
one triangle A’B’C’, their
altitudes being equal. Then
the altitnde A"E’ of the new s
 ftriangle A’B'(" is the alti- v B B C
tude of the trapezium, and il ‘_
- the segments B'E, /(" will be equal to BE, FC. Hence ._AC{; '_
-AE’+EC‘=A’E"+(BC-B'E)' which leads to the rale.

'Itkﬁohumdmﬁmmhﬂﬁ&thworw aul
umm—-en M&ﬁr ST

— ud AL | y » _- '_'__ il ‘:IL

Xt



find the segments of AC by § 163, we shall find that AC, |
BD intersect at right angles, and that 40= 30.

= /BT00 4§57 = 304/F+31/69=30X 1'789... + Bx 8807...
- =5106...4-24°921... = 76°88,.. = 76§} nearly. The ﬁ
qwmﬁely

.'-
IeL
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Also, A’B’ +BCYAC,
N AB+ BE+ FC+ EF>AD 4 DC, (~» AD=EF)
i.e., AB+BC  >AD+DC.

AB need not be the *least flank.’]

- 187—189. Example. The sides measuring fifty-two
and one less than forty, the summit equal to twenty-
five, and the base sixty, this was given as an example
by former writers for a figure having unequal per-
pendiculars ; and definite measures of the diagonals

were stated, fifty-six and sixty-three. Assign to it

other diagonals, and those particularly which apper-
tain to it as a figure with equal perpendiculars,

= A

"'\

A\

Statement.

Here assuming one dmgonal 63, the uther is found
@s before, 56. Or, putting 32 instead of .56 for a dia-
gonal (Fig. 2), the other, found by the process before

shown, comes out in two portions, both surds, 4/621

and 4/2700. The sum of the roots (extracted by ap-
proximation) is the second diagonal 76 §3.

[In Fig. 2, if we drop perpendiculars from B, D on AC, and

 Hence BD=B0+D0= 4/607 = 30+ /509 = 307

mﬁommermdiaudinilﬁ.
i , . | s kgt

l'.
!
4
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Again, if the above quadrilateral (Fig. 1) be one with
equal perpendiculars, i.e., a trape-
zium, (Fig. 3), consider the trian-
gle A’B’D' (Fig. 4), put to find
the perpendicular DE, and the
segments AE, FB, according to .
the rule in §§ 185-186. Herc thed £ F 8
segments are found £ and 172 ; D’
and the perpendicular, the surd
/28016 of which the root found
by approximation is 38§33. It
is the equal perpendicular of the |
trapezium. ' AI'_E' =, T,

Fig. 4.

Next to find the sum of the squares of the perpen-
dicular and difference between base and segment, we
have, base of trapezium, 60 ; least segment §; differ-
ence 291; square of the difference 88202; gquare of the
perpendicular £8016. sum 12§25 or dividing by the
denominator, 5049. It is the square of one diagonal
(BD). Similarly, the square of the other dlagona.l
(AC) is 2176. Extracting the roots of these squares

by approximation, the two diagomals come out 715%
and 463§.

In the above trapezium, the short side 39 added tp 4 |
the base 60 makes 99, which is greater than the ag-
gregate of the summit and other flank, 77. Such is
the limitation. \ [

Thus, with the same sides, may be various dmgons!;
in the tetragon. Yet, though indeterminate, di

~ have been sought as determinate, by Brghmngnph and
- others. Thelrmhum follows :— e\

e -
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190. Rule! The sums of the products of the sides
wbout both the diagonals being divided by each other,
multiply the quotients by the sum of the products of
opposite sides ; the square roots of the results are the

diagonals in a quadnlaheml
The objection to this mode of ﬁndmg the aiagonals
s its operoseness, as I shall show by proposing a short-
* method.

[The role applies only t6 a quadrilateral which ean be in-
‘bed in & circle. This, however, is not mentioned in the

t ABCD be sucha quadrilateral,
lot AB=a, BC=b, CD =g
=d.

e (ac+4-bd) (ad+be)

sy o4 = . AN
(ac+bd) (ab+od)
and BD’= it

(See Todhunter’s Trigonometry, Art. 254.) Thus the reason
r the rule is obvious. -
I= _the quadrilateral in §§ 187-189, Fig. 1, thealdesm 80
ken that the diagonals intersect ut right angles; and we
sily find OB=48, OD=15. Thus cos (QDA)=}§= s,
d cos (OCB)=4¢=1y%. Hence angle ODA=angle OCB,
«d therefore a circle passes round the quadrilateral. Con-
quently, the rule in § 190 will apply to this quadrilateral.
is probable that the rule was derived a posteriori from this
irticular instance, and not @ priori from the fact of the qna.d- It.
~ateral being inseribable in a sirele. The same quadrilateral is
venuuummlyleofth“e rule by Chaturveda Prithidaka

_ eomonhryoanhmgnphstreahno] }
,.191— linle two stsm Thenpnghund

ey "Am mmmmmu. S
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sides lo!' two mn‘mad nght-mg trnanglea, .
multiplied by the reclpmcal hypotenuses, become sides
~ (of a quﬂ.dnla.teml) and in this manner is constituted
a quadrilateral, in which the dlagonn.ls are deducible
from the two triangles. The product of the uprights
added td the product of the sides is one diagonal ; the
sum of the producr.s of uprights and sides recnpromlly
multiplied, iz the other.’ When this short methoc

exists, why an operose one was practised by forme
writers, we know not.

1 Assumed conformably with the rule in §145. An objeetion, to w)
Ganesa adverts and which be eundeavours to obviasbe, is that this sh
method requires sugacity in the selection of assumed triangles ; wb
the longer method is adapted to all capacities,

2 'This method of constructing a quadrilateral is taken from Brahmag
XTI, 88.

3 A quadrilateral is divided into four triangles by its intersecting di
nnle ; and conversely, by the junotion of four triangles, a quadriiaters
m For that purpose, four triangles are assumed in this man
'.tn trisnggles are fiet put in the mode directed (§146), the sides of wh
_ are all rationul. Buch gides, maltiplied by any assumed number, wille
‘gm obher right-angled triungles, of which also the gides will be ration
By the twofold multiplication of hypotenuse, upright aud side of one assum
(u-bngh by the upright and side of the other, four (right-angled) trisngl

ed, such that turning and adapting them and placing the maltipl
_9: the hypotennses for sides, & quadrilateral is composed, (ns shown below
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ﬂhdm&wmwhhm
@MmMmtho uﬂﬂdﬂ-m
by the suthor, aud fully explained by Ganesa ; see
1t is carious that the author, while censuring Brahn :
imporhntmh(§190)mopemse,enhralyfwgetsthtﬁsnh -
propounded by himself is comparatively unimporbmnéd'
very limited application.]

._-'b"

‘Assuming two right-angled triangles, mnhp!y-%hq
upright and side of ome by the _
hy@enuae of the other : the great- %

base ; the least for the summit ; and ¢
the other two for the flinks. (See '
- Fig. 1 in the foot-note.)

the uprights, the other the product of the sides of the arbitrary triangles.
The other diagonal (D) consists of two parts, viz., the products of the reci-
procal multiplieation of uprights and sides. These two portions are the per.
| pendiculars, for there is no interval between the points of intersection. This
* holds, provided the shortest side be the sumumit ; mw&v%; wd
 therest, theflanks, But if the component triangles . W Ste

* bootherwissudapted, the summitand a fank chauge 5 /_é *

| places, a5 in the adjoining figure, Here Lhe two LA
mammwwummmdm ;
| 48 2nd J5) do not face, but sre j 2
interyal, which is equal to the dm sm
 she two portions (36 and 20) ¢

It is the. o

est of the products is taken for the ,\




~ Here with much labour (by the former method) the
diagonals are found 63 and 56. - \
With the same pair of right-angled triangles, the
products of uprights and sides reciprocally multiplied
are 36 und 20 ; the sum of which is one diagonal, 56,
The products of uprights multiplied together, and sides
taken into each other, are 48 and 15 ; their sum is the
other diagonal, 63. Thus they are found with ease.

Bug if the summit and flank change places, and the
figure be stated accordingly, the second diagonal will
be the product of the hypotenuses of the two right-
angled triangles, viz., 65. (See Fig. 2 in the fopt-note.)

-

And % AR =5X12, and BC =5 X b, "
S AU =5 x 18, and the trnth of the remark is obvious. It need
hardly be sdded that the remark applies ouly to guadrilaterals construoted
in the artificial manuer indicated by the author.—Bin.]

In like manner, for the tetragon heforg !
instanced (§176), to find the disgonals, & 15 \17 ;
paie Of roctangular triavgles is put. Pro- [\ -
‘oeeding as directed, the diagonals come out ¢ \

77 nnd 84, (Bee Fig, 3.)
‘4-';-

')

40
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 193—194. Example.! In a figure in which the
base is three hundred, the summit a hundred and
twenty-five, the flanks two hundred and sixty and one
hundred and ninety-five, one diagonal two hundred
‘and eighty and the other three hundred and fifteen, and
the perpendiculars a hundred and eighty-nine and two
hundred and twenty-four, what are the portions of
the perpendiculars and diagonals below the intersections
of them ? and the perpendicular let fall from the inter-
section of the diagonals, with the segments answering
to it ? and the perpendicular of the needle formed b

the prolongation of the flanks until they meet, as mﬁﬂ?
as the segments corresponding to it ? and the measure
of both the needle’s sides ? All this declare, mathemas-
tician, if thou be thoroughly skilled in this (science of*)
plane figure.

Statement. Length of the base

300. Summit 125. Flanks 260 and D ¢
195. Diagonals 280 and 315, Per- A
pendlculars 189 and 224. A @ H'B

" 195—196. Raule: two stanzas.” The interval be-
tween the perpendicular and its correspondent flank is
termed the sandhi® or link of that perpendicular. The

! Having thus, from §178 to this place, shown the method of finding the
area, &c., in the fourteen sorte of quadrilaterals, the author now exhibite
another quadrilateral, proposing questions concerning segments produced by
intersection.—Gan, For the instruction of the pupil, he.exhibits the ﬂnre

: olllod*(nicht)‘ﬂ needle.— Mano.
ﬁo hnilh.hn from Brahmagupta with a slight variation ; ndﬂ:ll
i from his only in the scale, his numbers being here increased
% !wsah. See rlhngnph. xu.n.

Il e
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baae less the link or segment is called the pitha® or com-
plement of the same. The link or segment contlgnons ‘
~ to that portlon (of perpendicular or diagonal) which is
sought, is twice set down. Multiplied by the other
perpendicular in one instance, and by the:diagonal in
the other, and divided (in both instances) by the com-
plement belonging to the other (perpendicular), the
quotients will be the lower portions of the perpendi-
cular and diagonal below the intersection.

Statement. Perpendicular 189. Flank contiguous
to it 195. Segment intercepted between them (found
by §134), 48. It is the link. The second segment is
252, and is called the complement.

_ In like manner, the second perpendicular is 224.
The flank contiguous to it, 260. Interval between them,
being the segment called link, 132. Complement 168.

Now to find the lower portion of the first perpendi-
cular 189. Its link 48 separately multiplied by the
other perpendicular 224 and by the diagonal 280, and
divided by the other complement 168, gives quotients
64, the lower portion of the perpendicular, and 80, the, .
lower portion of the diagonal. :

So for the second perpendicular 224, its link 132,
severally multiplied by the other perpendicular 189 and
by the diagonnl 315, and divided by the other comple-

- ment 252, gives 99 for the lower portion of theper-

‘pendlcular and 165 for that of the dingonal. : \
- [The object of the rule is to find EG, EA, FH, FB. (Boe
-~ figure, §§193-104).
~* From similar triangles we have, -~ O Dy e
T e T
= gataER THA N

ﬁ}” ' Pitha, uan-m Beptgaoomylm:mu lh‘tqm& 7

”t:.-.‘v_" "
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AE GA GAx AC
and E-m, whence AF = _m— .
Similarly for #H and FB.
Hence the reason for the rule is clear. ]

197. Rule to find the perpendicular below the inter-
section of the diagonals.

The perpendiculars multiplied by the base and divid-
ed by the respective complements, are the erect poles :
from which the perpendicular let fall from the intersec-
tion of the diagonals, as also the segments of the base,
are to be found as before.’

Statement. Proceeding as directed,
the erect poles are found 225 and 400.
Whence, by a former rule (§159), the
perpendicular below the intersection
of the diagonals is deduced, 144 ; and
the segments of the base 108 and 192.

[The method employed is first to find AKX, BL, the erect
poles or perpendiculars on AB, and then to apply §159 to find

OM. Now from similar triangles we have AR oh whence
AB  GPB
GDx AB

AK= B with a similar value for BL. Hence the rule.] -

198-—200. Rule to find the perpendicular of the
needle,” its legs and the segments of its base : three
stanzas. The proper link multiplied by the other per-
pendicular and divided by its own, is termed the mean;®
and the sum of this and the opposite link is called the
divisor.‘ Those two quantities, namely, the mean and

' By the rule in §159. N,

* Siiché, needlo; the triangie formed by the flanks of the quadrilateral
til they meet. .-
* Sama, mean ; » fourth proportional to the two perpendiculars and the

or segment,
* Hara, divisor ; the sum of the mean and the other link or segment,

BM BN 8
L
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the opposite link, being multiplied by the base and
divided by that divisor, will be the respective segments
of the needle’s base. The other perpendicular, multi-
plied by the base and divided by the divisor, will he
the perpendicular of the needle. The flanks, multiplied
by the perpendicular of the needle and divided by their
fespective perpendiculars, will be the legs of the needle.
Thus may the subdivision of a plane figure be conduct-
ed by,the intelligent, by means of the Rule of Three.

Here the perpendicular being 224, its link is 132,
This multiplied by the other perpen- N

dicular, viz., 189, and divided by its
own, viz., 224, gives themean as it is  p +
named, £§1. The sum of this and
the other link 48 is the divisor as it is
4 GQPH B

called, 2215,  The mean and the other
link severally taken into the base, being divided by this
divisor, give the segments of the needle’s base, 1538
and 2§42 The other perpendicular 189, multiplied by
the base and divided by the same divisor, yields the
perpendicular of the needle, £948, The sides 195 and-
260, multiplied by the needle’s perpendicular and divid-
ed by their own perpendiculars respectively, wiz., 189
and 224, give the legs of the needle, which are the
sides of the quadrilateral produced, viz., £332 and 193,
Thus in all instances under this head, taking the
divisor for the argument, and ‘making the multiplicand
or multiplicator, as the case may be, the fruit or requi-
sition, the Rule of Three is to be inferred by the intel-
ligent mathematician, 2k %)
 [The object of the rule is to find PA, PB, NP, NA, NB (see
above figure). It is demonstrated by Ganesa in the following






