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PREFACK

HE Unjversity of Calcutta difd.mo thé honour early in
1908 to. appoint me Reader, and asked me to deliver
a series of lectures upon some subject, preferably electrical,
which would be of use to the lecturers in the outlying colleges
ag well as to the more advanced students in Calcutta. It was
a condition of the appointment that the lectures should subse-
quently be published, and it appeared that I could best attain
thege ends by attempting to put some of the mors Important
developments of electromagnetic theory into a connected and
convenient form,- It is therefore chiefly in the mode of presen-
tation, rather than in the subject matter, that any originality
which the lectures may possess must be sought.

For the material I am very largely indebted to the writinga
of H. A. Lorentz, while some features in the treatmeni of
vector analysis are taken from the Vector dnalysis of E. B,

Wilson.
G T. W.

October, 1910,
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CHAPTER L

VECTOR ANALY#S,

by
1. WE may divide the quantifies that we meet with in
physics into two classes according as they have or have not a

direction associated with them, Quantities of the former type
which obey the parallelogram law, such as velocities and forces,
are called wectors, while those of the latter type, such as time
intervals, masses and temperatures, are called scalars. The
algebra of scalars is that of ordinary real quantities and need

not concern us further.

2., If the straight lines OF, 0Q represent two vectors
The addition A, B, we shall define A 4 B, the geometric sum,
:ﬁi ﬁbﬁrw as represented by the diagonal OR of the parallelo-

vectors, 2ranm POQR. This 18 the same as B 4- A,
R

T

Similarly A—B is the sum of the vectors OP, 07 whore
OT is equpl and opposite to 0Q. Thus A — B, the geometric
difference, is represented by the diagonal O of the parallelogram
TOPS, i.e. by the second diagonal QP of the original parallelo-
gram,

3. We now define i, j, k as vectors of unit léngth along
rectangular axes 0.X, O, 0Z; so that if P be the point (w, v, 2)

W. 1



2 THE THEORY OF ELECTROMAGNETISM

and PM, PN be perpendiculars to 0X and the plane X0V
respectively, the vectors OM, MN, NP will represent i, jy, ke

Z

1 P
4'* ’
E *’ -*"j.
J'#’ ..;-"* z
E b
.IJ'*I
R Py iyt ST N
"'* nnnn
P
J'*' r""F """""
L i o BT L A
¥ Pl 4|---"”'I
* "“ '-l'-
F ,,.-r'ﬂ"
al',:.':_,-r" ﬂq.

Now the vector ON, being the sum of the vectors OM, MK,

will represent iz + jy; hence iz + jy + kz will be represented
by the sum of the vectors ON, NP, or OF, which we shall

denote by r. Thus
r =lx + jy + kz.

If I, m, n be the direction cosines of OF we have x=Ir,
Y=y, £ =nr; 80
1 r =17 (il + jm + kn),
4. Consider a second line OP’ defined by +/, I', m/, »'; and
Iustration  let the angle POP’ be denoted by 8. Since the

L projection of the vector OF along OF'is equal to
the sum of the projections of the component vectors OM, MN,
. NP along that line,
OPcos @ =al’ +ym' + 2n/,
ie. r cos @ = rll’ + rmm’ + ran',
Hence rr’ cos@ = xa + yy' + 2
‘and cos 8 = I’ + mm’ + nn',

b. If r. r be two- consecutive vectors OP, OF' at
Itustration fimes ¢, {48t to a particle P moving with

L. velocity v,
v = limit of 2.
- ot
= limit of r T

ot

.. or
== J1mit of 5

=¥,



VEOTOR ANALYSIS 3

Similarly if v, v/ be the velocities at the times 3, £+ &, we
have thesacceleration

. vy
== ] V.
f=l1mit of 5
e
mi‘l

6. Taking (r, 8) as the polar coordinates of a point P, let
Iustration R, T be unit vectors algng and at right angles to
1L OP in the directions 7, @ j ;ncleasmg + then, if @ be
the point (1, ) which lies on O.P and remains at unit distance

from O as @ varies,

R = the velotity of the point @
=0T, for its direction is that of T, ie. that of 08, at rlght
angles to OP,

Similarly if OS remains of unit length,
T =the velocity of the point S
= — #R, for its direction is that of QO.

P

Now r =R,
-‘t vﬂfmﬁﬂ-l'?'ﬁ
=R +4+ 8T,

Thus the velocity is made up of 7 along OF and r at right
angles to 1t,

Further
f == v-r--m (frH +r6T)

wé‘R+5~R+Ta-a(ré)+ré.'i‘

= (# —r6%),R —l- (r“é) T,



4 THE THEORY OF ELECTROMAGNETISM

giving the usual components along R and T. The acceleration
of a particle whose three-dimensional polar coordirates are

(r, 8, ¢) may be obtained in a similar manner.

7. Let us consider the functions of the second degree with
which we are concerned in physics. If a force F
scalar a,nd v 1 v . h 1 a h
vedtor act upon a particle moving with velocity u, the
products of  rate at which work is done is the product of the
vectors. _ _ Y
numerical soglar values of F and y, multiplied by
the cosine of the angle hetween the directions of F and u. This

is a scalar quantity, and so, if we have two vectors
=iz + jy + ke,
r' =iad’ + jy' + k7,
we give the title of their scalar product to 77" cos & or
za’ +yy +27. We shall denote it by {xr’} or {r'r}; and when

no ambiguity can arise from the omission of the brackets they
will usually be omitted.

8. On the other hand if a force («'y/2) be applied at the
point (&, y, 2) the couple about the origin has components

yz' —~ o'z, zm' ~dm, Y — 'y,

This is a vector ¢ of scalar magnitude ' sin 6, and its direction
is at right angles to », ¥/, being that of the axis about which r
must be rotated in the right-handed direction in order to bring
it into coincidence with ¥’. If r be due cast, and r’ due north,
r" is towards the zenith. The dircctions r, ¥, ¥’ form a right-
handed system, and it is important to remember that the axes
of reference OX, OY, OZ must always be chosen 50 as to form
a right-handed system. The vector r” is called the vector
product of », ¥, and is denoted by [rr’], these square brackets
never being omitted, Thus

'] =1(ye' — y'z) +] (e’ — 2w) + k (ay’ — o'y)

=1 1, j: k
i, Yy &
/ / /
m! y: &

= —[1r'r],
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9, Tts numerical magnitude is the area of the parallel-
ogram whose sides are r, ¥\ Thus the scalar
product

C [AB]= (scalar magnitude of C) x (area of parallelogram
A, B) x (cosine of the angle between C and tho
positive, normal to A, B)
volume of the parallelepiped of which three adjacent
edges are A, B, C, being positive when A, B, G
form a right-handed system.

If the components of A be 4, 4,, 4,, &c, the components
of [AB] being A,B;— 4,8, &c., we have

Lemma I.

C[AB]= ¢, 0,, G
Al! 'A'ﬂ? AB
-Bl ? Bih 'BS
= A [BC]= B [CA] ........ Ciesera (1)
Lempa II. 10. We have
|4 [-BO]] —~ | s ] ! k

4, 4, 4,
BﬂOB“Baoﬂ: -3301“131 03’ Bloﬂ"”ﬁﬂol
=1(B,.{CA} ~C. [BA}) +] (B;. {OA} ~0;. [BAJ)

+ X (By.{CA} —C, . [BA})
= (1B, + jB, -+ kB;) CA — (10, - jC, + k(C,) BA

mBiOAwCE BA iiiiiiiiiiiiiiiii L EE N NN RN R R R R, (2)*
11. Let us denote by V the operator
d d .. d
Vectorial + <.
aiffarentia- 1 +j Ay otk de’
tion.

s0 that, if ¢> be any scalar fanction of u, y, «,
96 ¢' o 9P
V¢ = i =~ J cf:a
= R 30,
* 4f 4he magnitude and direction of R be R and (I, m, n), we
shall have

de dep de
Rzmdw Eim = dy’ fin = de
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Now if we consider the rate of change of ¢ In theedirection
of any unit vector D or (A, w, v) we shall have, on going a small.

distance ds,

= J3INOs + Rm;w o8 + Rnyds
= I cosnﬁ s,
where 6 15 the angle betgveen R and D.

d : : C
', -&% = I cos @ = RD and is a maximum when € =0, 1e. 1n

the direction of R. It is zero in a direction perpen?iicula,r to R,
Thus R is along the normal vo the surface ¢ = constant, and its

de
an

We have seen that the rate of change of ¢ in any direction

D is {DV¢}, the component of g—%— along D: hence ‘&gb 18

scalar magnitude is =*, where dn 13 an element of this normal.

a vector which is independent of the selection of the axes.

12. Green’s theorem tells us that for a region in which
any vector u or (u, v, w) is finite, continuous and

Green's .
theorem. smgle-valued
du dw ,_
fdv( dy RE ---—de(lu+mv+nw),

where (I, m, n) is the normal N of unit length drawn into the
region.
Thus fdv {Va] =~ [dS {Nu}
= — [{dS u},
if dS be treated as a vector whose direction is N.

13. If u be the velocity of a fluid, — [{dS u} is the rate
The operator 4t Which fluid leaves the region: thus, applying
‘divergence.’ _the theorem to an clement of volume, Vu is
the rate at which the flmd expands per unit volume; hence
its name of ‘divergence’ of u. It is usgually written div .
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14.  If u*= B¢, where B is a vector and ¢ is a scalar,
Green’s theorem becomes

fdv {V B¢} =—[{d8 B}
Now on the left side we may replace VB¢ by

V:B¢ + V,Bd,

where in the first term V operates on B only, and in the second
on ¢ only: thus it becomes ¢ {V,B} +{BV}¢$., Hence the

theorem
fdv(pdiv B+ BV .p)=—~[{dS B} ......... (3).

15. (a3 If ¢ be a scalar quantity, integration, as In
Green’s theorem, gives

A;:aéioguaa
of Green's
theorem. f Qv (1 de +;] dcf» + k cfii)
o [dvVd =— [dSN
= [AS P arierrniireeeinriires (4)

(b) If u be a vector whose components are (u, v, w),

fdv[Vul=fdv| i1, j, k
a 4 a
do’ dy' de
U, U, W

Now in integrating we replaco f dv E% by - f dS1, &c.; hence

we gotb
~fdS} 1, §, k|,
0, m, n
u, v, W
or — [dS [Nu],
or -~ [[d8 u].
W call [Vu] the ‘rotation’ of u and write it rot u,

Thus
The operator
‘rﬂtaﬂon.’ fd'u rot 1 == ""f[ds 11] uuuuuuu fhravyey iy -(5)15
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16. Putiing u= B¢, where B is a veclor and ¢,a scalar,
and replacing [VBa] by [V,Bo]+-[V.Bp], we obtain

fdv(prot B—-[BV] )=~ f[dS B] ¢ ......... (6).

17. Stokes’ theorem tells us that the line integral

Stokes’ [(udz +vdy + wde) or [{dsu} round the margin
theoren. of any area iz equal to the surface integral
over 1t,
dw dv du duw dv du
f"w( t dz)“”(a;"m)*"“(‘ezrzg))’
or JdS{Nrotu}, or [{dS rot u}.

We may show that rotu has a meaning independent® of
the position of the axes exactly as we did in the case of Vé:
for the line integral round an element of area df 18 equal to
the component normal to dS of rotu: and the line integral
is independent of the particular axes selected.

18. It may be of interest to have a proof of Stokes’

theorem 1n terms of vector analysis.
Let us consider one only, dS, of the elements

Proof of

f]ﬁgg:;l by mmto which the surface 8 may be divided; and
vector let r be the vector joining a fixed point P,
analysls. in this element to any point P which lies on

18 margin. Then if P’ be a consecutive point r +dr, the
area of the triangle P.PP’ will be equal in magnitude and
direction to % [r, dr]. Thus

{dS .rot u} =& [[r, dr]rot u,
the integration being round the margin of d8§,
=4 [dr [rotu, r]
=% [dr [[Viu]r]
where V, operates only on u,
~ }Jar ((rV) u - V, fur)).
Now by Taylor’s theorem, if squares of small quaniities he

neglected, the value of u at P will exceed its value u, at P Qby
rV.u. Thus

fdr ¥V} u=fdr (u—1uy)=[dr.u —u, [dr.
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Also, V, {vr} = V {ur} — V, {ur}, where V,; operates only
on r; and V,{ur}= V,(ue+vy+wz)=u: thus we find on
substitution

dSrotu=14fdr(u— V {ur} +u)—4u,fdr.

Now when integrated round &S the perfeet differentials

dr and dr V {ur} wil vanish. Hence
dS rotu = [dr u = [dsu,
the integral being taken round the rgargin of dS. Summing

over all the elements dS the line integrals along the internal
arcs cut out and we obtain Stokes’ theorem in 1ts usual

form.

19. If in Stokes' theorem we replace u by B¢ as before,
we obbain

[{ds.Bo} =/{dS[V .Bs])
=[{dS ([V,. B¢]+[ V.. Bé]].

Thus J{ds B} ¢ = [{dS (¢rot B—~[BV] d)}.verrrarinn(T).

20, If T be a unit vector along the arc ds whose direc-
Analogue tion is (¥, m/, n'), the direction of the normal
of Rtokes’ N to dS being (I, m, n) as before, Stokes

theorem., .
theorem 18

[dS {N rotu} = [ds {Tul,

or JdS81 1, m, n =[ds(lu+ m'v+n'w)
d d d
dz’ dy’ de
w, vV, W [

Since this is analytically true for all values ot w, v, w, we may
put w=1ip, v=jd, w= k¢, where ¢ is a scalar function, Then

[ i, i, k |¢=/ds(l +jm’ +kn) ¢,
I, m, n
a 4 4
de’ dy’ dz
o de[NV]gb:fdquS;

or [[A8 V]d=[dr d..cooveirnirienninnnn(8).
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21. We have
div [AB]= {V [AB]},

and we may replace V by V,+ V,, where V,
operates on A only and V, on B only; further if C be any

vector

Lemma III,

G [AB]= B[CA] =~ A[CB].

Hence div[AB]=B[V;A]-A[V,B]
=BrotA—ArotB ....ociiiininn, (9).
Lemma 1v.  22. In a similar manner
rot [AB]=[V [AB]]
—[V.[AB]] +[V.[AB]]

= ({(BV,JA—B{V,A})+ (A [V,B} ~ {AV,} B)
~BV.A-BdivA+AdivB~AV.B......(10).

23, We have seen that the operator V, whether opetating
on a scalar or vector quantity, has a meaning
independent of the axes of reference; hence the

operator {VV] must also be independent of the axes. We
may obtain the meaning in the following manner :—

If ¢ be the value of a funclion at a point (w, y, 2) whose

vector from the origin 18 r, then at a neighbouring point r + p,
where p or (£, %, {) is small, the value of the function will, by

Taylor’s theorem, be

¢+(£§f§'+nd? + g2

Operator V2.

e gd @h&‘f;‘ﬁ

_._

d? d? d*
26 dyfl)z 26 dzga: + 20 dwc?y *

+ higher powers of & », &

Now the mean values of £ #* and &* over the gurface of
a gphere of small radius p are each equal to } (& 92+ &9),
or 4p*; while the mean of all terms including odd powers of £,
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n or ¢ i» zero. Thus the mean value of tho function over the
surface 18

¢+ %f V3¢ + fourth and higher powers of p:

and we find
Vig, =§__ {the excess of the mean value of ¢ over a spherical

surface of small radius p above its value at the
centre},

We may thus call V2¢ the * dispersion’ of ¢,



CHAPTER IL

APPLICATIONS OF VECTORIAL METHODS TO
MAGNETOSTATICS.

24. THE potential at a point (¢, 7/, 2) due to a magnetic
potential of PO of strength u at (@, ¥, 2) 18 u/r, or up, w}lere
doublet. r=pi={(@ =2+ =)+ — ).

Let us consider a magnetic doublet consisting
of poles — u and + u at P, P’ respectively ; and let the length
PP be p and its direction D, the scalar magnitude of this last
vector being unity. If p and p’ be the reciprocals of the distances
of P and P’ from the point (&, ¥/, #), the magnetic potential
there due to the doublet will be up’ — up or u (p'—p). Now p’
differs from p in that it is estimated at a point distant p from
P in the direction D. Hence p' —p is equal, when p is in-
definitely small, to p X (rate of change of p in the direction D)
or p.DV.p by§11. Hence Q=up.DV.p or M,DV.p, if
while p diminishes indefinitely w increases indefinitely in such
a manner that up remains equal 1o M. If the vector MD be
denoted by M, so that M has the moment and direction of
the magnetic doublet, this may be put into the form MV.p,

"In an exactly similar manner 1t may be shown that the
potential energy of the doublet in a field whose potential is
Qis u(Q'—02)or MV. Q.

26. This analysis shows that a magnetic momenk oheys
A magnetic athe‘lawa of a vector; and the truth of this ig
daublzt is obvious from the fact that we can introduce equal
& veeion. and opposite poles + u and — u abt the ends U,
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7 of the rectangular components lp, mp, mp, and thereby
Z

conlpletely replace our doublet P¢ of moment M by doublets
PU, UV, VQ of moments IM, mM, nM respectively.

26. Let us congider a magnetised body of which I is the
intensity of magnetisation. Due to an element

tial of
iﬁﬁgg;peuoaed of volume ov at (@, vy, 2) of moment Idv the
wocy- potential at a point («/, ¥/, ) outside the body is
$v.1V,p. Due then to the whole body
\Q,mfd‘u.lv._p Y YN NS N R LR R R R Y (11)

=~ [d8. NI.p~[dvp div |, by (8),
ﬂfdgﬂ'p "I"fd'v pp u--n-HHHHHHHH-(]‘B):
where a"t::::w-Nl, pﬁ:“—diVI ..-1..”....,.”..“...(13)-

Thus the magnelic potential is the same as that due to
a surface density, equal to the normal outward component of
magnetivation, and a volume density which is minus the di-

vorgency of the magnetisation.

27, The potential (11) above found is, stricily speaking,
applicable only at external points, for IV.p is infinite af
intcrnal points, Tho expression (12) 1s however finite at
internal as well as extornal points if o, p ave finite. Now the
potential inside a magnel, regarded as made up of doublets,
will.change with extreme rapidity as we pass from doublet to
doublet, and we may suppose that the numbor of doublets in
unit volume is very large. Thus the potential at (#, v, 2) is
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in reality indefinite unless account is taken of the distribution
of doublets in its immediate neighbourhood, and we cannot
specify it in terms of | alone. But we may for convenience
define the value of { given by (12) as the magnetic potential
within the body; and in that case, from the ordinary properties

of the potential,
Vﬂﬂ - 41‘7TP == () }r

(NV. Q) + drro=0

Now if the magnetic forcg — VO be denoted by H these
equations become
— div H — 4o div | mO}
~ (NH)? — 4or (NI =0}’

where in the second equation we have wntten (NI)! or
N, + N,l;, in order to include cases of contact between two

magnetised bodies.

28. Thus if we Introduce & new vector B defined b}r the
equation B = H + 4 |, we have
Magnetic

induction, div B = 0 }
............ ceveanns (1),
(NB) =0 (15)
This quantity is called by Maxwell the magnetic induction,

and 1its distribution, being like that of the velocity of an
incompressible fluid, may be called solenoidal.

29. Bince div B vanishes we may, without loss of generality,
The vector  UPPOSe that the rectangular components of B are

potential. dH d@& di' dH dtt dF
T & &% A dy
1.e, B=-curl A, where A=(F, G, H).
Then Stokes’ theorem gives over any surface
/{dS B} ={ds AJ,

and 1n free space, as B = H, the surface integral of normal force
over any area 18 equal to the line integral of the targent]al
component of A round its margin., The name given to A by
Maxwell 1s the vector potential,
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30. Owing to the presence of & magnetic doublet of
moment "M ab (z, i, 2) we shall have at (¢, 3, %)

Q“ Mvipm"" MV’*P:

where V’Ei-c—z%—l—j i-}-ka%,, and as p is a function of &' — g,

dy
dp __dp dp __dp dp _dp

Blpuirbubiin,

g
?J!-—-y and Z,“'.@', weshave EF::“EZE’ dyf"“““a"gl d;’ mdg'

Thus H=V'{MV'}9p
= (V. MV’ =M.V %) p,
for, as p satisfies Laplace’s equation, V2p =0,
*  =[V'[V'M]]p, by Lemma I, paragraph 9,
= —rot’ [MV’] p, where rot’ C=[V’C].
Hence we may take, as due to the doublet,
4d=~[MV]p=[MV]p

i

31. Considering a body of which | is the magnetisation
at (@, y, #), the vector potential at (', 3/, 2”) will be

[dv[IV]p;
or, by Green’s theorem,
~[dS [IN]p ~ [dv[IV\] p,

where in the second term V, must be regarded as operating
on | but not on p.

Thusg A={dS [NI]p+ [du[Vil]p
= [dS [NI] p + fdv (rot 1) p,

and the vector potential may be regarded as dug to a surface
density [NI] and a volume density rot|.

32. Lt us express by these methods the mutual cnergy
of two simple magnetic shells of moments ¢,

Mutual ° ) :
energy of ¢’ per unit area.
two shells, ;
" s We have seen that the vector potential at

(@, ¥, &) due to a magnetic particle at (, y, 2) s
A =~[MV']p=[MV]p.
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Now the first shell may be rogarded as made up of elements
of area dS of which the magnetic moment 18 ¢ dS and direction
&N dS: thus its vector potential at («, 9/, 2’) will be

4 =¢ [dS[NV]p

=¢ [[dS V]p,
and this, by the analogue of Stokes’ theorem, is equal to

¢ [ds p.
Now, by § 24, for a particle of moment M at (&, 7/, 2')
the energy of position W ig equal to M’'V’, Q. Thus for the
two shells, regarding the second as made up of doublets ¢’dS$’,

W= [dS (N'V'}
— — ¢ f{as' W)
= — ¢’ [{dS'rot’ A}
=~ ¢’ [ds' A, by Stokes' theorem,

=—¢¢ [[ds ds'p
=~ ' [[ds ds’ cosefr ....ocoviviiiiin, (16),

where ¢ is the angle between the directions of ds, d¢’,

83. When the magnetiging force is extremely small the
Inducsd induced lemporary magnetisation l; 18 propor-
magnetisa-  tional to the magnetic force H and is equal to
tion. kH, where & 18 the susceptibility, In order that
the analysis may include cases both of temporary magneti-
sation |; and permanent magnetisation l,, we shall suppose
that both may exist together and thus assume that the total
magnetisation | is equal to I+ 1, or kH +1,. Thus

B=H+4ml=H447 (tH+1,)
" == uH 4 4arl,, where p—~1+4wk ......(27)
Thus the conditions (15) obtained in § 28, i.e.
divB=0, (NB)=0,
give div uH + 47 divl,=0, [N (uH +47l,)}i=0.
We now replace H by — VQ and denote the permanent
magnetic densities, corresponding to those of (13) ift § 25,

by p,, oy, L6, g '
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then div uVQ + dmp,=0, {NuVOR+ dmoy,=0;

A0N?
or VO + drpy = 0, (,w %) tdmay=0......(18),

1
d/ dQ\  d 7 dQ\  d ;/ df)
where V.{) denotes o (,w %)+§§ (,u- d,g/) p (p. CZH) and

dn is an element of the normal drawn 4nfo the region of the
corresponding potensial,

34. The potential energy of a magnetostatic field may

be obtained by considering the work done in

h tential
En:réj; of s gradually and proportionally increasing the

magneto- strength of all the permanent magnets from
gtatic pole. . : .

»zero to their final value; during this process
any iron capable of temporary magnetisation must remain in
its final position, its magnetisation at any time boing deter-
mined by the field due to the permanent magnets, At a time
when all the permanent magnetisalion 1s of n times its final

gtrength the value of the potential and force at any point will
be » Yimes the final value and, as in the case of an electro-

static field, the work done in incereasing n from n to n+8n will be
2ndnmyd, where m, is a representative permanent magnetic
pole. Thus the work done in creating the system will be

W= -}Empﬂ e '&-2 {MPV} Q)
where M, 18 the moment of a representative permanent
magnetic doublet,

= —~ 43 {M,H]}
m—%ﬁle
= fdv (B — wH) H]

_+-—- fd oH + fdfuBV.ﬂ

= Wfdvaﬂmg-;-r de{NB 0~ mfduﬂde

by (3) of § 14.
"Now, by (15) of § 28, {NB}=0, divB=0: hence

1 1
mm;ur fdvagmé“;rfdeHn: ------ qutu(lg)t

W, 0



CHAPTER IIL

THE THEQORY OF MAXWIELL AS EXPRESSED BY HERTZ

85. IN his papers and his classical Treatise on Electricily
and Magnetism Maxwell gave a number of different inteirpre-
tations of the processes at work, and the intercst ol"these caused
nearly ay much importance to be attoched to them as to the
final equations to which they led, It was Heriz who pointed
out that however Maxwell's equations might be interpreted it
was they which in effect constituted Maxwell’s theory, and he
put them into an extremely convenient form.

In the electrostatic-electromagnetic units ;Ldopted by Hertz
the energy of the field per unit volume is taken, when the

media are stationary, as '8'1} (KE®+ uH?), where the units are

such that for free space X =1 and u=1, and E, H stand for the
electric and magnetic forces,
We adopt the following further symbols:
D = KE =the electric polarisation
= Maxwell's displacement multiplied by 4,
C = the conduection current,
B = The magnetic polarisation
= Maxwell's magnetic induction = pH + 4arl,*.

Then Hertz's equations are

%E + 47C = V rot H
{
B Crerenaane Cevren (20)
ﬁ‘"gzz-# . Vl'ﬂt E

Hertz does not explicitly discuss the case of permanent magnatisation.
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36. It follows that over any area
dD
f{ds (dt + 473-0) Vf dS rot H}
=V f ds H

thus the rate of increase of the surface integral of clectric
polarisation over any area, together with 4w times the con-
duction curregt through it, is equal to the line integral of H
round it. Similarly from the second equation it follows {that
the rate of diminution of the magnetic polarisation through
any circuit 18 equal to the line integral of E round it. Thus
the equatiofls (20) express Maxwell’s fundamental relations.

37. Also, taking the divergence of the former equation of

20),
(20) D

ot

but, by the definition of the conduction current, div C is the rate
at which charge is conveyed away per unit volume, and must

div( +4wr0) 0;

be equal to — g 7 where p is the electric density., Hence

dD dp
dwm—-w dr —~ p7he z= ()

at all points, and integrating with reference to the time,
div D = 4rp,

the constant of integration vanishing, since p=0 at all points
if D =0 at all points.

Similarly .div B =0,

88. In electrostatic fields cfg? =(), for there 18 no time

change of any variable, Hence rot E =0, and we may take
E=-V¢, where ¢ is a function given by

drp = diy D = — div (RV$) = ~ Vi,
d
4m-_={ND}§-—...-=-( E%)l.
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Similarly for a magnetostatic field H=— V., where Q is

given by
0=divB, 0={NB},

as in § 83. Thus

dﬂ ;
( dn) + dmay, = ()

where p,, op are the volume and surface densities of permancnt
magnetism.

89, A surface at which there is a discontinuity between
Surface the physical conditions on the two sides should
conditions,  he regarded as the limit of a thin layer of

continuous transition when the thickness of the layer is inde-

finitely diminished. Now the values of %—?— + 47wC, and of

cfi?: are finite on each side of the layer, and so may be regarded

as finite within it also: hence the values of rot'H and rot E will
be finite in the layer. But if the axis of Z be taken in the
direction of the normal to the bounding surtace at any point
the first of the three rectangular components of rot H will be

dN dM where H=(ZL, M, N). Now as oy, 18 finite on each
dy "z’ W

side of the layer it will be finite within 1t: hence - will also

dM

be finite in the layer, and j de - integrated through the

layer will be of the same order of small quantities as the
thickness of the layer. Hence when the thickness is in-
definitely diminished the values of M on the two sides will be
thé same, In a similar manner the values of L, X, ¥ may be

shown to be the same on the two sides. Thus the tangential
electric and maguetic forces must be continuous across the

surface.

40. It follows from the consideration of adjacent points

in the first medium, and points opposite to them in the second
wmedium, that the differential coefficients of L, M, X or ¥ with
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respect to # or y will be the same on the two sides*. Hence
in the third of the three Cartesian equations of the former

of (20), 1e. . i dL
If—c-&- ot diry = V(‘“&E; - @) ’

the terms on the right side are continuous, Accordingly the
left side must have the same value on the two sides, i.o. the

total normal electric flow 1s continuous,
Similarly the normal magnetic flow is continuous,

It must be noted that as the two boundary conditions of
this gection are derived from the equations of the field, and
thgse equations are satisfied throughout each medium, the two
boundary conditions are satisfied when the conditions of § 89
are satisfied, Hence the incdependent boundary conditions reduce
to the continuity of the tangential components of E and H.

41. It follows from Y, — V,=0, Z, — Z;= 0 that (E,~E;)
mus? be normal in direction and hence that [N (E;—E,)]
must be zcro. Thus the surface conditions may be put into

the form :
[NE]i=0, [NH]I=0..v.cotrvirinna(21).

* If we take points P, P’ in the first medium sueh that PP’ iz parallel
to OX, and if Q, @' be the points closest to them in tho sesond modium, suoh
that the lengths PQ and P'Q' are of the second order of small gquantitiox,

then in tho first medinm = i tho it of “o= T and ag Mps=My ond
Mg -Mg _ aM

Mp= Mg thig is the same in the limit as —%—@T-Q or = in the pecond

madium*



CHAPTER 1V.

HERTZ’S EQUATIONS FOR MOVING MEIRIA.

42. WE have next to consider the case in which the
material media in which electromagnetic processes are at work
are in motion, and we shall suppose that the velocity at any
point 18 u, a continuous function of the coordinates.

The most natural extension of the two fundamental Iaws
of Maxwell 18 to suppose that they apply to a circuit moving
with the velocity u of the medium. Now the rate of change of
the surface integral of any vector R iz made up of two parts,
one due to the change in R and the other to the motion of the
dR
"&"‘é‘:
by considering the cylindrical element of volume dv whose ends
o8, 08’ are formed by the area 8S in its
positions at the time # and the time ¢+ & <>
The total surface mvegral of the component w5t
of R along ¢he inward normals to the

element of volurhe is by Green’s theorem
equal to — 8v div R, or ~ {&'S u 8t} div R.

Now the contribution to the surface Integral from the two
faces 08, o8 will be

surface. The former part is f as the latter may be obtained

R&S-~R &9,

where R’ is the value of R at the face §8’, Also the tubular
surface may be regarded as made up of parallelograms of which
adjacent sides are elements of arc 8% (bounding 8'S) and lines
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u dt: thus by § 9 the contribution Lo the surface integral from
themtubﬁlar surface will be

—~[{R[Osudf]} or 3 f&s[Ru]
or &t {&'S rot [Rul},
Hence Green’s theorem gives |
~{u 88} 8t divR=R 88— R’ &Y' + 8t {8S rot [Ru]};
thus R’ 88 —R &S =8 {&S (u div R 4 rot [Ru])}.

Accordingly the rate of change of R 88 due solely to the motion
iz R, 8'S, where

R, §S = {6'S (u div R + rot [Ru])},
and 8o R, =udivR +rot[Ru] ..ooovirerenn, (22).

43, If then we decide to make the assumption that the
polarigations D, B are, in spite of the motion, equal to KE,
pH + 4orl,, whewe E, H are the electric and magnetic forces
acting in the moving media, we shall have, instead of the

equabion
f{ds (dd? + 4":7*0)} = Vf{dS rot H},

the modified equation

f{ds (cillz:}) + 1 div D + rot [Du] -+ 4:7:*0)} == Vf{dS rot H},

and since this ig true for all circuits &S we shall have

dD
dt

Similarly the second fundamental equation becomes

aB
dt

On expanding rot [ Du] the former equation becomes

adD
dt

or, if the time-rate of change in the value of & function at”

+u div D +rot [Dul]+ 497G =Vrot H..,...(28).

+udivB-rot [Bu]=— Vrot E .. ......(24).

——+uV,D+Ddivu~DV.u+47C =} rot H,
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a point moving with the medium be denoted By 77 # 50 that
dD ~aD
'-C-ZE""]‘ uV. D= *EE}" ]

ab :

W+deu—~DV,u+¢LwOmVrotH ...... (25).

Similarly the second fundamental equation becomes

%EBF +Bdive—BV.a=— V10t B.........(26).

These are Hertz’s equations for moving media.

44, At a point in the boundary between~two media,

Boundary rcgarded as the limit of a region of very raff)id
conditions.  {rgnsition from one medium to the other, we have
i%—l— Bdivu~ BV, u,

ot
adD :
and W+Dd1vu~—DV,u+4wO,ﬁ

are finite¥®, provided that u and its differential coeflicients are
finite, i.e. provided that there is no discontinuity in the
velocity of the two media at the interface. In thal case,
by (25) and (26), rot E and rot H will be finite in the region
of transition, and as in § 89, 41 it follows that

[NEJi=0, [NH]};=0.

46. In order to decide definitely whethor the Hertzian

Blondlot's theory for moving media is in accordance with

:ﬁﬁﬁ;‘ﬂs facts, Blondlot took two parallel platos, say 2 = + 4,

theory for and made a field of magnetic force L, parallel
moving medla. 4, Y between them. Ho then sent a current «

* It might at fivat sight appear legitimate to suppose that in (28)

%?-u+u div D 447 C )

ig ﬁl;ita at the interface; and to deduce that the ftangentinl components of
H - 7 [Du] were continuons, This ig not however justifiable, for % gives the

dKx. dKX .

time-change at acstationary point, and while 7 18 finite 7 18 infinite unless

the value of X on the two sides is the game or the velooity u ig parallel to the
intertace.
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of alr with veglocity » parallel to OV between the plates.

‘Accordmg to Elertz’s theory this would create opposite charges
on the two plates and hence on roversing L or » there would

be a current along a wire joining the plates: this was not found
and the theory must therefore be incorrect.

In order to obtain the charges we shall suppose that L, v
are constant and thab the conditions have bocome steady so that

Ed'i = 0 ; further sho charges on the infinite plates being constant,
there will be no current in the wire. As the air is uncharged

p =0, and mn_equation (24) %? = both in the air and the

metal; .*. rob [Bu]=— V1ot E in both media.

', rot (E + }I—;-[Bu] ) =0 i e (27).
Hence we may put in the air,
E + -%-,-.[Bu] == Vv, (27",
where ¢ is given by the condition p =0, or
div D =4arp = 0.
Now from (27')
. d , O _d¢ vk
X=-%% Y=—3 Z=~%~ 7

Thus, as div D = 0, — Vi = 0,
and we take as the appropriate solution
¢=A + Ba+ Oy + Ds.

Now as the velocity v is parallel to the plates we have

sz[;+ud1~g D, and ?-l—udw B finite in both media, and so

finite in the interface® Thus rot (E +- wﬁ[Bu]) will be finite,

and it follows at once that X, ¥ will be continuous across the
surface of the metal.

* Bee the footnote of the previous p;ga;
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But as there is no current in the plates when tho conditions
are steady X, ¥ will there vanish. Hence B =0, (=0 and

= A4 4+ Dz,

In order to determine D we shall utilise the fact that, from
(27), the integral over the surface bounded by any circuit

™

[dﬁ' rot (E + H]l%' [Bu]) == ()

or the line integral of |::+%7[Bu] round the circuit vanishes.

Let the circuit consist of a line PP’ parallel to 0Z in the air
from the first plate to the second, a line thence in the gecond
plate from P’ to the end of the wire, thence along the wire to
the first plate and thence to the point P to complete the circuit.
Along the whole of this circuit, except the straight line PP’
E=0and u=0, Hence along PP’ the component parallel to

0Z of E + -%;[Bu] must vanish.

Hence the line mtegral of Z + q% , Or -~D+Q%, must

vanish: and D= ?%2

Thug the value of Z within the metal being zero, the surface
charge o on the plate z = a will be given by

vl
“-i-;r“* = 4:‘71"{?_

Similarly onsz= — o the charge will be — ﬁ—_@-ﬁper unit area.

&

Thus on reversing v or L there will be a current in the wire,
and its amount can be calculated for comparison with experi-
ment.

46, Another test which may be applied to Herta's thepry
The influence 18 that of finding the influence of motion in the
upon the medium upon the velocity of light propagated

ﬂfelocity of ) ' -
light. along the direction of motion.
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For a medinmn moving with uniform velocity u parallel
to 0., the equations ave

Jf(”mi‘g)w(@m%)

at " a dy ~ dz)’
(o) v (-2,
% (G +ug) =7 (7 %)
atm =7 (%)
T m = (& @)
%= ()

Thus if the velocity of propagation be U, and we toke

ve find

KU ~uw)yn=+Vv
K(U—-w)yl=~Vu
(U—~u)n=0 l

K(U“'L&)fmo }

(U—~u) p=~V¢
(U—u)v=+TVy
Hence £ and A vanish, and E and H lie in the wave front:

and a8 AE+ uy + v vanishes, E and H are at right angles.
Further, eliminating u, ¢

K(U—~up=Vi=KV"
if 77 be the velocity of light in the medium at rest. Hence
U=w+ V.

47, Accmdmg to this theory then the velocity % of the
megdium 18 superpnsod on that of the light, a result which is
contradicted by experlmental determinations: the, latter show

that the velocity of light along a enrrent of air is only affected
by a small fraction. of the velocity of the air.



CHAPTER V.,

SOME EFFECTS DUE, TO THE MOTION OF OIIARGED
PARTIOLES THROUGH A STATIONARY AETHER.

48, BEFORE considering Lorentz's theory, in Wluch all
phenomena are interpreted in terms of electrons movmg
through aether at rest, it 18 of interest to examine some
simple cases of this type in which a complete solution can be
effected.,

Let us consider the case in which electrmlty of density p
per unit volume is moving with velocity u thmugh statlionary
aether, the only restriction on u being that 1t shall be a finite
and continuous function of the coordinates, If we consider
a circult fixed in the aether the counvection current will be pu
and the fundamental laws give

| CfiE + dmrpu =V rot H )
¢
dH V E p u””nnu(28)-
HC?{W“ rof; }

Now, as Maxwell pointed out, the electric force E’ acting
on a condustor moving with velocity u 1s not the same as E
the force when the conductor is at rest: and as E is the same
whether the result of it be to set up a conduction current, to
act on a charged particle, or to cause polarisation in a dielectric,
we shall suppose that E’ is the same whatever be the nature of
the effect produced on the moving body. Let us consider a
circuit of which u 1s the velocity at any point. The rate of
icrease of the surface mtegral of electric force E will be

fas ( +udivE +r0t[Eu])



MOTION THROUGH A STATIONARY AETHER 29

and there will 'bca no convection current through tho oireuit
ag tho volocity of the chargo relative to tho eireuit is zero.
Thus*if we apply the first fundamental law to the moving

ceircuit we got
de ( 4 u div E 4 rot [Eu]) Vfds rot; H',

where on the right dide we have H’, not H, since it is the
magnetic force on & moving circuit which is considered.

Hence C;E + drpu + rob [Eu] = Vrot H' .........(28,

and similarly from the second law

(i?;' + rot [Hu] = P rotE .niniiin. (29)

On comparing these with (28) wo find
rot [Eu] =V rot (H ~ H),

ana 80 we 15&1{6 ""l""m H "l"%[Eu] -nunununru(SO).

Similarly from the second equations

E = E 4 [0H] v eerren(81),

49, On oxpanding rot [Eu] as

Edivae—EV.u~udivE +uV , E,
condltlons.  pnd replacing o+ uV by 1 We get from (28')

%EEW Edivi— EV . u=Vrot H .. (32),

and similarly from (29)
%‘i + Hdiva - HV (= ~Vrot E'......,..(33).

Now at & surface which separates two media we shall have,
if u*be continuous at the surface, the left sides of (82) and (38)
finite within the.region of rapid transition which replaces the
surface of discontinuitv: thue the right sides will be finite, and
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the condition at the surface, as in § 44, will ‘be that the tan-
gential compononts of E’, H' shall be the same m the two

regions, Le, that
[NE[f=0, [NH]{=0.

50. We shall now consider in slighily greator dotail vhe
Gonvection  ©A5@ 1N which electric chayges of: density P a1
with constant moving through empty space with velocity u
veloolly. which i uniform and constant.,

The equations of the field referred to moving circuits will
be, from (82) and (38),
dE

~Tr = ¥ rot H’
j& ..... e, (34).
— ’
a‘g}- =} rot E
Algo divE =4mp, divH=0 ........ e (8D),

E'=E+3[aH], H =H—3{uE] ......36)

In (34),since the conditions are steady, there are no changes
1n. quantities estimated at points moving with velocity u, and

d
m—;mO.

Thus rot E’=0, rot H'=0; and we may put
E'==~V®, H=-V,

where @, () may be called the electric and magnetic convection
potentials.

Also by (86)
" div E"= div E + 117.(H rotu—urotH) ...... (37). -
Now
rot H = rot (H’ +-%; [uE])

~ rot H’+%-,(udivE-—-uV.E+ EV . u—Edivu)

:%,(udivs-uv.a),
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for rot H’ =0, and u is independent of the coordinates, being
uniform. Thus

ul*otH—-y-"fé ---—1-11V uk
"""“"-V' WP V L) '

Also as u[uH] =0,
uE =uE =—-uV. o,

"Thus (37) becomes

— Vo = drp ~ I3 drp - (“;)ﬂ P,
or (va - (“‘IZ )ﬂ) O + darp (1 - %Z) Y (38).
St If u=(u,0,0) and 1—7; =14
s %;—g fgg + gz_g +dmpli=0 verean., (39),

50 that if we put & = Il§, y =, z={, we have

dd PP A .
EZ:—EFFW '|"“*&"§",—'ﬂ +417Tpl = (),

and & 1s the potential at (£ », ) due to charges represented
by pltdEdnd¢ within an element of volume dgdndf. |

Thus at (o, ¥/, &)
o mff pldmd;t/dz’
@)

where ri= (@ = af [0+ (y —y) + (¢ ~ 2)}
oY P =] 2 E.. ,
7y

whero ¢ is a representative charge in tho original system,

In an exactly similar manner, as div H =0,
Q) d*'Q | d*

R st AR~

P Rl v il <y
and ag there is now no volume density Q=0: hence H’ =0,
«and by (36)

H -r--%-,[uE]*



32 THE TILEORY OF ELECT{LOMAGNETISM

Thus when u is unrestricted as to direction,

V& =E'=E+3[uH]
1
= E +75; [0 [uE]]

= E+Tf1~3(u.uE-—-u3¢E);

When u=(u, 0, 0) this gives

— e __..d@... i n:-l:- dmcp Z“"""" Somaiity p-]n:m d-nfg
T oode’ T Bdy’ T Pde’
w dP u db
and so L-—O, MHW%’ waﬁ-&ﬂg.

52. Due to a point-charge e moving along OX past the
origin ®=1le/r, and if »*/V? be neglected r = r, the distance
from the origin, Thus the electric forces will be the same as
those due to a fixed charge, and, in addition,

L=0, =28 Ny-1Lo

Ve 2T



CHAPTER VI.

THE ELECTRON TIIEORY OF LORENTZ APPLIED TO
STATIONARY MEDIA.

53. WE have seen that the Maxwell-Hertz theory of
moving media 18 contradicted by experience, and it becomes
necessary to adopt hypotheses different from those on which
that theory was based. It was there supposed that if E were
the electric force acting upon a ecircuit moving with the
medium, the polgrisation of the medium was KE; so that if
the medium were a greatly rarefied gas the polarisation in
the gas would be K times the electric force acting on the
moving gas. But in the limit when the gas is evanescent in
density the polarisation becomes that of the aether only, and
the force tending to produce the polarisation is dependent on
the velocity, for, as Maxwell pointed out, the electric force on

a moving body exceeds that on a stationary body by --T17[uH]:

thus the assumption that the polarisation within a moving
medium 18 X times the electric force at & moving point really
involves the hypothesis that the aether is carried along with
the velocity of the medium, In Lorentz's theory the aether
is supposed to be stationary and it is only the electrons (minute
particles, either with or without ordinary mass, carrying electric
charges) which are supposed to move through it with the
velocity of the material medium ; the interpretation of electrical
phenomena 1. terms of electrons has received very strong con-
frmation from the facts of electrolysis, the discharge of gases,
kathode and Rontgen rays, radio-activity, electrical conductivity
and various optical phenomena, Further as the distributions of

W. 3
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electrons which aro required to explain electric and magnetlc
polarisation, and conduction currents, ave probably very. com-,
plicated, it becomes desirable for the sake of simplicity to
consider separately the explanation of each of these phenomena;
when they occur simultaneously we can suppose thal the effect
may be obtained by adding their separate effccts,

r"a

54. In the Hertzian electrostatic-eleciromagnetic units
the force between electric chargeés ¢, ¢" is Kee'[r?
and that between magnetic poles m, m'is umm'/r,
where K, u are unity in free space. The units of ¢ and m are
modified by Lorentz in such a manner that theforces Become
Kee [4mrr® and pmm' [darr®, Thus two units of charge in a vatuum
repel with force 1/47r* and the potential due to a charge ¢ in a
medium X i8 Ke/4mr. The unit charge of electricity is 1/24/ar
times the ordinary electrostatic unit and for Gauss’s equation
we have [{dS E} =the surface integral of inward force = — the
total charge inside. Hence if ¢ be the potential,

V}(ﬁ-}-p:——'(}, (ff-c-@)z+a'ﬁ0,

Units,

and for an electrostatic field,

11;fdwp¢+1}fdsa-¢
=~ 4 [dp Vip~1 [as (Ifg:f) b
= %fdvaEﬂ.

¢
55. Lol us suppose that the unit of length ig very small
and that the closeness of examination is such
The electro- :
statios of that the space occupied by an electyon may be
Elatlonaly  considered as finite: we may then suppose that
there 18 no outer surface of discontinuity bounding
an electron, but that there is gradual transition [rom _the
electron torthe ompty aether. We shall denote by p "the
density of the electricity within an electron, and by e, h the
electric and magnetic forces at any point in this highly magnified
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c:onm&amﬂon af the conditions, If u be the velocity within
the Qlcctwn the Maxwell-Hertzian equations will be

de
7t m= V rot h

ah
*a} TR VI'OtB

with div e = p,

and on taking the divergence of the former of (40),
dp
dt

66. Letaus consider a small volume containing a group
of clectrons for which the total charge, [pdv, vanishes, We
may then call the electric moment of the volume the integral
Jprdv, where r 18 the radius-vector from an origin within the
volume to any point where the density is p: if ¥’ is the radius-
vector from a second origin whose radius-vector referred to the
firgt origin is r,, we have r=r,+r’, and

[prdv = fprodv + [pr'dy =1, {pdv + [px'dv = [pr'dw,
for f[pdv=0. Thus the electric moment of the volume so

defined 18, as it should bo, independent of the position of the
origin within the volume,

Further, the time-change of the moment will be [prdy, or
fpudy, the value of which per unit volume is the electric current
due to the motion of the charges.

etereereeesenesna(40),

+ div (pu) = 0,

657. If then in the dielectric the electric moment per unit
volume, when averaged over an element of volume containing
many groups of electrons, 18 D’, and if this is, changing at
a rate D', the current due to this will be D', The equations
(4:0) of the field, which referred to dimensions small compared
with the dimensions of an electron, may now be averaged over
an element of volurhe of the gize usual in mathematical physics,
i.e. containing many groups of electrons: the result 1s

%(M D)=V rot H

aH =~ V rot E

dt
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If the specific inductive eapacity be K, and the tetal polar isation
(E + D) be denoted, as before, by D, we know, by compgrison
with Maxwell’s theory, that D= KE, and so D' =({ ~1)E

this is closely analogous with the corresponding total magnetic
polarisation

B=H+(u-1)H
where (p—1)H is in these units &H, tho moment per unit
volume of the induced magnetism, & being the susceptibility.

The equation of continuity for a volume containing a number
of groups of electrons 1s

f dv-—-E-—-ra.te of flow of electricity into thee volume

= [(as. B} =~ [ dvdiv b’

hence, as the volume is arbitrary,

ap_ -—-d1vdD

dt dt
Now let us integrate with respect to the lime, and remember
that the dielectric was uncharged at the fime when D'=0
and there were no electric forces,

e Pm"’"div D’i

68. This theorem is the analogue of the corresponding
expression (13) for the density in magnetostatics and may be
stated in the following manner:

If over each molecule or group of electrons fpdv = 0, then
over a regiop, taken ab random and large enough to comtnin
a large number of molecules or groups, the charge per unit

volume is —div D', where D’ is the mean value per unit volume
of [pr dv.

It is clear that if the boundary were drawn dehbera.tely,
with mfimte precision, in such a menner as never to cub
through any group and so to contain only entire groups, Lhta
total charge«and so the density would be zero, But when we

«speak of —div D’ as the density we mean the density in any
element of volume taken at random.
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Regarding this as a purely analyfical theorem its applica-
tion may*be generalised in the following manner. If ¢ be any
scadar quantity such that [¢dv vanishes over each group of
cloctrons, then the mean value of ¢ over an element of volume
taken at random and containing a large number of groups is
— div A, where A 18 the mean value per unit volume of the
integral [dvdr.

69. Let ug assume that over a small volume containing

Polariga- one group of elecirons [dup =0, a,nc;1 Jdvpr =0,
tion of a where r= (=, v, 2), so that the medium has no
ﬁ;?;?ﬁ? electric charge or polarisation. Further, let us
medium. “assume that

[dvpa?, [dvpy?, [dup2?,

[dvpyz, [dv pza, [dvpay
are all independent of the time. We shall then denote by m

or (p, g, ) the integral %—, f dvp [rr], where the region of in-

tegration includes the group of electrons: we shall later see
that m is the magnetic moment of the group. In virtue of
the assumptions just made we shall have zero time rates of
the quantities [dvpa?® &c, so thab

[dvpdw =0, [dvp(dy+ ay)=0; &e.
Thus [dvpdy =% [dvp (@y — &) =— VT,

[dvpiz =} [dvp (dz — wi) = Vq.
Further we have, on substituting p# in the generalised theorem

of the previous scction, that the mean current parallel to OX,
i.e, the value per unit volume of fdvp4, is equalsto

B T R L it T ]

where P, @, R are the values per unit volume of
[dvpda, f[dvpdy, [dvpde.
Ffom any group of electrons the contribution will be

d d dr dg\
_..-C-Z-E}(m VT)““&;(VQ) or V(@“ R—E)’
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and so the component current parallel to O.X per unit avea

will be Tf"(j—g ~ %?) , whero 4, B, C arc the sum Lotulaﬂpem:}rnit

volume of p, ¢, 7. Thus if we denote (4, B, () by G/, the clectric
current, expressed as a veclor, is V rot G,

60. Let us consider a stationary mediuim in which there
——— 18 electric dengity p in addition to, and apart

magnetio from, any effect of the polarisation D, and also

tions for : ' !
e onary. & conduction current G, The cquatiohs (41) will

medium. now become

i(E+D")+thG"+O=VrotH »
dt
7 corenn(42),
with
div E = total densities =—div D'+ p, i.e, div (E + D’) = p;

and div H =0, for we have no strictly magnetic matter, having
merely electrons,

Let us now introduce a new quantity H, defined by
H=H,4+ G ’;
then the equations become
%(E + D)4 C = Vrot H,
P verieeen(43),
:’& (H1 -+ G!) =t — V 1ot E
with div(E+D)=p, div(H;+G)=0....... . (44),

But these are the ordinary Maxwell-Hertz equations in these
units, H, being Maxwell's magnetic force and G’ the magnetic
moment; H or (H; 4+ G’) is Maxwell’s magnetic induetion,. We

have therefore justified the interpretation of -9%. f dup [»r],

1 :
or 53 (moment of electric momentum) as the magnetic moment

of the group of electrons,
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61, Returnmg to thé minute scale of examination adopted
in § 55, the force acting upon a stationary charge

E in, th
feld and the.  Of volume density p when the electric force is o
gg#tmg will be pe: if the charge be moving with velocity
u the electric force acting upon it will be
1
€+ "‘“V[Uh]n

which we shall denote by f, and the ponderomotive force per
unit volumfs will be p times this, or pf,

Now over any Etation&ry volume
dtfdv%(ew—hﬁ) [dw( d;:)
= [du {e (Vroth pu) —~ hV rot e}, by (40),
=V [dv (e xrot h —hrot e) — fduvpeu
=~V [dv div [eh] — [dvpuf,
by (9), and because

*uf=1u (e+-—-117.[uh]> = e,

. & [y (@ + 1w =V [ (as[en]) - [ dvput

Thus the rato at which potential enmergy increases in any
volume, after providing for the rate at which work 1z done
on the moving charges, is equal to the rate of flow into that
volume of the vector V[eh] across the bounding surface. This
quantity is the Poynting flow of energy and may be denoted

by p.

62, Let us now examine the question of whether the
porces in g interpretation in §60 of magnetishtion as due to
magneto- the movements of electrons in small orbits will
staitlo fleld. give the same ponderomotive forces as the ordinary

theory of magnetic matter.

Oontinuing with the minute scale of examination of the
prevmuﬂ section we have as the resultant force acting on a

group of electrons f dv p (e + =5 [rh]) where r 15, as before, the

vector to the point from an origin within the group. Now-we
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* r ' . y
are hero concerned not with tho cloetric and magnotic Torees

due to the othor electrons of the group bulb with thosd due to
an extornal Aold which wo may denote by E, H. If E, Hebo
used o denolc tho forces al the origin those at tho point r
will be, to the first approximation, E+rV . E, H4+-rV . H gnd
the resultanty force on vhe group will be

fdvp(E-i—rV.E-J;--%,.[i', H+r’€7.H]>

Now fdvp =0, [dvpr=0, [dvpi=0,
gince the magnetic modium is supposed Lo have no charge and
no electric polarisation, Thus the resultant becomnes

1 : 1 . 1
—pnfdvp [r, rV, H] or -i;fdvp [r.rV, l"‘l].r

Now we saw in § 59 that
Jdvpde =0, [dvpdy=- Vi, [dvpde=Vy,
go that the operator

fdvpd',rv = V(qggm?“%) ,

and accordingly
fdvpt (xV] = [dvp (12 + jy + k&) {r V)

=V i j k
poq T
4 4da d
de dy dz |
== V[mv:] FEEERAR SRR RN PRI I dR ey (415)"

Hence

.%f.j'dvp [i‘TrV, H]=[[mV]H]

for div H = 0, as the H is due to an external fleld.

Now the force according to Maxwell’s theory is mV , H and
mV.H-V, mH =~ [m[VH]], by (2),
= (),
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for [VH]=rot H = 0,
ag M is due to currents or magnetisation away from the origin,
Honce the resultant forco is mV . H ag in Maxwell’s theory,

63. The couple acting on the group of the previons
section will be, omitting torms in E which ob-

Gouples in _ _
a magneto-  vioudly vanigh,
gtatic fleld. ro
[ave |2, [t (H+x¥. H)]] ............ (46),
L

Now [dup|r, [iH]| = [ dop (b 7H ~ i H)

fdvpt {rH} =V [mH],
while [dvpir =0, for {dvpad =20, &c.

Hence fd'vp r,-%}-,[f'H] = [mH],

and the contribubion to the couple from *V.H in (H 4+ »V. H)

of (46) will, since r is very small, be negligible in comparson

with that from H which we have evaluated, Thus the couple
oig [mH] as in Maxwell’s theory.

84, The force acting on any particle whose charge is ¢ is

of, and the stresy ingide a material medium made

fﬁr:;iﬁ_m up of such particles will be determincd by the

ordinary laws of mechanics, just as the siresses

due to gravity are determined by such forces as mg upon
particles of mass m.

Inasmuch as we have no means of measdring stresses in
the aether it does not appear that much is gained by obtaining
gtresses in the aether to explain the force ¢f cxerted upon
particled imbedded in 1. There i3 however some interest in
such an intcrpretation of the phenomena and we may proceed
ag follows.

6b. The resultant force exerted over any wolume is

fd'vp (w% [un]),
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de

or, o8 p=dive and = 7

fd'v (e div e + T]}" (Vroth w%?) hil) :

Bt

Ou adding to this the coutribution
,..mqu;l: ( +the) +fdﬁhdiv h,

which vanishos in virtue of the sccond equation of (40) and
divh =0, wo oblain

fdv(edive+hdivh~[e rot 6] — [, rob b])

| -y | (| } [e%‘?)
Now by (2),

[e, rot ] =[e[Ve]]= V,.ee —eV g,

where the suffix of the operator V, indicatos that it acts upon
the first e of ee only;

" [e,rote] =4V.e*—eV., e,

+p11mV10bh

Hence
fdv(edive —[e,rot e])=[dv(e. Ve +eV e—%V. e
=[dv(Ve.e—4% V. e,

the V operating in the usual manner on the bterms which

follow 1t
=~ [dS(Ne,e — 4N, e,

where N 18, as before, a unit vector along the inward normal.

Thus the force is F,+ F,, where
Fi=—[dS(Ne,e—iN.e*+ Nh.h~ [N, h?),

unvfdv—-n[eh]

p being V[eh], the Poynting flow.

A8, Accordingly if the field be purely electrostatic, and
the components of e are (X, Y, Z), we shall have F;=0 and the
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force in the direction of OX may bo interpreted as due to a
fm;ca per unit arca upon the surface amounting to

— (X +mV +nZ) X ++1(X* + Y24 29),
whoere N = (}, m, n).

Thus on a rectangular parallelepiped with its edges parallel
to the planes of reference we have forces per unit area parallel

to the axis 0X:
(@) on,the face parallel to YOZ, for which
N=(~-1,0,0), +(X*— Y2 Z?%);
(b) on the face parallel to ZOX, for which
N=(0,-10), XY;
(¢) on the face parallel to XOY, for which
N =(0, 0, - 1), ZX.

We have accordingly tensions }e® along lines of force and
pressures %e* ab right angles to them. This system agrees with

Maxwell’s stresses in the aether.



CLIAPTER VIL

TIE BLECTRON TIIEORY OTF LORENTZ APPLTED TO
MOVING MEDIA,

67. Lzrus firsh of all consider a medium capable of electric
Case of o, 1on- but not of magnetic polarisation. ILgt us take an

conducting  ordinary element of volume w containing a nuber

mealit Wit of proups of eleotrons, and within that eloment an

polarigation  origin moving with the velocity u of the moedium.

}‘;;ﬂigﬁ;‘;?f;?w_ Then for each group the integral [dvp = 0, while

coptibility.  [dypr, the electric moment, is the contribution
towards D', the momeni of the elemont of volume w.

Now since the algebraic sum of the charges in any group is
zero we may suppose that when D’ ig zero all the electrons in a
group are superposed ab the origin within the group, and that
the polarisation of the medium is cffecied by moving these
clgctrons from the origin to their final positions, Owing to

this movement only, Cl"[, f dvpd, the component of D’ along 0K,
1s, a8 In § 56, the rate of flow of clectricity per unit arca across
a plane perpendicular to OX'; and hence %}— f dvpw, the com-

ponent of D’ along OX, may be regarded ag the quantity of
electricity which has flowed through a planc perpendicular tao.
OX, per unit area.

Thus D' is a vector of the type considered in §42, and its
rate of change through a circuit moving with the velocily u of
the medium is made up of

u div D’ 4 rot [D"u],
owing to the velocity of the medium, and %% owing to time
changes independent of that.



ELECTRON TIHORY YOR MOVING MEDIA 45

Now, since the coordrinate of an electron of charge ¢ is r
referred *to an’ origin which moves with the medium, the con-
veetlon current due to tho electron will be gf relative Lo that
origin, If then we take o cirouit whose linear dimensions are
of the first order of small quantities and which has at each
point the veloeity u of the medium at thal point, the flow of
olectricily through pha circuit will be that obtained by summing
over it the effects of such terms as gr. Qun the other hand the
surface integrad of D' over the circuit will be changing at a rate
which 1s dide to the same terms qf. Thus the flow of electricity
through a circuit moving at each point with the velocity u of
the medium_will, as when the medium is stationary, be equal
to dhe rate of change of the surface integral of D’ over the

cireutt: the flow will, accordingly, be

%Ptm+u div D’ 4 rot [D"u].

Further, as in § 43, the rate of change of the surface integral
of E over the rhoving circuit per unit area will be the com-
ponent perpendicular to 1t of

dE

= +w div E + rot [Eu].

68, Lel us now consider the equations obtained by applying
the two fundamental relations to a cirouit moving with the
velocity u of the medium, If E/, H' be the electric and
magnetic forces at s point moving with the medium we have

C;E-l-udw E-}-rot[Eu]—l—dD 4-u div D’ + rot [D"u]
=} ro$ H’
~and similarly, (47),
Cg;-l-u diy H + rot [Hu] =— V rot E’
These equations may be written in the form
4D +Ddivu—DV.,u=Vrot H
df’ 48
dH o e el (48),

7 +Hdivu —HV.u=— Vrot E’



46 THE TIEORY OF ELEQTROMAGNETLISM

69, Owing to the magnetisatioh of moment G’ which
A moving resulted from the movemont of eloétronsewe had,
magnetio when the modium was stationary, an electric eqn-~
medium, vection current of amount Vrot G, and the

magnetic mamo:nt of a group of electrons wag the integral
through it of é—v. dvp [rr]. If the medlum be moving instead

of stationary and tho circuit thmugh thh the flow iy con-
sidered be either stationary or moving with the medium, the
electric current due to the magnetisation will bo stifl 7 rot G';
for owing 1o its physical dimensions a term due to the con-
voction of electrons with velocity ¥ relative to a medium whoge
velocity is w may involve cither u or ¥ to the first powem or
differentials of these with respect to the coordinates, but
cannot involve squares or products of u and # We may
thus eguate the cument to ¢ () + +r (u), where ¢, ¥ are
lincar operators. Now putiing =0 we have

¢ (1) = Vrot G;

and Jr(u)=0, for it 13 zero when ¥=0 and there is no mag-
netisation, Thus the current 1 any case 18 Vrot G’,

70. If then we consider the general case in which we
deneralonse  Superpose the effects of eloctric and magnetic

of motion, polarisation, together with a conduction current
C, we have

adD ; z

-+ D diva~DV.u4 Vrot G+ C= Vrol H

iy (49),

d,+Hd1v1i~—--HVu = — V rot, E’

¢ )

with div D=p, div H=0,

Further, on replacing H'— G’ by H,, we obtain

§?+D divau—DV.u+C= V rot Hy \
dH }" '“(50)
5+ Hdiva-HV.u == V1ot E’)
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71. If we treat thesurface of discontinuity as the limiting
Boundary * cage of a thin region of continuous transition we
conditions. find, as before, the velocity being continuous, that
the tangential components of E’, H,” are continuous, or

[NE'];=0, [NH,/];=0.

72, Let us determine the result of applying the two

Equations fundamental relations to a stationary circuit
ghialned iastead of to one moving with the medinm.
stattonary ~ Let us consider, as in § 42, the cylindrical
elrouit, element of volume 8v whose ends &S, 08’ are

formed by the area &'S at the times ¢ and (£ + 8¢) respectively.
If We regard 'S as fixed and 88’ as moving with the medigm,
having started from &'S at the time f, the electrons which have
crossed the fixed surfoce 6'S during the time 8t will be made
up of those which are in the volume v together with those
which have escaped during the time &¢ through the moving
surface &S’ or 4he tubular surface. The convection currents
or rates of flow at the surfaces 88, §8 and the tubular, surface
being denoted by F, F/, P respectively, the total charge which
hag flowed into the volume Jv across the ends will, as in § 42,
be StF8S — 8t F'88’; the volume density inside v being
— div D’ the total charge then will be — dvdivD’ or
— {&Sudt} divD’. On comparison with §42 it will be seen
that the flow in the time 8 due to P will be of the order
(8t)* 8'S, for the quantity which bas flowed across the surface
per unit area will be P3¢, and the area itself is of length w of;
hence the contribution from the tubular surface is negligible by
comparison with the other terms, The resultmng equation is

Jhus
StF8S—8tF 8S'=—8t.ud8 divD..

Now 88’ will differ by 8S by quantities of the order &S 8¢
and, omitting quantities infinitely small by comparison with
those retained, we may replace 88’ by &S in this equation:
thus the flow F through a fixed surface is connected with the
flow F’ through a moving surface by the relatiod

F‘m F’-—-'l]. div D!i-nﬁiliiinititnlnii!i(5::[?)*i
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Fxpressed 1n mnuamlymcal languago the d1£f‘0r0noe botwoen
F' and F consists merely in tho convection currcut due to tha

volume density — div D",

/
Now F/ = %% 4-u div D’ 4 rot [ Da]
and 8o, by (51),
SN[ 1) [ (52)

If there bo a volume density p of clectricily in addition to
any effects of the polarisation D', wo shall havo duo to that alone

A magnetic polarisation due to electrons will have, by § 59,
no volume density of electricity, and so will not give rise to
any difference between F and F. XMXence, using (52) and
(63) instead of (49), we shall have, ss the gencral equations
referred to a fixed origin,

/
E+ég_.+mt [D’u]-[—-pu-l- Vrot G'+ C = Vrot H \

A

@ di N ... (54)
P 7 Vrot E)
On replacing H by (H, + G’) we get
CZ? +rot [D'u]4+u divD 4+ O = V rot H,
!!i(ﬁﬁ)j

E%(Hw GN=— Vrot E

78. If we subtract (54) from (49) we geb, using p =div D,
0 =div H,

uV.D+ D divu~DV,u~u div D —xot [D'u]
= P rot (H —~H)
uV.H+H diva—~HV.u—udivH = Vrot (E — E")

Hence by (10) _
rot [Eu]= Vrot (H'— H) }
rot [Hu]=— V'rot (E'— E)
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and wo have, g8 bofore,
)

E'mE+%~;[uH]
; M rees S G1)]
H m1“l-l--]=;r[E1'l_]J

Hence also Hy =H, + -%—T [Eu] ..oeiinis s e (BT).

74, Wo Bhall first of all consider a slight extension of
Lorentz’s transformation theoremn, Let us suppose

Effacts of , ' !

rotion that material media are moving through the
through the Ny . '
nother. acther with: constant velocity w, a function

ncither of the coordinates nor the time. The
equations referred to moving axes will be, if there are no
media with magnctic susceptibility, so that H;,; = H, and
H; w— H’,
dD f
77 4+ C =V rot H \

s (1))
it! = - VI‘GfJ E")

dtf' —
'where D=E+(K~1)E', divD=p, div H=0,

E'= E 4 3.[uH], H'=H -~ [aE]

and © =AE’, A being the conductivity.
At boundaries 'NE']1=0, [NH"]} =0,

Theze equations must now be transformed by the intro-
duction of new variables, distinguished by double dashes:

o' =w, Y=y 2=z t"=t-(wtvy+w)/ P
Then we shall have
d “d d d w d d d v d

H=T Al VA By Ay VA
u d -
3. vmv;{mﬁfw iiiiii Yasasses 1##&#4-(59)-

Thus . V[VH’]mV[V"H']H}V[HM]:
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% d
,. , ! 47 L !
i.e. Vryot H = Vrol” H ~ V ¥ [uH"?

= F rot” H' — EZE::; (E’ — E)

if squares of u/¥ may bo neglected.

Henco the fixsl equation of the ﬁold in (58), becomes

dD 7 / t'“
cﬁt"’+0 =V rot” H ~ t"" (E ~—

or Ei?" (KE"N 4 G = V rot” H',

Similarly the second cquation of the field becomes

at = — V rot’ E/,

Lot us now transform the cquations
div D=p, divH =0,
We have, by cquations (59),

VD - v’*0~~1~{ ‘w},

P i
ie. div D = div” D ~— —-—L s {w (V rot H' - C)},
Now div[uH"] = H' rot u~u rot H’
and so ._....% {u rot H'} = —i];, div [uH’]
= 2> div" [uH]

if squares of u/ V" be neglected,
= div” (E' - E),

[

Hence  p=div’(D+E'—E)+ %.:2 (uC]
= div" (KE') + 3, {u0)
and div’ (KE') = p - jﬂ (uG).
Similarly div” H' = (,

As boundaly conditions we shall have that [NE‘]l and
[NH]? shall vanish.
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76. Nence the form®r equations become, neglecting squares

of u/V,
2 (FE) +0= Vrott
d ]

T (H) = — Vrot” E
¢
with div’ (KE") = p ~ %ﬁ {uG},

div’ H' =0, C =\E’
At boundaries [NE’]} and [NH']} will vanish.

Ut thes® are the ordinary equations for the eleciric and
magnetic forces E, H' of the same digtribution of material
media when ¢ 15 the time, the media now being stationary
and the current being AE’, Ohm’s law still holding. Also the
usual boundary conditions will be satisfied, and the only change
iy that the new volume density div (X E’) will be

- 7; {uo}

8. Hence 1t follows fhat the path of a ray remaing on
transformation a possible path of a ray and that if squares of
u/ ¥ be neglected all optical experiments made with sources of
light and apparatus fixed with regard to the earth, which moves
through the aether with velocity u, would lead to the same
results ag 1f the earth were stationary., Thus such experiments,
in which there are no conduction currents to cause a change in
p, cannot, If squares be neglected, lead to any determination of
the value of u. ‘

If however the source of light be outside the earth the
effects of the motion will become apparent. We shall consider
a8 an example Airy's ‘water telescope’ experiment in which
the effect of aberration was found to be the same when a
telescope tube was filled with water as when 1t was empty.

Peeiior the light coming from a star in the, direction n or
(I, m, n) the electric and magnetic forces in the free aother
ay be taken as proportional to g@(Ve+iatny+ne) o g i (VE+RT] the
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axos of reference being fixed in tho dethor: here sé= 27 /(wave
length)

1f the origin bo now taken ab o point moving with the

veloetty w of tho carth, and o', 9/, 2/, ¢ be Lhe velocily and
time referred o the new system, we shall have =1, @ =a' +ut’,
y =1 ot 2=2 4wt The forces will then be proportionalf 1o
gt (V't-nx) wherg V7’ =T 4 un.

Now let us apply the transformation theorem, and substituio
" {23”, qu P given b}f
‘5”1'-*-“ t’"—* 111‘/ Vg, w” = {0, y” s y, z"" o 2,

The exponential factor then becomes ¥ (¥'#+Vax/¥iinx
which we may write ag ¢* (V&M where

g' ¥V Z+uV"/V" m+ vV |V ntwV” V’

remiar TET e
A e "

Hence, omitting squares of small quaniities, each portion is
equal to (1427 'un/VHtor 1 4+ V'un/V? or 1 FunV or V'/V.
Hence V"=V, ag we should expect from the fact that the
equations satisfied are those for axes at rest Further

6!! mh ,nh'
L ¥u/V m+o]V ntwV

We know that rays of light in the actual will correspond
with rays of light in the transformed system. Hence if we
consider the rays which come to a focus at a particular point
of the observer’s eye in the actual and transformed systems, we
find that the rays from the star in the actual system will como
to the same focus as those which, if the earth were at rost,
would have emanated from a star in the direction (2, m”, n”).

This is what Airy found, for the direction is that of the
resultant of (V1, Vi, Vn) and of (v, v, w). Further §ho parmd
is quickened in the ratio of s” to s or of (¥ 4 un) to V, which is
in accordance with Doppler’s law,
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