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PREFACE

Ix this book the fundamental principles in the Theory of
Structures have been presented in as simple and as logical a
form as possible. Intended primarily for students taking a
degree course, or the courses for the National Certificates of
the Ministry of Education and of the Engineering Institutions, it
is hoped it will be found useful by others engaged in engineering
practice. It has only been possible to present the groundwork
of the subject, but references have been put at the end of each
chapter to guide the student to other theoretical methods and
to a more complete and advanced study of definite branches
of structural engineering. As theory is being constantly
revised, and as new theories and methods are being brought
forward, it is therefore necessary that the student, to keep up to
date, must consult the engineering journals and the transactions
of the Engineering Institutions of this and other countries.
The necessary specifications for structural work should also
be consulted, such as Specification 153, Parts 1 and 2, 1922,
Parts 3, 4 and 5, 1923, for Girder Bridges, issued by the British
Engineering Standards Association. This specification deals
with Materials, Workmanship, Loads and Stresses, Details of
Construction and Erection.

The mathematics in this book are fairly simple : partial
differentiation has been introduced in Chapter IX, but refer-
ence to it can be made in any good book on practical mathe-
matics such as Usherwood and Trimble's, Part II. It is,
however, essential that all students of engineering should have
a good mathematical foundation.

The examples at the end of the chapters are all taken from
recent examination papers, and I wish to thank the Councils
of the University of Birmingham, of the Institutions of Civil,
Mechanical and Structural Engineers, and also the University

- of London Press for permission to reprint them.

No attempt has been made to deal with design.
In preparing this work, existing textbooks on the subject
have been consulted, including those of Morley, Andrews,
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vi PREFACE

Husband and Harby, Hunter, Hool and Kinne, and others.
These works also contain much useful information on design.
I wish to make acknowledgment of my indebtedness to these
books. My thanks are also due to Messrs. Longmans, Green
& Co. for permission to use examples on inertia (pp. 30-32)
from Mann's Practical Mathematics ; to Professor F. C. Lea,
D Se., for the diagram (Fig. 129) of typical moving loads ; to
Mr. T. H. P. Veal, B.Sc., for the use of notes on reinforced
concrete ; to Dr. H. P. Budgen for the drawings from which
Plates I and IT were made, and to a few friends for working
out solutions to the examples.
H. W. COULTAS

BIrRMING HLAM
Sept., 1025

PREFACE TO THE THIRD EDITION

DuriNg the last few years great progress has been made in the
field of eontinuous structures, both in construction and analysis.
Advance in constructional methods has brought out the
importance of design. For a satisfactory design there must be
a clear idea in the mind of the designer of the elastic behaviour
of a rigidly connected frame. The analysis of built-in and
continuous beams is given in Chapter IV, and the principle of
least work applied to beams and frames is stated in Chapter IX.

Further methods of analysis have been developed and two
of these, the slope-deflection and the method of successive approzxi-
mations are discussed in an additional Chapter XV. The uses
of these methods have been recognized by structural engineers
and designers: they have been introduced into courses at
universities and technical colleges: problems depending for
their solution on these new methods are set in many examina-
tion papers. They are fully stated and discussed in the new
chapter, which begins with a development of the slope-deflection
equations for prismatic beams and a discussion of their applica-
tion to the analysis of statically indeterminate beams, con-
tinuous beams, and simple frames. Frames both with and
without lateral restraint are considered, and it is shown how
the equations for caleulating redundant end moments can be
written. Further discussion considers the solution of these
equations by the method of successive approximations and



PREFACE vii

illustrates its application to continuous beams and frames as
before. There are a large number of examples to illustrate the
solution of various problems by these methods.

A further Chapter XVI has been written in which the laws of
Maxwell and Betti have been developed, and the application of
these laws to the mechanical solution of statically indeterminate
structures has been stated.

The author is indebted to friends for reading the text and
specially to Mr. J. Heaton, AM.LStruct.E., for his valuable
assistance.

H. W. COULTAS

BmaMivaHAM
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CHAPTER 1

Brams wiTH Deap Loaps

1.-Beams and Bending. A bar of material acted upon by
external forces (including loads and reactions) oblique to its
longitudinal axis, is called a beam: the components of the
forces perpendicular to the axis cause the straining, called
flexure or bending. A beam will always be looked upon as
being in a horizontal position, and the external forces as
vertical.*

2. Definitions. Cantilever, a beam having one end fixed
and the other free.

A beam freely supported at both ends is a simply-supported
beam, or a simple beam.

An encastré beam is one built in or fixed at both ends.

A beam supported at a number of points is a continuous
beam: this type may, of course, have one or both ends fixed
or built in. (See para. 40, Chap. IV, for notes on supports.)

w

W R+Ry
P S Lo
Gk

Fia. 1 Fio. 2

3. A Moment (M) is defined as the product of a force (F)
multiplied by its perpendicular distance (z) from a point
considered ; or

M = Fz = the magnitude of a couple.

Cantilever (Fig. 1).

Moment at 0 = Magnitude of the couple Wa
= A fixed couple Rb

* This will cause simple bending, as it oceurs when thoere is no resultant
pull or push along the beam due to external forces ; also the external forces
must be all applied in the plane in which the beam bends: and the beam
section must be symmetrical about a vertical axis through its centroid.

1



2 THEORY OF STRUCTURES

Simply-supported Beam (Fig. 2).

Moment at O = Magnitude of the couple gib
— L " a
From ordinary considerations of statics, W =R 4+ R,

4. When a beam is subjected to some system of loading, it
is slightly bent out of its horizontal position.

As the beam is in equilibrium under the system of loading,
the perpendicular reactions must be equal to the sum of the
perpendicular components of the loads

If 4 is the section of a beam (Fig. 3) situated at a distance

W, W w
A l 2 l i —Ra=Mj negative l M, negative =—Ryb
I Left [~ ‘\Rréﬂfzt
1—;:;.—;:"' H‘K‘: 'i'-" >
POt i dr  RfaeTb-> Ry
g SRS Section X
Fi1c. 3 Fia. 4

z from the support point, and R is the reaction of the support,
then all the forces to the right of A help to produce the bending
action at A ; or the beam is subjected to a series of couples.
Now, R would tend to bend the beam in an anti-clockwise
direction about 4 : W, and W, in a clockwise direction about
A. Therefore, the resultant effective bending will be the
difference of the two effects. Calling the anti-clockwise direc-
tion negative and the clockwise direction positive* to the
right of a section, the effective bending action about 4 will be

- Rz + Wy(z-a) + Wyz~b)

which is the algebraic sum of the moments, and is defined as
the bending moment at 4. In general, the bending moment
at any section of a beam may be defined as the algebraic sum
of the moments of all the external forces acting on that part
of the beam to the right or to the left of the section.

5. Signs for Bending Moments. Clockwize and anti-clock-
wise moments to the right of a section will be called positive
and negative moments respectively. Clockwise and anti-
clockwise moments to the left of a section will be called
negative and positive moments respectively.

* See Chapter ITL
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The two equal couples acting in opposite directions to the
right and left of the section (Fig. 4) tend to bend the beam
concave upwards ; or as it will be seen later, the top side of
the beam comes into compression.

In the case of Fig. 5, the two equal and opposite couples
acting to the right and left of the section bend the beam
convex upwards, or a positive moment tends to induce tensile
stresses in the top side of the beam at the section considered.

M, =
W = +xlﬁx, Mx;zf:l_- ::.I"Ec E;;!Wb w
T,

Fig. &

6. Shearing Forces, In Fig. 6, let X be any section of a
beam carrying some system of loads. At this section there is
acting a vertical external force which is the resultant of all
the forces acting on that part of the beam to the right, or to
the left of the section. This force is spoken of as the * shear-
ing force "’ (S) at the section, and it is balanced by the internal
force in the particles of the material.

rti i
Cause positie Cauze nefsve
W P

v ¥

Causes 3 . A Causes
regative Ry —-Left —-te—Right-— Ra(® positive
shear at x’.+ b 2 a.hum:&t X,

Fic. 8
By ordinary statics,
R, + By = Wy+ Wo+ Wy + W,
Shearing force at X,
SxE—Rl'f- I:FI-I-]:FI
fconsidering the portion of the beam to the left of the
section),
or .SI=R|—W;- W,'

(considering the portion of the beam to the right of the
section).
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7. Signs for BShearing Forces. External forces acting
upwards to the left or right of a section cause negative and
positive shearing force respectively. External forces acting
downwards to the left and right of a section cause positive
and negative shearing force respectively. (See Fig. 6.)

8. Diagrams of Shearing Force and Bending Moment. Both
shearing force and bending moment will generally vary in
magnitude from point to point along the length of a loaded

X 2
e —-ac ey
e e |
Load Diagram.
S,=—vV = const,
A
1 A Ty '
Sx==Wtons

Shear Force Diagram.

Mx"‘wa
M= Wz tons-ft.

Moment Dfagram.
Fia. 7

beam : their values at any cross-section can often be calcu-
lated arithmetically, or general algebraic expressions may
give the bending moment and shearing force for any section
along the beam. The variation may also be shown graph-
ically by plotting curves, the bases of which represent to scale
the length of the beam ; and the vertical ordinates, the bend-
ing moments or shearing forces, as the case may be, due-
regard being paid to the * sign ™ of the effect.

Some typical examples of bending moment and shearing
force diagrams are now given,

9. Cantilever. (a) Concentrated load at the free end. (Fig.7.)
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M,=+ Wi
M: =+ Wz
M = moment ; 8§ = shear force
Note.—The moment M at a section is equal to the area
of the 8.F. dingram to the right of the section.
{ (b) With a uniformly distributed load along the whole beam.
Fig. 8.)

W, =constant.

w tons per foot run. | 4w
X
-, O —— -
Blal g W) S s

Load Diagram.

wt | I%
S ' 5= AWE S = ~TC

Shear Force Diagram.

wl? 1‘
z i Jwx?
tons Ptlt Mx 2 .
\ Parabola M=5"

Moment Diagram.
Fio. 8

Consider any section X.

Shear force to the right of X = wz
= area of load diagram to the right of X
ie.S,=-wr andS,=-wl

For bending moments to the right of the section, the
resultant moment is given by the area of the S.F. diagram
to the right of the section.

With several loads on a cantilever, the shearing force and
moment diagrams can be drawn by considering diagrams for
each load separately and adding the ordinates to make one
complete diagram.

Problem 1. A cantilever of length 20 ft. carries a load
which decreases uniformly from 2 tons at the fixed end to
0 tons at the free end. Draw the bending moment and shear

force diagrams.
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Load mteatx=y=%>cz=f—ﬂtrunsyarfmt run (Fig. 9.)

Sz = Area of the load diagram from the free end to section X

- z——m:t.u tion of bola
Sr'—_'ﬁx'g'_ﬂ s (equation of a parabola)

=8.F. at X,
and it acts at the centroid of the load area considered,

X ‘lf Intensity af‘ é@dfhg
tons; fo‘ﬁ % o
1

T}
20

]

Shear Force Diagram,

+
M,-%‘; tons ft,
Cubic: My = +g§m ft.
Moment Diagram,
Fic.

Sign of S.F. is negative, as the forces act downwards to the
right of the section.

M, = area of the S.F. diagram (which isa parabola) to the right
of X = moment at X
a2 x
=2 * E'——-Emllﬂ-fh
when z = 20, 3: = 3,. and ﬂx = jf,-.-
202

e S,: - E=—2ﬂ'tﬂnﬁ

tons it

s, |
¥

208

-

M, = ﬁ = 133i tons-ft,
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10. Simply-supported Beams. (a) Concentrated load at the
centre of the beam (Fig. 10).

R, = RB =
For all sections between A and C, the shearing force Sy
= R, and is of the negative sense.
For all sections between ' and B, the 8.F. 8’y = R, and
is of the positive sense.

X C
AR J#

Load Diagram.
. *Bf —>- 5;
W
Z=railt — Irif % ;
A CiITW 4+ W
X ; t#ﬁﬂ )

Moment Diagram.,
Frao. 10

Norte. To construct the shear diagram. Take the base
AB, — AB to scale Start always from the left-hand side
of the beam. At A,, erect a vertical upwards equal to R,
to scale = 4,D,. From D,, draw D,E, parallel to 4,B,, as
far as the next load, which in this case is W. The direction
of W is vertical downwards. From E,, draw E,C\F, = W to
scale downwards.
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W W
G]'E.":__E_l G]_Fiz_‘_?:

ie. C,F, is below the axis 4,B,.

From F,, draw F\@, to meet the line of action of B, : from
G,, draw @, B, upwards to meet B,. This construction can be
used for all beams ; always start from the left hand of all
beams, and the shear diagram is easily drawn, as R, acts
upwards, W downwards, and R, upwards. The only thing is
to remember the sense of the resulting shear force.

Considering moments, take the origin at the left-hand
support of the beam. For sections between 4 and C,

W :
ﬂ,:iz and is of the negative sense: ie, a couple of

magnitude %’ z acts in a clockwise direction to the left of the

section. For sections between (' and B, take forces to the
right of the sections: and the only force is R,, causing an
anti-clockwise couple to the right of a section = Rl - z)

= %r{t —z), and is, therefore, of the negative sense,

The moment is a maximum at O, and

Wil Wi £ :
E?EETM& of negative sense

Note.—The moment at a section is equal to the area of
the S.F. diagram to the right or left of the section. At the
section where the shear changes sign, the moment is a
maximum.

Problem 2. A simply-supported beam is loaded, as in
Fig. 11. Construct the shear force and bending moment
diagrams,

R, + Ry = (8 + 12) tons

As the beam is in equilibrium, the sum of the moments
about A = zero,

ie. B, x 20 = 12 % 124+-8x5
Ry, = 9} tons
R.._—_ 104 tons
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The 8.F. diagram is therefore as shown.
M, = - R, ¥ b=- 54 tons-ft.
M, = - R, X 8 = - T3} tons-t.
and both of the negative sense, where M, and M, are the
moments at €' and D and the moment diagram is as constructed.

8’ 2"
a5 T e g
Ag Y B
heeCn D -
Ra=103 A Re=93
Load D1agram.
L= fgf
mg # T— L Y - 'E_J’ ff
A G 2" Lok
My * +\r

Shear Diagr-ar-'r_;.-

54 1008 75
—y *i_
Az G D 82

Moment Diagram,
Fio. 11

The negative signs are introduced as the moments are
negative,

The shear changes sign at ), and the moment is a maximum
negative moment at this point.

(6) Simply-supported beam wholly covered with a uni-
formly distributed load of wtons per foot run. Let 4 (Fig. 12)
be the origin. Let w tons per foot run be the rate of loading.
Total load = wl tons.

R, = R,:%It-uns

At any section X, distant x ft. from A, the shear force
S.=-R, + wx
At the centre, O,
wl

Sg= "Rl+?=o
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The negative sign is introduced, as R, causes negative
shear to the left of a section.
At any section X, distant z ft. from 4, the moment

(TR

w” W'
P
+1;’+_-1E_+1ﬁp 2
Load Diagram. Re=WT  Rg=W'

- Load Diadram.
EAE M AT By 8

Re=W ™ |} =
AI-:—-—L.F:—-—E "“k+ t tﬁg Cr Ay B {' * ; D,
D 4 Wil + Wigaawr B
Shear Diagram.
Cz Az B, D:
Moment Diagram. Moment Dia§ram.
Fia. 12 Fra. 13

The moment at € is a maximum,
wl?  ap® wl®

4 grep 8
Note—The shear force at a section X distant z ft. from A
is equal to B, minus the area of the load diagram from A to X
due regard being paid to the sign. The moment at the section
X iz equal to the area of the shear force diagram between A

and X : and the moment is & maximum at the section where
the shear force is zero ie. changes sign.

11. Overhanging Beams. (a) Equal overhangs, with equal
goncentrated loads at the ends of the overhangs. (Fig. 13.)
= .R. = W tons
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SuEAR Foror Disgram. Between A and C, the shear force
at any section is W tons and is positive. Between B and 4
it is zero, and between B and D it is W tons for all sections
and is negative. The diagram is constructed by starting at
€, and following the forces in the direction they act.

The moments at B and A are both equal to Wi and are
both positive, according to the notation of signs adopted.
Between 4 and C, and B and D, the moments at a section
are proportional to the distance the section is from C or D.
Hence for the overhangs, the moment diagrams are triangles,
being zero at C and D. Between B and A, the moment is the
same for all sections and equal to + Wi, units.

Nore.— Between B and 4, the moment is a constant, whilst
the shear force is zero. It will be shown that the portion of
a beam over which the moment is & constant, bends to the
are of a circle. This fact is made use of in experimental work
for finding the value of Young’s Modulus of Elasticity of a
material in flexure when any effects due to shear forces are
to be eliminated. In this case, no shear forces are present.
(See further chapter on  Deflection of Beams.”)

Similar shear force and moment diagrams are obtained for
a simply-supported beam having two symmetrically-placed
concentrated loads of equal value.

(b) Uniformly-distributed load over the whole of a beam,
having equal overhangs. (Fig. 14.)

B = 2Bt

wl
= wl; + ]
The shear force and moment diagrams will be as shown.

If : < s that is, I < 21,,

8 CH
then the moment at the centre of the span [ will be a
minimum positive moment.

If > 2I,, then the moment at the centre of the span !
will be a maximum negative moment, and there will be two
sections on the span [ at which the moment is zero.*

If I — 2l,, the moment at the centre of the span [ will
be zero.

*# See page 49, Chapter IV.
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In all the three cases there will be maximum positive
moments at the supports,

Problem 8. Construct the shear and moment diagrams for
a simple beam loaded as in Fig. 15.

The total dead load is 8 tons, and it acts at a distance of
8 ft. from the left-hand support (0).

Ry + R,, = 8 tons

r foot DL, D
[ A B4
-»z”ﬁ——t"l—ﬂ--fzf'-r
T

RI-wl,q-u}.-_z.R,

Load Diagram.

Cr R A E B, K, D, is the diadram for
a beam ;v?zh?oa‘@ the amgﬁngs
loaded.

.#;'G;E;U‘;Bf 1'5-5 the dJ" ram for a
simple beam (AB only loaded ).

C2F:6,0; i1s the moment aiadram
for t.l'.-g hzeam with the ouﬂh.ﬂz'a
only loaded.

£ E;G, i5 the diagram for a
Simpie be.am AB. wf - |
Moments at the supports =+%5

The shaded area is the
Resuftant.

Moment Diagram.,

Fra. 14

Moments about 0,
Reyox 20 = 8x 8
R = 3} tons
Ry = 8-3] = 4 tons
To CoxstrUOT THE SHEAR DiAcrAM. At 0, erect a per-
pendicular upwards to scale equal to 44 tons: this is con-
stant to the section 6 ft. from 0. This shear is of negative
sign. Between section 10 ft, and 20 ft, the shear is constant
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and positive and equal to R,, = 3} tons. At section 10, draw
a perpendicular downwards of 3) tons to scale, and continue
a shear line to the 20 ft. section.

Complete the diagram by joining the negative diagram to
the positive one, as shown in the shear diagram. This is true,
as at any section on the loaded portion of the beam the shear

2 lons
) 20"
T 6T ma —10 i
Ro=43""  Load Diagram. R20=33

i N\ 84" from 0
L flsk
Shear Diagram.

M:o
==32Tons'Ft

= [
1
=-28% Tons Ft. ]
e g E'D.;.-M!x.-—&#ﬁ Tens Ft,
Moment Diagram.

Fia. 15

is equal to R, minus the load up to this section. Tt can be
shown that the shear is zero at a section 8-4 ft. from 0: at
this section the moment will be a maximum.
The moment at section 6 is
M,= -6 x 44 = — 28} tons-ft.

At section 6 erect an ordinate to scale of 284 ft.-tons. The
B.M. line between 0 and 6 will be a straight line, as it is also
between sections 10 and 20, where

M,y = —10 X 3} — — 32 tons-ft.

and My, = 0
Between sections 6 ft. and 10 ft. the moment line will be a
curve, and the maximum negative moment will be at the
section 8-4 ft. from 0 and
2.

My ,= -84 X4+ 2% -
= - 34:5 tons-ft.

T

2

-1 Y
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Second Method. Let the maximum moment be at a distance
z ft. f 0.
i Then M,= -4-82 4 (z- 6)2
dM,
= —4842(:-6) =0
or 2z = (4-8 4 12) ft.
z = 84 ft.
The maximum moment is calculated as shown in the previous
paragraph.
Problem 4. A simple beam 30 ft. long carries a load which
increases uniformly from zero at one end to 2 tons per ft. at the

Total Load W
2X30 T
;—2"3‘“
o
y= 5 3 iﬁns
0 ;mn ET
L S
=== o
Load Diagram.
.s,ilw o
>r P AT
10 m 17:3 "’”"’Fa‘é’*
| < s
Shear Diagram. 'ir
A ]
W M

3
=115 Tops Feet
— -Ma:#imumi—

Moment Diagram.
Fia. 16

other end. (Fig. 16.) Find the expression for the bending
moment at any section, and draw the shear and moment
diagrams. What is the greatest bending moment and where
does it ocour?

b
For equilibrium, R, 4+ R,, = '%?'—ﬂ = 30 tons
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Moments about 30,
R, % 30= 30 x 10
R, = 10 tons
Ry= 20 ,,

15

Working from 0 as origin and taking a section X to the right

distant x ft. from 0.
The rate of loading at X will be

y tons = —
15
Shear at X,
2
8, = —-Ro + HX§="R.:+%&'
pe.
= —llJ-J-ﬁtnns

= 0, when z®* = 300
or r= 173 ft. from 0

The shear diagram will therefore be as shown in Fig.

The moment at a section X distant 2 from 0

=M, = -Rz+ 3 X

x

ol IR

xz x

= = 10x + 15 » 3
PeL

= (— 10z 4 ﬁ-ﬂ) tons-ft.

For maximum moment,

dM, 2t
BT AT 30 0
that is, z = 17-3 ft.
which confirms 8,,., =0
At section 17-3 ft. from 0,
1733
M= -10 X 17:3 + —o—
= - 173 4 58
= — 115 tons-ft.

The moment diagram is as shown in Fig. 16,

16.
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12. Relation between Loads, Shearing Forces, and Bending
Moments. For Simple Beams and Cantilevers.
CoxcENTRATED Loaps. S, = Shear at any section
= J forces to the right or left of the section.
IDistrieuTED LoaDps. A small change in the shear force along
a length dx = small area of the load diagram,
ie. dS = w.dz, where dz is a small length of the beam
and w the rate of loading along dz assumed
constant.*

8= f w . dx = total change between the required
limits
= (area of load diagram between these limits)

If 8, is the shear force at a section X distant x from the origin
and 8, is the shear at a section ¥ distant y from the origin,

then S, = 8, + zm. dzx taking appropriate signs for each term.

MoMeENT AND SHEAR. From the examples considered, a
small change in the moment is equal to a small area of the
shear force diagram,

i.e. d = 8§ .dx where S = average shear force over dr, then

dM
<, = shear force St = rate of change of the moment diagram,

and M = f 8 .dz = total change of bending moment
between the required limits.

In both the simple beam and the cantilever uniform loaded
over the whole length

M, = moment at a section = area of the shear force dia-
gram between the section and the origin,} due regard
being paid to sign. Summarizing,

ds
= =w; 8= w.dx-:%; ﬂf:f&,dx

* w is not necessarily constant along a beam.

t This relation indicates that where a shoaring force passes through a zero
value and changes sign the value of the moment s & mathematical maximum
or minimum. See Note, para. 10, page 10.

{ For a simple boam, urli?in at the supporta. For a cantilever the origin is
at the free end. However, if the origin for the cantilover is at the support, then
M, = Moment at the support less the arca of the shearing force dingram
between the support and the seotion.
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13. A graphical method of finding the shear and moment
for beam sections depends upon the above relations. Shear
forces are found by the graphical integration of the load
diagram : moments are calculated by the graphical integra-
tion of the shear force diagram.

RerErExcEs. For further examples of moments, ete.

L. Theory of Structures, Morley, (Longmans, Green & Co.)

2. Structural Engincering, Husband and Harby. (Longmans, Green & Co.)
8. Structural Steelwork, Black. (Pitman's Technical Primers.)

4. Strength of Materials, Part I, 8. Timoshenko,

Doﬁ. Materials and Sirtciures, Vol. I, E. H. Salmon. (Longmans, Green &
-

EXAMFPLES

1. A girder 30 ft. long, supported at the ends, has a uniformly distributed
load of 2 tons per lineal foot extending from 5 fi. from one end to within
10 it. of the other end, and there is o concentrated lond of 15 tons at the
contre of the uniformly distributed load. Draw the bending moment and
shearing force diagrams, giving the maximum and minimum values E? each
Case. .C.E.)

8, An overhanging beam AB, 25 ft. long, resta on two supports which
are ot distances of 5 and 10 ft. respectively from the end 4. The beam
carries o load of 2 tons at 4, 1 ton at B, and 2 tons at the centre of the beam.
Draw the shearing foree and bending moment disgrams for the beam.

3. Explain clearly the relation between load, shear, and bending moment
dingrams. (U. of B.)

4. A bomm 25 ft. long is supported at one end and on a pier at & distance
of 5 it. from the other end. The beam is uniformly loaded from end to end
nithh:lmduf 1 ton per lincal foot, and acuumntﬁued h;zdnfﬁtmiahung
at the extremity of the overhanging portion. Draw t banclmg moment
and shearing faria diagrama, (LC.E., 1922.)

5. A girder, 55 ft. long, is supported on two piers—one, 5 ft. from ona
end ; the second, 1 ft. from the other end. It carriea a uniformly dis-
tributoed load of 1 ton per lineal foot. Find the bending moment at tho
piers and draw the bending moment and shearing force diagrams.

(LC.E., April 1922.)

8, A girder, 50 ft. long, is supported 10 ft. from ita left and 15 ft. from
its right extremities, the overhanging ends being free. It is loadsd with &
uniformly distributed load of 1 ton per lineal foot, and there is a con-
pentrated lond of 10 tons midway between the two supports. Draw the
bending moment and shearing forco diagrams, giving the maximum value
in each case. (LC.E., April 1923.)

7. A girder, 30ft. long, supported at the ends, has a uniformly dis-
tributed load of 1-5 tons per lineal foot extending from 5 it. from ono end to
10 ft. from the other end, and there is a concentrated load of 10 tons at the
centre of the uniformly distributed load. Draw the bending moment and
shearing force diagrams, giving the maximum and minimum values in each
CASS,

g
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8. A single skin coffer-dam is subjected to a maximum head of water of

20 ft. If the sheoting is held in a vertical position by two horizontal frames,

one at the same lovel as the surface of the water and the other 20 ft. below

at the bottom, find the position and amount of the maximum bending

moment in o strip of the dam 1 ft. wide. Neglect any fixing moment at the
supports and assume the weight of water per cubic foot to be B4 1h,

(LC.E., July 1923.)

9. Draw the shear and moment disgrams for the following beams—

% I‘D?i?ﬂs
E_ 1 Ton per footyrun. |

i Tl e |
————— 20 T ————

@ ‘

i
‘|f Tons  10Tons
2 lons FE.run '}

10. A beam AB is 20 ft. long. It is supported at the end 4 and at o
fcxint. 12 ft. from A. There is a load of § ton at the end B and a load of
ton at a point § ft. from A, and a uniformly distributed load of 2 owt. per
foot run along the whole beam. Draw (1) the shear diagram ; (2) the bend-
ing moment diagram for the beam. Write down the maximum shoaring
force and the maximum bending moment. (L.1J,, 1928.)



CHAPTER I

TarorY oF SiMPLE BENDING AND MOMENTS OF
INERTIA

15. Notes on Stresses and Strains, Stress. If a body is
subjected to external forces and it is cut by a plane section,
an internal force will be transmitted across this section tend-
ing to hold the body in equilibrium. This force is called
stress, and the material of the body is said to be stressed.
The stress may or may not be uniformly distributed over the
area of the section. The intensity of stress, or as it is often
called stress, is the force per unit of area.

If over a small area asq. in, the total internal force is P

P -
tons, then the stress is—a tons per square inch.

Sterars. The body which is stressed under the action of
the external forces will suffer a change of shape, and it is said
to be strained or deformed. If a body of original length [ in.
suffered a change of length 4/, then the unit strain, or as it

is sometimes called strain, is d-;= e. If | is in inches, then

the strain is the amount of deformation per unit length of 1 in.

Emxps or Sreess. Several kinds of stress may be pro-
duced in a body: they depend on the arrangement of the
external loads. These stresses are tensile, compressive, and
shear : the first two are direct stresses, because they are
perpendicular to the plane section under consideration; the
last is tangential to the plane. Tensile and compressive
stresses may be produced by direct external pulls or thrusts
on a body, such external forces being at right angles to the
considered planes or, as it will be seen, they may be caused
by bending the body, when stresses are produced which are
normal to a plane section of the beam. A shear etress is pro-
duced when a body is subjected to torsion or a twisting action.

Direcr Stresses. When a body is subjected to a pull or
tensile force, it is elongated in the direction of the pull, and
the body is said to be in a state of tension. When the body
is subjected to an external thrust or compressive foree, it is

19
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shortened in the direction of the force, and is said to be in a
state of compression.

The properties of materials in tension, compression, or
torsion may be ascertained by mechanical tests; and by
plotting stresses against the corresponding strains, curves
known as stress-strain curves are obtained.

Mopvrr or Erasticrry—

Tension or Compression. The modulus of elasticity is denoted
by E (load per unit area).

S 47,

25

20
Tension. Efts

5 Der,

o

tn

inches, (C.1)04 03 -0z -;n

01 (M.5.) 02

-
=]

Compression,

’ ™

per 8q. i,

T
]
[=]

tﬁ'&ﬂd’ Stress
in Compressson.
Cast Iron,

Mild Steel,

Stress - fons

&

Fia. 18

Let f represent the normal stress and ¢ the corresponding
strain (extension or compression per unit length),

then E ={

For ductile materials, such as mild steel. £ in compression is
taken the same as for tension, an elastic tensile test being
more satisfactorily carried out than an elastic compression test.
Torsion. The modulus of elasticity is denoted by @, some-
times N (load per unit area), and is called the modulus of
rigidity.
Let q be the shear stress and 0 radians the shear

Then G = g (see Chap. V).

strain.
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For ductile materials, such as mild steel, for a range of
stress from zero to a critical stress, the stress is proportional
to the strain : i.e. B or G is a constant during this range of
stress. The critical stress above which the strain is not pro-
portional to the stress is called the limit of proportionality
(often known as the elastic limit). Above this stress, £ or G
is a variable. With brittle materials, such as cast-iron and con-
crete, £ and @ vary with the stress from zero load,* consequently
for design work it is necessary 40 know the value of E or @
for the working stress used.

Strength and Elasticity coafficients for materials : Tons/squars inch.

Material, [imit Propoftionally.| Ultimate Strength, |  Jampeaston.
Tension, Compresston. | Tenslon, Compression.
Wrought-iron . 12-15 =24 (Yiel) 11,000-13,000
i

Mild Steel | 118 16-17 | %0-32 o 13,000-14,000
Castdron. . .| (Nodefinite Bmit) 7-11 3580 8.000-10,000
Duralumin = . . 2394 4,300-4,500
Dak . . 6 2tos§ L B00-700
Soft Woods . . 1-3 1-3 450-500

Fio. 19

Stress-strain diagrams for mild steel and cast-iron are given
in Fig. 18. It will be noticed that cast-iron is much stronger
in compression than in tension.}

16. Theory of Bending. Let X (Fig. 20) be any section of
a beam carrying a system of loads. The portion of the beam
to the right of the section is in equilibrium against vertical trans-
lation, but it would have the tendency to rotate anti-clockwise,
and the magnitude and direction of this tendency to rotation is
determined by the bending moment at the section. At this
portion of the beam there are internal forces induced by the
external loading, and these forces produce at the section a
couple whose magnitude is equal to that of the external bend-
ing moment, but acting in the opposite direction. Usnally the
internal forces will be elastic ones, as the beam will not be
stressed above the limit of proportionality of the material.
These elastic forees consist of pulls decreasing uniformly to zero
and uniformly thrusts increasing from zero. These longitudinal

* See Batson and Hyde (Mechanical Teating, Vol. I). Publishers, Chapman &
Hall. (See paragraph on ** Modulus of Direct Elasticity™)

+ For further work on strengths of materials, the student is referred to
toxtbooks on the subject. (See reforonces at the end of the chapter.)

a={T.5430)
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forces form a couple which must at any section, since the beam
is in equilibrium, be equal and opposite to the bending moment
at the section. This couple is called the moment of resistance.
The axis about which the moment of resistance is taken is
called the neutral axis of the section, and is that axis or that

Diraction External Resultant Couple
Tﬁfi side into Compression

X4
AR T,
This side into Teasion
|
Compression
xR
i Moment Resistance =Poa=Pa
of opposite sense to extarnal moment

(=4
i
I

——

Total Tension
= Tension
Stress Distribution at X
=5
Fia. 20
fibre of the beam which is in an unstrained or unstressed
condition. It will be denoted by N.A.

the algebraic sum of the moments of all
the induced tensile and compressive
forces taken about the neutral axis,
17. Assumptions Made in the Theory of Simple Bending.*
(1) The beam is stressed within the limit of proportionality
of the material.
(2) Young’s modulus (E) is the same for tension and
compression.
(3) A plane cross-section at right angles to the plane of
bending always remains plane.
(4) There is no resultant pull or push on the cross-section
of the beam.
(5) The fibres are free to expand or contract laterally.

The moment
of resistance

* For simple bending to ocour tho external forees must be all applied in
the plane in which the beam bends. It does not follow nmmriry that »
beam carrying vertical loads will bend in a vertical plane. Side or horizontal
bending will cocur if the beam bo not symmetrical about a vertical plane
pessing through the centroid of the section.
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18. Let Fig. 21 represent a small portion of a bent beam, so
taken that the form assumed is a circular arc of radius equal to
the radius of curvature R. This is equivalent to pure bending,
the moment being constant over the length considered. It occurs
when a bar is bent under equal and opposite couples at its ends.

0 is the centre of curvature, db is parallel to ac,ab lies in the
plane of the neutral axis.*

Let ce be a fibre situated at a distance y in this case above
the neutral surface; in the figure it is in tension, so that it is
greater by de than its original length c¢d = ab.

increase in length

BB M 0o o “original length
de de
“ed ab
but as figures deb and abO are similar,
BE L o0 Y
ab Ob R

But stress = E ¢ strain

Let f, = tensile stress in ce = %
ft Y

then E — F
Similarly for a fibre situated at a
distance y, from the N.A. on the com-
pression side.
Let f, = induced compressive stress

i X
S sree . ' : S 2]
then SR (1)
That is, the intensity of the direct longitudinal stress at any
point in the cross-section is proportional to the distance of
that point from the N.A., reaching a maximum at the
boundaries farthest from the N.A.

Let PQ (Fig. 22) be any cross-section of a beam. Consider
a thin horizontal strip of that section parallel to the neutral

* The line ab is & truce of the surface in which fibres do not undergo strain
during bending. This surface is called the neutral surface, and its intersection
with any cross-section is called the newtral axis.
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axis, the breadth of the strip being dy, the length z, and
y the height above the neutral axis.
E

Stress at height y — ?y

Total force on the strip = stress x area
E
— E + Y. I&y

=ﬁy.tLd

where dA is the area of the strip.

Total force acting on the whole cross-section is equal to the
sum of all the small forces between the limits Y, and y..

T P Tension.
=1
a3
Y 9y i Newtral Axis.
L &
4 Compression
Q
Fia. 22

Total force on the whole section — %_y .44 = %Aﬁ
where 4 = total area of the cross-section and ¥ is the height of
the centroid of the cross-section above or below the N.A.

But since it is assumed a plane section remains plane after
bending, the total force on that section must be zero, or the
total tensile forces are equal to the total thrusts,

Therefore %:ﬁ =

that is, ¥ =0, as E, R, and 4 have definite values,

Therefore, the neutral surface must pass through the centroid
of the section.

Total force on the strip = . dy — % .y .dd

Moment of this force about the N.A, — % y.dd .y
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Moment of resistance for the whole section is equal to the sum
of the moments for all similar strips
B E
=M A e
where I = Zy* - d4 and is called the moment of inertia of the
section about the neutral axis.

Dimensions of I are [length units]*= [L}* where [L]

represents a unit of length.
Moment of resistance = external bending moment.

y §

External moment = M = %
M  E
S TE (2)
Biv s
Also 7= -
I
t;hﬂ"rﬁfﬂrﬂ M =.f!—" = k ¥ 5 {3]
The general relation can be expressed as,
M E
7 =-ﬁ=§ .+ . (4)and (5)

where f may be a tensile or a compressive stress and y is the
distance of the fibre from the neutral axis.

The maximum intensities of stress are at the outer
boundaries, and if these are f, and f, respectively,

Ve
fi= MY :f= MT

If a section is symmetrical about the neutral axis, i.e.

Y. = My
then f; = J[.

The quantity —; is called the “ Modulus of the section,” and

is usnally denoted by Z,
so that M = fZ - A et
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There are two moduli for every section which is not sym-
metrical about the neutral axis: one = I/y, and the other
I/ye.

Dimensions of Z are [length units]* = [L]’

Problem 5. To what radius of curvature may a beam of

mild steel be bent so that its maximum tensile stress will not
_exceed 8 tons per square inch?
£ = 13,000 tons per square inch

Depth of beam 10in., and the beam is symmetrical abont
the N.A.
E fi = B tons/sq. in.
R y = ﬁi.l'l,
Ey _ 13,000 x 5.
T 8
= 8125 in.
677 ft,

19. Notes on Moments of Inertia. (@) Let a thin lamina of
area A consist of a number of small areas a,.a,.q,, eto.,
situated at distances r, . ry . ry, ete., from some axis BR

Then the moment of inertia of the lamina or total area
about the axis RR

= Iy = ayry® + ayr® + agd, ete. - (7
Zart
= Y moment of & moment,

Imagine the whole area A4 concentrated at a distance k from
RR, so that

Il

Il

AP Tooy i MRS
then k is called the radius of gyration. ;
{b) Let XX be an axis through the centroid of the area A.
I, = moment of inertia about an axis XX

Let MM be an axis parallel to XX at a distance m from it.

Then Ty = Ipe + Am? . ; . {3

(c) Let there be three axes, OX, OF, 0Z, mutually per-

pendicular to one another and meeting at the origin 0, which

is the centroid of an area 4. The axis 0Z, being at right
angles to the plane of the area,

then I, = Tex+4 Iy . : . (10}

From the relation expressedin equation (10), any number of axes
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O0X and OY may be drawn at right angles to one another,
and the sum of their moments of inertia will be equal to /..,
that is, a constant,

Thus, if the moment of inertia about one of these axes is a
maximum, then the moment of inertia about the axis at right
angles to it must be a minimum. These axes are spoken of
as the “ Principal Axes of Inertia."”

A principal axis can also be an axis of symmetry ; and if
an area has one axis of symmetry, this will give one principal
axis, and the other principal axis can be determined by draw-
ing it through the centroid and perpendicular to the axis of
symmetry.

Referring to Fig. 23, let OX and OY be the principal axes

of inertia for the given area, ¥
i
P
)
H—X

Fra. 23 Fia. 24

Let Iy, be the maximum moment of inertia
and I, , minimum A "

OP and 0Q are another pair of rectangular axes at an angle
a to the principal axes,

then I, + I, = Inx + Iny ; ‘ : <« (11)
It can be shown that

Iy = Iy cos?a 4+ Iyysinta - . . (12)

Ioo= Isxsin®a 4 Iy costa : ; . (13)

20. The Momental Ellipse. OX and OY are the principal
axes of inertia of a plane figure. (Fig. 24.) Let Ixx > Iyy, OP
be an axis inclined at an angle a to OX,

then I,, = Iz 008 a + Iy sin®a

Note. The theory of simple bending can be used for unsymmetrical beam
sections, if the applied bending couple is in an axial plane which contains
one of the two "Iﬂ’mnipql axes of Inertia."
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Let the lengths OR, OS, OT' be measured to the same scale
along the axes OX, OP, OY, such that

XX XX
A4 1
05—p= i~
A 1
e At sl

4 = area of the figure

It can be shown that ¥ and x are the semi-major and minor
axes of an ellipse, which is known as the momental ellipse :

. the point § lies on the ellipse.

Y 1

T ¥
d ¥ [ Mamental
] T }RT i Ellipse
x—*——-‘—eu—--—-—x , L 601
g T
]
4 i
t—-b-—+ |
i3 L
-2
Fia. 25 Fic. 20

If the principal moments of inertia are known, then the
semi-axes of the momental ellipse can be found and the
ellipse drawn to scale. If any radius be drawn and its length
r measured to the same scale as z and y, the moment of

inertia about that radius = i

=
ExaMPLES.

{a) Find the moment of inertin of a rectangle about an axia parallel to
the ends and passing through the centroid. Construct the momental ollipse
for a rectangle 2° x 5°. Also find I about an axis through the centroid at an
angle of 60° with the X axis (Fig. 27).

d

From Fig. 25, Iu-;fj_b.dy.y::bli:
] 58

Iy by similarity = 1
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For the given rectangle, Fig. 26

2 x5
R = 9-8%in ¢
T 13 20-83 in.
5 x 20
—_—e———a= g in#
i 2 3-33 in.
A
&= /7 = 0693
A4
y= 7= =1732
Y
z and y are the semi-axes of the momental ellipse.
A 10
: . e e L e
Igor INeasures 1 M"I‘ﬂ'"r! (14 7-69 in
By calculation
T g = 20-83 cos? 60° 4 3-33 sin? 60° = 7-718in.!
A D |
Y :

l B K “‘u_‘ \ 1’:
™ e} & \\_/

Fia. 27 Fio. 28
For a square of side S,
SI
Iﬂ — s o -ﬁ

(t) For the given section (Fig. 27), find the greatest and least momenta of
inertin. Draw the momental gﬁ!ipﬂe for the seotion, and use it to find the
moment of inertin about the axis OR.

Le=2x & XX+ XTI
= 5342in.

g =13 X }x 74 2fip x4 X (D*+ 4 X § x (38 +1)%
= 63-48in.}
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Area of section = 5-75 sq. in.

4/_5-75 — 0-301
TN T

575

ryr measures 445 ., I = 20-03 in.t

(e} * For an angle iron 3} % 3}" % §, the momental ellipss is as in
Fig. 28. The student is requested to check all the moments of inertin for
himself.

Y OX is an axis of symmetry and there-
fore a principal axis. 0Y will be the
other.

R IA! = T’ET: Ij: of i"_".ADE = ‘628;
i x I:c; ﬂ‘f EDFB = 2'25

In= I,= 3632in.¢
Iy = 2(2-25 4 -628) = 5-756 in.*
Iiy= 2 X 3-632-5-758

Fic. 29 = 1-508in 4

The semi-axes of the momental ellipse are z = -751 and
y = 1-468,

(d) Tre Cimcre. (Fig. 20.) To find the moment of inertin about s
diameter, it ia n to find, first, the moment of inertia about the axis
at right angles to the plane of the figure and passing through the centra,

I, = Ix + In
R
almf.,z-l:ﬁw-dvr’

= inRS
o o

re I::= raT

4

(¢} For o Horrow Cimcne.
Iyy = ‘:; (RS- R#) where R,= external radius
R; = internal radius
The momental ellipse becomes a circle for the circle, and also

for cross-sections which are similarly symmetrical about the
two mutual axes : e.g. the square.

* Examples (c), (b), and (¢) (pp. 28-30) are from Mann's Practical Mathematics,
by permission of Messra. Longmans, Green & Co.
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21. Routh’s Rule. If a body is symmetrical about three
axes which are mutually perpendicular, the (radius of gyra-
tion)* about one axis is equal to the sum of the squares of
the other two semi-axes divided by 3, 4, or 5, according as
the body is rectangular, elliptical, or ellipsoidal.

ExaMrPLES.
Rectangle—only 2 axes,

then (radius of gyration)® about an axis through the centroid
and parallel to the ends

d!
(G re
s 3 S

ar  bd®
I'=bd X 5=13
d!
;) @

T =i [

ﬂ"d‘g 2 ﬂ(i" 'ﬂ'R"
I-tl.nrm;": T ! ﬁ= ‘ﬁ:‘ = _1.

Cirele  (kyamoter)® =

(semi-minor axis)?
4

semi-major axis)*
(Rminor axis)® = I: 4

EH:P‘“ {kmﬂm' uh}i T

Area ellipse = & (semi-major axis) (semi-minor axis)

22. Graphical Methods of Finding Moments of Inertia for
Unsymmetrical Figures. (See Fig. 30.) It is required to find:

(1) The position of the centroid with relation to some axis.

(2) The moment of inertia about this same axis, and from
which I for an axis through the centroid and parallel to the
axis of reference can be obtained.

Enclose the irregular figure in a rectangle, and let two
adjacent sides OP and O be the axes of reference.

Ris a point where the axis OX touches the figure.

Divide the figure into a number of horizontal strips of dy
thickness.

Let LM = the width of one strip,

then LM - dy = the area of this strip.
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LM is at a distance y from OX.

Let AB be the projection of LM on Q8.

Join 4 and B to R, to cut LM in L,M,.

Do the same for other strips and join up corresponding

points LM, to form a new figure called the  first derived
ﬁgl’m",

Y
AC D 8
S5
T e 15T
Fifure,; [N
L e
/ Lz T ] M\ :
1 d
ay g :
1% Dervea\ \ | g
F‘E“M Il | e
i 1
b
b 1T
R R X

Fra. 30

Let 4 = area of the original figure
A;= area of the first derived figure
d = depth of the figure between the sides of the
rectangle QS and OP
Then y the perpendicular distance of the centroid from the
axis OX
d X area of the first derived figure
R area of the figure
To Frvp Iy (Moment of Inertia about the axis OX )
Let CD be the projection of LM ; on Q8,
Join € and D to R, to cut LM, in LM,
As before, continue for other strips and join up all similar
points L, M, to form a “ second derived figure,”
Then Ixx = d* X area of the second derived figure
The areas are best found by means of a planimeter. .
An example of derived figures is given in Fig. 31.
23. The Modulus Figure, It has been shown that the
external moment
M = stress x modulus of section

-+
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For non-mathematical sections, the modulus of the section
can be obtained graphically from the construction of the
modulus figure. By graphical or experimental methods, find
the centroid of the section. Through the centroid, draw the

P L

Half of 2% Derived Figure™

| /

“Half of 1% Dérived Figure

yn-“!‘;i!' s Dog= Apd?

Ina= L= ACH)*
Neutral ‘Axis

From the Diagram

A=Area of the Cross Section=20-6spins
A= = 1% Derved Fif. = 984~ -
A n o 2% w4 wgares
d = 9:85 inches

§ =75 inches A
T = 830 (inches)* e
Iya=359(inches)?

——————

%75

-4 — ————

Fiz. 31

axis about which the beam will bend. This will be the
neutral axis. :
With a pole 0, in the nentral axis construct the first derived
or modulus figures on the tension and compression sides.
(@) If a tensile stress is the working criterion, the tensile
modulus figure is required. If y, is not equal to y,, then on
the compression side take a base at a distance y, from the
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neutral axis. All strips on the compression side have to be
projected on to this base.

All strips have been reduced into terms of the outer tension
boundary, and therefore the modulus figure is now an
area over which the stress is a constant, being equal to the
skin or boundary tensile stress. The total tensile or com-
pressive force will act at the centroids of the respective
derived areas above or below the neutral axis. If the area
has been reduced to terms of the maximum tensile stress,

then M =/, x 4, x D,

where 4, = area of the derived figure found from the
tensile basis above or below the N.A.

Dy, = the distance between the centroids of the
tensile and compressive derived areas

Shaded Areas = Modulus Fifures, S0jAression

.fa.njf.

PR T

3 Py |

{ Y.

e ;
S F

Y, |

Tensjon Modulus Fifure.
Fonge:  Tension Bass. Modulus Fisure =
Eummuian%ﬁ..
Fio. 32 Fra. 33

The positions of the centroids can be found by experiment.
An illustration is given in Figs. 32 and 33 and in Fig. 37.
(b) If working with compressive stresses. then the compres-
sion modulus figure is found by a similar construction.
ILLusTRATIVE PROBLEMS OF NORMAL STRESSES 1IN BEAMS.
Problem 6. A rolled steel joist has the following properties—
Depth.  'Width of flanges, Area of section. o Tyy
10 in. 8in. 20-65q. in. 345(in.%)  71-6(in.t)
Such a joist is to be used as a beam 20 ft. span, loaded in the
centre, with the web vertical. Find the safe load that can
be carried if the factor of safety is 4. (London Univ., 1923.)
The neutral plane will be XX,
The ultimate stress for good mild steel is about 32 tons sq. in.
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Therefore the safe working stress will be ?—f— = 8 tons/sq. in.
Let W tons be the safe load required.

Maximum moment = ? = & i: =0 = 5 W tons-ft.
= 60 W tons-in.
1] SR Exi—x-: ¥, = bin.
60w = 22X 5 x 6

8 % 69
W 2 %
30 82 tons

Problem 7. A compound beam (Fig. 34a), formed by rivet-
ing together two rolled steel joists 16 in. deep, has a span of
25 ft. and carries a uniformly-distributed load of 35 tons.

Iy = 726ind Iy = 27int
Take the beam to be so loaded that the flanges are stressed
as in Fig. 344, The joists are illustrated in Fig. 34,

Y "
32 Compression
o055 Area=ig2zo"
S [ 2I6x6"D62"
085"
v Tension
Fia. 34 Fig 34a

{1) Find the position of the N.A. above the tension flange of the compound
Fig. 34a.

Take moments about 0.
+H5
2 X 18:22 % § = 1822 X 8 + 1822 x (lﬁ + ﬂz-)
From which 3% = 121 in.

Is, = Moment of inertia about the axis through the
centroid and parallel to the tension flange.
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Neglecting the effect of the rivets and rivet holes, for the
compound beam
Ty = 726 + 18:22 X (4:1)% + 27 + 1822 X (418)*
= 1380 in4
The compression boundary is 4-18 + 3 = 7-18 in. from the N.A.
1 temi.ﬂﬂ 5 =121 i.ﬂ.

(1) Neglecting the weight of the beam, the moment at the
centre, which is a maximum, is

ﬁ:?whcm W is the total load in tons

8
35 % 256 %X 12
Maximum moment = LB-—X— tons-in
Let f, = maximum compressive stress in tons/sq. in.
fi= .. tensile i "
35 % 25 x 12 1380
Then —3'-_ =f, b4 m
f. = 68 tons/sq. in.
35 % 25 x 12 1380
AT S e

fi = 11-5 tons/sq. in.
(2) Allowing for the weight of the beam, to find the additional
stresses due to this weight.
Total weight of beam = 2 x 62 X 251b.
= 3100 lb. = 1-38 tons

Now 35 tons distributed load cause stresses of 6-8(7,) and 11-5(f,)
", 138 tons distributed load cause stresses of

6:8 x 1-38 foons : d 11-5 % 1-38 G
35 compression) an T{ ension)
= (-27 tons/sq. in. and 0-45 tons/sq. in.
eOmpression tension

additional stresses which are small.
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EXAMFPLES

1. Three wooden planks, a, b, and ¢, of the same material are laid side
by side scross a span of 7{t., and a load of } ton is laid across them at the
centre of the span, so that they all bend to the same mdius of curvature.
Each plank is 6in. wide, the depth of the two planks a and ¢ is 3in., and
of b (the central plank) 6 in. Determine—

{a) The load carried by each plank.
{b) The maximum intensity of stress in each plank.

2. A bar of steel, originally straight, is bent to o radius of 600 in. ; the
bar i8 2 in. wide and 1in. deep in the plane of bending. Find the bending

moment and the greatest intensity of stress induced in the bar. Prove the
formula employed. (E = 12,500 tons per square inch.) (LO.E.

3 In a sup Themnnfnpmzﬂtt..nnd'lﬂin.daep.thuwcﬁ
aroas of the web and fange are equal. The beam has to carry a uniformly-
distributed load of 4 tons, and the allowed wrkiugammnmsm 5 tons
per square inch in compression and tension respectively. What is tho
sectional nrea of the beam ? (I.C.E.)

4. A cast-iron lintsl beam spans s window opening 14 ft. clear in width
and earries & load from the brickwork above, assumed to be that included
in an equilateral triangle of which the lintel forms the base. The brickwork
ia 18in. thick. If the cross-section of the lintel is as shown in the sketch
{Fig. 35), what is (a) the maximum pompressive stress ; (b) the maximum tensile
streas, ﬁndumd in the cast-iron t The weight of 1 cubic ft. of brickwork
= 100 "
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t=+056
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5. A steel angle 47 x 47 x }° is 10ft. 6in. long, and built vertically
into a concrete foundation. The upper end is quite free except for & wire
rope inclined at 45° to the floor. Tgm rope passes through a hole (P) in one
side of the angle 2 in. from the corner and 10 ft. from the floor. The rope is
in the same vertical plane as the face of the angle through which it passes,
and earries a load of 2001b.  The moment of inertin about the neutral axis
of the cross-section is 1-83 in.* The neutral axis is distant = = 1-17 in. from
the corner. Find approximately the maximum stress produced in the angle.

(U. of B.)
6. To what radius may & wooden boam 12in. deep be bent if the skin
siress may not exeead 1000 1b, square inch, assuming E = 2 x 10*1b.

*per square inch * If the beam is of rectangular shape, 6in. wide, what ia
then its amount of resistance ?

7. A rolled steel joist, 12 in. deep, has a span of 20 ft. and carries o load
of 10 tons uniformly distributed, and a concentrated load of 3 tons at the

!--J—»J-%:I' e it
M e el

S
ol
'!

: =—I I'l.]"

i & e

i | (i |6 B
- IH
Fie, 38

centre of the span. The flanges are 7in. wide and -875 in. thick, and the
web ia 05 in. thick. Determine the maximum stress due to bending.
(L.U., July 1923.)
8. An [ section steel joist, 8" x 4%, ML of I, 81 in. units, has a span of
12 ft. Find the maximum safe distributed load per foot run it will carry
with & working stress of 8 tons per squoare inch.
9. Find by a graphical method the * modulus of the section " of & joist
10" % 6" » 3" Construct a scale for the modulus figure. (U. of B.)
10. A rectangular beam of wood 10 in. deep and 6 in. wide, and having a
of 16 ft., is supported on two supports 10 ft. apart, one support being
at the left end of the beam. The beam is londed with a load of } ton per
foot run. Draw the disgram of bending moment, neglecting the weight of
the beam, and find the maximum stress per square inch in the beam.

11. Point out the meaning of the moment of inertia of a section of & loaded
beam. Find the moment of inertia of an area consisting of & rectangle 10 in.
wide and 12 in. deep from which has boen taken a smaller concentrie rectangle
9 in. wide and 11 in. deep about an axis 6 in. below the top and parallel to it.

(LC.E., April 1923.)

12, At what distance d should the two channels be apart in Fig. 38
80 that I, = I,,. xxand yy are the 2 axes of symmetry.

13. Find the moment of inertia of the section about the axis xx and also
about an axis through the centre of gravity parallel to the axis xx. Fig. 38,
page 38,

Method, Divide the length of the seetion into small lengths of, say, -1 in.
Then the ares of the whole section = n x -1 x t, whers n = number of
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small lengths, Let y = arm of each small length from the axis xx, then
neglecting the moment of inertia of each small length about an axis through
its own centroid,

Iex = Zay!

which, if a is constant = a Xyt
where a = (-1 X {)#q. in.

14. A piece of steel has to be bent round a drum 5 ft. in diameter. Deater-
mine the maximum thickness the steel may have, if the stress is not to
exceed the limit of proportionality of the steel which is 14 tons per square inch.

E = 12,500 tons/sq. in. (. of L.}



CHAPTER III
DerLECcTION OF SiMPLE BEams

TrE determination of deflections will be ascertained from the
differential equation of the deflection curve and also by the
use of the bending moment diagram.

24. In the chapter on * Bending,”” the relations between
moment, stress developed, and curvature were found.

For very flat curves and for which the radii of curvature are
very big,

1 dy
R~ dz#
it i ol e

ﬂ!‘.rg;ﬂ .

Y positive., dy_,

(cL)
lope positive.
t radians =tan t=dy
dx
—=.x positive.
7 r. ©)
origin. lpo.s;'trve

t°=tani = dy positive.
dlr

Fic. 39

In Fig. 39, (a) is a simply supported beam : under any system
of loading the beam will bend concave upwards ; that is, the
displacements from the horizontal position will be in a down-
wards direction. The amount of displacement at any point

* This is the expression derived from the case of so called * pure bending."

The same equation may be used for the bending of prismatical bars by
lrlmmh-dn,ﬂtbnnﬂmtnfthnﬂmngfarmhmglmhd.
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will be the deflection of the beam at that point. Let this
displacement be positive when measured in a downwards
direction and be equal to + y.

When writing down the fundamental equation of any simple
and fixed beam, always start from the left of the beam as
origin, and give the moments their correct sign according to
the way they tend to bend the beam about the left of a
section considered, and which were indicated in Chapter I.
These signs will give, on solution, the correct sign for the
displacement .

In the case of the cantilever, the fixed point is taken as
origin, Fig. 39, (b). For overhanging and continuous beams the
left-hand support is considered as the origin.

For symmetrical loadings, deflections can be most elegantly
found by mathematical methods: for systems of irregular
loadings, it had been found necessary to use graphical methods,

W, Wo W Wy Ws

andeis

ﬂﬂ.fgm ______ b 1 R T ) ﬁ
L=
e T

Rﬂ —— = O —- R‘
——— e
______ B————— =
_______ L=————
Fio. 40

but a mathematical form developed by W. H. Macaulay* can
be used in all cases and is much simpler. Tt can be used for
all kinds of beams having ET constant.

25. The slope of the tangent at any point =§!-'F_—=tani
&5

= i radians, where i = angle in radians which the tangent
makes with the z axis, and it is always very small, so that
tan i is nearly equal to i.

TaeE DIFFERENTIAL EquatioN oF toE DEFLECTION CURVE

26. General Mathematical Method (Fig. 40). (Due to Mr.
W. H. Macaulay.*) 04 is a simple beam loaded in an irregular

I‘ﬁﬂw Ej Murhu}miuﬁeh'u. 573, xlviii, Jan. 1919, Also refer to
e Elastic Equation for Beams™ by W. D. Womersloy, Concrete and
Constructional Engineering, Vol. XX, I‘JEE. :
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manner and of length I. Take the origin at O (the left-hand
support), and the axis of z to the right and positive. Take
any section X distant 2 from O and beyond the last applied
load. R, and R, are caleulated by the usual methods.
Moment at X
=M,= -Rx+ Wylz—a)+ Wyz-b)+ ... Walzx—n)
This is an expression for the moment for any section X, if the
terms inside the brackets are omitted for values of x, which
make them negative.

Efg= M.,= -Rx+ W,(x-a) + Wyz-1b)
+... W, lx—n)
Integrate twice (taking E, constant),
3.'-'3 Wl H'Tt IF-
Efy=—R‘E~+ 4y (x—a)® + —'E'[ﬂt—lﬁ}a—]- e (x—n)?
+ A4z 4+ B ... (eqn. 0)
This expression is true for all values of z between 0 and [,
omitting terms which become negative for particular values
of z.
For simple beams, when 2 = 0,y = 0;
Then B =0
To find 4, put z = I, then y = 0 (generally); Then
R, W, 3 E* 3 l_!i*_l 3
P+ -0t +5 -8+ . . (I-n)" + Al
From this latter equation, 4 may be found : substitute it
in equation C to give the general

0=-

value of y. w
The slope at any section will be l X
found by differentiating y with of Ry B8
to x when the value of 4 |, __ 1 __h_,_H__ﬂ_i__.
is known, and the resulting equa- A 2
tion will hold good for any value T~ —"%F"§~
of z, omitting terms in the W
brackets which become negative o ]
for particular values of z. Fia. 41

ExampLES,
(a) Simple Beams. Load at the contre. (Fig. 41.) Supports same height.
W
R =Rp=-z.
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dzy =M, -——?-{- H"(x—%)

W W i\®
Efy=—mxa+?(#—§) + Az 4 B
when z =0 y=0. B=10
When z =1, y =0,

3
thenl}_-EI + — (I) + Al

Iwe
A=
Wi
4=7
Wax? W [42 Wite
EI-”'='W+F(”“§) + 7%

which holds good for sections between C and B.
Obviously for all sections between O and €, the middle

term will be negative, as z < EE
Between O and (,

" Wz Wik
y i1s a maximum when z = .;

i.e. the deflection is a maximum,

Wi Wi Wi

when E’Ifm=-?ﬁ~ e 2 . 1)

Between € and B, considering Blﬂp[‘i

dy Wz’ IF I e

_ﬁ{u:t- 821 4 32)
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Between O and C,

dy TN we
Mg s r e s
: Wi
when z =0, t,= 16EI . . (2)
l
¥ T = i {L =10

{b) Simple Beam, with Uniformly-distributed Load the Whole Length of the
Beam. (Fig 42.) Supports same height

)

On:g.r'n

E1y=-fl—z“+-;—jx‘+dx+ﬂ

12
When 2 =0, y=0, B=0,
and x=1, y=0,
wl wit
then D=~T§+ E-I-i-.-ﬂ

wld
A=E

wl wrt wl?
ey el | P e
Bly=-1%" +t30 + 2%
The maximum value of y (giving the maximum deflection), when

l

r= -,
2
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i® wit wi* 1

Elyme= -3 X g+t3iw16+ 35 X3
Suwlt
Elymas = g5
R I . i
Ymes = 354RT =~ 7T6-.8EI — T6.8EI  ° )
To find the slopes,
PTIL TRE T [
EIE=EI':,= -T—I__l‘;_i-_"ﬁ
3 wi? A
when = = 0, Yo = 5iBT = FT * . . (4)

(e S:'mﬂ: Beam Symmetrically Loaded with Equal Concentrated Loads.
(Fig. 43.) SBupports same height,

OB is a beam of length [,

-
(g 1-za. g having loads of W at distances
o + e lr—xj";;*%’*f a from O and B respectively.
0 T B R, = RB = W

The moment at any section X,
between C and D (CX, = z,),

=-R,(a + z,) + Wz, ;
{Rn= W}
—'—R,r].:- Wa = constant

R=E=—E=¢Onsmt

Therefore, between €' and D, the beam bends to the are of a
circle.
Take a section X between D and B,

M, = Efj—g:-ﬂ'x—i— W(E-a)+ Wz-1,-a)

Wz W w
Bly=-—5 + 5 (@-a) + = (z-k~ a) + dz + B

When z =0, y =0, thenB = 0
Whenz=1 y=0
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3
then 0 =—¥+%(l—a}3+¥—§{l-ll—a}3+ Al
we . -W L
ST el ot il & a —_— g3
= ﬁ+ﬁ{1 r:j|+ﬁ-::+.f1£
Wal Wa?
TR R
Wzt WI;]: Wa%e
Efyz—--—--;-ﬁ{—a}a (z h-a)' + ——— 5
(4a)
At the load points € and D, z = a and [I—a}
suthatr Ye = Ya
3 :_;! Wa?
Bly,= - % 4 % (@-h-a)* + i fnd
a-1, - a is neglected because 1t1snega.twe+
Watl 2., Wal, Wa?
Bly,w =g Wate=—god mgeiiniine. (B)
The deflection is a maximum at the centre of the beam :
i.e.atx=§
w2 Wi/l 3 Wal* Wa®l
Elyuee= -3 T+ —a'(é*“) o ok
_ Wal* Wa® .
e S ASSEOG ReB Sy RILR)
3 k- @
g r e Walz2 Wa®* Wa'l 2 Wa?

RN RS 3

lh:(F aI+ 2)
L (P~ dal + 4a%)

= -‘E‘{:— %) = w:z

The relative deflections at the centre of the beam and at the
load points

__ constant n;;’?“nt' Wa (distance between loads)®.
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Differentiating equation (4a),

d - Wz W W
Elg, = Bli,= - 5~ + & (-a)' + 5 (- L - a)?
Wal Wa?
o
At the origin, z = 0
: Wal Wa?
L
At the centre of the beam, i, = 0
At the load point C, x = a :
; Wa* Wal Wa?
ek T e i P 5
Wa Wa
. constant moment X (distance between loads)
S 2ET =D

27. Note. The relative deflection at the centre of the portion
of a beam of length I, bending to the
are of a circle and a load point can
be proved from the properties of a
= circle. (Fig. 44.)

1\
R==fR—y]2+(§) ;
R’:R‘—Eﬂy—l—y’-!-%l

Yy(2R-y) = (%)s

i

i

I

|

I -
..__{_ e

i

Fio. 44 iy in e (:;_:)2
neglecting y* as being of the second degree of smallness.
Lt
y= Sk
1 M M2
% = g7 (constant) : then y = BE’II - . (B)

where M is a constant.
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28, Overhanging Beams. Equal concentrated loads at the
ends of equal overhangs. (Fig. 45.) Supports O, B, at the same

level.
R,= By=W

This case is exactly the reverse of the last example considered
(Art. 26¢). The beam between O and B will bend to the arc of

a circle.
Let OB be the base line, and let I = I, + 2a.
At the centre of the beam, the deflection above OB will be
Wal,?
o 2% = 2N

being negative because the deflection is upwards.

The loaded ends will deflect below the base line by amounts

Ve and y, (and y, = Ya)-

2 2Wa?
where Ely, = E;-I—!— 3“ (eqn. &)

Watl, Wa®
_I_ —_—

5 3 (eqn. &)

The slope of the beam at the support O

S .I'-FRII

o= = 3FI
These results will be obtained by taking O as the origin and
obtaining an expression for the moment at a section X dis-

tance z from O and between B and D. The deflection of C
is the same as for D ; for any section between B and D

M.= Wa+z)-Wa-W(z-1)
Walz

w
Bly=i =g ~g W)y
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Illustrative Problem 8. A beam of length 20 ft. is loaded as
in Fig. 46.

Find—
(a) the maximum deflection and the section where it occurs §
() the deflection and slope at the load point ;
{¢} the slopes at the ends of the boam.
Take E = 13,000 tons/sq. in.
I = 300 (in, )
R,= 3 tons By, = 9 tons
At any section X between C' (the load point) and B,
M. = -3z 12(x - 15)

12 Tons
-i—-—-—.l&"———h;'-h,ﬁn—.-
o 238
—_———FT_
i = st LS
Fra. 46
. 12 .
Efy-_-EE—I-E{z:—- 15 + 4z + B

when =z =0, y=0, B=o0

w *=1=20, y=0
then 0 =—ETO:,+ 2% 56%4 204
Solving : 4 = 4 1875

Ely = ff; + 2(x - 15) + 187-5z,

The maximum deflection will oec

ur at some section between
O and C'; the equation for

any section between 0 and C is
z3
E.!ty e e + 187-5zx.

In this case, x always < or — 15, and (z- 15) therefore
always negative or zero, and is eliminated.
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For maximum deflection.*

dy 3a*
Elrd—z—-—ﬂ"—F 13?'5:'}
a*= 125
o= 112 ft.

The maximum deflection is at a section 11-2 ft. from O,
11-23
13,000 x 300 % y = — Ry <+ 187-6 x 11-2

E and I are in inches and « in feet ; the right-hand side of the
equation must be multiplied by 12% to make the units correct
on both sides. (zft.)* = (12x)%in.; y will then be in inches.

39 % 108 = 1400 x 1728
y = +62 in.
The deflection under the load point is
153

Solving y, = -5in. nearly.

SLOPES.
dy y
EI = Eli,

2
Eli,= - 3-%:- -+ 6{x — 15)* -+ 187-5 for sections between €' and B

Bl o ;2"*’5-3 4 1875 for sections between O and O

As E and I contain inch units, and z is in feet, multiply the
right-hand sides of the equations by 12* to make the units agree.

When z = 0

: 187-5 x 144
B S 108 e
at x = 15, i.e.at O,
15% b
-3 X 5 + 1875
i, = — ¥ 144 = — 00506

30 % 108

* For simple and fixed beams loaded unsymmetrically with one load, the
maximum deflection cceurs in the longer portion of the beam between the
load and o reaction.
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At z = 20, the right-hand support,

202 o
(—3 X o+ 0X 52—I—187-.':-)

50 — 39 % 105 144 = — 0098

29. The general mathematical method can be made to apply
to any irregular system of loading of cantilevers. (Fig, 47.)
Take any section X between
Wi Wz Ws Wy the origin and the first load, and
X } 4 vl lr distant z from 0.
Let the loads be W,, W, W,,

R_--I;_ etc., at distances a, b, ¢, d, ete.,
_.__c:.:--u- from O,

‘_‘_—_"_‘_d-_—?.:::-:: — The moment at X, taking

moments to the right of the

Fio. &1 section, will be positive ; EJ —
constant,

then Efj-}, = Wi(@a-2) + Wyb-2) + Wylc-2z)

4+ . Wiin-=)
nmay be =or <1

E ;—g=—ig—]{n—x}*—l—;}{b-—z}’ vew d
when z = 0, %=ﬂ
Then A=+£2r’a’+-i—;:—’b“+—“2ic’+ o .%:E.n’
Bly=ga-ap+ Mg apy 1o Tde
e o+ sz+3

whenz=0, gy=o0

W@ Wpe W, a3
ThEﬂH—-T——B-—...- )
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. =% 5 " s 3 ' L 3
NI W l{a. x) + I_Ir 2B —z) i W(n—x)
[ 6 6
Wtz Wbz Wnz
2 + 2 + o Pt + 2
Wa® Wb Wn?
- T —_ T —_— _ﬁ. . . L] lg}
To find the deflection at w*

any section X, values of
(a—x), (b—=x), etc., which 3

become of negative value, by

are eliminated. :__f_Fi_ L_E 3 oy
If z = I, all terms (a - z),

etc., disappear, even when Fia. 48

n o<l
With one load W at the end of the beam, x = n = [ and

W,= W. (Fig. 48.

3
Then Wn2x 4 Wi
a 2 Wi
Bum = ——
Wn? = Wi / 3
and c=—s= =1 o

778
Deflection at the end of the cantilever due to W only = %

30, In the general method,
if there is a distributed load on
a part of the beam, imagine
it extended to the section X
taken. The part added is
neutralized by a load acting
upwards on the extended
portion.

E.g. (in Fig. 49)

w

M,= -Rx+35@-b0-5 @=c)

3={1.5439)
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31. ExampLES.*

(a) Cantilever Beama, A concentrated load of I tons at the end. (Fig. 43.)
For any section X, the moment is clockwise to the right of the section and
poditive—(ET constant)

z_,.,(h..'"f)w AR LT

C is a constant of integration.
when z = 0, %:ﬂ, C=10
) : Wi
At z =1, i,isnmaxlmum-——ﬁ 2 % . (10)
Integrating (9 i Lz . dz + C
11‘381'“-1"5'[5}.3.=Ef( =3 + G
W fla* 23
=EE(?—F)+U[ ® - w EIUEI}

when x =0, 4=, 0;=0
x=!:- V= Ypss

Wy e ..

ym“-_.ﬁ(g—ﬁ—)z-a—ﬁ?ﬂnltﬂ. : - (11}
wT The slopes and deflections
+_ T at other sections are found
A by substituting the necessary
E\EJ E‘y"‘"“" values of z in equations 9
_____ e e and 10z where €' and C, are

Fio. 50 both zero.

5) Cantilever of Length 1, with a Concontrated W ;
from the Origrn by ok TN Ao Dieai

At the point of loading C,

WA Wi,
ey e s R) Sy e e )

Between €' and the end of the beam 4 » there is no moment,
so that the slope of the beam will be a constant = i,

* The examples (a) and (b) for cantilovers t i 1
forward integration. The student is n-kn; to wna:: :::?‘fl; s Hﬂnuhr Il:;
with irregular concentrated loadings by the method mdmmdplf:uplrmph 20,
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The deflection at any section B, between C and 4, and
distant b from C, is

wiz2
Y= :!EI + b (slope from C to B)
Wi,* bWI2
T e T e S PRI
The deflection at the end of the beam
o T Wi, Wil-1,)12
e T i (L~ ) = e e
R 3kl + " 3E1
£ otk Wi?
- 'y
Yt =g @0 - 09)
e V-] {¢) Cantilever with s uniformly-
Fic. 51 distributed lond of w tona per
foot run.  (Fig. 51.) EI constant.
dy M  wi-z)
dz® — EI 2ET
d : w
W= mf{f—x}'dx—i-{?
w [I )3
B T i TR
- wi?®
=0, +4,=0, U-—-E.I . E « (16)
a3
z=1 i = 1:|m.1:11:|1ut|]m=‘;;[‘i!;;‘!r - EEEG by
Ldy . w(il-2p |
“dz=%= ~emr T 5l

Then g, = -E—;If[—{fa—x}‘+ﬂ]dx+01

)t
=EE [{I ) +I-‘*z-]+t"

wit
x=0’ y‘#= ﬂ_‘ Elﬂnm 4 ® tls]



H6 THEORY OF STRUCTURES
z=1  y; = maximum

wh ol
Ymaz = GET ~ 53K]

wl* wis
= 8EI = 8EI (19)
The slope and deflection at any section are found by giving z the
necessary values in the equations, for i, and y,, giving ¢ and
€, their values,

32. Relations between Slope, Deflection, and Moment; see
also Art. 12 ante.

Take EI constant

ey _ oy
x
dy ._/' .. M
Efdz—ﬂfi,—‘ M I’I‘Z,d'-;—i:— Edfﬂ.

Let i,., = i, be the slope at a section X,
distance z, from the origin
» bamg, = 1z atasection X, distance z, from the origin.

Then EI(i,, - i,)= E{f dx=[A,,]" S8 e

Ty

= area of the bending moment diagram between
the sections z, to z,.

The angle between the two tangents at X,
and X, equals the area of the bending moment
diagram between the corresponding verticals
divided by EI.

Let z, = 0, then iz, = i, = slope at the origin

'1‘11eni,=t',+% a: . . (2
(1]
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Generally for cantilevers and fixed beams, i, = 0, (but regard
~must be paid to the moment sign) if the fixed end is at the
origin.

Further y, = f i, dx

Xy

Then (Yrmp,— ¥2ms) = fi,-dz . : o)

T,
= area of the slope diagram between z, and =z,

If 2—'1 =0: y-"'ﬂ: ]

Ny __area of the slope diagram
Then, g == ﬁ Yoo 0% = }otween X, and the origin * (23)

SUMMARY. S:fw.afx; M:ffw.dx.:b:;
d®y 1
E=Effw.fiﬂ?.d.r:ﬂf"—'f#gdi‘.

Total change of slope ¢

iy 1 Dl |
Zd—it::E_IfM.dm_mffS‘dx'dr
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33. Relations between Load, Shear, Moment, Slope, and
Deflection.

47y
dM d?y
Shear = S = = = Ejd._z_!
2 d
Rateof]onciing=w=%i=ix—{f:ﬁ} ﬁ
M- d
Slope = i = g—i_ = _.E"_I-E where EI may
be constant or
Deflection = y = f i dx variable,
dy M
34. Nﬂw, E == -._ET}
diy Mz
Then z . T = FI

*Integrate between z = x, and x = x,

d = 1
(;,; _d_!;_ y)‘: = %] £j&"m .dx when EI = constant

1 ™
gl fMe-de . (24)

35. The Interpretation of Equations (20) and (24).

Eguation (20). The angle between the two tangents at the
points X; and X, distant x, and z, from any origin of the
deflection curve equals the area of the bending moment dia-
gram between the verticals through X, and X, divided by
EI—Rule (1).

Equation (24). Imagine a vertical taken through the origin
of the beam, and again consider the two points X, and X,
distant z, and z, from the origin, The left-hand side of Equa-
tion (24) represents the distance between the point of inter-
section of the tangent to the deflected beam at X, with the
vertical through the origin, and the point of intersection of
the tangent to the deflected beam at X, and the vertical

Then 248, — ¥y, — Tyiz, + Y=

* Integrate by ** parts method."
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through the origin. This is equal to the moment about the
origin of the bending moment diagram between the verticals
through X, and X, divided by EI, which is the right-hand side
of equation (24).

If the origin is supposed to be moved to the point X, then
the displacement of X, from the tangent at X, is equal to the
moment with respect to the vertical through X, of the area

F
b )

Fia. 52. Tae Lower Diacmaxm 13 THE MoMENT DIAGRAM

of the bending moment diagram between the verticals through
X, and X,, divided by EI (for beams of uniform section).—
Rule (2).

Further: If the origin is transferred to X,, then X, is dis-
placed from the tangent at X; by an amount equal to the
moment with respect to the vertical through X, of the area of
the bending moment diagram between the verticals through
X, and X, divided by El.

Examrrrs.

{a) Deflection of a Beam Supported of the Enda.

Lot a beam AJR of uniform section (EI is & constant) and length | support
a load P at the point C distant (I - ¢) from the support 4. (Fig. 62.) Find
{1) the slopes at the ends of the beam; (2) the deflection and slope at the
lond point; and (3) the maximum deflection, and the section where it ocours.
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Let i, and i, be the slopes at 4 and B. From Fig. 52 it
is seen that the distance between A and the tangent at B is
equal to li;, and that the distance between B and the tangent
at A is equal to li,.

From Rule (2), li; is equal to the moment about 4, of the
moment diagram between the verticals through 4 and B,
divided by EI. This is equal to the area of the moment dia-

gram A,C,B, about 4,. The centroid is I——;—g from B, and
2l-c
therefore S from 4,

. 1TPefl-c) 1 (2-c)
: Pe
i = gpn (2 -c)(l-¢)]
Pe(l* - ¢*)
aEl -
If i, is positive, then i, is negative.
To find the deflection and slope at the point €, of the bent

beam corresponding to the load point (7,
Deflection at €'y. The deflection is obviously equal to CC,.

CC, = CF-GF
= (I -¢)i, — distance of C'; from the tangent at 4

= (I - ¢)i, — Moment of area 4,0,C, of the Moment Dia-
gram about C.,C; divided by EI

Pe(l-¢)(I*-¢?) Pe(l -¢) o (I-¢) (I-¢)

and i, can be shown =

> BIET =) 3 X 3Bl
Pe(l -

= ';EEI‘}[p P4 e

Pc[I c)

=g (%o - 2¢%

Pei(l - )t

= —m7— = deflection below the origin 4 of the
HET load point C.

! _pB
~ 48ET
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The Slope at Cy.

By rule (1), the angle between the tangents at 4 and €, is
equal to the area of the Moment Diagram between the ver-
ticals through 4 and ) divided by EI

¥ Pell - c)®

oo BT

Then the slope of the tangent at € from equation (20) is therefore
Pe(l® - c®) Pe(l-c)?

ST Dt A SR R S €
P
— ﬁigf (12 - c® - 312 + 6lc— 3c?)

Pe
St tlnials =
by (268 + Sle 1Y)
If ¢ =£t.hen g, = 0.
2
For all values of ¢, i, is positive: 1, is positive or negative
depending upon the sign of — 2¢* - 3lc — [*, thus

If 8le = 1* + 2¢2 then 1, is positive
If 3le < I* + 2¢? then i, is negative

Hc=;then e = [2 - 2c2,
et e % then 3lc = I* -+ 2¢? and 1, is positive

and ife < % then 3le < I* 4+ 2¢* and i, is negative
: 1 2¢
le.c<g SR T

: | 208 :
and if ¢ = 5 then (- e - I’) is negative.

| S .
Thus for all values of ¢ < 3 beis negative.

Therefore the maximum displacement of the beam will occur

. l =
in that portion of the beam I — ¢ or ¢ which is > 5: because it 1s
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in the longer portion that the sign of the tangent changes from
positive to negative and therefore at some point within this
length it is zero.

The Position, and the Value, of the Maximum Deflection.

Let the maximum deflection be at section X distant z from
the origin 4 and between 4 and €, where AC' = [ -cis > If2.

M,:Mumeut-atX=PTm.
. Pex 5 it 1
Ye=i-— X 3X 53X gp
_Pe(P-c's Po 23
~ GBI  WEI’
dy, Pell*-¢¥) Pe
de — GBI ~GEl'®
= 0 for Max. y,
89 o P 2
Rt
szﬁsc o U S
{
If c=[lthen:c=ﬂ=ﬂ-ﬁ'?ﬂ
! !
If = Et-hﬁl'lxz ‘_.3: 05000
If &= i then = = }?I = 0-558]

Equation (A) shows that the maximum deflection is always
near the middle of the beam. In the limiting case where ¢ = 0
and P is at the support the point of maximum deflection is
only a distance of 0-076! from the middle. The deflection
at the middle is therefore a close approximation to the
maximum.
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_ Pe(-¢Y) f*—eﬁ Pe (J&&)’
Ejymﬂl I m /< 3 = t” - ""3

EG P

<ol ) A R 1
ko (B~ ot [R5 =87
S 0

Pe [B=cSTh . Pe ;t-;*—')‘-‘-
- e W "‘-—ﬁ( e
e e L b
St "5 TOVIER

RIS P NE

Ite =35 Yme= = GEI

Tllustrative Problem 9.

A beam ADBC with an ﬂvﬁrh“ﬁ, B is bent in one ease by a force F at
the end O, and in another case by the foree P applied at the middle I of the
span AB. Prove that the deflection d;, at the centre point D in the first case is
equal to the deflection dg, at the end C in the second case.®

Moment Diagram.

p} Sp F atD
A,/—L‘\____ — A sl I '
r J-H& M
N S St 2 X ¢
C L

Hinge!
’g"i-—#zu«-h—--frz-

(TP —— o
F
0
A ____.__l Sy e ___..L'jlf-‘r B
| v ?)I i ] %’
i < cmptmabip e Wm0 B C

Moment Diagram
Fic. 53
1t is required to prove that d;, (Case I)=4,, (Case IT). (Fig. 53.)
Case I. D on the deflected beam is below the tangent at A

by an amount
Pa. 1 | B 1 Pal®

3 X3X2%§ % EI~ BEI
D on the horizontal between A and B is below the tangent
at 4 by an amount
i e e
g X L05 X3 X ¥~ 138]
* Certain writers denote the deflection by the symbol 4, consequently in
the problems 9 to 11, the symbol of y previously used i replaced by 4.
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> D on the deflected beam is
Pal* Pal* Pal*
12E1 48El  16E!
above the supports 4 and B.
Case II. C is above the supports 4 and B by an amount
= a ¥ the slope of the tangent at B
Lii # g e
foyma X s X T X3X BT~ 1081
dy (Case 1) = 4, (Case II).

Conclusion. A load P at C causes a deflection X at D which
is equal to the deflection X at ¢ when the load P is at D,

This is an example of a Theorem which is known as Mazwell's
Theorem of Reciprocal Deflections, and is used a great deal in the
theory of the solution of Statically Indeterminate Structures.*

Tllustrative Problem 10. (Fig. 54.)

A bar ABC is hinged at A and supported at the same level at B, AB is
10 ft. and BC is 5 ft. A concentrated load of 5 tons is carried at the over-
hanging end O, If E = 80 x 10° Ib.sq. in. and T = 2000 in. units, caleulate—

{a) the deflection at ;
and (b) the slope of the beam at 5.

'\ 180, =
5T\t sx 27501
______ I e
A = Cor
e 10ft ———~ -5F>~cq _ {4
=J20 ins =60ins (,
T gx ! Moment
22208 i D.agram
.-4._. B:r 'rf
Fia. 54
3 300 x 2240 x 120 1 120
1208, = 5 = ﬁ A .ETI
\ 300 x 2240 120
RN L

* The proof of this theorem is given in a paper by the author, reference
No. 9, page 220,
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300 x 2240 x 120 X 180
6ET
', the deflected point of C is below the tangent ab A by an
amount
“:IUQXEMI}}(I?[_IX(I )

d,‘——EE—I— ﬁxlﬂﬂ—{—ﬁﬂ

1808, =

300 x 2240 % B0
R~ %40,

». deflection of € = 4§, = A, - 1803,
300 x 2240
= T[:ﬁm % (100) + 180 < 40— 120 X 180]
= 0-0403 inch.
—————

The slope of the tangent at B

300 x 2240 x 120 ( 300 x 2240 X 120
agl iy 6EI

= 448 ¥ 10-% radians.

—

DerFLEcTIONS 0F CANTILEVERS,

(@) A cantilever of length [ with a concentrated load of
w tons, a distance I, from the origin 0. (Fig. 55.)

w’ i
wi,) | =l
_?-E,—" —=i=ly—> ) --se — 11, -
i € A | Moment Diagram
Fig. 65

EI = constant.

A will deflect by an amount 8, which is equal to the distance
of the deflected beam from the tangent at the origin. This
tangent is horizontal.

EI8, = Wi, X '; X (1-%)= '—Fg‘-"(z-%).
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we
3EI’

The slope of the tangent i, at the load point is found from
the equation

If I, = I then 8, =

2
ELi, = Wi, % b %

-2 —
sy
Y= 2ET
L WL L2,
The deflection d, = B X2%X 3
LY
~ 3EI

(b) Cantilever of length ! with a uniformly distributed load
w tons per foot run. EI is
L__wr tons per fool run | a constant.

4 is below the origin by
an amount equal to &,
which is
wonos 1

TSI T Ty
wlt
= 8ET"

(c) A cantilever AB of uniform section is deflected by a

couple of magnitude M, applied at a point € distant ¢ from

the origin B. Find the deflection of the end 4. EI is constant.
The moment M will be constant from € to B

EI8, = Mc(l - c[2)
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Illustrative Problem 11. (Fig. 57.)

Find the defection of C of the cantilever beam CF of the structure CBA
under the load P. Neglect the displacement dus to the axial load in AB.
EI is the same for the two members OF and BA.

p Rigid
l connection /FFE
c 5%, Bl 3

H—--:—I-— ——I'_'F L {-—-—1'—-3

Moment

Diagram

- Pl »

——mmm == = == ==

4

Fra. 67

The displacement of €' is made up of two parts: one due to
the change of slope of BC due to the displacement of B with
respect to 4, and the other due to the bending moment on
BC, Let a, be the deflective of C.

12
Efa,=(1.Pm+P1.§>c -5)

=3 is the slope of the tangent at B for the cantilever

EI Plh
AB, and therefore BC also rotates through the angle BI )
" (pr.5+Po. I)
d'c E( +
FPI* (
/)
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36. Beams for which F and / are Variable. (See Fig. 58.)
(1) (a) If E is constant and I varies, then

: M, dz-dz
.Ey-= ff——-—I‘

where M, and /_ are the bending moment and moment of
inertia respectively for a section X, and y, is the deflection
of the beam at the section X.

The integral above may be an awkward one, even if [,
varies as z, and consequently it will be better to use a graphical
method. (For the case where I, the moment of inertia is a
constant over a portion of the beam, and I, constant over
another length and so on, a method is given in paragraph 39.)

(b) If both E and I vary, then y, = f f m

GraraicanL MeTHOD

(2) Construct the load diagram from a consideration of the
loads and the weight of the beam itself.

(3) Find the reactions by ordinary methods.

(4) Construct the moment diagram, using, say, the method
M,= - Rz + (area of the load diagram from the origin to
the section X) multiplied by (the distance of the centre of
gravity of this area from the section X).

. (5) Construct an EJ diagram on the length of the beam as
ase.

(6) Draw a Zi diagram, i.e. divide corresponding ordinates
of the M and ET dmgmma M stands for moment.
(7) Use tha dmgmm as a load diagram. Find the

M x1
XE?ngth units. These represent

the slope of the beam at the point at which they act.
(8) Construct the deflection diagram by taking moments of

L e :
the 7l diagram about the section eonsidered, and using a simi-

reactions in turm& of

lar equation as in (4) or the deflection at a section is the resulting
moment of the M[E1 diagram about the section, or y = slope %
(distance to the section from the support minus the distance of
the section with respect to the tangent to the support).*

* Conjugnte Beam Method. See Strength of Materials, Part I, 8. Timoshenko.
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: : Moment [MMLPLE | [THLE
Dimensions* of —p— are T X (2 {1[ Lp :
a7y
Moment _. (L]

Dimensions of the area of the i diagram are —+

[£]

i t
Dimensions of the resultant moment of the area of the MDEIM

: [£]
diagram are (L] [L]=[L]

Dimensions of the reactions are, therefore, nil,

Moment

Ei
section point gives the deflection at the section.

Iliustrative Problem 12. A timber beam simply supported
is 96in, long, and varies uniformly in width from 10 in. to
18 in.: it has a constant depth of 2in. Find the maximum
moment and the section at which it ocours. Construct the
moment and deflection curves and find the maximum deflec-
tion. The weight of a cubic inch of timber is 032 1b.

The diagrams are shown in Fig. 58.

The total weight of the beam is 86 Ib.

To find the reactions, treat as a rectangular plus a tri-
angular beam in plan.

Taking A (the left-hand support as origin), it is found that

R, = 391b. and so Ry, = 411b.
The moment at any section X distant z from 4,

Thus the resultant moment of the diagram about a

T x xr
M,= -30xr 4+ 2 ¥ lﬂx::X*032x§+§:<ﬁ
% +032 X zxg—
= — 30 + -322% 4 00897

E L d M
For maximum conditions, -“,?’ =0

* [L] represents one dimension in length.
[Hj v at 1] g2 TIUASE,
[T] 5 ¥ i y  bimo,
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For the section having the maximum moment,
dM,
dx

= -39 4 ‘64z -} 0026722 = 0
. = 5056in,
M, maximum = 1029 Ib.-in.
The moment curve is shown in Fig. 58.

Plan of Beam.

Moment Diagram,

o
N = 1Bx 10 m..r&-.f
ety F//_] £l

El Diagram.

3 wo[ ()% Junits.

v \ g T ;
o £k T EE:T:;a: oty
EI

=
i AR

07 at 50-5 inches from A.

Deflection Diagram.
Fio. 68

To Find the Deflection Curve. I, varies as z, and a diagram
of EIlb. (inch)? units plotted against  is shown in the figure.

The dimensions of EI* are [M]! [L]® [T]-2.

Divide the moment diagram by the EI diagram and so

obtain a h% (numerical units) diagram.

* See footnote, page 69,



DEFLECTION OF SIMPLE BEAMS 7l

Treat this diagram as & load diagram and find the reactions
in the usual way. Then by section (8) page 68, the deflection
curve can be found.

The areas have been worked out by Simpson’s Rule.

The deflection curve is shown in Fig. 58, and it is & maxi-
mum when z is 50-5in. from 4 and equal to -07 in,

37. Resilience of Beams Due to Bending. When a beam is
bent within the elastic limit or limit of proportionality, the.
material is subjected to varying elastic. tensile and compres-
sive forces and, therefore, it possesses strain energy, and being
within the elastic limit, this energy will be restored when the
loads on the beam are removed ; this strain energy is the
resilience of the beam.

Work done by a couple = magnitude of the couple x the
angle through which it turns.

Let M = the final couple and i the angle through which a plane
gection of the beam turns ;

then work done = U = (}M)i
Before loading no moment at all, thus average moment = &
A small increment of work = dU = }Mdi

In a short length, dz of a loaded beam over which the
moment is M, the change of slope will be di
or di — small angle through which the internal moment
of resistance will move.
The elastic strain energy of this portion is
M -di

Over a given length the resilience is

1 :
-E-f.ﬂf-di

1 di 1 d*y . dy
=§fﬂ1d—£-dx+=§fﬂfﬁz-dxu (dlzd:r)

1 [ M2-dx

=9 ) B o,

If EI is a constant,

. ]
A 2.
U'_?.EI,[M dz : . [28)
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ExaMrLE.

By means ot resilience, find the deflection at the centre of & beam for o
simpla beam loaded with W tons at the centre.

Let y = deflection at the centre ;
then the work done by W = Wy (W being applied gradually
= 2 x strain energy of half the beam

I
i ] 1 E 2 Wi
L'—-EIFy=2x§-ﬁ-£ ( )'d =93E.{

(For a section X between the origin and the centre,

M.=};$)

W

X
2

Integrating and substituting the limiting values of x, and
solving,
wis

Yeanire = I8K1

38. Beam Deflection for Any Loading.* Generally on a
beam with any loading at a section where the deflection is
required, take any extra load F =1 ton; let m be the
additional bending moment at any section due to the unit
weight. The deflection at the section is y, due to the
original loading. Let M be the moment existing at the
section.

It will be shown in Chapter VIII, paragraph 101a, that

M (dM
y=f-ﬂ.(ﬁr).dx. o aRia
whared—ﬂ-_—.m
dF i
5 Mmdz
“y=f_E::'_ . : . (28)

ExaMPLE.

Find the deflection at the centre of a beam with i istri
load over the whole length of the beam. W Ay e

The additional moment at a section between the origin and
the centre of the beam due to the reaction of a concentrated
load of 1 ton at the centre

Y

® See ulso Chapter VIII and ** Principle of Least Work," Chapter I1X.
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o _ 2
Therefore y = Ef (_'l:i‘r + "%)(_E) Sl
(1] - o

i
2 [T {wix® ux®
F?ﬁ ('(‘T)‘h’

Integrating and suﬁrituting the values of x necessary,
a

LT

= deflection at the centre

Ymes = SRIKT
See Chapter VIII for other examples,
39, Beams of Varying Cross- =1__'r"'
section. (See also paragraph 36.) | H
If the moment of inertia of the I I,
cross-section of a beam is not : '

constant through its entire length, | :

the deflection will be ?_-_h_’{ l B 1'*1
1 fMm izac Cedeigin bl

y = EfT % d.'r . {ﬂqﬂ. 23] Fia. 50

Such an example arises in the case of a plate girder where the
cross-section of the beam varies over different lengths.

ExamrLE.

For the beam in Fig. 59, where I, is & constant over e length [, and I =
constant over a length (I-1,), the deflection at the centre of the beam is
found from the equation

" §
yﬂ=2f@¢1x+zf@-fﬁ
s T

Find the deflection at the centre of such s beam which carriea w tons per
foot run. Imagine s unit load additional at the centre.

Length of beam = 2. y, = deflection at the centre.
For any section X distant z from the left-hand support,

]
M, = -ulz + 5

m= —E (due to the unit load only)

; (Ix’ xa) i (;xi a:’)
wl—~— o ===
2 4 g "4
-l 5 Pl Sl e R
y i = 21: 7 dx -+ 2'/0- T x

4 3
Bwl*  wl, (I_l;_ }) (81— 31,)

vE =g +3



T4 THEORY OF STRUCTURES

Hllustrative Problem 13. A weight of 1 ton is dropped from
a height of 5in. on to the centre of a R.S.J. 16" x 6" (I,
= 726 in.%) 20 ft. long, and simply supported as a beam,

Taking E = 13,000 tons/square inch, find the maximum
stress developed in the beam.

Let y = maximum deflection of the beam at the centre.

Let an equivalent static load of W, tons at the centre cause
this same deflection y.

Let the falling weight be W tons; and & inches be the height
through which it falls.*

The resilience of the beam under the load of W, tons

W,y 2 z W, A3
S (5 e
1 [W3 x* ‘i W,
=5 [—4' : E]., = SoE]
y W13
s = Im
W,
.Them Wk +y) = 557
Neglecting y as being very small,
96E]
For the problem,
W, x (20 x 12)2
96 % 13,000 X 726
5 x 96 x 13,000 % 726
240 x 240 x 240
= 338
W, = 153 tons
Moment = skin stress % modulus of the section

I
M=f-:I=1I
!y e

My 1838 x 2§2x 8 .
J=" =53 tonsjeq.in.

1 X 5=

W, =

* Amume no loss of energy at impact: that the resulting displacement
curve eorresponds to that obtained under statie loadin g and that the beam i
stressed within the limit of proportionality of the material, 5
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Max. stress = 12-1 tons/eq. inch
_ 183 X 240 x 240 X 240 563
Y=g x 13,000 x 726
therefore y is hardly negligible.
Allowing for the falling weight moving through y,
_ W, % (240)%\  W,%(240)°
- 1(5 + = 48ET ) = ookl
w, W
5+ 338~ 676
e Wl," ﬂwl = 335 = fl
2 4 4 1352
W, = 2t v 2+

88.
=E=19-4 tons

19-4
Max, stress in this case = 12-1 X 53

= 12:8 tons/sq. inch
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EXAMFPLES
1. A cantilever 10 ft. long carriea 5 tons st its outer end and another
5 tons 6ft. away from the fixed end. Find ita deflection by the graphio
method, assuming that [ = 1000 in.* and E = 13,000 tons per square inch

throughout its length. Check the result by caleulation. (U. of B.)
5 A rectangular beam of wood 12 ft. long, 3 in. wide, and 4in. ia
supported at its ends, and is loaded with loads 300 1b. and 500 1b, at

ts 5 and 8 ft. respoctively from one end. Caleulate the maximum bend-

ing momsnt produced by the loading and find the deflection produced by
ing at the midpoint of the beam. E = 1,400,000 1b. per square inch.

3. A rolled steel joist, 10 in. deep by 5in. wide, hasan affective span of

10 ft., tho ends being freely supported. The maximum moment of mertia

of the section is 145-6 in inch units. From what height can a woight of
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half n ton fall on the middle of the joist without producing a stress greater
than 16 tons per square inch ' Only 75 per cent of the kinetie energy of
the falling woight is transformed into the work of deformation.

E = 12,600 tans per square inch. {L.M.E.)

4. A hollow pole, made of mild stecl tuba 5 in. outside dinmeter §in thick,
in firmly fixed in the ground, the top being 9 ft. above ground level. A
horizental pull of 1,000 pounds is applied to the pole at a height of 5 ft. from
the ground. Caloulate the deflection of the top of the pols from the vertical.

E=13,000 tons per square inch,

5. Deseribo o graphical method of finding the centroid and the moment
of inertia of the cross-section of & beam. A beam 5 ft. long deflects 0-0024 in.
under o central load of 25 tona. [ = 39-05in.%. Find the modulus of
elasticity for the beam, neglecting shear. (U. of B.)

6. A beam of oak 1 in. square by 3 ft. 6 in. long is given to you. Describe
how you would determine the modulus of clasticity of the beam and what
value you would expect to get by means of overhanging beams and of central
deflections. (U. of B.)

7. A beam of mild steel 4 in. wide, 6 in. deep, simply supported on two
rollers 10 ft. apart is loaded with o central weight of 1 ton. [}nf:uhh

(&) the maximum tensile stress in the material ;
{b) the central doflection. (U. of B.)

8. A uniform beam 186 ft. long is supported at two points 2 ft. from sither
end. At the middle of the beam, and also at cach extremity, loads of 1 ton
are placed. Draw the curves of shearing force and bending moment for the beam.

8, Find, in any way, the deflection of the centre of the boam of Question 0.
Give your results in terms of the moment of inertin of the cross-section and
of Young's modulus. (U. of B.)

10. A girder of I-section rests on supports 25 ft. apart and carries a load
of T tons at a distance of 10 ft. from ons support. ]fP:i:u. momaont of inertia
of the cross-section is 895 in. units and E is 30,000,000 1b, per square inch,
find the deflection of the girder at the load due to bending, 'and the position
and smount of the maximum deflection. The weight of the girder may be
neglectad. : J (U, of L.}

11. A uniform rolled-steel joist of 18 ft. span, simply supported at esch
end, earries o load which increases uniformly from 5 ewt. per foot run at the
left support to 17 cwt. per foot run at the right-hand suppeort. Find the
position and magnitude of the maximum bending moment, and find the
slope and deflection of the girder at the centre of the Given : Young's
modulus for steel = 30 x 10*1b. per square inch. gommﬁ of inertin of &
normal section of joist about neutral axis = 130 {inches). (U. of B.)

12. An I section steel joist, 8 in. by 4in., moment of inertia 81 in. units,
has Tlm of _lti“.-‘i't-. F‘mkisl.l'm maximum safe distributed load foot run
it will earry with a working stress of 8 tons per square inch the central
deflection at this load, if £ = 13,500 tons per uqu-:rqﬂ inch. (LC.E., Oct. 1922,)

13, The following observations were made in testing u sample of oak by
ngg';-?ﬂ load h&gﬁgtuppl%‘d l;:nﬂtilm centre of the span. idth 202 in.

op @7 in., span in, & s W and the co ing defleotion
scale readings were— g v

Wib. 100 200 300 400 500 600 700 800 900 1000
Rin. -145 -218 -2B7 358 43 5 67 643 <121 -800

Determine from these obssrvations the modulus of elastici

also its limiting elastic stross, s M‘t-lml-y‘DUI' ?JI;'.‘I..T::E;;‘;
14. An I section girder 10 in. x B in. with web 0-4 in. and flanges 07 in.

thick, is firmly built into & wall in a horizontal position, so that it can act as

n cantilever 12 ft, long. Neglecting deflection dus to shear, calculate what

rleflection would be produced st the end of the cantilever by s losd of 0-5
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tons placed on the cantilever Gft. from the end. E = 30 % 10'1b, per
square inch.

15. A horizontal rolled steel joist 10 in. % 6in. is supported at it ends and
has o span of 10 ft. A load of 400 b, falls from a height of 3} in. on to the
middle of the joist. Neglecting loss of energy at impact, find the maximum
instantaneous stress produced in the joist, given that the maximum moment
of inertin of the section ia 210 in. umts and E = 13,250 tons per square inch.

{U. of L., 1922 : 5. of M.)

16. What distributed load will o T4in. x Gin. » §in support over a span
of 8 ft. for the working stress not to exceed 7 tons per squars inch?® What will
be the maximumn defection? For the same working conditions of stress,
how will the load be altered if a plate Bin. % § in. is riveted on to the T, along
the centre 4 ft. 7 What will be the deflection at the centre and also 2 ft.
from & support ?

17. A beam B0 ft. long is simply supported. It carries a central load of
® tons. Ths moment of inertis of the section for the middle 20 ft, is 600 in.
units : for the section for the remaining length it is 450 in. units. Find the
eentral defleetion ; also the deflections for the scetions 15 and 25 ft. from the
leit-hand support.

E = 13,000 tons per squaro inch.

18. A woight W is dropped from a height h on to the centre of a simply
supported beam of rectangular cross-section and length I. [ is the moment of
inertia and A the area of the cross-section. The maximum deflection of the

Boam is small compared with . Show that ¥ = y* . -t and that the result.
ing maximum stress developed is f = _-ﬁ‘.{IEE_ Assume no loss of energy

st impact and thas the stresses developed are within the elastic range of the
material.



CHAFPTER IV

SraTicALLY INDETERMINATE PROBLEMS ¥ BENDING.
Buinr-iv, CoxTvvous, aANp Prorpep BEAMS WITH
Deap Loaps

40. Redundant Constraints. In the previous chapters, three
types of beams have been considered: the cantilever, the
beam freely supported at the ends, and the beam with over-
hangs. In all cases, the reactions at the supports can be
determined from the fundamental equations of statics: hence
the problems are “statically determinate.” In the problems on
the bending of beams which follow, the equations of statics
are not sufficient to determine all the reactive forces at the
supports, so that additional equations, based on a considera-
tion of the deflections of the beams, must be derived. These
problems areexamples of  statically indeterminate structures "*
There are three types of supports a beam may have: (a)
hinged movable support, (b) hinged immovable support, and
(¢) a built-in end.

Type (a) support can be imagined as a hinged joint supported
on frictionless rollers on a horizontal plane mm. It is evident
that in this type of joint the reaction must act through the
centre of the hinge and vertical to the horizontal plane mm.
The only unknown element of this reaction is its magnitude.

In connection with the type (b) support, it is evident that the
reaction must pass through the centre of the hinge, but it may
have any direction in the plane of the beam. There are now
two unknowns to be determined from the equations of staties,
the direction of the reaction and its magnitude, or the vertical
and horizontal components of the reaction. In the case of the
built-in end (¢), not only are the direction and magnitude of
the reaction unknown, but also the point of application. The
reactive forees distributed over the built-in section can, how-
ever, be replaced by a vertical and a horizontal force acting
through the centroid of the beam section at the commence-
ment of the support, and also by a couple of magnitude M.
For beams, loaded by transverse loads in one plane, to

* Ses also page 162, t See “Three-hinged Arch.”
78
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determine the reactions at the supports, the three equations
of statics are—

X Vertical forces = 0.
X Horizontal forces = 0.
X Moments about any point = 0.

If the beam is supported so that there are only three unknown
reactive forces, then they can be found from the above three
equations. When the number of reactive elements is larger
than three, there are then redundant comstraints, and the
problem is statically indeterminate. In the cantilever there is
only one support. The number of reactive elements is three
and therefore they can be determined from the equations of
statics. For beams supported at the ends it is usually assumed
that one of the supports is of type (a), and the other of type (b).
In this case there are only three unknown reactive elements,
which ean be found from the equations of statics. If a beam
has immovable hinges at both ends, then there are two un-
known reactive elements at each end, the two components
of the corresponding reaction and for determining these four
unknowns there are only the three equations of statics. Hence
we have one redundant constraint, and a consideration of the
deformation of the beam is necessary to determine the
reactions.

In the case of the beams built-in at one end and freely sup-
ported at the other, there are three reactive elements at one
end, and one at the other. Hence the problem is statically
indeterminate, with one redundant constraint (see paragraphs
on Propped Beams for method of solution). The built-in end
is assumed to be direction-fixed, i.e. the angle of the tangent
to the beam at the support after deformation in zero. For
beams, built-in at both ends and direction-fixed at these ends,
there are six reactive elements, and therefore there are three
redundant constraints. However, for ordinary purposes, the
horizontal components of the reactions can be neglected, which
reduces the number of statically indeterminate quantities to
two. In the examples which follow, the moments at the sup-
ports will be taken as the statically indeterminate quantities
(paras. 42 to 50). Asthe beams are direction-fixed, then the solu-
tion for the support moments depends upon the fact that the
change in direction of the tangents to the two ends of the beam
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is zero after deformation of the beam oceurs. In the case of a
beam on three supports, there is one statically indeterminate
reactive element which may be taken as the central support.*
Here one support is usually considered as an immovable hinge
while the other supports are hinges on rollers. In the case of
a beam continuous over many supports, one support is again
considered as an immovable hinge, while the others are hinges
on rollers. In this arrangement every intermediate support
has only one unknown reactive element, the magnitude of the
vertical reaction : hence the number of statically indeterminate
elements is equal to the number of intermediate supports. (If
the ends of the beams are built-in, then the number of indeter-
minate elements is increased.) If the number of supports is
large, then the solution of the problem is simplified by taking
the bending moments at the intermediate supports as the
statically indeterminate quantities and not the reactions. (See
para. il onwards.)

41. Built~in or Encastré Beams are beams fixed at each end,
so that the supports completely constrain the inclinations of
the beams at the ends. The two ends are usually at the same
level, and the slope of the beam is then usually zero at each
end if the constraint is effectual, i.e. dyfdz = 0.7

A built-in beam is in effect an overhanging beam, the over-
hangs having downward loads which canse positive moments
at the supports, which are equivalent to the fixing moments ;
and due to these moments there will be a positive moment at
all sections of the beam, neglecting the ordinary loads for the
time being. It was seen that for the overhanging beam, the
loads on the beam between the supports cause moments as
for a simple beam, and the moment at any section between
the supports was equal to the negative moment due to simple
beam loading plus a positive moment due to the overhanging
loads. For the built-in beam, the moment at a section is the
algebraic sum of the moments treating the beam as a simple
beam plus the amount due to the end fixing moments.

42. Built-in Beams with Any Symmetrical Loading. (Fig. 60.)
The fixing couples will evidently be equal. There being equal
couples at the ends, the positive moment at any section will be
of the value of a fixing couple.

* See example, pages 112 and 208, for solution of this unknown reaction.
t Thess boams are also ealled direction fixed ended beams,



STATICALLY INDETERMINATE PROBLEMS 81

In Fig. 60 are shown the positive and negative moment
diagram for a fixed beam, the shaded diagram being the
resultant moment diagram.

Let M, and M, represent the moments at a section X due
to the simple beam and fixing moments.

Then resultant moment at X = M, = algebraic sum of M,,

and M,

= M.+ M,
£3s f.nf,:fu
e T EI

Diagram as for a Simple Beam

; 5 :/J P

Taking EI as constant,
I
Ef{i,_;-i,_n}zﬁﬂ,.dx

i
zf{_m,,+ M) diw=.
(1]

since as the beam is horizontal at the ends, the change of slope
is zero;

- 1
that is, '/Ju,,.dx= _;..fﬂf,,-d‘x
(1]
: stant = M,
!
so that f M, -dx= M ], where M, = fixing couple at O and B
(1]

: M,.= M,=ie.con-

i.e. Area of the simple beam moment diagram ODER (Fig. 60)
= area of the fixed or cantilever moment diagram OFGE . (1)

or 4,= 4,
A, of the negative sense, 4, of the positive.
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43. Beam Loaded in the Centre. (Fig. 61.)

4,= A,
Wi 1 i o el A
M‘I__'TXEXIET “_M,_.—i-—s-umtﬁ. ()

Ro=7Z I l ‘l[ Re=7
Cantr| _ Simple ___| Canti-
-L'_ fmr?r Beam. _.-!‘Mven‘-;[

: Y :
0%t U S Ponts ar . b 80
PESH aflexnn . It e
Fio. 611

44. Beam with a Uniformly-distributed Load Over the Whole
Span. (Fig. 62) page 83. 2

"Htmﬂ.!."__' g A:=A|

2 2uis ol®
HJ=%FX:XEZ%-_'_51,=+?I—Eunita. o i)

45. Built-in Beams with any Loading, (Fig. 63, page 84.) As

before, the change of slope between the ends is zero, so that

j:{-'lf.+ﬂf;}'¢fx=ﬂ‘ . . (4)

or 4,4+ 4,= 0
M, is not necessarily equal to M,, and so let M .= My

* M, = Bimple Momont st any section.
My = Fi!inR o v .

t Note on Fig. 61. Bending moments of opposite sign evidently tend to
produce bending of opposite curvature, Change of sign involves passing
through a zero value of bending moment. This point of zero moment antd
change of sign is called a point of inflexion or virtual hinge. The fixed beam
above is equivalent to & simple beam supported at the ends of two eantilover
hoams.
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The fixing moment diagram will now be a trapezium, and
the positive moment at a section X, » from the origin will be

My= M, + (My- M,)7

G| Points of— ke

Fic. 62

Equation (4) now becomes
|
o= [ [M.+ Mot (My-M)7)-dz . @)
0

The equation of the areas is now not sufficient to determine
M, or M,.

Taking O as origin,

M dy M, + M,
EI d*  EI
Multiplying both sides by z and integrating by parts (see
Chap, III),
. dy ! '] d
E.’[za—y]ﬂ= '/;w, + M)z

1 t
:—(f..}.f.xdx-k [ﬂf;*:r*d;r)
0 Jo

= A7, + A7, ot Il ()
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where %, and 7, are the distances of the centroids of the
negative and positive fixed moment diagrams from the origin O.

.
// f ’ o
v L
K
Mo F Mg
'
() X \"_"-B
—_—— = — = —
Ra _____ -l - ] Rﬂ
If Mg > Mo
Mg— M,
Rﬂ‘- Rﬁ_ 1 n)
Ros = Reaction as for a Simple Beam.
Mg —
R5=RH+( ’E M“)

Rgs = Reaction as for a Simple Beam.

i‘ﬂ'oﬂ-Bn "-.f,, b4 Ei‘ K-;
s AOLE = Mlk % x ;33

Z and 7, from 0

Fio. 63

1

: d -
Further (.'r ﬁ - g,.r) = 0. yis the same for values z = 0 and
o

i
xr=1land E:G.whenx=£ and z =10

then 4.z, + A2, = 0

or .’I,{E_. B E_f} =il
or A,(E,+3F,) = 0; for A,=4,. i / (7)

As A, = 4,, then 7, = 7,: so that the centroids lie on the
game vertical line.
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From Fig. 63,

= 1as I 2
I B ;
EJH,,E“-|— 241!3-5- . - (8)
= 2
then 4%, — M,g F EM.%
or M, + 2M, — - ‘-’AI;?’-'. TR, (9)

This is a special case of the Theorem of Three Moments (see
para. 52).
24,

From Bgun. I‘.IL M-+Mn= B 7 4 - .- (10)
From equations (9) and (10),
24, 647z
Mywm -2 . 0 S
64,z, 44,
M= S-2 . L L ()

and 4, will be of negative sign.*

If & load of P tons is at a distance nl from the origin, then
M,=Pl.a(l-n)fand My=Pl.n*1-n) . (12a)

46. Relation Between the Moments and the Reactions.
Suppose the two ends O and B of a beam are hinged and at
one end B is applied a couple M}, in a clockwise direction. This
couple will obviously induce a vertical reaction r downwards,
at the other hinge O, and an equal and opposite one at B, to
form a couple, such that ryl = My, but of the opposite sign;

therefore r, = 7

* When the fixing moment disgram has been drawn, the difference of

ordinates between it and the bending moment diagram for the simple beam

ives the bending moment for the built-in beam. The resultant diagrams have
shown for the cases considered.

4—{T.5430)
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Now suppose at the hinge O a couple = M, is also applied,
but in the opposite direction, tending counter-clockwise to
the one at B, then equal and opposite reactions r, will be
applied at B and O, the one acting downwards at B and
the other upwards at 0.

When two fixing couples of equal magnitude are applied at
the ends of a beam and acting in opposite directions, they do
not affect the reactions at the supports which will be the same
for the beam as those for a simple beam for ry = ry.

Ros
Ma=M, (C) =71 (D)
Fig, 64

Now let the fixing couple at O be M,, and less than M, ;
then the induced reactions at O and B, due to M, will be
less than those due to M, (see Fig. 64).

Let ry be the induced reactions due to M, and r, those due
to M,,

r==-lj.—° and ,.‘_ZE,:_'_“
M,-M,
n>rpandr-r,= =1

Now at 0 due to these couples there will be a force r, acting
downwards and r; acting upwards. A resultant force r will
act downwards. To balance this force, a force equal to r will
act upwards at B,

Therefore, to find the reactions at the supports of a fixed
beam, calculate the reactions as for a simple beam : Where

M,-M
M, > M, subtracta force il ® from the simple beam

Ml"' Mn
{

reaction at O and add a force
reaction at B,

to the simple beam
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47. Procedure for Any Loading of Fixed Beams, (1) Find
the end fixing moments by formulae (11) and (12).

(2) The reactions for a simple beam.

M, M,

(3) _B_I_

(4) At the support where the fixing moment is the smaller,
subtract (3) from (2).

At the support where the fixing moment is the larger, add
(3) and (2).

Ros=Reaction as fora Simple Beam.
Rp =Reaction due to Fixed Moments =

M E'-M a
L

Fia. 65

48. Deflections of Fixed Beams. General Method. (Fig.65.)

R., — value of reaction at O as for a simple beam.
(@) Moment at a section X distant x from O and between
the last load and B,

dy

Efd?z-ﬂﬂz-[- W,z-a)+ Wizx-b)+ ... W, (x-mn)

P S T )

3 Wix-a)* Wyz-05)? M
Efy=_R_“'ﬁ't__|,._!_{';_ahL+_?{xT_}+ LD _ﬁﬁ"

i@:ﬁf_’ﬁ'f.{.gx.}.s e

o=l y=0, . B=0
x=I, y=20
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-a)? M M
andd—ﬁn@f—%ﬂ_._. ..... "I :E.._'I:FM_._.“I (15)
Substitute in equation (14) to give the gﬂnﬂrul equation for y.
(b) If using the reactions

EI%=-R.2:+ Wyz-a)+ ...+ M, . (16)

where R,= R,, 4+ R, ie. the reaction at the origin;
and, as before, neglect all terms such as (x - a), ete., which
become negative for a particular value of z.

49, Fixed Beams. Central Load W. (Ses Fig. 61, page 82.)

dy W l | Wi
'EIEI=-?Z+ H"(a:-—)—i— .IH,” (M,-—-T)

3 W
Efy=-w—z+—(ﬁ-£) Pl i 5 +Az+B

12 i 2 8
lfz—-ﬂy-ﬂ S B=o; lf;c—Iy—Oumi
3 [13 3
Al = ]FE (2) ]” — 50 that 4 = 0
I
Between 2 = 0 and 2 = -
Wax? H’!‘.n*
Lt AT s U

yis a maximum whenzx = -

-

- Wi WP

Elynes = —55 64 102

(17)

i
The deflection at D = iirom 0 and E = Efmm B

L -WB WP Wi
= ‘E(lzxﬁ4+xﬁxlﬁ)=3ﬁ?ﬂ' 2 08
= 5";;‘ = v, s i e S S )

Note at the points D and E, the moment changes sign.
From O to D it is positive, D to E it is negative.
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Therefore 0 to D will bend as for a cantilever, concave down-

wards; D to E will bend as a simple beam, concave upwards,

becanse bending moments of opposite sign produce bending of
opposite curvature.

1, dy -Wz* Wi

Siﬂrﬂ at D. $=ZI;E.EIE= T -+ T

ST R | S R
T e R S

Note, the slope increases from zero at the origin to % at

D and then decreases to zero at the centre of the beam.
Thus the points Dand Eare pointsof inflection. At these points
the slope of the tangent to the deflection curve is a maximum.
50. Fixed Beam with Uniformly-distributed Load. (Fig. 62,
page 83). (Over the whole span.)

wi®

M,= M,= 3

wl :
R, = - 8 for a simple beam

el R, wx®
M,—.EI—[,-——?:;+—2—+M.
- wiz® wxt R Mat
BIYo=rty hogg ¥ g ok AV £

d
Both 4 and B are zero (4 = ﬂfnrﬁy= 0 when z = 0)

wiz?  wrt wl
..E’Iy=——uf+ﬁ+§;x‘

bS] v~

At the centre of the beam, y is a maximum, x =

wh (1\® | w (I\'  wi/l\®
EI!I":“!=_1_2'(§) +7_PT1(‘:'-') +ﬁ (E)

2o ol g wn Ve g el S Bt L2 £ V)

To find the sections having no moment
wlz wx  wl
et Ty Nk

f-h+§=u
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1+ VE-F® 14 --58
P = ki Tt Lol i

2 2
z =21l and -TH
The points of inflection are at these distances from the
origin.-
To find the slope at the section distant -211 from 0,
: wizt  wr®  wic
S s oorohapa S

; wi(-211?  w(-21)3* wi%2]
w? wid  wi®
="nteetw
wi?
Elf.q = 126 and is a maximum

[llustrative Problem 14.

A built-in beamn 20 ft. long carries a load of 12 tons at a distancs of 15 f.
from the left-hand end. Find the maximum deflection, the section at which
it oceurs, and the points of inflection EJ = a constant. (Fig. 88.)

(M,+ My)20 20
(1) e — A AR o
Equating areas of positive and negative moments,
10
15,8 5. 45w s 5 20 20
(2) 45 x E J{EX 15 +_2— = (15 +§)=H,?KE
10
20 40

+M.x b4

i BT
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Equating moments of the positive and negative areas ahout 0.
Fl'ﬂm {l} J}f. + Mﬁ-: 45
w (2)M,+ 2M,= 7875
My = 33-8, say, and both ;

M, = 11-2 are positive
M,- M, 226

I

1 = 50 = ]+13 tons
The total reaction at the origin= 3-1:13 = 1-87 tons
1] " endﬂ=ﬁ+|'l3=lﬂ~13 S
Total . . 120

DerLEcTiON oF THE BEaM. Take a section X distance x
from O and between the load point and B.

ThenEI%=-3X£+]2[::—15}+M,+&:—£.:
&y _ 5 TR
EI 25 = -3z + 12(2-15) + 11-2 + 113z
-3 | 12(z-15)7 1122 1132
Ely="3" + =0+ ——+ —— +4z+B
d
B=0. A=0,because at z=0, 7> =0

Between O and (' the term x — 15 is negative and is eliminated.
11-222 1-B7x®
3 o gl

For a maximum and which occurs between O and O, for
OC is longer than CB.
dy

EIE = 11-2z - -84z = 0,

that is, 11-2= -84z
z = 11-9 ft.
11-2

By pse = EE x 11-9* - -31z?

EI in tons-feet units, y,..in feet,

2756
Ymoae = + EI




92 THEORY OF STRUCTURES
If E = 13,000 tons/sq. in.

» 4 = 300 (inches)*
2756 x 123
Ymas = 137000 % 300 "
= 0-12 inch

Cf. Yma: with that for a simple beam, problem 8, Chapter II1.
The points of inflection occur at (1), a point between O and (',

(1) EI% = 11-2- 1882 =0
x = 595 ft.
and (2), a point between C and B,

11-2 1-87x3 12(z - 15)?
18758 12(-15)

it TR 5

EI

Edy = 112z — -042® + 6(x - 15)*

For a maximum which is at the point of inflection,
ay
EI 5 =112~ 1882 + 12(z - 15) = 0
10-12x = 168-8
x = 16-7 ft.

51. Continuous Beams. A beam resting on more than two
supports and covering more than one span is called a con-
tinuous beam. The ends of the beam may overhang, be
simply supported or fixed. The moments of inertia of the
section may also vary with the span, i.e. one span may have a
moment of inertia I, another I, and so on.

There will be fixing or hogging moments at all the inter-
mediate supports and also at the end supports, if they are
fixed, or if the end portions overhang.

52. Theorem of Three Moments. (Fig. 67.) Take two
consecutive spans AB and BC of lengths I, and I, respectively.
For each span, the moment at a section is the algebraic sum
of the moments as for a simple beam and that caused by the
fixing moments at the supports.
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The slope of the beam at the supports may or may not be zero.
Let support B be y, below support 4
and B . % ,, C.
If B is above A or €', then the sign of y, or y, is negative.
Let EI be the same for both the spans.
(a) Consider beam AB and take 4 as origin; The moment
at a section X distance z from 4 is M,, + M,,
M,., moment as for a simple beam,
M,, moment due to end fixing moments.
M,, is generally of the opposite sign to M,.; M,.—; M, +;
EI &y

o= Mo+ M,

dy Iy 1 by
(xa-&—y)“ = E_/;{M"—i_ M, )x.dz

y,
0

iy = slope of beam at B, El constant

. Az + Az
by ey = . «  (22)

A, = area of simple moment diagram and
A, = area of fixed moment diagram ;

x and ¥, are the distances of the centroids of the simple and
fixed moment areas from A.

(6) Coxsiper Beam BC wite ' As Oriciy, Take z to the
left as positive and y downwards as positive,

gy e T i A7 + 4,7
(I*E‘F)“ =M=y .. . (22a)
A, = area simple moment diagram ;

(|
A/ = area fixed moment diagram;
#' and £,’ are the distances of the respective centroids from C.
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Azx+ Az, |

St i Sy (29
PR e TR P
From (22a), iy = _zﬂ}i; r ¥ _!%: 20)

but of opposite sign to i, in equation (23)
because Z and £’ are taken in direction € towards B.
Therefore ( * + d’:-' 22 Efy')
1
= ( E 4 AR+ Efy.)
= - I

From Equation (8),
O, + 2M,)
T TN

AFE1= ﬁ
A;Ell e {Mﬂ —; EMF}II‘
Az MIL* 2MJ* Ely, (A.'x" M2
i re 2 & B | ;) et S B wimior B
sl A Lek o,
2M,1, EIy,)
a0 gt}
s
Hunca.
P e i M! .M,;.!

+ Ef(?#i’) ~0

1 II
64,z 647
Sutht—-*+ T+ M+ 2,0+ 1) + M,

+5E1(5;-:+T:)=u . (24)

and this is the general equation for a beam continuous over
three supports and where EJ is a constant.

fy,=y,= 0,
that is, supports at the same level, then

z 64
F%‘.;. M 2Mu 4 L)+ M =0 . (25)
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Let the supports be at the same level and let a load P, on
the span AB be distant Ly, from 4, and let a load P, on the
span BC be distant kJ, from €.

6.4 &
Then - ‘,1"3: = Pk - &) . : : ; - (25a)

# =

and -ﬁiil'—z-=f*,l,=[k,-k=3} el b e s o Vs
2

Let a uniformly distributed load of w per unit length extend
from k7, to kd, on the span AB. k1, and kJ, are both measured
from A,

64,7 et
Then — f:'-t = ﬁ w : d(kyl)(ky — B2 where w . d(k,1)
corresponds to P, in equation (25a),
f_.LAl.;E h'- ky i oy T Ak
e el b
3 ky = k
& ‘-’%{zkﬁ- 1;1*} Pl e A e ey
ky = E,
If the load occupies the whole of the span AB = [,
k=1, k=0
64,7 . wl?
then o =‘E}{z-1}=q¥ LB EAHD NS TR T )

Similarly for span BC if the uniformly distributed load
occupies a part or the whole of the span BC: in this case
working from C.

If the type of loading on the continuous beam be known,
then the terms dependent on the simple moment diagram can
be easily calculated in terms corresponding to those given in
equations (25a) to (25b). :

If the loads are uniformly distributed over the spans,
values of 4, and A,' can be obtained (in terms of these loads

L
and the spans) = -1;—51- X 3

The reactions are found by the method previously indicated
in Art. 46,
Total reaction at B is
M,- M, My,-M,
Ry=R, -+ nl: + Buy +— Ss e (20)
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= Reaction at B considering AB as a simple beam
BC
1] 3y ET)

and &u:m]u.rl_v for 4 and € making allowance for the fixing
moments necessary.

If the moments of inertia are different and I, is the moment
of inertia of beam of length I, and I, is the moment of inertia
of beam of length [, and E is the same for both beams, then
eqn. (24) will read—

6Az  64°F __é h L\, Ml +op(®
T s i 2‘““(:’1 ""L.-)* i, “E(Nt)

Ry,,
R

=0

53. Deflections of Continuous Beams of Uniform Section.
(Fig. 68.) The mathematical method of Mr. W. H. Macaulay
is easily applied to the case of continuous beams.

Wr Wz W W P%Wawper

P4 kR

T

Rs R

---------- ls—= —-——--+
l-+----—-—-——--z# ---------- -

Fio. 68

Take the left-hand support na the origin.

The true reactions R, R,, Ry, R, R, . R, and R, ,,
have all been obtained i:-_',f some mathﬂd und are, therefore,
known : they include the firing moment e,ffe-:!

Take a section X in the space between the last load and the
last support. The spans are [, I, [,

Ei’g-g =-Rx 4 Wiz-a)4 ... Walx—n)
- Rdz-h) = Rn{x"fﬂ B R ‘R-':I"Iu-ﬂ
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Shear Diagram

Note - Shear changes sign at 3 places, indicatin
two maximum negative moments L one for
each span) and one maximum positive
moment

Fio. 6D

= 3 et a 5 ‘3 £ 4 8
Ut S M L S e
W W,
+_ﬁl{x—ﬂlu + ciet v -I—?{_x--n}S.E. Sl
x =0, v=0, B=10

To find A4, take the conditions regarding y as for the first
support distant [, from the origin.
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Substitute the value of 4 in equation (26a) and the general
equation for y at a section for an irregularly-loaded continuous
beam is found. If there is a uniformly-distributed load on a
position of the beam, then it must be treated as indicated in
paragraph 30, Chapter ITI. If at the support at the origin
there is a fixing moment (M), then this term will appear in
the fundamental equation

Eig=—ﬂ,$- i .—R"{x—h_ﬂ +. . +“r“ {ZC-H_]-‘—M,,-

The foregoing is a good method when dealing with concen-
trated loads only: when working with uniformly-distributed
loads, which vary for different spans, take each span separately

and work as shown in Problem (17) by the theorem of three
moments,

Illustrative Problem 15,
(1) Beam eontinuous over two spans of length ! and loaded with a uni-
formly-distributed load of w tons per umnit length. All supports at the same

level. Find the maximum moment and whers it ocours, the point of inflec-
tion for each span, and the maximum deflection. (Fig. 69.)

The origin will be at A.
M,=M,=10
h=l=1
Using Equation (25),

Eﬁfaﬂ+i}=2><g(“£x%lxj)

N8 TS
Ly
'.M.E%P (27)
R

The maximum positive moment is M, = + w?i‘
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There are also two maximum negative moments, one for
each span, occurring at the points of zero shear shown, which
are at distances of 3l. from the end supports.

Take a section X in the second span, distant x from 4

3wl wx* Sul
EI$=—?I+—2*—-TI:$"” . . (28)

For any section, X in the first span,

P e

Bl ="+ (28a)

A maximum when z = §!

3l 3wl -3  w/3l\?
e S E(E)
=198 = maximum negative moment

Integrating equation (28), for any section in the second span
- 3wlz® wxt Swl(z-1)?

By~ %
+ Az+B . - . (28h)
z__"':[:'I !-'2['; B='}
Hﬂ.
z=1I, y=0, AEE

For any section in the first span,

—3wilz® wx* wi'
EIF:_&E.._+H+E . - E.'ZB'S]

Maximum value of y when ~:—i= 0

Point of inflection when %’iz 0
and is at the section where the moment is zero.
Differentiating (28¢)
dy  Owl ,  wz  wl
EIE=--EI1+-E—+E— 0
—0lz®+ 823+ P=0 . . (28d)



100 THEORY OF STRUCTURES
Solving (28d) x = [ or x = -42.

d FLE
when z = [, £=ﬂ, = 0: a minimum

d, : 7
when z = +42], EE= 0, v is a maximum
i il wi* 0316wl 42 it
Elynsa=—15- W8+ —g—+—5~ =15

To find the points of inflection
a9l ol e

= ety P ke
Bz 124
S 2L
122 = 9]
Sox=3

The point of inflection for each span is at a distance 3! from
the free supports. The deflections for the second span may be
obtained from equation (28b); they are the same as for the
first span, working to the left from the free support C as origin.

Ilustrative Problem 16.

A girder continuous over two spans esch of length 20 ft. carries a uni-
formly-distributed load of 1 ton per foot run over the whole length of 40 ft.
The girder is simply supported at the ends. The centro support is -1 foot
below the left-hand support and -05 foot below the right-hand support.
Take EI = 40,000 (feet) ton units. Find the bending moment at the
centre support and the maximum negative moments in the bays.

(1) If all the supports were at the same height, the moment
at the centre support would be

wi?
M=+ where [ = length of one span

400
=+'§-=+ﬁﬂtﬂns=h.
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The moment at any section in the first bay (supports same

height),

50 xt, 50 true reaction at
¥z (_ 1 207" + 2 (10 )t-uns the left support

= - 7-5x + 5a®
dj:“z -T5+z=0 . z=T5ft.
i.e. the moment is a maximum negative at a section distant

7-5 ft. from the origin.
The maximum negative moment

=T824+ } X 7-5% = — 28 tons-ft.

(2) With the supports at the different levels,
wir 2.} Y
oM, (2l) = 2 xﬁ( X 31X X 1) EM’(I—PI)

where y, = deflection centre support below the left-hand
support ;
,» Y= deflection centre support below the right-hand
support ;
1 05
S80M, = 4000-6 x 40 ﬂu'}(20+'2_())
= 2200

Mﬂ P —|— 275 mnﬁ-ft.
The moment at any section in the first span is
275 s
H.E (" Iﬂ—t-ﬁ I-i—g = -B‘ﬁlﬂ-l- '51'=

dM
For a maximum d;; 0=-8624+2=0

solving x = 8-62 ft. from the origin.

The maximum negative moment is
— 862 4 -5 X 8622
= — 372 tons-ft.
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In the second span working from the right support as
origin, the results will be the same.

Maximum nogative moment for both

My spans and the position at which it
oooursa.
Supporta all sune 4+ B0 tons-ft. - 28 tons-ft. at 7-5 ft. from the left and
lavel, right supports respectively.
At the different + 27-5 tons-ft. — 37-2 tons-ft. at 8-62ft. from the
levals. supports respeckively,

This example shows that if the props sink varying amounts,
then the moments at the supports vary, and consequently the
maximum negative moments in the span ; if, say, the centre
support sank a very great deal, the moment at the support
would perhaps become a negative moment until, if the sup-
port was entirely removed, the girder would become a simply
supported beam of 40 foot span, with a maximum negative
moment at the centre,

40°
E —. —-—-E— = = 200 trﬂﬂ.ﬂ‘ﬁ.

Illustrative Problem 17. (Fig. 70).

A continuous girder covers three spans: AR, 30ft.; BC, 40fi.; and
COD, 20 f+. The uniformly-spread loads are 2, 1, and 3 tons per foos run on
AB, BC, and CD respectively. 1f the girder is of the same cross-section
throughout, find the moments at the supports B and €, and the pressures
on the supports. Find the maximum negative momentis for ench span, the
maximum deflections, and the points of inflection. Also the slopes of the
boams at the supporta.

6 -2 2
2M,(30 + 40) + M (40) = uﬁ(—‘;—?’“ x 2 x2x 3—;)
6 40 2 40

'E(‘T XgX ‘“XT)

8/ 400 2 4

M, % m+2u.{4u+m}=-ﬁ(-Txixmx?ﬂ)
_6(3xW 2 20
20 g ~§gx#XxX3g

140M, + 40M, = 15 X 30° + 10 x 40°

40M, + 120M, = 156 X 20* + 10 x 40°
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35M, + M, = 7375
M, + 3M, = 5500
175 tons-ft.
M,=12

S
L]
Il

57 : 55 8
~~lar-™
Moment D:r;gﬂam T "r

' Hl
ko Lwed Tl |
» i

Shear Da'agr*am
1
Fia. T0

175
R, =g_><_ﬂ30_3_; — 24-2 tons
2% 30 175 40 1756-125
s Ta Ty 40
— 57 tons- (35-8 and 21-2)
40 175-125 20 x 3 125
e T e
= 55 tons (18-8 and R6-2)
3x 2 125

St el to
R, 5 20 23-80 tons

R, =
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The maximum moments occur wherever the shear force
diagram changes sign.

Maximum negative moments occur in the bays at distances
12-1 ft. from A, 21-2 ft. from B, and 1207 ft. from C.

Maximum positive moments at the supports,
M, = 175 tons-ft., My = 125 tons-ft.

Maximum negative moments,

24-2 2:1
st bay = —~+l= - 146 tons-ft.
21-2 x 21-2
20d bay = 175 (M,) - —5—— = 175~ 225
= — 50 tons-ft.
; 23-8 x 7-93
3rd bay (working from D) = - --z—’

= — 94:2 tons-ft.

The moment at any section is found by taking the area of
the shear diagram from the origin to the section taken.

DEFLECTIONS

First Span. Using the correct reaction at the origin (4),
(for no fixing moment at (4) )

d 952
El E:—!’; = - 24-2z '% for any section X distant z from 4
g7 2k
Ely=-2422+52+ Az + B
when =z = 0, y=0, B=10
e g e y=10

then 4, = -+ 1377, i.e. the slope at A is l—%
24-227

E
B +E+ 1377z

S Ely =-
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Ymea for 1st span—
dy g
Bl==-121a* + =+ 1317=0
x = 13-5 feet (by trial).
S ElYpnee = 11,627, EI in tons-feet units. y,,. in feet.

At a point of inflection,

BTy o o490 22— 0

dx
jie. x = 242
. 9. ; 5
e e is & maximum 24-2 ft. from A4

dy
Slope at 4, z =10, EI‘E— 1377

dy
y =242,  El=-1000

dy
w B, z=30, El=-=-513

For the third span (all supports being at the same level),
take D as origin, and taking z to the left positive and y
downwards positive,

d*y 3zt

- 23-82% 32t

T—E_E_d: + Az + B;
whenz=0; y=0 . B=0.

When y = 0; z = 20 and 4 becomes = 585

= 23&;5 32.1.
Ely = —4— + 57 + 585z

Ely =

To find the maximum deflection in the third bay,
By Yroet i KSE
Bl e e= =11 0a* + < + 585

= () for maximum.
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By trial x = 9 ft.

Max. deflection. Ely .. = 3420
- dﬂ
The point of inflection is when d;; =:()
dy R
d?=—23‘3:r+ 1-522 = 0
23-8
r=——= 158 ft,
1-5

The slope changes sign at the section 15-8 ft.
Nore.—The slopes of the beam in this span will be of the
opposite sign from those in the first span.

1?5”’1 i o0t 7} 125"

;S

Ras = 20 due to simple beam BC
(A)

Fro. 704

For the Second Span. 1t has been found better to work as
follows. Take the origin at B ; the reaction at B will be the
one for the span simply supported. (Fig. 704.)

Moment at any section X, z from B

NI B x? (175-125)
Ii
=3 -212z + 175 . . . (29)

When M, = 0. z=11-65 or 318,
thus there is no moment at sections, these distances from B.
Integrating Equation (29),
dy 23 >
Efd—-i =5~ 1062 -+ 175z + 4
when z = 0, Eliy, = - 513 from the first span,

dy 2°
EI:.ET_"E- 1622 + 175z - 513. 5 A (30)
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dy
o 0 when

z = 3-8, 21-6, and 38-1 it.
Between =0 and 3-8, the slopes are negative

Giving x various values, it is found

= 38 -, 21-2 . positive
i 21.2° ., 38-1 = negative
o 381 ,, 40 - positive

x=40. Eliy,= Eli,= 4 1950
Integrating Equation (30),
at 10-6z% 17522

When z = 0, y = 0; therefore €' = 0.
Then the deflection at any section is
z 106z 175

Ely = +2—4- 3 +T—513.T % . (31)
At x= 3-8, Ely= - 876
x = 21-6, Ely = + 14,630
x =381, Ely = - 1500

For this span, therefore, two portions of the beam deflect
above the horizontal.

Hlustrative Problem 18.

A beam is continuous over three spans of 100 ft., 100 ft., and 80 ft. The
ends are both fixed horizontally. The beam is loaded along its whole length
with a uniformly-distributed load of 1 ton per foot run.  (Fig. 71.)

Find the fixing moments and the moments at the supports ; also all the
reactions.

For the first span and treating B as origin,
84(l- =) -
M, + M, R TR 0* (4 negative)

(£ = distance centroid simple moment diagram from A)

L | = ok
* (0) + M, (1 + 0) + Myll) = -Tu—zj. |E from 4.}
or, a8 AR is direction-fixed at A, imagine another beam B4 to the lefi
similar to AR and loaded similarly.
Thﬂ:ﬂ".-u.ﬁf.md we shall have oy
Myl + 4IM, + Myl = -2 % T{:—i].
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(See Equation (9) for beams fixed at two ends.)

st and Znd spans :

64z 64,x
Ml42M(I4+L)4+ M1, = _T"’_ I:z:

(%, from ()

2nd and 3rd spans :
M, + 2M (I, + L) + M L, = -

(€, from D. =z, from C)

64,1 7,) 64,7
ri E: i"I

M, Ms M
;H‘\ 1 Ton 7 B™\ per ft;7C "\ run. ~

AN Y ,,uw;%ﬂ—
100" —»=— 100 ~—>{= 60"

————t =1

Frao. 71

3rd span : Treating €' as origin, and the beam as a beam
fixed at two ends,

64,(l,- =
2M, + M, + —il:l:";ﬂ] = 0. (4, negative.)
4
Simplifying and solving the equations (1) to (4),
M, = + 807 tons-ft.
Ml . + 586 "
M,= 4650
Mn e + 125 1]

Reactions at the supports (working by the rules laid down)
are—
R, = 4855 tons; R, = 1044 tons; R,= 854 tons:
R, = 2165 tons.
Illusirative Problem 18a,

A beam is continuous over two spans of 21 ft, and 21 ft. Tt cacries loads
of 1 ton every 6 ft. from the left-hand support. Caleulate the deflactions of
the beam at the load points: EI = constant in tons (ft.)* units, The end
supports are free. (Fig. 7la) Supports all at the same level.
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The fixing moments at 4, €, and B are 0, 0, and 4 92
ft.-tons respectively.

The total reactions at 4, B, and O are -848, 4-304, and -848
tons respectively.

Moment for a general section X, zft. from A4, and between
the last load and € is '

=BT sise 1@ 6) 4 1@-12) + 1e-18)

— 4:304(z — 21) + (2 - 24) + (v~ 30) + (v - 36)

Fig. Tla
: _ 9133 —fa _ 968
= Bly =_.H4ﬂx€—4304{z L +{:r “ﬂ] = +n: “‘16
+ Ax + B
z=0,4y=0B=0 z=21ft. y=0;
a]s
U=—-S43XT+21A. A = 207

Deflections at the load points,
i3
Ely,=--848 X 5 + 20T X 6=+ 147-6

122 1x6 |
Ely,—- 848 X — + -—ﬁ-— 4907 x 12 = + 1482
848 x 182 128 6
Elyy=-—f— + & + ¢ + 207X 18= 4328
848 x 248 4-304 x 32 183 12 @
Blju=c—7p—-—3 —tgtgity

4+ 20T X 24 = 32-3
Y15 and y,, for the given loading should obviously be the
same, the difference in the calculation being due to the limit
of aceuracy of calculating the constant A and the reactions.
Working from € as origin, the deflections for CB will, how-
ever, correspond to the deflection of AB for the given loading.



110 THEORY OF STRUCTURES

54. Propped Beams. Meruop or Sorvrion. (i) With a non-
elastic prop to be of the same height as the supports in the
case of a beam and the fixed point in the case of a cantilever,
treat as a beam or cantilever without a prop, and calculate
the deflection at the position of the prop. The prop then
forces the beam or cantilever upwards until it is level with
the supports : thus treat the beam or cantilever as simply
loaded with the prop-force which causes the known deflection.
Equate to the necessary deflection formulae, and the load in the

E TonS

~stans i} il
+ | 1+12 tons ft.
e, A

Moment Diagram.
Fic. 72

prop will be obtained. (ii) For an elastic prop, the level of it
will be below the support levels, depending on its elasticity.

If the prop is to be below the supports, treat the beam as
having one concentrated load causing a deflection, which is
less than the deflection of the beam without the prop by the
distance bhelow the supports.

Ilustrative Problem 18b. Cantilever loaded as in Fig. 72. To
find the reaction P.

d%y
EI 7 = 6(10~z)

dy
EIE= ﬂﬂ:—3$=+ﬂ

dy
E=U s A =0
Ely — 30:*- 2* 4+ B

=10, y=0 . B=10

Ely, = 30 x 82— 8% — 1408

2=
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(a) P acting alone causes a deflection upwards at section 8 ft.
1408
= Bl
By a previous formula, thiz will be i
*' ; 3ET
P-.g?
= 3BT
V208 — P x 512
3
1408 x 3
f =

tons = 8-256 tons

o

2>
/"t If/.‘-'.‘-‘fr.-. - a— ﬁ %ﬁ.
G |

Moment Diagram.
{ Foot tons.)

Fic. 73

100
(b) If the prop is non-elastic, at a distance of il below the

fixed point,

100 1408 P, x 8

) e ] LY AR

1308 % 3
= = 7-68 tons
IMustrative Problem 18¢. A beam is fixed at one end and

only free to move in a slide in a horizontal direction at the
other. Forces of 8 tons and 10 tons act in opposite directions
on it at distances of 6 ft. and 9 ft. from the fixed end. Find
the reaction on the slide and draw the bending moment
diagram, (Fig. 73.)
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The deflection at the end of the beam with only the 10-ton
load acting, using the general method for the deflection of a
cantilever, and where z = 12 ft. and n = 9 ft.

10(9-12* 10x9x12 10x 9
6 2 et

=105 81 X 6-10x 81 X 1-5

Ely =

= 3645
neglecting the first term as (9 - 12) is negative.
With only the 8-ton load acting,
8x6'x 12 8 x 63
2 G
=83 36 6-8 x 36
= 1440

Ely =

therefore the slide reaction will act in the same direction as
the 8-ton load.
To find the reaction. Let it be P tons., By the method of
superposition
Pis

Ely = 3645 = 1440 + —

3645 = 1440 + P x m_;_lz
576 P = 2205

P = 3-84 tons

556. A beam of length 2Ift. carries a uniformly distributed
load of w tons per foot run. It is supported at the centre by a
non-elastic prop level with the supports.

Find the loads carried by the prop and the non-elastic
snpports. (Fig. 74.)
Without the support, the deflection at the centre is

w2y
Ye = 384 EI
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Imagine the beam as a simple beam carrying a prop load
acting upwards; the deflection upwards

_ ow(20)*
384 EI
P = load on prop
2138
then y, due to prop = J-TSLE%
P2)®  Sw(2l)
therefore IBEI _ 384EI

or P=¢%w.(21.) : - - (32)
w tons [t. pun.
[
0 B
A Pm.'i Ll
%wfzf.hno i ST Y A R3=%wrzu

g & (21)as fora
- _._.t u.:n? qu ?;ﬂ.
/. :ﬁ;ﬂ:z and is negative.
&

sw(2l)(2l) as for a simple

4,
® beam, with conc® load P
at centre, and 15 positive.

Shaded ﬂr'a-%«;am s
Resultant Moment Diadram.
Fia. 74

Reaction at the supports when the beam is propped
= fw.(20.) . . . (33)

The moment diagram is negative, due to uniform load
acting on a simple beam; then the moment diagram is
positive due to prop load.

The effective moment at the centre

5w 1 wil*
=+3 (&) -5 (@0 = + gyl =+F
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This propped beam is & case of a beam continuous over two
equal spans which is discussed in this chapter.

Problem: 18¢ can also be solved by the Theorem of Three
Moments.

Ilustrative Problem 184,

Caleulate the prop load P at 4 so that the deflection of 4 is zero, for the
systern given in Fig. 75. Find aleo the moment at B, EI = Constant.

e
| q—H :
Al lﬁ___;
{E-c}——:-:;- —c————ni
P
Fia. 756

4B is a beam direction fixed at B and simply supported at
A. M is a couple applied at a point distant ¢ from B.

EIS, = Mc:(l- ;)

when considering the prop missing atd ;

EIs, — PI/3
when the prop load P is at 4 and M missing,
For 8, = 0, PP/3 — ilf.:( -3 )
dMe [
P="5(1-3)
SMP 3 M
If ﬂ=1,thﬁ]’]P=- EF_E'}-T

If ¢ = I the moment at B is M, and it is equal to

3 M
H——E'M"—":——E—*
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Therefore if there is no displacement of the point 4 when
the moment M is applied at 4, then the moment at B is one-
half the applied moment at 4, but of the opposite sign.

If ¢ = [, the slope of the tangent to the beam at A is

1 1 3
i = ﬁ(m- EPI’) - EI(J‘”‘ :J‘")

L M

T 4RI
..-d'f""ra A
A B____a._x_:____‘.

M;M[[/ Jg e IlM,—M
=)
£ [-=-—==%
Fio. 76

Assuming the couple M is applied at the point 4, the solu-
tion for the moment at B by the Theorem of Three Moments
(see Fig. 76) is given by the following method—

By Theorem of Three Moments.

The span BA, is made a reflection of the span AB. B, 4
and A4, are at the same level.
By the theorem,

M1+ 2My(l+ 1) + MJl=0

oM, — - 4M,
M
M]=__25

M, is equal to M in the previous solution and therefore
M, = - % when M is applied at 4.
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EXAMPLES

1. A continuous compound girder ia carried across two spans, each of
which is 20 ft., the thres supports being at the same level. There is & uni-
formly-distributed load of 8 tons per foot run, including the weight of the
girder. The moment of inertia of the girder section is 12,032 in inch units,
and the depth is 26in. Calculate the maximumn intensity of flange stress,
negleoting the effect of the rivet holes. Make s dimensioned sketch diagram
showing the distribution of bending moment on the girder, and find the
position of zero bending moment. (LML.E.}

9, A continuous beam has three spans, the outside spans being each
15 ft. and the central span 20 ft. Draw the B.M. and shear diagrams, if
the load on tho ecntral and one outside span is 1§ tons per foot run and on
the third span is 4 ton per foot run. {L.8truc.Eng.)

3. A steol bar 2 in. wide and 4 in. deep is fixed rigidly ot the ends ; ita
sffactive length being 6 ft. It is subjocted to a uniformly-distributed load
of 4000 1b. and, in addition, there is a concentrated load of 2000 1b, at the
eentre, both loads acting in the plane of its depth. Calculate the bending
moment at the ends and at the centre of the bar, also find the maximum
intongity of stroess.

4. Write down the theorem of three moments when the n]:ml are of
unequal Img;:dmd are loaded with the same uniformly-distributed load.
A it to =

PP’{J;} The value of the maximum negative bending moment in & beam
with fixed ends.

() The maximum na?ativa bending moment in a beam with one end
fixed and the other freely supported. (I.C.E.)

5. Use the theorem of three moments to prove that, in a beam uniformly
loaded and supported at its two extremities, and continuous over an inter-
mediate pier &t its centro ot the same level as the two supports, the load
taken by this pier is five-eighths of the total lond on the beam. (LC.E.)

6. A beam of span 10 ft. is rigidly fixed horizontally at both ends. If a
oniform load of 1 ton per foot run, including the weight of the beam, is
applied, and the central deflection of the beam is found to be }in, given
;.:. 12,500 tons per square inch, ealeulate—

(a) The fixing moment.
{4) The moment of inertin of the beam. {17, of B.)

7. A continuous beam ABCDE, 50 {t. long, is supported on four props,
at 4, B, ¢, and . The beam overhangs at D. AR, BC, CD are 161t
90 ft., and 10 ft. respectively. Each of these spans carries a uniformly-
distributed load. On the 15ft. span, 2 tons; on the 20 ft. span, 1 ton;
and on the 10ft. span, and the overhung portion 3 tons per foot run.
Determine the reaction and bending moment at each of the four props.
Sketch roughly to scale complete bending moment and shear di

(U. of L.)

8. A cantilever 12 ft. long carries o uniformly-distributed load of 2 tons
per foot run. A prop is inserted at a point 3 ft. from the free end so that
the cantilever at this point is level with the built-in end. Find the load
on the prop. (U. of B.)

0. A steel joist has one end A built horizontally into a vertical wall, the
overhanging portion forming o cantilever 30 ft. long, and carrying a uni-
formly-distributed lond of 5001b. per foot. A tie rod is attached to the
outer end B of the joist and is anchored to a point in the face of tho wall
16 ft. vertically above the joist. If the tie rod is so adjusted that B is ab
the sarmne level as A when the load is on the joist, find the tension in the tie
rod, the resultant reaction and the bending moment st 4. (U. of L.}



CHAPTER V
DISTRIBUTION OF SHEAR STRESS

56. Definitions. SHEAR STRESS exists between two parts of
a body in contact when the two parts exert equal and opposite
forces on each other in a direction tangential to their surface
of contact.
Let a = area of contact in square inches ;
P = total tangential or shear force ;
g = intensity of shear stress in tons per sq. in. ;

P
f=i= tons/sq. in. . . . - v (1)

SHEAR STRAIN is alteration of shape due to shear stress,
Considering the side CD fixed, Fig.77,a roq
square face A BCD of a piece of material 4—A__—> B_ g
under simple shear will suffer a strain as !
indicated by the new shape CA’B'D.

AA" is extremely small, and it |g
practically coincides with the arc of a i 7
circle of radius CA with C as centre. |/ !

The shear strain = f radians = angle } o
through which the edge C 4 has rotated c D
on application of the shear stress. Yo 71

6 (very small) = % radians . : ; (2)

The Modulus of Rigidity, or shearing modulus, is the
modulus expressing the relations between the intensity of
shear stress and the amount of shear strain. It will be
denoted by the letter ¢ and has dimensions of force per unit
area.

Let ¢ = intensity of shear stress in tons per square inch.

Shear stress = shear strain X G

g = 6@
Xy ) ghea.r stress
G (tons per sq. in.) = e . (3)

For steel, @ is about { K, i.e. if & = 30 x 10° lb. per sq. in.

then G = 12 x 108 Ib. per sq. in.

117
5—(T.5430)
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57. State of Simple Shear. A4 BCD is a rectangular block
of unit thickness to the plane of the paper. (Fig. 78.)

A shear stress g is applied to the surface 4B x 1, then
along CD there will be an equal and opposite intensity of
shear stress q.

Total shear force on each face = 4B = gqCD.

These forces acting alone would tend to rotate the block,
the turning couple being gARB - BC units.

q q

A —~ 8 A == iR
7| (Cd
D ""? c D "T c
() (b)
Fig. 78

For equilibrium, therefore, there must be some couple of
equal magnitude, but acting in the opposite direction.

Hence tangential forces along 4D and BC.

Let the tangential or shear stress on AD and BC be q';
the total shear force on each face = ¢’AD = ¢’BC.

The couple = ¢’BC x AB units,
then ¢'BC x AB = ¢q- AB-BC
G T T e e
that is, the intensities of shear stress across two planes at
right angles are equal.

58. Distribution of Shear Stress in Beams. It has been
shown that on each vertical cross-section of & beam there is
a vertical shearing force acting, and it is now required to find
how this force is distributed across the section. The vertical
shear stress at any point is accompanied by a horizontal shear
stress of equal intensity.

AB, CD are two sections of a beam dx apart. (Fig. 79.)

Moment at 4B = M
" CD= M 4 M
Consider a fibre of breadth z and thickness dy at a distance y
from the neutral axis.
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Suppose the cross-section is constant and therefore I is

+ gonstant.

If f is the longitudinal stress in the fibre for section 4B

'H.rl (1] ¥ (1] L] (1] G-D

then f = MY and f, = (M + 831 .-
The total thrust on the fibre,| The total thrust on the

at section AB fibre, section C'D
= fz - dy = fiz-dy
M M oM
=Ty-z-dy =——I—'F'z"i!f
+ &M
M(; g‘ f |_-e——z~-:-|_
E
[ “u % 5
Hﬂ-‘tfﬂlf 2 AR F L F Ry
A.xfﬁ E E‘l" _,.E ¥
-i-aa:—:- | |,¢-—-11'
I ! ~Cross
B D le—z-> Section
. T ecLio
G it
Fia. 78

EF is a line fixed on the section drawn parallel to the
neutral axis at a distance y, from it; y, is the distance of
the outer skin from the N.A.

R, — resultant thrust above EF for section AB
'Rl = L] i1 ] B CD
¥ M .M - dM
R.l= E"T.yrdy and Ri = Eﬁ—j‘—

R, is taken as acting from left to right, and R, as acting
from right to left. Hence the small portion of the beam dx
long, and contained by the two parallel sections A5 and CD, and
a horizontal plane EF situated at a distance y,, width z,,
from the neutral surface is acted upon by two horizontal forces,

R— and R, «——
The resultant force R, ~ R, tends to make this portion of the
beam slide over the horizontal surface EF. This tendency to

Lyz - dy
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slide is resisted by the shearing action at the surface, and if
g is the intensity of the shearing stress there,

g-z0x=R,- R,

¥a
=T
¥y
oM 1 ¥z
1=z T5 &, 0¥

L}
aM 1 '
Q=F+E. yzw.{y

1
when dz and dM made infinitely small,

but dﬁg- = 8 = total shearing force at the section
3 s
= E 2 yz-dy . . ] (5)
8 : S S
urq=EI 2 y-dAl.e.Tz—l.Ay— : : LR

where 4 = area of the section. between the limits y, and
and ¥ is the distance of the centroid of this area from the
neutral axis of the section. Ay therefore represents the
moment of the area considered with respect to the neutral
axis, This latter

I'H g . formula can with ad-
a 7ax'>  vantage be used for
Z ; 5 @"&\ anh{ hbe.-am section
IS I 7 [ ol which can be taken
i i = e JI' =t 35 e as being made up of
[ - rectangles, such as J
d % 3 e built-up
i I bﬁﬂ.]]]ﬂ-.
: L Shear Stress
Diagram. 59. EXAMPLES
Fig. 80 (1) A beam of rect

; o L angular section, depth d,
breadth & Investigate the distribution of shear stress over & section at
which the shearing foree is 5. (Fig. 80.)

Knowing z =z, = §,
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and using the mathematical method given, the distribution of
shear stress is as shown in Fig. 80. The maximum shear stress
will occur at the neutral axis,

68 38

where gu.. = R R T . . St 1
wuig 33) 8
Jmean — E ('Eb_d" e E
shear force

area cross-section

dmaz

= m (seo p. 126).

anum & 2

{2) A beam of solid ecircular scction is of diameter d. Investigate the
d['i&trigutiuu of shear stress over a section at which the shear foree ia 5.
(Fig. 81.)

Shear Stress
Diagram ;

Fic. 81

Note on the distribution of the shearing siresses in the case of
a circular cross-section.

It has been shown* that at the boundary points such as b
and b of the section of width 2 in Fig. 81 the shearing stresses
are tangential to the boundary. At the mid-point of the chord
bb (Fig. 81), symmetry requires that the shearing stress has
the direction of the vertical shear force §. Then the shearing
stresses at the boundaries and the mid-point pass through a
common point. Assuming that the shearing stresses at the
intermediate points also pass through this common point, then

* Sirength of Materials, by 8. Timoshenko.
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the shearing stresses can be determined in direction and magni-
tude, if we can find the magnitude of the vertical component.
Further, we assume that the vertical components are the same
at all points in the chord BB: using the method developed,
this component can be found. After finding the point of inter-
section of the tangential shear stresses at the boundary ends
of the chords, then the shear stresses can be determined
completely.

Referring to Fig. 81, it is required to investigate the shearing
stress along any section of breadth z;, which is at a constant
distance ¥, from the neutral axis,

Consider an elemental strip represented by bb, having a
length z and a width dy.

a2
zi=12 E—y"
d?
also z1=2,/1*-—y1‘

The moment of the strip z.dy about the neutral axis is
z.dy .y and the total moment of the area of the segment of

the circle between the limitag and ¥, is Ay

d
§ [ /@t b
=f ﬂJzuy‘-y-dy= 5(;—%’)
L
Consider equation (6), g = % . Ay.

Here g is a vertical shear stress and it will be equal to g,
assumed constant as the vertical component of the shear
stresses across the strip of the circle. Therefore g, for the strip
of breadth z, distant y, from the neutral axis will be equal to

A AL il

I's\a %) *XT® _E}-(Z—h) - (74)
2 4_3’1'
_

Now I=

4

=680 Ay’
%= Sr;:d“( % Fl‘)
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The total shear stress g, at the end of the strip of length z, is
g,.4  S.d ffd®
.. & (:rﬂ:’
2 i
When y, = 0, then g, is & maximum.

Also at y; = 0, @¢ maz = T maz = Jmaz #0d there is no hori
zontal component of the shear stress.

8d* 48 m8

Then ‘Ilmz_"hmsﬁqu‘_m“ﬁz_ A
where A is the area of the circle, see p. 126.

In the case of the circle, therefore, the maximum shearing
stress is equal to four-thirds the average value obtained by
dividing the shear force by the cross-sectional area.

2 168 328 ] 48
Tmean = TX 3ot = e 2 B <

{3) Investigate the distribution of the average vertical component of shear
stress over the built-up section given in Fig. 82,

B

= 3 .2

y}; - 5 :)r:ﬂm—dj

& 2 | g==.2(pid);

%Sz [0 i;::J‘_

2 2

ﬂ!ghugif_} T%E .%{%{uh)m?
IS5 '.f
¥l

Shear Stress
Diagram.
Fio. B2

Note on the distribution of shear stress in the flange of an
“I" section.

The actual distribution in the flanges of an R.S.J. section is
somewhat complicated, and here the assumption that the ver-
tical component of the shear stress on all horizontal sections is
constant has been assumed and the curve as a consequence
has been dotted in on Fig. 82. In the case of the web, the shear
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stresses are obviously all vertical, and can be determined by
the method already developed.
For the Flange. q, = vertical component of the shear stress
at a distance y, from the neutral axis. Using the form
Ay
g = S—h—y and where z, = B,
1
it can be shown that the average vertical component of the
shear stress is

_BADE _ 2
ql_ﬂ(‘i Yy

which holds good for values of y, between E‘; and g
when y, = g, e = i—f (D‘—~ d‘) : . (10)

For the Web. q = shear stress at a distance y, from the N.A.
and it is vertical in direction.
SA5

q= -I—ZI-— and Z, = ﬁ,
. 8 B 8 [d*
O AT ey e S
then 1=73] X (IJ ff)ri-ﬂ (4 y.,‘)
and only holds for values y, between 0 nnd‘i—
i L ]
When y, = 3 I=g X5 (D*- d’) ; «(11)
B
When y, = O, ngjib—(m-dﬂ)wig Ll iy

Norice. Passing from the flange to the web, the shear
stress suddenly increases from

8 S B
SJ(D" “") Ll (“L *")
and a consideration of the stress diagram shows that the web
takes almost all the shear.

60. Elastic Energy in Shear Strain, Elastic strain energy
is stored by a material having shear strain within the elastic
limit, just as in the case of direct stress and strain.
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Consider a cube of side dr, of which one face is strained by
an amount dy, with respect to the opposite and parallel face
by a tangential force

T =gq.dz.de; dyfdz = qfG.

Then shear resilience = %—:’Iy, = % (dx)dy, = t‘; (dx)* 4;-’_[%:_}

£ g
_E{dz}s

¢ :
= 5 Per unit volume.

61. Deflection of a Beam Due to Shearing. In addition to
ordinary deflections due to bending, there is a further deflec-
tion due to the vertical shear stress on transverse sections of
a beam, except for those portions of a beam which bend to
the arc of a circle.

The shear stress is not evenly distributed over the section,
but varies from a maximum at the neutral surface to zero at
the upper and lower edges of the section.

In many practical cases the shear deflection is negligible
compared with the bending deflection. Also in some cases of
design to allow for it a smaller value than the correct value
of & for the material is assumed, and assuming the ordinary
bending deflection formulae, gives a higher value of deflection
for the beam than that using the correct value of E.

62. Deflection Due to Shear. (Fig. 83.) Let an elementary
length (dz) of a beam deflect a small amount dy,.

ghearing stress

Q= shearing strain
il
dy,
dx
LS
d dx

If § = shear on the section due to external forces
and 4 = area of cross-section,

3
Tmean = H
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AsSume §,,.., constant over the whole section,
th dy, S8 ( also applicable to I beam )
en —

gt iR 13
dx = AG \where 4 — area of the web \A%)
Tae EfFEcT OF THE SHEARING FORCE ON THE

DerFLECTION OF BEAMS

An additional deflection is produced by the shearing force
in the form of a mutual sliding of adjacent cross-sections along
each other. As a result of the non-uniform distribution of
shearing stresses, the cross-sections,

lement 5
Ef::%'}fr” previously plane, become curved. At
Lt = =~ ey the neutral axis the shear strain is a

T v b7 maximum, and at the edges it is zero,
~=+41™  and here the tangent to the warped
plane is tangential to the beam

T 7
g !'!i. i -#4 flange. If the shear force is a con-
7 ge

stant along the beam, the warping
at all cross-sections is the same, and

- 1 therefore does not affect the longitu-
e dinal strain produced by the applied
Fic. 83 bending moment. Neglecting the

deformation produced by the bend-
ing moment, under the shear force, assuming vertical forces
acting on the beam, the elements of the cross-sections at the
centroids remain vertical and slide along one another. The
slope of the deflection curve, due to the shear force above, is
equal at each cross-section to the shearing strain at the cen-
troid of the section. Denoting by y, the deflection due to shear,
we obtain for any cross-section the following expression for the
slope of the shear deflection curve—

W 8y-0_m S _SC
=" 6 T8 AT @

in which S/4 is the average shearing stress ¢, @ is the modulus
in shear and m is a numerical factor, by which the average

shear stress must be multiplied in order to obtain the shear

: m

stress at the centre of the cross-section: also ¢ = 7

m = 15 for rectangular sections and 4/3 for circular cross-
sections,

The assumptions made in the examples are that the beam
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can work freely, and in the case of the uniformly-loaded
simply-supported beam, this condition is approximately satis-
fied: the condition of symmetry of deformation with respect
to the middle section is satisfied. The warping will increase
with shear from the middle where'q = 0. In the case of a
central point load, the condition of symmetry of deformation
with respect to the centre will hold good. The centre section
remains plane, but at sections immediately adjacent the shear

force is '; Warping of the cross-sections of these must, how-

ever, take place: and there cannot be an abrupt change in
warping from section to section. Therefore the warping at the
central section cannot be that due to the shear forces on the
basis given. Warping here must be partial, and the additional
shear deflection less than that given by the elementary theory.
The shear deflections given in the examples and based on the
elementary theory will therefore be approximate displacements.

dy, SC : C
I =—G-for varying ¢, so that y,—afﬂ dz (17)

dy, 8 1 ;
d.;: =A_Gf°r constant g, so that y,=ﬁf8-dx (18)
d i
For the rectangle 2z, = z=10; Ye=3i¥a=-3

A = whole area = b % d.
1-5 1:5
It has been shown that O = P &

\ Ml
For the circle, C = 3 : : - . (20)
1-5 and 43 are the factors with which the average shearing
stress must be multiplied, to give the shearing stress at the cen-
troid of the rectangle and the circle respectively (see para. 59).

(19)

TeHE APPROXIMATE SHEAR DISPLACEMENTS FOR
Civex Brams axp Loapiwgs*

63. Simple Beam and Cantilever. y, = shear deflection at
a distance z below and from a convenient origin.

* For o further discussion soe Strength of Materials, Part I, by 8. Timoshenko,
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Now f 8§ + dz = area shear force diagram between the origin
and x, and for a simply supported beam
= momeént at distance z from the origin=M,
for here there is no moment at the support (origin).

M, M,
Then y, = 75 o ‘f; R Sy e el o 31

64. (a) Simple Beam. With a uniform load over the whole
length of the beam,
a(-2)

(=

S M
Ym0 240
wil’
D Rt o
<5-2 o =57 (1-2)
F=T D1 _f : -
: 0 y, 18 a maximum at the centre of the beam,
I i
% | : ie. when z =5
. S 7150 e
K Marell, L e bee
el P for ulf 22
'EQ = i = ga@ for uniform ¢ . (22)
(s
! wi*C !
e 53 lr = g for varying ¢ . (23)
Byl {b) SmmrLE Bram. With a single
Fio. 844 concentrated load W at the centre,
Wi -
at the centre: ¥, no: = — for uniform ¢ . (24)

446G
wic :
a7 5 for varying ¢ . (25)

65. Cantilever. (1) Uniform load the whole length of the beam.
(2) Concentrated load W at the free end of the beam.
The maximum deflection due to shear will occur at the free
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end of the beam; i.e. the deflection below the fixed end, taken
as the origin.

i
f 8 .dx = area of shear force diagram between the
o support and the free end.

For (1) y,= % or “:’—éﬂ using Equation (21)
ic :
For (2) y, = % or Eé-- from Equation (21)

66. For a symmetrical / beam, find C,* or assume that the
web takes all the shear and that it is evenly distributed over
the web.

Hlustrative Problem 19,

In a beam of I section the thickness of tho web is half that of the flanges,
which latter, i.e. thickness of the flanges, is half the breadth of the beam.
If the breadth of the beam is one-third the depth, find the ratio of the
maximum to mean shearing stress in the section. (Fig. 84a.)

The dimensions of the section will be as shown in Fig. 84a,
and let them be in inches.

D :
The neutral axis will be at a depth - from the boundaries,

; D D (D _DY(2) 1
= =g X7y (I‘ﬁ)(?) * 13

=3—D‘ (in.)®
Db 20D DR
Am:zx:}xﬁ'*-ﬂxl"’ < 59./in.

Let 8§ tons be the shearing force at the section, then the
mean shearing stress

8 S EIS
Tmeon = 4 = P = tons,l’sq in.
6

* From Eqn. (12), page 124, and referring to Fig. 82.
ms
2 - cs_uh(m @) +

G:--— i (D' d')+d"{
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The maximum shearing stress will be at the section at the
neutral axis. Using the method in paragraph 58, Eqn. (6),
SAy
Tmaz = Tﬁ'

where A is the area of the section above the neutral axis
y the distance of the centre of gravity of 4 from the N.A.

e IO R ol S il
PN T R e /1 Y e |l £

_ S324 12(D DX D D) Do D D
'?-"—'m"xb(axe (3_+12 ?xﬁ"‘ﬁ)
" 15-68
- 5= ol
4 B 5> ’ R
1‘1} | ?—Comprc?sswn. A
Imaz _ 15'5m=2;6=m*
I : * Tmeen fi h.Ei 1
| 35" :
3" r:f5 Ilustrative Problem 20,
el Oltain & formula giving the inten:
Neutraf | ,;, Axis, gity of shear stress ab any point in
E s vertical cross-section of a beam,
I e ) and use it to find the ratio of the
a I 465 oL maximum t,u‘:fhu mean ehear stress
—g.ge" 8t & sectio A beam i
20y i Y il T the top “I'I:;:tn.?;nﬁin. by
I#J Tension. IL 14 in., bottom flange 14in. by 2in.,

RN R and web 15in. by 1§ in. (Fig. 845.)

Fic. B4n

The maximum shear stress
occurs for the section at the
neutral axis.

Let ¥, be the height of the centroid of the section above the
tension flange (denoted BB). (See Fig. 848.)

Area of cross-section= (5 1-54+ 15 1-754-14 ¢ 2) gq. in.

= 61-75 sq. in.
8175 X ¥, = 75 X 1775 + 26:25 X 95 + 28 x 1
7, = 665 in.

Ixx about the neutral axis = I, - A4(y,)* = 2750in.4

* See page 126,
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z, = width of the cross-section at the neutral axis
= 1-75 in,
8 = shearing force in tons
SAdy A = area above the neuntral axis,
mez =72~ ¥ = height centroid of 4 above N.A.
S
Tmes = 5750 x 175

8 x 177-3 8

(?-5 ¥ 11-1 4 1-756 % 10-36 X 5'13)

BRE TS 5 ¥~ k)
Aty
Jowen = §1-75
s Tmae 61-75 = Ej
B e

Working with the area below the N.A.,

s E y )
9m5l"m'ﬁ(28x 565 4 4-65 x 1:75 »x 2-34

17178 8

= 4820 = 272 ° . . (B) see (4)above.

REFERENCES

(1) Structural Members and Connections, Hool and Kinne. Examples in
deflection due to shear.
(2) Strength of Materials, Part I, 8. Timoshenko.

EXAMFLES

L. A rolled steel joist has the following cross-section : depth of section,
4in. ; width of flanges, 1§in. ; thickness of flanges, }in. ; of web, p in.
This joist rests freely on two supports, 40 in. apart, and carries o load of
1} tons in the centre of the span, Caleulste the maximum intensity of the
shear stress in tons per square inch., Show by a disgram tho actual dis-
tribution of the shear stresa.  Find the deflection of the beam at the centre
due to shear. - @ = 12 x 10* Ib. per sq. in. (U. of L.}

2. A cast-iron beam of elliptical section is simply supported upon two
supports 8 ft. apart, the major axis being horizontal. The greatest width
of the bewm is 12in. and ita greatest depth 8in. The beam is uniformly
loaded with a lond of 2 tons per foot run. The weight of the beam should
be taken into account.  Weight of eubic foot of east-iron, 460 Ib. Find the
maximum shear streas along the major axis. What is tho deflection of the
beam at the centre, (a) due to bending, (b) due to shear 1 (U. of B.)
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3. Prove that the intensity of shear stress, g, at any point of the cross-

section of a beam is ‘%ﬁ"whm F = shearing force st the section, I

= moment of inertia of the cross-section, b = breadth of section at the
point, 4 = area of cross-section on the farther side of the point to the
noutral nxis, snd y = distance of C.G. of this area from the neutral axis
Show that for a rectangular cross-section the maximum shear stress is one
and & half times the average shear stross. (LC.E.)

4. The vertical cross-section of a horizontal tubular beam is 1 foot external
and 6 in. internal dinmeter. Caloulate the ratio of the maximum shear stress
to mean shear stress at the section where the shear load is 6 tons.

6, A Oin. by 3in. wooden beam, span 10 ft., sup a uniformly-
distributed load of 2001b. foot run. Determine the deflection in inches at
the centre of tha beam dus to shear, If the beam also aup[porta n lond of
0-4 ton at the centre, determine the deflection at the centre of the beam due
to shear when the two loads are carried. Teke & = 9 x 10° 1b, /sq. in.

Nore.—For cast-iron take E = 6,000 tons/sq. in.
G = 2,500 tons/eq. in.

8. Take the beam section of Problem 19, page 120. The beam is simply

supported over & span L. It is loaded with a uniformly distributed load.

Find the ratio of L/D at which the maximum deflection due to shear is one-
tenth the maximum deflection dus to bending. Take & = 2/5 E.

7. Show that the deflection due to shear at & section X distant  from tho
support of & cantilever is equal to

ol e
Yy, = % [H-'IJ: — ET]
for a beam uniformly loaded over its whole length ; and
wo
Yo = 5 17)

for & benm with o concentrated lond W ot the free encd:



CHAPTER VI
CoLuMxs

67. Long and Short Struts. A length of material, which may
be of solid section or which may be built up, and which is
subjected to thrust loads axially or non-axially, is a column
or strut.

68. Short columns fail by the stress exceeding the yielding
stress of the material in compression ; long columns fail by
what is known as buckling, and between these two extremes,
failure occurs by a combination of direct compressive stress
and buckling.*

69. Euler’s Theory of Long Struts. (Fig. 85a.) Long struts
fail by buckling, or lateral bending, and the determination of the
buckling load really becomes one of stability. The Euler
formula tries to find what end force will cause a bending
moment which will make the ratio of (increase of deflection)
to (increase of load) equal to infinity. It neglects the effect of
direct compression and only deals with the bending moments
as a cause of failure. For usual shapes of columns it gives
results which are far too high. Euler's solution is generally
the one used in strength calculations of very long struts. The
Euler strut is homogeneous, of uniform cross-section, very
long in relation to its cross-sectional dimensions, and the load
is supposed to be applied perfectly axially. It is also perfectly
straight, that is, there is no initial deflection due to workman-
ship, ete., which would cause an initial moment to be applied
to the strut. The end conditions greatly affect the strength to
resist buckling.

* Columns made of brittle materials, such as cast-iron, will fail suddenly
in shear, Short solid specimens of a ductile material, such as mild steel, will
squash or flatten out. (Refer to textbooks on strength of materials for
dingrams and photographs of failures in compression.) On loading s long
column of ductile material, for & small addition of load, the column will remain
straight. On further applying load it will eventunlly begin to bend latorally,
or buckle, until just above some critieal load it will continue to keep on bending
ulml.m- this loud until it reaches the failing :d‘.l'l.'-ll;:“l of the material in COTN s
sion, when it will fail suddenly by buckling.

Thi kind of failure depends on the type of column. Indealing with columnsa
therefore, large deflections of the body ns a whole have to be dealt with.
(Photographs of failures of experimental acroplane struts are given in a

per on the * Development of Metal Construction in Aireraft,” by Major

. 8. Nicholson, 0.B.E., Engineering, March 12th, 19th, and 26th, 1920.)

133
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LOXG COLUMN OR STREUT, PIN-JOINTED AT BOTH ENDS

Let AB of length I be such a strut, pin-jointed at 4 and B,
i.e. it has practically free motion about these points.

Consider the top joint 4 as the origin ; take

P z downwards as positive, and let the strut

A under a load P deflect as shown in Fig. 85a.

T Let y be the amount of deflection of section X

| distant z from 4. Let y be positive, as the

strut bends concave upwards towards its

¥ original position.
Moment at X = Py will be of the negative
SETSEe,
d*y
El T3= Py
iy e P
Fio. 85a E"Ey ; ¢ ; “}

Solving Equation (1),
y=4A sm)‘/ﬁz+ﬂ mJfo

where 4 and B are constants depending upon initial conditions.
=0, y=0, hence B=20

y = A sin o i
E=1, y=0

c ] P

ﬂ=AEmJETf

A cannot be zero as if so no bending would take place, and
the critical lond has not been reached,

: P
therefore mn)‘/m A=10

P
,/ Ei . I therefore = 0, =, 2m, ete. (in radians.)
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Clearly the zero value is inadmissible, and confining our-
selves to the smaller of the values » at which sin ’/ E}; A=0,

then the crippling load is obtained from the equation

P
Jm'.l=w

Critical load = P = fﬁ—I = Euler load . (2)
70. Long Strut or Column Fixed at Both Ends. (Fig. 85m.)
Owing to the end-fixing conditions, there are fixing moments at

narmally=Hy
Fic, Bon

each end. When these are equal, the slopes dyfdx at each end
are zero, as also at the middle of the strut. At the quarter
points €' and D, there are points of inflexion, where dyfdz is a
maximum.

Let M, and M, be the end-fixing moments: normally
M, — M,, and for which condition the points of inflexion
are the quarter points. However, conditions alter if M, is
greater than M, : the unbalanced moment (M, - M,) tends
to overturn the column and this calls into play the horizontal
forces F, F at each end of the column, such that FI = M- M,.

Consider normal conditions when M, = M, = u.



136 THEORY OF STRUCTURES

Then the bending moment at X, distant x from A, is

My = Py + u. (Py is taken as of the negative sense.)

Py & P[ u
Then  EIg4=u-Py; T (y-—-—)

‘@2 T TEI\YTP
Let PIEI = n* and ufP = a
%=—ﬂ’(y-a] = —nt
dty d%
P R e
As before, z = Asinnx -+ B cos nx

J. y—a= Asinnx 4+ cosnzx

Differentiating j—: = nd cos nx - nB sin nzx

when z = 0, dyfdx = 0: as previously cos nz — 1

S y—a =B cosnx
Againif z=0,y=0: -, B=-a

s =0 = —q Ccos8 N

. ¥ = a(l - cos nx)

Kx=Ly=0

S 0= a(l - cos nl) Socosnd =1
Hence al can have values 0, 27, 47, etc.

By previous reasoning take the value 22— nl

2
n= % and
422K
P

Ii
=

(3)

This value for P gives a value four times as large as that
obtained in the case of the pin-jointed column considered in
paragraph 69. The end-fixed column thus has four times the

strength of the other.
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It can be shown that the points of inflexion occur at the
quarter points: the distance between these points is I/2 and
this length is called the effective length of the strut; it is an

equivalent strut, pin-jointed at the
ends. Using the formula for this
strut

nET
P - T
And replacing I* by I3/4

then P = 4x*EI[I*
obtained by mathematical analysis.

71. Long Column or Strut, Pin-
jointed at One End and Fixed at the
Other. (Fig. 85p.) The pin-jointed end
is considered as being able to slide
freely in a frictionless guide, the nor-
mal reaction at the guide being @;
this normal force is balanced at the
fixed end.

Take the origin at the fixed end A.

Fia. 83p

Eldy

BM. at X = ﬂfiz—Py -1 Q{I_x]= _d:r!

. dy Qi-z) P

e 7 el ¥R

= iy~ Fa-=}

Let n® = PJEI, and z = jy o %{f = ﬂ'-'};

dz

Then dyjdz® = - n®z and - = 2 +p

and difda? = d¥%y[dz® = - n*

By the general solution z = A sin nx -+ B cos nx

snthn.t,y—;—{{l-z}=+4 gin nx + B cos nx

when x:-{}.y:{]r"_ﬂ——'-'P
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Differentiating :—g -+ ?—_, = nd cos nx —nbB sin nx

When x=0,dyldx=0
So that, QJP = nAd, thus 4 = @/nP
LYy = —ﬁf!—z}:;%sinm-%msm
1 "
= %(; sin ny — [ cos nz)
When z=1Ily=0 . 0= @Q[P(sin nlfn -1 cos nl)
Simplifying tan nl = 0.

The solution of this equation—most easily carried out by a
graphical method—for the least value of nl, is tan nl = 4-493
radians or 257-5°,

Substituting  n¥%* = (4-493)? = 2:047a2

. P 2047
L T fentany e
L P=2047T0EIRt . . . (4)

The result for the value of P shows that a strut pin-jointed
at one end, and fixed at the other, is just more than twice as
strong as a pin-jointed strut.

The effective length of the strut is approx. IJJV'2.

72. Long Column Fixed at One End and Freedom of Move-
ment in Any Direction at the Other. The strut bends as shown
in Fig. 850, and its shape is similar to that of half a strut
pin-jointed at both ends. Tts effective length is 21

=El  #El :
T TR i

73. It has been shown that areas have maximum and
minimum moments of inertia ; therefore, if a strut is free to
bend in any direction, it will bend about that axis for which
the moment of inertia is a minimum. This, obviously, makes
P a minimum. The strut may be constrained to bend in a
given direction ; in this case, take the required I, which can
be found by using, say, the momental ellipse in Chapter II.

.. Crippling load P =
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But secondary failure may take place due to the minimum
value of I, unless precautions are taken to prevent this by
side supports or other means.

Cx*El

e i e e s ()

1 G—n’Ezi

2
(s)
where ] = moment of inertia for the axis about which the strut
iz made to bend,
C = constant depending on the fixity of the ends
= 1 for pin ends,
= 4 for fixed ends,
=} for 1 fixed and 1 free end ;
A = cross-sectional area,
k = radius of gyration.

Euler formula. P =

(7)

For a constant cross-sectional area of strut,

P(E'!)SE = constant A ; (8)

Plotting P &gﬁiﬂﬂ-trkl a rectangular hyperbola is obtained,

which is the Euler eurve. (See Fig. 86.)

74. Rankine Formula for Struts. For very short struts,
the failing load would be Af,, where f. is the crushing or
yielding stress of the material, and A the cross-sectional area.
For a long strut, the Euler buckling load

2
12 G'-nFEI (See Eqn. 6)

C a constant depending on the fixity of the ends.

For struts which are sufficiently long to have some tendency
to buckle and yet are not long enough for the direct com-
pressive stress to be negligible, it is clear that the ultimate
failing stress must lie between the two limits

P = Af, and P=Gj§1ﬁ_f
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Many formulae have been suggested, but the most used one
is that known as the Rankine formula, This is

P Ao A1) whee = L
4.% gemr 1 +5(5) i

L+ 4 X oopy c\r (theo.)

It is often written P = —A“fi;—r (9)

where [, is the effective length of the strut = “vi":f’
If I is very large compared with F,

AL AL ]
..a Ii)t _Afchi"— II'_t
k w2 KT
If 1 h h L (LY
1s very s urt.trannzﬁ. (L)

will tend to become small and negligible compared with 1
when P = Af,

The value of a for some materials has been ascertained by
experiment ; but the theoretical value, though not so good
as the experimental, is very useful where a practical value
has not been obtained.

The Rankine curve for a mild steel tube, where a — L

7500
is shown in Fig. 86,
RANKINE'S CoNSTANTS,
Material, J. tona per sguare inch. a.
Mild steel ; | s
Wrought-iron . 16 Vo
(Cast-iron . .. ab iy o

As ; increases in value, the Rankine and Euler curves tend

to meet. Above the meeting point value nf% , that is, values of

:: greater than this, use Euler values for the failing loads.
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For struts of a channel section, it has been found by experi-
ment that for -

Mild steel, values of 1‘.::v-l(:-lilt, Euler curve holds good.

k
High tensile steel, values of EE-‘_::» 190, i -
Duralumin, values of %} 170, n "

75. To satisfy the experimental curves of (P, }E) for the

intermediate lengths of strut, various other empirical formulae
have been developed, chief of which is
J. B. Johnson’s Parabolic li'anmti.:m.2 (See Fig. 86.)

P i

I=f‘_g(E) ; . : . (10)
fe = Yield stress of the material in Ib./sq. inch ; g is
a constant of such a value to make the parabolic curve
tangential to the Euler curve at some fairly high value of :?;
l is the exact test length of the strut.

Mo STEEL (American constanis)*

End eonditions, Je1b.feq.in. g Limit of %
Pin ends. . 42,000 0-97 150
Flat ends . 42,000 0-62 190
] :
Nore.—When F = 0; f. = 42,000 Ib. per square inch is less
than the yielding stress of mild steel, which is about 52,500 Ib,
per square inch.

Nore.—For a strut absolutely freely hinged, and to make
the parabola meet the Euler curve tangentially, g must be

: )
theoretically equal to iE

Note ox J. B. Jorxsox’s Paranoric Equatiow,
The maximum load which can be carried by a strut is P,.
Then, by Johnson's equation

; P.=Af,(l~m{—;,—g.£) RNy

* The constants in paragraphs 76, 76 and 77 aro from Structural Membars
and Connections, by Hool and Kinne
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where (' is the fraction for the end conditions.

Or, if P is the safe working load
P fa
A =j.: - m where x = r‘

z is a constant depending upon the shape of the cross-section.
The formula for A is one which can be used for design
purposes.
The corresponding values of Py and 4 on the Euler basis
are
k2 Py Ca*E &*

P1= G::'EAEHH[IA—I‘E f'_ +F [B]
P af 2 \b
o 4 =j:(mm)

2
If Iﬂ'{:_*E . i—, for a column design is equal to, or is less than,

1/2, the Johnson formula is true: if this discriminant is greater
than 0-5, the Euler formula is true.

The Johnson formula is an empirical formula to change
from Py, = Af, true for short columns, to tangency with the
Euler curve, at the point where the strength has fallen to one-
half that of a short column of the same material and section.
Used in its proper range, it fits the maximum loads (engineer-
ing strength) with surprising accuracy. It is a good design
formula for long columns, whose probable strength Py is
greater than one-half of Af,..

From equations (4) and (B) if

| R ) N R
TS et St R Rt~ -
Jeveobe souriie o
ﬂ'[l.'l'l /Jdgzik-—-l'l-l'i—\f.-
Therefore fi 1 fJ---f’--: £<:ar="f‘3 use the
erefore for wvalues o O%E b 2,

Jah:_;pgn formula for caleulating PyuJAf. and for values of

G?{%‘E i > V2, caloulate Py/Af, by the Euler formula. A

N Ty
curve of P,J/Af, against J E':{_’E' [ can be plotted which is
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suitable for use for the design of the practical column. (See
Fig. 86A.) The change for the Juhnsnn curve to the Euler curve

EF'L = V2.

76. American Straight Line Formula. (See Fig. 86.) A
formula easy to work with, and giving approximate values of

will oceur at the value of J On

:;, useful for preliminary caleulations.
P 1
A—:fn-g(li?) AN T, s o

Johnson line

Fin
Afe
051
]
0-31 : .
] i
: (]
g
[} T F 240
kal CE
Fia. 86

The point of tangency of the straight line with the Euler
curve is the limiting value for which this formula can be used :
fe and g are empirical constants, so chosen g0 as to make
the formula fit the results of column tests ;
l is the exact test length of the strut.

STRUCTURAL STEEL (American Values)

End conditions. Jelb. /8q. in. g. Limit ul‘{:

Flat ends : ; . 02,600 179 195

Hinged ends . : . 52,500 220 159

Found ends . . . 52,500 284 123
CAST-TRON

Failing stress = j% = 34,000 - 88 (%)



COLUMNS 145

77. Other Straight Line Formulae.
(A) American Railway Association for Working Loads—

P I\ P ;
T (]b,,-‘sq, in. ) = 16,000 - 70 (E); T* 14,0001b. /sq.in. (11)

[ = :
" From £ =010 30. - = 14,000 1b. /sq. in.

A
}; Centroid P
Neutral ¢ y Axis, of Area,
Centroid.| 1 Ct ,
% o
=il j
T e L et L
P Couple R p LTS
c i
fee=ce—p :
Fia. 8Ta Fic. 8Tn

(B) American Bridge Co.s Formula for Structural Steel

Working Loads—
s A l 3 i b,/ .
T (lh.lsq,m.) = 19,000 - 100 (;—:-) B 13,0001b. /sq.in. (12)

; l P g

i.e. from b 0 to 60, o~ = 13,000 Ib./sq. in.

78. Struts—Eccentrically Loaded. In Fig. 87, the load P
is acting at an eccentricity e from the centroid of the cross-
sectional area of a colomn. This force P is equivalent to a
couple of magnitude Pe plus an extra force acting downwards
at the centroid.

The couple will produce bending, and consequently com-
pressive and tensile stresses in the material ; whilst the addi-
tional P (thrust) at € will cause a direct compressive stress
of equal intensity over the whole of the cross-section.

79. For a Short Column. Cress-sectional area A (Fig. 87n).

Maximum compressive stress for P applied at an eccentricity
¢ on one of the two principal axes of the cross-section.

VSN
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Maximum stress on the other edge distant y, from €

J N P
=I‘—;!£""——_,T-fm- . . (14)
Pey, P - :
If T} T° resultant tensile stress will be developed, as
shown in Fig. 88.
R <
]ll- r‘\.,
’Ff ] \I"\.
I -E7 "'&.\
Pl - B
Cﬂgéms&.qu Compr-etﬁsfvg Ei‘ne _TE 'QET
___h_A_ b due to Rlacting at™Cy 7 Fttu
A K 18 B
~.) .I.
gensrfe .:i'"_ =
ik Tensile
tress,
Fio. 88

Referring to Fig. 88,
ABCD = normal stress distribution

AEFB = stress distribution when f‘}i"-“ < ;
i Pey, P
AGKHBE — ' . —=>

80. Long Struts—Euler Form. Pmv Jomwrs (Fig. 89). Let
P act on one of the two principal axes at a distance e from the
centroid of the cross-sectional area. Let A4 be the origin. It is
required to find the deflection ¥ of some section X distant z
from the origin. Take y as positive.

Moment at X = - P(e + y)

d*
BIS5=-Pe-Py . . . (19
d’y Py Pe

Ord“;:+m+m=ﬂ



COLUMNS 147

The solution of this differential equation is

e 2 P
y+¢=ﬁ5m’J—'ﬁ'.x+Bﬁﬂﬂ E.x " “-'ﬂj

z=0 y=0 B=e¢

s JEm )=
d:r'_ ETICDE 'ETI—E ETBL“ E"I.I

17 e B P P
y-l-z:zst-a.n( E‘;.ﬂ—)sm( E.:r)—!—ecoa(‘JE,z)
; : . (17)
Particular val f,jFIt k )\/_P- I)inﬁn't.a
arti r values o Eftm‘ ma at.an( BB 1

will also make y infinite. The only interpretation of this mathe-
matical infinity is that the column is unstable for values of

,\/ -E% satisfying the equation
R
tan 4/ E . E = 4 @
i 7

i.e. values of I given by

The load at which instability really appears is the first one

\ A
given by B
. HE : AR
1e. the critical value of P is = - g2~ Which is the same as for

the axially loaded Euler column. In this case, the strut bends,
however small the load, and the deflection is correctly given
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by the equation for y before instability is reached, but at the
2

particular load given by P = RI—IEI the rod is really unstable.

If the length is great, the stress in the rod may become so

great, before the load is large enough to produce instability,

that the strut just fails as a beam would fail under transverse

loads.

If this is possible two separate calculations are necessary,

p one to find the safe load assuming instability

impossible, the other to find the buckling or critical
load assuming the stresses do not become unsafe
before buckling begins. The smaller of these loads
is the safe load for the strut or eolumn.

From equation (17) the deflection y is obtained
for any value of z.

l
y i8 & maximum when z = 3

Ymaz + €=

. ¥ 3 Fa
S R 2
Fia. 80 oona (Ji.i)
EI 2
;o
Then Ymae + s=esec(JE 'E) -

or ?mn*z+{{1_WE(J§'%)]/¢WJE*§I . {(18a)

If J .EE} i % is small, it is accurate to assume that

(LA
008 N EI'2= * " BEI

in the numerator and = 1 in the denominator of equation (18a).
Pel* =AW
Then ¥ mez = Q] * OF Ymas VarTies directly as P.

BS| v
—

(18)

This coincides with the expression for the deflection of a
beam bent by couples Pe at the ends.

For other cases, equation (18) will give the displacement
under a load P.
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The moment at the centre is

7 - P
P(¥as + B}—-Pcﬂ-an(,/ﬁf )—M,—PE(EFI-FI)

The maximum compressive stress in the material at the
centre will be

I e
fml== A +Mr¥ . . . llgj

(This latter, assuming the elastic moment form holds good for

all values of P, and y, = distance from the N.A. to the outer
compression fibre—see Fig, 57B.)
P

The minimum stress will be — T - M, ?'

which may be compressive or tensile. From equation (19)

Y. ! i B (e Pl P
Knowing the ultimate compressive stress of the material, the
probable failing load P can be caleulated for a given strut.

81. Failure of the strut will occur usually in the compression
flange when the maximum compressive stress reaches the
ultimate stress of the material.

With built-up struts, failure should occur by the compression
flange buckling; if not properly designed, it may not do so,
but fail in a secondary manner due to rivets failing or webs
buckling, ete.

82. Professor Pippard and J. L. Pritchard have shown in
their book Aeroplane Structures* how the Rankine formula
for axially-loaded struts may be adjusted to apply to an
eccentrically-loaded strut.

For a short strut eccentrically loaded, the maximum com-
pressive stress developed is

P  Pey,
Je= A ot 1
From which % AL Fl
7 ey,
14 .t:T)

» Amphm Structures, by A. J. Ps,pp-lrd and J. L. Fritchard. (Longmans,
Green & Co.)

E—{T.3430)
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In Rankine's formula, replace in the numerator

fe by (f—'ey"

then P = I Al " Rankine's failing load
i(l 4+ a( ) } {1 +(eyf);fnr eccentrically-loaded
k B strats . .7 (21)

83. Combined End and Transverse Loads. In certain
structures, members acting as struts may also have transverse
loads applied to them, e.g. members of the frames of an aero-
plane wing. In these cases a compressive stress will be
developed in the strut due to the end load P, the moment
Py (where y is the deflection of the strut), and the moment
caused by the transverse load.

84. Case I. A concentrated transverse load of W acting at
the centre of the strut having pin-ends. Assume the strut

the eccentricily factor

W
}-———%——-r--q---u%——-:-l
=} X ¥ =]
A pP—== =tje=—rep B
Y Ymax
Fra. 90

elastic to failure and that it will fail by buckling of the compres-

sion flange, find the approximate axial end load P to cause
failure.

The strut is constrained to bend in the direction of one of the
principal axes.
Let 4 be the origin. (Fig. 90.)

Upward reactions at 4 and B due to W = T
z to the right positive : y downwards positive,
&y i
thenﬂidﬁuﬁf i
d*y w
UIQ+E'F'+EI‘x=D A ke

..Py
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The solution of this equation is—

R P Wa
y-Asm(JEI. )-}-Bcn&( I )—-F, (23)

=10, y= 0, =10

I dy
nhenn:=z—, E_“

dr,r i

dx b 5 ““ﬂ E ‘E

ek 7 IN W
JE "“ﬁ( ET 2 )" 2P

W E!

T (J %)
EI ( E Wz
"P J ““‘“’(:T »/ﬁ) “2P

An equation giving the deflection for any value of =z,
knowing P and W,

Y= (24)

y is a maximum when z = 21
W [EI I PN W
ynua=2_13 H-W(EJE}‘)—@ . . (25)

The bending moment will be a maximum at the centre, and
will be of the negative sign for known values of P and Ww.

W [EI - FP Wi Wi
“HMom= 3 T:‘-‘*“’(EJE)‘TJFT

W JEI ! P
—..TJ-I_—, mn+(§JE) d {EB}

Assuming elastic conditions hold up to failure, the critical
load for P, will be that value when the maximum compres-
sion stress becomes the failing stress of the material = f.
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y, = distance of the compression flange from the neutral
axis.

There will be an equivalent load P acting at the centroid to
complete the couple Py,.,,

fF%JE?F ,,/Ef) G o

Knowing f., W, I, 4, and y,, the Equation (27) can be solved
to give the failing value of P.

85, Case II. Strut pin-jointed, end load applied axially,
with a uniformly-distributed transverse load (over the whole
length of the strut). (Fig. 91.) The strut is constrained to bend
in the direction of one of the principal axes.

we
d’z’ ~Py=—ast o . A . (28)

The solution of this equnt:un gives

Syl B ) n el )

wiz wat EI

“2p T3P VP (29)
Kl
when z=0, y=10, B—-—i—wﬁ
| A
when:ﬂ——z, -JE—JZI
2o o- el ST (1
b R R T i ‘*“ El ET ¥"\2 ﬂ)
wl 2w
“ap T 4P

wkl ! P
4‘1=—E—ﬁ—.lﬂn(*§. E;)
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l

when z = Fi g maximum

ins( J'_'
wEl " \2 "N Bl) E EL vt P
” (2 /1)

Year = + I J T'“"_ co3 2 f“.’
"‘“(E El )

wl* | wl* wkl
P TEPT P

_ _wEIT, I [P\] wb \
_"fﬂ['m(?' E‘T)]'SP =R Rent0)

The moment at the centre will be a maximum

wl*  wkl 1 (P
= Moz = PlYmas + TrE ?[ﬁeﬂ(g,Jm)_l}

Assuming elastic conditions to hold to failure,
f. = failing stress in compression of the material,

AL TR

85a. If P, — Euler failing load for the struts with
transverse loads,

mEl
P‘-= r:

1 =
Pr— I —_— .
\/P »\/E ot VEBI _ VP,

86. Case I. Concentrated transverse load at the centre of
the strut,

Wl L it P v B
It can be shown* that if P < P,
P Wi WR B P, ’
thenf, =7 +3z twer-z P.-p © O
where Z = Iy,

* Muaterials and Structures, Vol. I, by E. H. Salmon,
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The longitudinal load P increases the deflection due to the
Iateral load, in the ratio P, : (P, - P).

87. Case II. Uniformly-distributed transverse loads,

I P, (B e 5
e WFF[M(;{J}—,)A }-+3-+ . (33)

It can be shown* that if P < P,

f s [ Jih s i A
thenf,::z—]— E—i_ ﬁi-E—I-Em
where Z = Iy,
The longitudinal load P increases the deflection due to the
lateral load in the ratio P, : (P,—P).
Knowing wor W - f. - P, and 4, P can be ascertained from
equations (32a) and (33a).

Hlustrative Problem 21.

1. Caleulate the thickness of a mild steel fube 6 in. in internal diameter,
12 ft. long, to support an axial load of 15 tons. The tube is fixed at its enda.

Taking a factor of safety of 4,
Let D, = external diameter in inches

{ = thickness in inches = B’; L

T d D2 gt
I:E(Dl'— ﬁ:) (F"T') - %(DI"— ﬁ"): area X A*

I = 144 in.

. (33a)

the effective length = Ei = T2 in.

Take E for mild steel = 13,000 tons per sq. in.
Using Euler’s formula, the buckling ioad is

X 13,000 x 72 (D,'— ﬁ*)

|
£ A= 72 % 72
Taks »t=:10,
Dt — 1345
D, = 606 in.
006
then T— 2 ik ﬁﬂ3 iﬂ.

* Materials and Structures, Vol. I, by E. H. Salmon.
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Rankine’s Formula, Take f, for mild steel as 22 tons per
square inch.
I

a=
E( )
60 = 4 e
i
'muu (u* ) <k

Solving D, = 1.,,!”15 6-32 in.

: ! (-32 !
The thickness of the tube is, therefore, 5 = 0-16 in.

}"'.= 152. Rankine
I

An I beam, n. ¥ Bin., 54 b, per foot length, is used as a horizontal
strut hinged at huth ends, .l.n.d is 20 ft. long centre to centre. The beam is
arranged with its web horizontal. The least moment of inertia is 28-3 in.*.
There is an axial load of 24 tons, and a vertical load of 1 ton at the centre
of the length. Caleulate the maximum bending moment approximately, and
find the maximum and minimum normal stresses. (U. of L., 1923.)

Cross-sectional area of the beam is 15-88 sq. in.

(1) Neglecting the weight of the strut, the maximum
moment is (see Equation 26)

W [EI PRy o By M
=— 'FMEJEI* Note EJE is in radians.
Take E = 13,000 tons/square inch. [ to be in inches.

= ) 1 [13000 X 383 240 53
may YONA-ID. = 35 24 -tan 5= /13,000 x 283

= 866 tons-in.

: 24
Max. compressive stress = 866 353 T 1588

= 9-24 4 1-51 = 10:75 tonsfsq. in. *
Max. tensile stress = 924 - 1:51 = 773 e

* By Eqn. (32a) f, = 11-08 tons/sq. in.
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Allowing for the weight of the beam, it can be shown that

o L IJ_P") g E’JE IJ?
~Muee="p | (03N ET) '] TN P P INTE

that is, the sum of the maximum moments due to a trans-
verse concentrated and a uniform transverse load acting
individually in conjunction with the end load ;
w = 54 Ib, per ft. ran = 4:5 1b. per in. run = g, ton per in. run
- Mopez = 5{1)0 x la,nﬂﬁﬂ:: =3 (— 1 4 sec {55-5“])
-+ 86-6 tons-in.
= 1099 tons-in.

z 3
Max. compressive stress = 109-9 X 5o-g + 1-51
= 11:6 + 1:51 = 13-11 tons/sq. in.
Max, tensile stress = 11-6 — 1:51 = 10-09 tons/sq. in.

IMustrative Problem 23.

A strut consisting of a steel tube 4 in. outside diameter and % in. thick
is loaded al an axis parallel to the centro line and }in. from it. The
tube iz 120 in. long. The yicld stress of the steel is 28 tons per square inch.
Find the crushing load of the strut. (The method of solution of the equa-
tion you dovise must be clearly indicated.) (U. of L., 1823.)

Take the strut as hinged at both ends.
Using the Euler form for eccentric loading (Eqn. 20),

x 7 IR P
fm4t= PETH(JET . E')+A_

fuas = 28 tonsfsq. in. I =120in. =1,
E = 13,000 tons/sq. in, y.= 2in. e = {in.

Il=4-12in?

A = 2:27 8q. in.
k= 1-82in.?

i 120

IO

| ~

P
3 XE™ ('/lsﬂﬂﬁ % 412 X ““) T i3
=/ }ZI_P.i_ P
1648 0 386 ' 227
By trial, P = nearly 30-55 tons.

-1
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By Rankine’s formula for eccentric loads,

Pk fi;-f*. .
[rae) )+ ]
y 1
Tﬂkl.l‘l.g = TT'D'—E"
: 2.97
P= it — 26 tons

: L | LT
+ 500 X 182 || T F X 182

Eccentrically-loaded strut : failing load
is 30-55 tons (Euler method)
‘and is 26:0 tons (Rankine formula).

L ]
Note—Euler's Critical Load = P = fz% = 36-6 tons
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EXAMPLES

1. Find the buckling load of a channel section strut 12in. x Tin. X 1 in.,
length 16 ft., both ends rigidly fixed, by Rankine's formula. Check your
result by Euler's formula and, if there is any discrepancy between the two,
state which result you consider to be the more reliable, and why ? Draw
the Euler and Rankine curves.

E.ﬁnm.whumlungthiulﬂﬂthuuiudimtar,iumm by &
load applied axinlly, Describe how the strut gives way, and show how the
nature of the end constraints affects the strength. Discuss the application
to this case of Euler's formula,

Limiting load = H;_if
Derive the Rankine formula and explain its use.
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3. A column of eciroular section, the internal and external diameters of
which are d and I? respectively, has to support a non-axial load of W tons
acting st a distance * from the centroe of the column. Find the value of =
in order that thero may be no tension in the material, (LC.E.)

4. A strut is formed by two channels 7in. % 3} in. braced together back to
back and 3} in. apart. Their flanges are 0-5 in. and the web 0-4 in, in thick-
ness, If the strut is 20 ft. long and hinged ot the ends, find the safe load,
given that the safe working load on a column with fixed ends

fid

1+ (—l 2 .
*.m.um)kl

when A is the cross-sectional arca of the strut ;
L is its length ; and
k the radius of gyration nbout an axis at right angles to the “?EIEF L
(LC.E.)
5. The vertical pillar of a crane is of I section, 18 in. deep, area 22 sq. in.,
maximum moment of inertin 1150 in inch units. Find the maximum
intensities of compressive and tensile stress in the pillar, when o load of
# tons—acting in & plane containing the lengthwise centre line of the web—
is being carried at & radius of 12 ft. from the centre of the section. -
(LM.E.)
8. A bar of steel under o tension test is gripped so that the line of pull
is § in. from tho axis of the bar. It is 2 in, diameter. What is the maximum
stress produced in the specimen when the load registered by the testing
machine is 10 tons ! Deduce any formula you use, (U. of B.}
7. A short timber prop 8 in. diameter is loaded with a load of 10 tons
along a line parallel to the axis and at }in. from it. Find the maximum
and minimum stress in the section of the prop. (U. of B.}
8. You are required to ascertain how the strength of mild steel hollow
tubea (sny, 4in. external and 3}in. internal dinmeters) used as struts
depends upon the length of the tube. How would you carry out tests !
Dascribe any special fittings you would nse. What kind of curve would you
plot * Compare the failure of a tube 1 foot long with one 8 fi. lonﬁ.
(U. of B.)

=i

9. A sguare hollow east-iron column 12 ft. long, midea 6in., and walls
14 in. thick, is fixed at the lowsr end and pin-connected st its upper end.
Calculate the load the column will safoly earry, allowing a rmmn:ﬁlu factor
of safety.
5 1
J. = 36 tons per 8q. in. Constant = 1600
e (U. of B.)
10. A ecast-iron column, rigidly fixed in the ground, with its upper ond
fros, is 20 ft. long ; the cross-section is o hollow eylinder 12in. outside
diameter, 8in. inside diameter. Caloulate tho safe load this column will
CArTY.
{f, = 38 tons per square inch. The constant for a column pin con-
; 1
nected at both ends is ﬁm) (U. of B.)
11. A round bar 2 in. dinmeter is subject to a pull of 5 tons along & line
parallel to the axis and }in. from it. Determine the maximum and
minimum stresses on the sections of the bar. .
12, A solid cast-iron column, 4 in. in dinmeter and 2 ft. long, is fixed at
both ends. Caloulate the load the column will safely earry by Bankine's
and Euler's formula.
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In Rankine's formuls, take a = %ﬂﬂ and safe compressive stress for

short lengths of the material = 7 tons per aquare inch.

In Eulor's formula, take E for cast-iron = 10,600 tons per square inch.

(U. of B.)

13. Compare the strongth of columns 12ft. lomg econtaining the same
volume of metal : (2) the column being rolled steal joist of I section 10 in.
% 8in ¥ fin ; (b) cast-iron hollow eylindrical column, the metal being § in.
thick.

Use Rankine's formula—

s e R
5

[ for atesl 21 for cast-iron 36
1 » 1
a for steel 500 for east-iron 1600

(U. of L.)

14. Discuss briefly the limits of application of Euler's and Rankine's
formula for struts.

A mild steel tube is used ns a vertical strut. It is 2 in. internal diameter
and the metal is 4 in. thick. It is 20 it long and firmly set in & foundation
of conerete. The uppor end is quite free. Making reasonable assumptions
as to constants, caleulate the lond at which it will fail.

If the strut was reduced to 3 ft. in length, what load could it carry ?

(U. of B.)

15. Find the extornal diameter and thickness of metal for a hollow steel
strut 10 ft. in length and ecapable of carrying an axial thrust of 20 tons,
The ratio of diameters to be 10 to 8, and the ends of the struts are firmly
fixed. TUse the Rankine formula: f, = 21 tons per square inch ; a = 1/7500
(for rounded ends) ; factor of safety = 5. {LM.E.)

18. A rolled steel joist, 8 in. deep and 6in. wide, is used ns o strut. Iis
moment of inertin ig 110-56 in inch units, and the cross-scctional area is
10-3in. A eompressive load of 40 tons acts along a line lying in the centre
of the web and parallel to the longitudinal axis of the joist, but at a distance
of 2in from it. Determins the maximum intensity of stress induced.

(LM.E.)
17. Find the safe working load for & column of the section i
indicated in the sketch, 20 ft. long, and having its ends fixed, le——9——»!

using the formuls ——
. : 64 4 {‘
Working load = i tons % - a
L+ 55000 B L

where 4 is the cross-sectional area in square inches, Fio. 02
L is the length of the column, 3 k

and k is the least radius of gyration about a diameter, (LC.E.)

18. A steel built-up stanchion is made of two plates 168in x {in., two
plates 12in. x 3 in., and four angles 3} in. » 3}in. ® fin., thesection formingan
internal rectangular space of 12 in. » 7 in. The stanchion is 30 ft. high and
loaded centrally. Considering the stanchion is fixed at both ends, determine
the safe load. (U. of L., 1023.}

19. Find the necessary diameter of o mild steel strut & ft. 4 in. long, ireely
hinged at each end, if it has to carry a thrust of 10 tons with a possible
deviation from the axis of one-cighth the diameter, the greatest compressive
gtress not to exceed 5 tons per square inch, (E = 13,000 tons/square inch.}



160 THEORY OF STRUCTURES

o0, A mild stesl strut, pin-jointed, 5ft. long, I = 10+0 (in.}*, carries an
axial thrust of 5 tons. What transverse load can it earry at the centre to
develop & maximum stress of 22 tons per sguare inch, assuming the strut
remaing elastic? Cross-sectional area of tho strut, 0-5eg. in. (B = 13,000
tons per square inch.)

91, If the strut in Question 16 is pin-jointed, 100in. long, snd the
secentricity is as before, find the buckling load of the strut (a) by Euler's
method, (b) by Rankine's method, assuming the failing stress of the steel ia
23 tans per square inch in compression.

28 A gtrut, consisting of a steel tube 4in. outside diameter and 7, in.
thick, is loaded along an axis parallel to the centre line and }in. from it.
The tube is 120 in. long. The yield stress of the steel is 28 tons per square
inch. Find the crushing load of the strut. (L.U.)

Students are requested to solve the problems, where possible, by the
straight line and parabolic formulae, using any constants necessary from the
tabileos,



CHAPTER VI
FRAMED STRUCTURES WITH DEAp LoADS

88. Frames or Trusses. A frame is a structure which consists
of ties and struts pin-jointed or riveted together; its individual
members are in tension or compression. Ties take pulls,
struts take pushes.

Notes on the Frames given in Fig. 93. (a) is the Lunville
or N-girder, or Pratt Truss. The verticals are struts and the
diagonals are ties.

(¢) is the Howe Truss : the verticals are in tension and the
diagonals are in compression.

(f) and (d) are respectively the single and double Warren
girders, both ties and struts being inclined, usually at angles
between 45° to 60°.

NNz % B WAVAVAVAVAN
b

Fic. 83

(e) and (f) are hog-backed lattize girders or lattice bow

irders.

(g) to (n) are various types of roof-trusses, (g) and (h)
being used for small spans up to 30 ft. or so; (k) and (f) for
large spans of 45 to 50 ft.; (n) is a French truss, which is

161
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used for a span of 60ft.; (m) is a common factory roof,
known as a northern light or saw-tooth roof. The short side
is glazed to admit a northern light without direct sunshine.

89, All frames in this chapter and the following ones are taken
as pin-jointed.

Frames may be divided into three classes, viz., perfect,
incomplete or imperfect, and redundant.

A perfect frame has just sufficient members to keep it in
equilibrium under all systems of loading. Frames in one
plane are called plane frames. The simplest plane and per-
fect frame is the triangle : the basis of all perfect frames.
The frame in Fig. 94 is a perfect frame.

& 5 F
a e C
Fro. B4 Fio. 85

If the diagonals of the frame in Fig. 94 were removed, then
the frame would be incomplete or imperfect. Under certain
conditions of loading it will be in equilibrium.

The frame in Fig. 95 has too many members (by ab and b¢),
and it is a redundant frame. If the diagonals ab and be were
removed, the frame would be perfect, as shown in Fig. 94.

If ab and bc are only capable of taking tension and are
consequently quite light, the structure would be just braced ;
for if de and ef were taking tension, then ab and bc would
slacken off. Counter bracing as shown is inserted if the
sign of the shear in the bay is likely to change due to loads
moving over the frame. Overbraced frameworks are perhaps
more rigid than perfect frames, but the loads in the members
cannot be calculated by simple processes. Often they are
divided up into perfect frames with certain common members ;
the loads in each are calculated separately and then added
algebraically. This is not an accurate method, but it gives a
close approximation in many cases.* The number of mem-
bers in a perfect frame is 2n — 3, where n is the number of
joints.t Any number greater than 2n -3 will represent the
number of “internal” redundant members.

* See Chapter 1X.
t See also Chapter IV for notes on supports and “external” redundants.
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90 Methods of Determining the Stresses in Framed Perfect
(Plane) Structures. The forces, including the reactions, acting
on the structure being known or caleulated, the loads in the
members themselves may be found by one, or a combination
of three methods—

(1) The stress or force diagram ;
(2) The method of sections ;
(3) Resolution.

The supports for the frames will be such that the reactions
can be caleulated by statical methods. There will be no
redundant restraints at the supports. (See Chapter 1V.)

91. Stress or Force Diagrams. Probably the most satis-
factory method of determining the forces in the individual
members is by means
of a stress diagram.

*The following A
method is given by
Capito in his Applied
Mechanics—

Fig. 96 (z) repre-
sents a  triangular
link frame with three
forces P,, P,, and
P, acting respec-
tively at the three Fic. 96
joints in the plane of
the figure. The lettering of the frame and the forces may
be as shown in the figure; it will be seen that every bar
and foree has a letter to its right and left which gives a name
to it. The bars are named thus: 04, OB, OC. This is
called Bow's notation.

As every force has also a letter on each side, they may be
named, when taking a clockwise direction round the frame,
AB, BC, CA instead of P,, P,, P;. Finally the joints are
named 0AB, OBC, and OCA.

Resolve each of the forces P,, P,, P, in the direction of its
adjacent bars. At the joint OAB, P, is resolved into 5§,
parallel to 04, and 8, along OB; similarly for the other
joints. Obviously S, and 8, act in the same direction but not
in the same sense, and similarly for the other forces.

* Capito, Applied Mechanics, Part 11 (Griffin.)

c

(a) o
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The given forces will obviously be in equilibrium when
S’_'iT S.=G St+ SI:G Sﬂ.+ S.:D‘

Choose any pole O in Fig. 96(b), and draw the three straight
lines Oa, Ob, and Oc respectively parallel to the bars 04,
OB, and OC.

Set off to some scale Oa = S; = - §;
Obh = 8;= -8,
Oc = 8= -8,

then ab = P,, be = P,, and ca = P,.

As these three latter form a triangle, they are, therefore, in
equilibrium.

Note.—At each joint there are two internal forces (in the
members) and one external load ; as the frame is in equilib-
rium, then these forces are in equilibrium, and so form the
sides of a triangle. If there are more than two members at a
joint, then all the internal forces and the external force are
in equilibrium, and the forces to scale must form a closed
polygon.

The diagram in Fig. 96(b) is called the force-stress diagram.

When »n coplanar straight lines emanate from a point 0 and
an n-sided polygon be drawn whose sides are parallel to, or
perpendicular to, the corresponding lines through O, then the
polygon is called the reciprocal for the point 0.

In Fig. 96(b) the triangles Oab, Oca, and Obc are recip-
rocals for the joints 0A4B, OCA, and OBC respectively ;
hence the force-stress diagram is the reciprocal force diagram
for the frame shown. Fig. 96(b) represents the three triangles
placed in one figure. In practice, the external loadings on a
frame are given; for known conditions, and by means of
moments or otherwise, the reactions may be found.

A simple frame is shown in Fig. 97 loaded with a single
load W acting vertically at the joint OBC. The frame is
supported on rollers at the joints OAB and OCA.

Let OB = 0C,
then obviously the reactions R, and R, acting vertically

W
upwards are each equal to 5"
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The lettering of the diagram, as indicated, starts at the
centre space 0, and the remaining spaces formed are then
lettered in a clockwise direction, that is, lettering all the
spaces between the external forces first and then between
gm members themselves (as also shown for another frame in

ig. 98).

Fic. B8

Continuing, for the simple frame in Fig. 97, draw a load
diagram (Fig. 97 (b) ), which in this case will be a vertical
straight line be. The force-stress diagram for the frame consists
of a number of triangles.

be = W to scale and acting from & to ¢; that is, down-
wards.
ca = R, upwards ;
ab = R, W
The triangle abe in this case is a single line, and be = ca + ab.

Considering joint O04B. From b on the load diagram

draw bo parallel to BO, and from a, ao parallel to 40 ; then
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Oab is the triangle of forces for the joint OAB; ob and Oa to
scale represent the internal forces in OB and OA acting at
the joint.

Considering the joint OBC, W is the external force, and
from the previous triangle one internal force Ob is known ;
i.e. on the force-stress diagram bec = W ; Ob = internal stress
in OB. Joining O to ¢ completes the stress diagram, which
is a triangle Obe for the joint OBC. Oc¢ to scale is the
internal force in the member OC.

02. The Kind of Stress in a Member. (Fig. 99.) (i) Consider-
ing joint OBC. Start with W and work round the joint in a

0B oc DA

Dlllctmn IntTernal Fo*
i

5!;::& 5

Member

Carnes,pandmj to

Ex%ma! Lnjds Dnr-ecImn.

Fia. Bﬂ

clockwise direction. On the force-stress diagram, starting at b,
be = W which is in a downward direction.

Consider the member OC; in the stress diagram, pro-
ceed from ¢ to o \ This indicates the internal force in
the member O0C acting towards the joint OBC ; similarly for OB,
completing the direction round the stress diagram O to b is
in direction, again indicating an internal force acting
towards the joint OBC. The directions of the internal forces
at the joint are indicated in Fig. 97.

(ii) Consider the joint OAB; on the stress diagram a to b is
{ upwards; b to O is / , indicating a force acting
towards the joint OAB; O to a is ——, indicating an internal
force acting away from the joint.

(iii) Similar reasoning applies for bars at the joint 0AC.

Internal forces acting towards a joint indicate a strut:
away from a joint, a tie. (Fig. 99.)
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93. With this method, if there are three unknowns to solve
for at a joint, it fails. It is necessary to find one of the
unknowns by another method, thus leaving two which ecan
be found by continuing the force-stress diagram.

94. The Method of Sections. If the internal forces acting
at the joints of the link frame DA, DB, and DU are balanced,
equilibrium will not be disturbed

by cutting the bars DB and DU B

(Fig. 100), provided that the neces- 0
sary external forces be added at the BNV
points where the bars are cut. The D H

two latter forces and force BC must
balance ; but only BC is known.
As, however, the resultant of any
two of the three forces acts in the
line of the third force, we may choose Fra. 100

any point O in the line of action of

one of the unknown forces, say DB, as fulerum, and measure
the lengths of the perpendiculars p, and p,, let fall from O
on the forces BC and CD respectively. We have thus,

p, % external force BC = p, X internal forece in DO,

c

Henoe, force in DC = ;’%‘ w% force BO.
]

By this method, known as the method of sections, all the
internal forces in the bars may be determined.

A
o | K M
H L N
5T >1e-57
Dy C ¥ B f
B s 75
Fra. 1004

Hlustrative Problem 24.

A loaded frame is given in Fig. 1004, It is required to find the forces and
kind of stress in the members DH and AJ,

Always take o dividing line, so that when taking moments about a point
0, the unknown foreo required will ba the only unknown foree having o
moment about this point. The reactions are equal and of 7-5 tons each.
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To Fixp e Force 1x DH. The dividing line will cut the
members AJ, JH, DH as indicated in Fig. 101(a). This por-
tion of the beam is in equilibrium under the loading shown.

The force in DH is required. Take moments about the joint
AGHJ, ie. point Y. Then from the diagram,

T*E}(ﬁ[(}mﬂﬂx-‘ﬁl’,)]

Force in DH = dh = 7-5 tons, and it acts away from its
joint EFGHD, thus indicating a tensile force in the member.

Fro. 101

SIMILARLY FoR THE MeMmBer AJ,
Moments about the joint Y, see Fig. 101(h).

Then AJ % 5 D] = 75 x 10 {C} +5X5 [D}
— 50 {C} tons-ft.

Hence the internal force in AJ = 5—.? = 10 tons {h:-}

and it acts towards the joint AGH.J and, therefore, the member
AJ is a strut.
The frame may be cut also as indicated in Fig, 101{g).
In this case take moments again about ¥, for the left-hand
portion,
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95. Tue Force 1x THE MEMeER J H is found from the method
of Resolution of Forces. This method consists in resolving the
resultant force at any point in a strocture or across a partie-
ular section, along the members of the frame meeting av that
point or cut by the section. B
If thereare more thantwo o« 5 « o~ - 5 < o
members meeting at a i
point, then all gt.he re- £ 4 o b K : M
mainder must be known !
in ordertoobtaintheloads 4 27V IN 4~ o #E0 f
intheremaining twobythis 372" = 57 257
method. Fig. 101(a). (a)

At the joint AJHG, four X
members meet. It canbe g cm
shown by the previous
method that the internal P b
compressive force in the L
member AG is 7-5 tons.

The joint is in equi-
librium, therefore, the
algebraic sum of all the

horizontal components of (b)

the forces in the members

must be zero, and similarly de
for the wertical com- Fia. 102

ponents,

The members AG and 4J are horizontal, GH vertical, and
JH (from the dimensions of the frame) is at an angle of 45°
to the horizontal.

Let tensile forces be positive and compressive forces negative.

Resolving horizontally,

7-5 (4G) - 10 (4J) = — (horizontal component) JH

Horizontal component in JH .. + 2:5
and JH must be a tie.
JH cos 45° = 2-5

therefore, tensile force in JH = 2-5v/2 tons.

The vertical component of the force in JH = + 2:5 tons;
therefore, the vertical force in the member GH is - 2-5 tons:
as these are the only two members acting at the joint ¥ ;
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therefore, GH is a strut having an internal compressive force of
2-5 tons.

[Nore.—GH takes the shear force (10 - 7-5) tons = 2-5 tons
in the second bay from the left-hand support.]

96. The method of resolution is not so elegant as the two
previous as a whole. Where members meet at right angles to
one another, however, it is often the quicker method. A
combination of the methods may be the most useful.

Illustrative Problem 25. (Fig. 102.)
Tha lattice girder shown in Fig. 102 is loaded at the joint A with a load
of 50 tons. Find the forces in the members, stating the kind of foree.

The force-stress diagram is shown in Fig. 102(5) : the arrows
on the members in Fig. 102 indicate whether the member is
a strut or a tie.

TABLE OF FORCES

Btrut r Foree in Member. Strut Foree

Member, ar Tie E | ‘Tons, Member. or Tin E;J: lr{-,gimbcr
BE S8 - 3756 DE -
BF 8 = 37-5 EF T + 1,,-?"" x 375
BH & = 25 Fi T + 12-5
BJ s - 25 GH s - 1,;- 12:5
B S = 12-5 H.J - 0
BM S8 = 12:5- JE T + 42 % 125
oM - 0 KL 3 = 13-5
K T + 12-5 LM T + 32 ¥ 125
o T + 375

DererMINATION OF SoME OF THE FORCES BY THE METHOD
oF SectioNs. Take a dividing line through the three mem-
bers in the second bay from the left and moments for the left-
hand portion of the girder about the joint FBH®.

37-5 X 15{0 = GC X 15 D}

Force in GC = 37-5 tons and acting away from its joint, so
that O is a tie.

Taking moments of the forces to the left of and about the
joint CGHJK to give the force in BH.

37-5x3n(@+5ux15{>}+EH:-<15.;');=0
or 376X 3—50x 16— BH % 15 =-l}
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Force in BH = 25 tons and acting towards its joint, therefore,
negative
so that B is a strut.
The Force in EF by the Method
of Resolution of Forces.
The force in BF can be shown
equal to 37-5 tons.
Horizontal component of force 15"
in EF 4 force in BF = 0
EF cos 45 + (- 37-5) = 0
therefore, force in EF
- :;:—:ﬁf = 4/2 % 37-b tons
and EF is a tie.

Illustrative Problem 26.

A Warren girder, 30 ft. span, has three
equal bays in the lower boom. All the
diagonals are inelined at 60° to the hori-
zontial. There are loads of 15 tons at each
of the two jointa in the lower boom. Find
the forees and the kind of foree in the
members of the girder. (Fig. 103.)

All the members are 10 ft. long.
The force-stress diagram is given in Fig. 103(b).

TABLE OF FORCES

Fi I Tie (T} Fi i
Member. | GELUS | Mamber. Member. | TRL0GT | omaber.
a0 30
AF &8 - '_.?3' EF n + -V-FS
30
AH & - ﬁ Fa — ]
15
BJ T + ﬁ GH — 0
30 30
o6 T e HJ i +o
15 30
DE i + '\TT'& J4 8 - :"_ﬂ-
S0
AE S - '——3
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The student is asked to check the forces by the use of the
other methods.
Ilustrative Problem 27 (a). (Fig. 104.)

Find the siresscs in the members of the truss in the sketch, due to the
loads indicated, and distinguish which are tensile and which compressive.
(LC.E., 1923,)

(=2
Strut (5) Force in
Member  or Member,
= Tie_( T).  Tons.
BH 5 —-27
cJ S — 225
DL 5 — 225
EM 5 =2l
M& T + 2+ 25
KG T + 15
HG T +2:25
Hd S5 —0:8
JK T +0:8
KL T + 08
LM S -8
F
Scale - Binch = 1 Ton.
Fia, 104
For the given loading, By = E, = 2 tons.
Member Sizut (5) ;‘;:nn;:? Membsr S"—”tip !Flg;fb::
' or Tle (T l Tons, : " or ‘Tie (T, ool
BH 8 - 2.9 HEG T + 2.08
oJ 8 = 225 HJ o - (-8
DL 8 - 285 JK T + 8
EM 8 - 27 KL T + (-8
MG T + 285 LM 5 - B
Ka T + 15
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Ilustrative Problem 27 (b). (Fig. 105.)

The truss in Problem 27a is fixed at one end and on rollers on the other.
Wind loads, as indicated in Fig. 105, act on tho roof. Find the reactiona
and alsgo the forees in the members due to this loading.

The resultant of the wind loads Wy = 2 tons will act normally to the
surface at the joint BOGF. The roof truss is in equilibrium under Wy and
the two reactions ; hence the threo forces must form the three sides of &
trinngle. K, at the rollers will act vertically upwards. Draw the triangle
of external forces, including the reastions as shown in Fig. 104

ad = 2 tons: ae = 1-1 ton ; then de = Ry in magnitude and direction.
!ﬂ.=R1I= 1-1 ton : de = By = 1-28 tonsa.
Draw the stress diagram as h-nrom. starting at the left-hand reaction.

Tllustrative Problem 27 (). (Fig. 106.)

The roof truss in the previous problems 27a and 27b is londed with the same
dead loads and wind loads acting ther. Find the forces in the members.

Method 1. 'The two loads act independently and so obtain a force-stress
dingram for each ; add algebraically the forces in the members due to the
two kinds of loads to give the resultant forces in them.

Method 2. On the left side of the truss in Fig. 106a, find the resultant
loads and their lines of action for the dead and wind loads at each joint
separately. As the external loads and the reactions are in equilibrium, it
does not matter the type of truss. Divide it up into single triangles as illus-
trated. Working from the ridge joint, draw a force-stress diagram (for the
newly-arranged truss), which will eventually be closed by the reactions which
can be taken off to scale. Draw the force-stress dingram for the original
truss, the load polygon for which will be abedefg.

The diagrams are given in Fig. 106,
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97. Roor Truss. Wrra Turee UNKNOWNS AT A JOINT
(Fig. 107). Caleulate the reactions in the usual way, starting
from the left-hand reaction. Drawing the force-stress diagram,
the forces in the members CK, K4 are found. Proceeding to
either of the joints COMLK or KLPA, it is found that there
are three unknowns at each joint.

Force Stress Diagram k
for finding <
R, and Ryg.

e
- F
o 1" 2 g
| ) T
Fra. 108

Divide the truss into two parts by a dividing line through
the ridge joint and the member P4 ; then the left-hand half
of the truss is in equilibrium under the external loading, and
the internal force in PA = T = pa acting as an external force.
Then from moments about the ridge joint,

X (moments of the external forces and R,) 4 (pa)h = 0

In this case, T will act away from the joint, and so PA is
a tie; pa is thus found, leaving two unknowns at the joint
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AKLP. Force in KL can be found, leaving two unknowns
at the joint CDMLK. Proceed with the completion of the
stress diagram by the usual methods.

O97a. NoTeEs o% WIND PRESSURES.

P = Intensity of wind pressure on a plane normal to the
direction of the wind.

P, = Normal Intensity of wind pressure on a plane inclined
at an angle 6 to the horizontal.

Fia. 107

FormuLAE FOR P, .
(1) P, = Psinf. (See Goodman's Applied Mechanics.)

e 2gin (Dunhemin's formula : see Arrol's
(2) Fo = 1T eme Handbook by A. Hunter.
_ Hutton’s formula : see Applied
S (184 cos @ - 1)
() e =S 0tnd ( Mechanics, Duncan. )

The tangential component of the pressure P on the surface
inclined at the angle 6 to the horizontal is assumed to exert
no pressure on the plane.
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EXAMPLES

1. If & number of foroes, some of which are inelined to the vertical, act
on o hinged structure, and the direction of the reaction at one point of sup-
port is known, show how the magnitude of both reactions and the direction
of the one at the other point of support can be found.

2 Find the stresses in the members of the truss in Fig. 108 due to the
loads indieated, and show which are tensions and which mmpm[ﬂ:ﬂi&c E)

Fra. 109 *

3. If the left extremity in the sketch in Fig. 108 is hinged and the right
can slide horizontally, find the stresses in the members due to a wind of an
intensity squal to 40 1b. per square foot on a vertical surface blowing from

loft to right. Trusses 10 ft. apart. (LC.E.)
4. Draw a reciprocal disgram giving the forces of the members in the
framed cantilever shown. (Fig. 108.) (LO.E.)

5. Find the stresses in the members of the truss in the sketeh due to the loads

indicated, and distinguish which are tensile and which compressive, (Fig. 110.)
LOeE.)

6. If the right extremity of o truss of the dimensions in the above sketch
(Fig. 110} is hinged, and the left one is capable of sliding horizontally, find the
stresses in the members due to a horizontal wind of intensity equal to 35 |b. per
square foot on a vertical surface, blowing from left to right, mumi.ng that
the total wind pressure on the inclined surface is equal to its normal
component. Trosses 10 ft. contres,

7. 1f a roof truss, as in the sketch (Fig. 111}, is loaded as indicated, draw
the stresa dingram to scale, showing which stresses are tensions and which
COMpPressions,

& If trusses similar to that in the sketch (Fig. 111), and loaded as
shown, are placed 10 ft. apart, and the support at A is hinged and that at B can
slide horizontally, and a wind is blowing horizontally from the right-hand
gide with a foree of 30 1b. per square foot on s vertieal surface, draw the
stroas diagram. (LC.E.)

9. In the braced cantilever shown (Fig. 112), the three members of the
lower chord are each 10 fi. in length, and the upper chord is straight and
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moots the vertical face of the wall 12 ft. above the lower chord. The diagonal
bracings are attached to the upper chord at points vertically above the centres
of the three members of the lower chord. Neglecting the weight of the
structure, draw the complete stress diagram for it, and determine the reactions

Fia. 113

at D and ¢, distinguishing between tensions and compressions when loads
of 6 tons and 10 tons are suspended from the joints A and B respectively.
Tabulate the stresses in the members, (U. of L.)

10. A Warren girder hos two bays in the u[l!n-r and three in the lower
boom. It carries o load of 2 tons at each panel point in the upper boom.
Diraw, to scale, the stress diagram for the girder. (Fig. 113.) (LE.E.)

11. Determine the reactions and the forces acting in the members of the
vertical frame shown in Fig. 114,

2lons

;r--f.s'-a:g—- 1550~

Fic. 114



CHAPTER VIII
DerLeEcTION OF PERFECT FrRAMES UxpErR DEAD LoADs

98. It has been shown that, due to loads acting on a frame,
tensile or compressive forces are induced in the various mem-
bers of the frame, causing lengthening or shortening of the
members. Assuming that the strains are within the elastic
limits of the material, then the resilience* of each of the
members can be shown to be equal to

1 F2L

2AE
where F is the total force, L the length of the member, 4 the
cross-sectional area, E the modulus of elasticity.

Let zin. be the extension or compression of a member

Lin. long acting under a load of F tons. 4 is the cross-
sectional area,

F
z 4 FL
TN A B

The average internal load acting through the distance z is F
therefore the total internal work per member 2

99. Castigliano’s Theorem. For any franie, assuming no
work done by the reactions,
Total internal work = X internal work of all the members
= total external work.

Consider any structure (Fig. 115) loaded with a number of
concentrated loads,

W, Wy, Wo. Wy, i . W,
Total external work done on the structure

= U = {Wy + Wy + W + § Wy, + - (1)
a __' BResilience = internal ut.m.in mar#y_t:ida Art, 40). :
178
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where ¥, ¥, ¥, Y3, 0tc., are the deflections of the structure at the
load points and in the same direction as that in which the
loads act.

Now let W be increased by 8W, i
then the deflections under all the M
loads will be increased b}r By, ﬁyl,
dys, ete. And a small increase in
external work=4U=internal work
— Wy + 10W - 3y + Wydy,

+ Wedy, + . (2) Fia. 115

Now let the loads W + oW, Wy,

I¥,, etc., be applied initially ; then the work done

= U, = W + oW) (y + dv)
+ §Walys + )+ EWalys + Oy2) + -
=Wy + 10W .y + W - by
+ 3O0W -0y + W, + Wy, + . . . . (3)
Subtract (1) from (3), then
Ui— U=8U=14-8W-y+ iW oy + 1W,dy,
R e o )
Divide Equation (2) by 2 and take the limit, then

E——}W dy + tW, 0y, + W dya + . . . . (5)

Subtract (5) from (4),

LA

. - o0U al
ie. sp=V=3W (in the limit) . . (6)
This is known as Castigliano’s First Theorem, which postulates
that in any beam or truss, subjected to any set of loads, the
deflection of an arbitrary point X is equal to the first partial
derivative of the internal work of deformation with respect

to a load W at the point acting in the direction of the desired
defection. )
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100, Exampre. Consider the Warren frame or girder in
Fig. 116,

(@) Let W, be the only external load acting at the joint
DEFGC.

The force-stress diagram can be drawn for the frame with
only this load acting.

The force in any member, say, DE = Fpz = LW,
where I, is a numerical coefficient.

Similarly the force in member FA = Fy, = kW,
where k," is a numerical coeflicient.
Use similar notation for

the forces in the other
members.

(b) Let another load W,
act as indicated at the joint

T D wl C "i’ B T CGHJB; a force-stress
R R

~diagram for this load
W W2 acting alone can be
Fia. 116 drawn,
Let the force in DE
due to W, acting alone be F ;' = LW,

Force in FA due to W, = F'y, = Ik,/’W, - where £k, is a
coefficient ; and similarly for the other members; &), &, etc,,
and k', k), ete., are numerical coefficients.

If a girder consists of a number of bays and there are loads
acting at several joints, then forces are developed in each
member of the frame due to each load acting separately.

(¢) Consider the joint where W, is acting; imagine another
load of unit magnitude at the same joint. A force-stress dia-
gram can be drawn for the load of 1 ton acting alone, and the
shape of this diagram is the same as for W, acting alone.

Then force in DE due to 1 ton acting alone will be
therefore,

Fiw= Kk % 1, because 1 replaces W,.

Therefore k, is the force in the member DE for unit load at
the point of application; k," = foree in member FA due to
1 ton acting alone instead of W, : and so on for all the other
members.
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(d) The total work done in any member
_1Fu
D4R
loads
[
= kW, + kWy + BWs+ . . . W) 15

where F = total force in the member due to external

(¢) Total work done on the whole structure

179
=234
1 FY : Y
therefore U/ = 3’ AR for one load U= §Wy = 3 SAE

Soy= 2 % so that the deflection may be found for one

load from this equation,

1 Fi :
() U=33 55 = Wi+ bW+ ... B 7p

I
4 3 Wy b W+ B Wa 4 . .. ESWLR-R

1

+ .. .ete. : 3 (7)

(g) To find the deflection y of the point of application X
of any load W, which is one of a number of loads acting on the
structure differentiate [/ partially with respect to the load W,.

QU Nl sk ok
aw, 27 oW, 4E
; !
= kl(klu"r]_ + k,"’, —|— AR k,.“",] :‘!E

by (ke Wy 4 kWt . . kW) ﬁ

il T Y

Now (k,W, + kW, + kW, + K,W,) = line on force-stress
diagram for all loads for one member ; (k' W, + &s' Wy + k' W4)
= line on force-stress diagram for all loads for another
member ; and similarly for all the other members.

(ky, ky', eto., are forces in the members due to 1 ton at the
point of application.)

7={T.5430)



182 THEORY OF STRUCTURES
from eqn. (6)

but :—g = y the deflection in the direction of W,.
1

Total force in a memher)( force in a member
) < \ due to external loads /\due to unit load at X
=Y i x1(9)
aF i
=3F 5w, 48
. l aF
=2F.u..ﬁ, Whﬂm“"'}ﬁifl : - . (9a)

The displacement at a point where no load is acting
W= zero. Lk, W,= 0;

therefore &, is not equal to zero, but equal to the force in a
member due to unit load acting at the point where W, = 0.

The procedure to get the deflection at any point on a loaded
framed structure is (1) find the load in each bar due to the load-
ing on the structure; (2) take a unit load acting in the given
direction and treat it as the only force on the structure and
find the force due to it in each bar; then (3) use equation (9).

In solving problems for displacements, it is best to draw up
a Table as outlined below.

(1) (2] (3) (4) (5) | (8) | (T) (8)
Name or | Foroein Foree in Mem- | Product 1
No. of | Membeor bor dus to |(2)x(3)| I | A | = | 4) % (T)
Member | dus to all unit load at A
londs place  where
deflection re-
quired
aF aF ar
% aw, | Taw, Foiv, 4
Sum Total of (8) . . X
Dedlsotion required = o Total of (8)

E

In bridge frames or girders the loads on the bridge are
generally transmitted to the main girders by cross girders at
the joints, and the dead loads act vertically downwards ; it



DEFLECTION OF PERFECT FRAMES 183

is only therefore necessary in these cases to find the vertical
displacements.

101, If at a joint the load does not act vertically downwards,
the loads in the members can be found for the load acting in

its true direction; unit

1 i " b=yl
oad will act in the 2 5 : :
gsame direction, and F H| J L TH_
the displacement in the EX |25 K L
direction of the load 0 1
may be found. This A e 1
disglmment canbere- ang 2 V.0 .jﬂ G E.":Er
solved vertically and /17 POE NN (1}
horizontally. here (@) 2 «
The horizontal and cm
vertical displacements :
can also bﬂpfm_md by imﬁ D:agram
B : : e to 17 load
imagining unit hori- 4 A
zontal and vertical loads jh 15 b
at the point of applica-
SAEahy . See Fg.lITAToP
The displacement in Stress Diagram
the direction of the due fo 507 load de
load may be found by g
compounding the two (b)
component  displace- Fro. 117
ments.
To obtain the displacement of a single point in a truss, the
equation SF 1 ;

will usually give the readiest solution. To obtain the simul-
taneous displacements of a number of points in a truss, the
Williot diagram is the simplest and quickest method. This is
a graphical method of constructing the deflection diagram.
Space does not permit of the discussion of this diagram and
reference should be made to it in other works. It is largely
used for truss deflection problems in the field of statical
indeterminancy.

Hlustrative Problem 28,

Part I. The lattiee girder shown in Fig. 117 is loaded at the joint A
with & load of 50 tons. Find the amount of deflection of the girder st
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the point 4. The figures sgainst the members in the left-hand half of the
girder indicate the cross-sectional area of the member in square inches (and

are the same for the right-hand half).

(1.St.E., 1823.)

E = 13,000 tons per square inch.

The force-stress diagram is as in Fig, 1174 (b).

(b)

Fro. 1174

w B0 ¥

¥

ba) e

y (inches)

IX
2

158,000 :
= — ¥ — = 245 in.

Yo g
| |

&
|

158,900
13,000

1

13,000 "~ 50

>

e = ===

D>

For the deflection
of A vertically down-
wards, as only load
is at 4, y iz the dis-
placement ;

1 1
5y =5 Xy x 50

= external work
1. Fo

=52 4

F=1force in a
member due to 50
tons only acting.

(See Table I, page
186, for forces, ete., in
the members,)
i

7, = 158,900

tons-in, units

Part II. For the given conditions of loeading of the girder in Fig. 117,

find the deflection of the joint A,.

1 ton at A,

draw up a table as given in Table 11,

In this case,
Find the forees in the members due to this unit load. Next

ine a vertical load of

Let tensile forces be positive and compressive forces

negative.

T is for tensile and C for compressive forces in the

following table.



TABLE 1I FOR PROBLEM 28, PART II, PAGE 184

_{mﬂln
e el BT
Foree In Tons dus | Load at am,
Member. |to50-ton Load (kind) i{
Bt 4. fnnid gj,’- {2):(3)
L] -ﬁ1
(. (- 2 T |
BE -315C| - «5C|+187
BF -37560| - +50C|+1875
BH -25C|-1 O+ 25
i %] —25C|-1 C|+ 25
BL ~125C| - -5C |+ 625
BM —1250C| = 50|+ 826
oM + 0 0 (1]
CK 4+ 125 T|+ 5T|+ 6-25
oqDa) |+ 375 T4+ -5T|+1875
DE |+ 0 0 0
EF 4+ 4/2%x315 T +-"~“;—2T + 375
Fa + 125 T| -5 C|-625
a
GH -v/2x 1250 +-‘-;—T -12:5
HT +0 o 0
JK + /2% 125 T |+ iﬂ? + 125
KL - 125 cl-65 C|+ 625
2
LM 4+ /2% 125 T |+ =T |+ 12:5

Iln.

L L

150

180

180

180

150

180

150

180

180

180

V2 % 180

150

42 % 180

180

2 % 180

180

2 % 180

To

| .

15

15

10

12

12

10

15

12

10

10

12

15

tal o

™

15
15
12
12
15

15

15

15

18

12¢/2

16

184/2

184/2

12472

I(8) +

7).

oF
Fow,

* 4

{4) 2 (T}
(8.

4+ 281
+ 2381
+ 300

+ 300

+ 281

+ 636

- ™

+ 318

+ 212

185
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TAELE FOR PROBELEM 28, PART I PAGE 183

. dsq. I i
Member. | King, |Forge n Member Lin. gl 6 X 4 -

BE |Strut(8) — 375 180 12 | 108 | 15 | o100
BF 8 - 376 180 12 | 1406 15 ﬂl,lm
RH a8 =250 180 15 625 12 'Ebm
BJ ] - 250 180 15 625 12 7500
BRI 8 - 125 180 12 156 15 2940
BM B - 12-5 180 12 156 15 2340
CM | Tie (T) 0 180 10 o| 18 ;
K T + 125 180 12 156 15 2940
Ciy T + 37-5 180 12 | 1406 15 21 100
DE T 1] 150 10 0 18 ’ 0
EF T |+ vax375| v2x180 |16 (2812 | 122 | 0000
FG T + 12:5 180 12 156 15 éa'm
GH 8 |-v2xi12s|y2x1s0| 10| 312 |18y2| Zoe0
HJ - - (1] 180 o 1] a6 0
JK T + 42 % 12:5 ] 4/2 % 180 | 10 312 | 1842 7050
KIL 8 - 125 180 12 156 15 29.40)
LM T + 42 % 125| 42 x 180 | 16 312 | 1242 5300

158,900

Nore.—Tensile forces plus, compressive forces minus, and F? is always
positive.

(Problem 28, Part 11, confinued.)

The unit force-stress diagram for 1 ton only acting at 4,
is given in Fig. 117 (b).

Som of column (8) = -+ 2573 tons-in. units ;
2578

therefore, deflection of the joint 4, = 13000 ™
]

= +198 in.

IMustrative Problem 29.

A Warren girder 30 fi. span has three equal bays in the lower boom. All
the diagonnls are inclined at 60° to the horizontal. There are loada of 15
tons st each of the two joints in the lower boom. The stress in the tension
members is 5§ tons per square inch, and in the compression members 3 tons

square inch. Find the deflection at the points of application of the
i B 13,000 tonsfeq. in. All members are 10 ft. long. (L.U., 1923.)

For the calculation of the loads in the members due to the
external loads of 15 tons acting at the two lower joints, see
Fig. 103 (Chap. VII), and Table, page 187.

The girder is symmetrically loaded ; therefore the deflec-
tion at the two lower joints will be the same, so that
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TABLE FOR TLLUSTRATIVE PROBLEM 29

F tona,
g Tie or A »q. P i Fald
Member, Strut. Hmmb:rl. Lin. [ T =
4 30 1o o
Al 8 -5 |20 | a | w0 | 12ve | 3000ys
AH 8 30 | o0 | 22 | 300 | 12v3 | 3600v3
T Wi '3
BJ T 35 | o0 | 2| 5| soys | s000vs
+ 73 V3 v
oa T 30 | 490 | -2 | 300 | 2093 | eo00ys
+ 73 Vi V' v
DE T 15 | o | 2| 78| s0y3 | 30003
+—5 | 120 | =5 v
30 10
AE 8 - ﬁ' 120 '\73 300 1243 36004/3
EF T + 0 | 490 | L | 200 | 2003 | 60003
V3 by v
Fa = 0 T [Tty HICER ) MRS .
GH = 0 g BFeoh BTN s =
HI T 30 | 90 | & | 300 | 203 | s000ya2
30 10
JA 8 -5 | 120 | 75 | %0 [12v3 | se00ys
Sum o o | 38.4004/3
4 tons-in. unita

! 1 1_FY
Ewﬂ' + §H’y = total external work = §E}TE’
= total internal work

A | 1 1 38,4004/3
th - = 5 o Lt Saobad) e
atm,ﬂxlsxy+2xlu><y 5% 13,000
38,400./3 ‘
in, = -im = -171 1n.

The deflection of each of the lower joints is equal to -171 in.
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Illustrative Problem 30,

The girder in the previous problem is loaded with 15 tons at the left joint
in the lower boom and with 10 tons at the right joint.
of the joint loaded with the 10 tons, the cross-sectional arens being the same

The force-stress diagrams required are given in Fig. 118,

and the ealeulations in Table 11T,

Find the deflection

TABLE I
In T
geiii]
i:m d]n:m?
due to b oF aF |
Member. | 15484 |00 o Yow, | 1, e “:: Faw,
Point. | (2) = (3 q (4} % (T)
3 0P o
oW, "
(. (). ) (4. . | @ | m (8.
e [Tyl o sl i e L ase % 123 | + 128
10
aH. . | -136 | -8 |+108 | 120 | 5 | 12v3 [ + 224
BJ . + 08 | +4 |+ 272| 120 Fsa 10y3 | + 188
cawp) | +150 | +-8 |+ 900| 12 ?“—3 2043 | + 311
DE . .+ TT |+ -2 + 174 | 120 1’% 4043 | + 120
7y IR S T LS R Y S ':?Es 123 | + 128
EP. . J +154 | +4 |+ s16] 120 ;,“-B 2043 | + 213
3
. . e ey B A A
# 120 | 25 | 403 42
3
GH . SRSV REe e [ 120 [ 2 | 40 =<8
o e
BI. . |+ 15| +98 | 117 | 120 ;2-3 20v3 | + 41
10
JA. . o -135 | -78 | +105 | 120 | 2 | 12y | 4208
Sum of (B) = 1487
tons-in
unita

Nore.—Tensile forces plus, compressive forces minns,
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The deflection of the girder at the joint with the 10-ton load

1487
l.l- 000

10la. In Chapter 111, paragraph 40, it was shown that the

«114 in.

ME.
work done on a beam by bending = U = f SEI {between

A
- -pf—-ﬁ{-—-.-nr_r—d

F H
AEP"E G

1 D lmﬂl B_t

31 5"

&) ::h') _m
J b

] s e a

Force-Stress Diagram  Force-Stress Diagram

for load of 1 Ton with loads of 15Tons
only acting at 0 joint. and 10 Tons acting.

Scale =1 Inch=1Ton. Scale- 5Inch=10Tons.
See Table for kinds of stresses in the members.
Fic. 118

the required limits) where M = Moment due to the external
loads acting at a section X distant x from the origin.

Consider a beam loaded in any manner: it is required to
find the deflection under any load F. By Castigliano’s Theorem,

E!_F =g = H’fﬂ (EM) .dx. (EI being constant.)
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Now M will be of the form (for a beam, irregularly loaded,
and working from the left support as origin) as given below.

Wi-a) | Wyl-b)

Ro=——= b=
=_E}£}f-%}{£—b]x—-...n¥{f—n]¢—...

+ Wix-a) 4+ Wiz-5)+ ... Flz-n)—-...
where W, W,, W,, ... F, etc., are at distances a, b, ¢, . . . 7, eto.,
from the origin, and where n < z.

aM 1% (l-nx
Thus “pr = -~ 4+ 1 X (x=n).

= Moment at the section X, due to an imaginary
unit load acting at the point of application
of F.

= m.
Therefore,
(Moment at the section due to all the real

EE’T ) 1 external loads) % (Moment at the section
aF £l due to an imaginary unit load at the

point of application) . dx
= EI‘: f A e

the integration being taken between the required limits.

If the section X considered lies nearer to the origin than the
point of application of F, then (x - n) is neglected, as n would
be equal to, or greater than, x.

If it is required to find the deflection of the beam at a point
where there is no load, place the imaginary unit load at this
point. M will be the moment at any section due simply to
the real external loads and m the moment at the same section
due to the imaginary unit load at the point for which the
deflection iz required.

ExAMPLE.

A beam AC simply supported and of length I carries s lond of W tons at
B o distance nl from 4. Calculate the deflection (1) under the load at B,
and (2) at & section distant = from 4 and bétween A and B. EJ] = constant.
(Fig. 1184.)

(1) Moment at any section X between 4 and B due to W (4
as origin) = — W (1 - n)x.
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Moment at any section X, between B and € (C as origin)
= - Wn &
. For deflection at B,

U=iwy=

1 1l =mn)

25T J, M'"ffx—l— M-d;r

1 1-n)
g0 that 4 Wy = m[ﬂl"{l -n)xt.dzx 4+ | Wnlz?. dxl]
0 0
WM

T
!
o= ==nl—f == >t (1-n)-
| ).{ t a(z al‘:f '!ﬂ

A -
e D ] B i
.-_-z........._',l ~ . .

SR | DERR e, R e Wr) Due to
ﬂ“ﬁ’[w“ ] AR A (W) e 2
até

=
= D !:a,rT
(Ei_z)f loadt at D. Hx""(z)
Frc. 118a
An equation from which y can be found
Witn?
ye= 3E1 (1-2n n + n¥)
Wi
fn=4 y= 48ET

(2) Deflection at D, distant z from 4.

1L —
Reaction at 4, due to 1 ton at D, = =2

1
Reaction at ¢ due to 1 ton at D = }E ton.
Moment at any Section X between 4 and D (4 as origin)
;
due to unit load at.D=-M

l
Moment at any section X, between D and B (4 as origin)
16— 2
due to unit load at D = - ”I }.x,-i— 1(x, — 2).
Moment at any section X, between B and C (C as origin)

1
due to unit load ntD:___?_(inﬁ

ton.
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1
. Deflection at D (by Castigliano’s Theorem) = El ( Mmdz)

=yp:%[ﬁzﬂ‘{l—ﬂ]x.{i;ﬂz.dz-t- W=,

= (1=-m)
f“ " 2 v z}gd.t,—I— Wm,."—‘;—‘ .s::c,]
[+]

Solving the integrals, y, can be found in terms of W, z, I, and n.
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EXAMPLES
1. Explain Castigliano’s Theorem with reference to the deflection of a
structure dus to o system of forces acting on it, and give a proof of TIHEZUIE :I
2. Prove that the deflection in the direction of any one of a system of
forces applied to & structure at its point of application is equal to the dif.
forentinl coefficient of the total work done on the structure with respect to
the particular foree.

Fia. 119 Fio. 120

A Warren girder (Fig. 119) has four equal bays in the lower boom, and all
the triangles are equilateral. There are loads applied at the panel points
of the lower boom, as shown. The sectional area of all the members is the
same, Determine the deflection at the centre of the girder. & = 13,000 tons

por Bq. in. (U. of B.)
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3. In the frame shown (Fig. 120), find the displacement of the point O
perpendicular to the bar 4B. The lengths of the bars are as follows—

AB, BC, BD, EC, 13 it. each ; DE, 18 ft.; EF, 271
Stress in compression membors = 4 tons per square inch.
Stress in tension members == 5 tons per square inch.

E = 12,000 tons per square inch.
Angle between DB and 0D =90°

4. Bhow how to find the deflection at o joint in & pin-jointed structure,
due to the action of a number of forces on it, expressed in terms of the
stresses in its members due to thes acting forces, and thoss due to a force
applied at the given joint and in the direction the deflection is mqui:fd, 5

LC.E.)

5. Reforring to Fig. 112 (Chap. VII), page 177, find the deflection of the
braced cantilever in the direction (a) of the 6-ton load, (b) of the 10-ton load.
Assume IfA for tension members = 80, and for compression members == 24,
B = 30,000,000 Ib. per q. in.

B. Taking the Warren girder in Fig. 113 (Chap. VII), page 177, find the
vertical defletion of the centre joint of the top boom, and also of the joints
in the lower boom. Length of bay = 10 ft. E = 30,000,000 Ib. per sq. in.

7. A Warren girder 30 ft. span has three equal bays in the lower boom,
All the diagonals are inclined at 60° to the horizontal, There ure loads of
15 tons at each of the two joints in the lower boom. The stress in the
tonsion members is 5 tons/square inch ; in the compression members, 3 tons|
?ull'ﬂ inch. Find the deflection at the points of application of the loads.

= 13,000 tons/square inch.

8. A beam simply supported is 20 ft. long and earries a lond of 4 tons at
a point 12 ft. from the left support. Calculate the deflection (using the methods
in Chapter VIII) of the beam under the load and at a point 6 ft. from the
left support.

E = 12,000 tons per sq. in.
I = 100 in. units.

9. If the beam in the previous example (9) is rigidly fixed at both ends,
and the loading is the same, calculate the deflections of the beam under the
load and at & point 6 ft. from the left support.

hﬁ;%ck the results of questions 8 and 10 by methods given in Chapters 1
I +)
10. A tri truss rests on two supports 4 and B at the same level,
A is & hinged immovable support, and J 15 a hinge on frictionless rollers. The
AR is 20 ft. The members of the truss are AC, CB, BD, D4 and OO0,
€= CB = 120in. AD — DB = 134 in. CD = 80 in. The cross-sectional
areas are: of AC and OB, 3 sq. in.; of AD and DB, 2 sq. in.; and of 0D,
4 gq. in. A vertieal load of 8,000 Ib. and a horizontal load of 5,000 lb. in
direction A4 to B act at the joint 0. Calculate the horizontal deflections of
B and €. Take E = 28,000,000 Ib. per #q. in.



CHAPTER IX

Tre PrixcirLE oF LEasT WoRK—THE DETERMINATION
OF THE STRESSES IN THE MEMBERS oF REDUNDANT
FraMES AND OF EXTERNAL REDUNDANT RESTRAINTS

102. Tue stresses in redundant frames cannot be determined
by the ordinary methods of graphic or analytical statics.
The usual procedure has been to work by the method of
superposition, by which the redundant frame is considered
divided up into a number of superposed firm or perfect frames,
and the load divided between them, the stresses in common
members being added together. The results obtained by
this method are fairly accurate.

An analytical method is that dependent upon the Prix-
cipLE OF Least Work. By this method the cross-sectional
areas of the members must be
initially known. The agreement
between the two methods depends,
therefore, upon these areas.*

103. Consider Any Structure
with One Redundant Member.
Let AB be the position of the
redundant bar before loading and
4,B, after loading. (Fig. 121.)

Fa. 121 From A4, and B, drop perpen-
diculars on to AB at € and D.

Let AC = y,, BD = y,; and these are the components of
the displacements in direction AR,

Let T' tons be the load in AB after loading : | = length AB.

AB after loading will be strained by an amount y,- ¥,

: : T
which will be equal to i Where A = cross-section of bar and

E = Young’s modulus,
Tl
hh=h= AR . . . (1)
Now let the bar AB be removed and replaced by loads T,

and T, at 4 and B respectively, 7T, acting towards B and T,
towards 4; the loads in the remaining members will be

* An analytical method based on the Law of Virtual Work is given in &
paper by the Author, vide Reference (), page 220,

194
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unaltered, so that 7', and 7, may now be considered external
forces at the points of application.

T, will be equal to T’y = 7', as equilibrium exists.
Let [ = total internal work of all the members except AB.
y, and y, will be of opposite senses :

y, will be in the direction of T, and positive

[T ,» Opposite direction from 7',, and negative

From the last chapter, and using partial differentials, for

there are two independent variables,

all ald T
5?—:1=+H: E.T’I_‘.=_‘y' Yi— =
U U _m :
R ) R
: aUuU a8l adUu
NGWH11=T:=T-E@;+m—ﬁ . . 3)
all all g s
[dU = &T; " dTl, + E‘T; B dT,] on total differentiation
dUu T1
At Rt g : - : . (4)
T d /177
But 1= a7 (2 1) )
17 :
o work done in the redundant member,
d(lT"I)
dl 24E
. E‘l‘ T =0 . . - s {ﬂ']
177 Uy
{I(U-’---——) d'(!.oulworkdauuonﬁw rn:aml:mu)
s 2AE 00 o inoluding the redundant member
dT =t dT
— @T =2 H ini *
= 0, i.e. a mimmum i . z (7)

* The Principlo of Least Work is a statement of the practical fact that if an
alastic structure is in o state of stable equilibrium under any forees whatever,
then the work stored is the smallest amount possible. It is a particular case
nfjﬁlﬁglimm‘s Second Theorem,

d_':i"l ws 3, whero i is a small strain or displacement within the elastic lmit.

(See Roference (3), page 102: also Analysis of Engincering Structures, by
A. J. Pippard and J. ¥. Baker (Ameld & Co.).)
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104. Thus, if an elastic structure is in stable equilibrium
under any forces whatsoever the work stored is the least
possible amount. To use this method, replace all the redun-
dant members by loads ', acting at the required joints for one
bar, T, acting at the necessary joints for another bar, and so
on. The statically determined system which results from the
removal of the redundant bars is called the base or principal
or perfect system.

Although it is difficult to prove that each partial differential
of the total work with respect to one unknown force when
there are several such forces each unknown, amounts to zero,
it may be taken as true;

L L = 0, and so on.

Son e

The number of equations will be the same as the number of
unknowns,

105. For one redundant bar, T', = 7'y = Foree-pair T'; so
that as before (Chap. VIII),

MO SRR b
A b AR T ) R o B

where k,T, and k,"T, are the loads in & member due to T' = T,
acting at one point of application and 1" = T, acting at the
other : LEW is the load in & member due to all the external
loads acting on the perfect frame.

= load in a member replacing T, by unit load
(at one point of application)

= i & at the other

Differentiating Equation (8),

alU, aF; 7,1,
aT, — [E Fi a7, AE]'*m

where F, = k,T, + k'T, + ZkW = K,T, + ZkW



THE PRINCIFPLE OF LEAST WORK 197

and K, = load in a member due to a pair of unit loads acting
at the points of application, i.e. at the joints of the superfiuous
bar,

[ /L)
or [E{lel 4 BTy +ZkW) (K, + k') E:l i ﬁj?:i.‘ =0 (9)
1 e | N
or EH;"'T] AR -+ EKIII:L“ ) AR +- .'1,_E il I:IG]
R
or ZK.2T AR + *‘!;E_ = — EK, (kW ]A-E,
: L TRN
where K, in AR unity
!
(EW)K; . =5 ;
. Tl.—__g—"”g_-_-_y. : 2 . (102)*

Ky "

2AE

kW is the stress in any member due to the given loads with
the redundant member removed, and K, = stress in any mem-
ber due to a pair of unit forces acting on the structure, in the

Unifarmly
distributed
{oad

T, ﬂfﬁ. Tr

Fio. 121a

direction of the redundant member, and at the joints of the
member. K, = unity for the redundant member. The de-
nominator of the right-hand side of the equation (10a) includes
all the members in the frame: the numerator all except the
redundant one. In effect the method of solution is as follows :
Imagine the superfluons bar is cut and compute the resulting
relative displacement y” of the faces of this cut bar. Determine
the true stress in the bar, by the principle that it is equal in
magnitude to the force pair required to bring these faces into
contact. A pair of one-pound forces will move the faces a

* In equation (10a), (kW) corresponds to F, and K, to u in ?untiﬁu {Da),
page 182, Therefore (10a) can be written Ty, = — ZF . u . [[AE|Zu®[AE.
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distance of iy, and therefore to move the faces through a distance
of y' will require a force pair of (1 X y'fy) Ib. = T, Ib.

Equation (10az) will also apply for the determination of the
redundant reaction of a truss which is simply supported at the
ends and is continuous over a third support which is at the
same level. (See Fig. 1214.)

Let Ry be the redundant force whose value it is desired to find.

I

ZK . (kW) . —

v AE
Thﬁn R] -= —yl = = EKEIIAE = {].M}
where ZK*[AE is the deflection of the truss at point B, due
to unit load acting at B in the direction of R,, when the
redundant support at B is removed. As this support of the
actual structure does not move then there is no allowance for
the redundant reaction in the denominator of the right-hand

side of the equation (105).

EW is the stress in any member due to the original loads
with the redundant reaction removed, and K is the stress in
any member due to the unit load acting at B.

106. For two redundant bars, replace the bars by 7', act-
ing at one end and T, acting at the other end of 1 redundant
bar, and by T'; acting at the two joint ends of the other bar.
Ty and T, are in the directions of their respective bars. The
redundant bars have been replaced by force pairs 7', and T,
respectively.

ky = load in a member due to unit load replacing 7', at one

joint,

ky' = load in a member due to unit load replacing 7', at the

other joint.

] b
Then U/, = [E-L{ﬁ.-,i", + 5T+ kT + kT, + EkWhAiE]
17, 1T,

- e = EH + Em . : e 1L}
al,
then o, =0
’ i
= [E{.{'ITI + ky'Th + kT + &' T, + ZEW )k, + kl'];!—E]
T,

5 (12)
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Equation (12) can be written
as KT, IJAE + T\K*LJAE, + ZK,K,T, . l[AE

+ ZK, (kW) IJAE = 0
or T"EK2UAE + Ty 2K, . K, . lIJAE + XK (ZEW)IJAE = 0

(a) (®) () . (12a)
K, has the same definition as in paragraph 105, K, is the force
in a member of the principal system, due to a unit force pair
replacing the redundant force pair T,

The factor (A) in equation (12a) includes all members of the
base frame, and the one redundant member stressed to T').
The factors (8) and (c¢) include only members of the base
frame.

7 i
I
=[E{k,T, + &' Ty + Ty + k' Ty + ZkW)(ky + J:,']A—E]

T,
+ a5 . = 13)
If the end of a redundant bar meets at a support point, in
this case k," will be zero.
Equation (13) can be written
T\2K, . K, . IJAE + T EKAJAE + EK(ZEW)JAE =0 (13a)

A general method of writing the equations (12a) and (13a) is

=0=uy'+Twu+ Tz . At WS 1
yo = 0=y -+ Tyyus + Totja . . . (13bB)

Also from Maxwell’s Theorem y,5 = yu,*

The Interpretation of Equation (12b).

The statically determined system which results from the
removal of the redundants 7', and 7' is called the base or
principal system. If now we imagine the redundants T and
T, to be entirely removed, and the specified loading applied
to the base frame, then there will result a certain relative
displacement y,” = LK, (ZkW)IJAE of one of the equal and
opposite forces 7', with respect to the other. If we now imagine
the specified loading removed, and the force pairs T and T,
applied to the base frame in turn, it is found that the relative

. See page 64: also Referonce (0}, p. 220.
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movement of one of the forces 7' with respect to the other

T
fx e Ty = T\EK2IAE

(where y,, is the amount due to unit loading, and includes the
unit extension of the redundant member) plus a further amount

T’ «Yan = T.EKJIK’IIJ‘!E

where y,, is the relative movement of one of the form_T,
due to the unit force pair acting at the points of application
of the force pair 1"y, T, acts at points 4 and 7'y at points B,
Similarly for Equation (138).

The eross-sec-
tional arcas of
members are given
in the table on page
201. E tsthe same

Jor all members.
Reaction A
17 Member(D)—(Z)=EF redundant,
fe]
falb e .
v c - 2_-F= 105 :\
92 Ermsong)
S
Stress Diafram Ffor unit
foad at (1) &)

Scale-1Ton = 1lnch.
Force -Stress Diagram
for diven Joads “and
frame with bar EF
misging. Dolted fines
porton of diagram
i EG redundant

Scale - 2Tons = % Inch,
Fra. 122

Illustrative Problem 31.
Find the forces in the members of the loaded frame given in Fig. 122,

To find the forces in the redundant members by super-
position, make the frame into two perfect frames, and in this



THE PRINCIPLE OF LEAST WORK 201

case each perfect frame takes the whole loadings. By means
of stress diagrams, find the loads in the members; for any
member which occurs in both perfect frames, take the mean
of the forces in it due to the two loadings to give the
approximate actual force in the member.
Solution is by the method previously detailed

K, =k ond k' =0

for there is no displacement of the force T, acting at the support.
TABLE FOR ILLUSTRATIVE PROBLEM 31

Fores i

:rtrm o % Toad Bt 4 | R oL
e R e B R R
Perfect Frame. L ‘member)
B . i = 2= - 055 G0 3 20 |+ 220|+ @0
oF .. - 02 - 000 51 3 17 |+ 30|+ 138
DE . . = 3-0 = 0756 72 3 24 |+ 540| 4+ 135
EA A1 + 17 - (48 06 1 98 | = 785|+ 221
EBG . . - 2.3 + 076 54 1 84 | - 130:0| + 470
EF . .| {redundant) {10 108 1 {121 _ + 108-0
Total .| — 138:5| + 210-4

mm)h.;—l

I I,
il e B
z(}" A) 827
2104 Ty = 1385
T, = + -6 ton (tensile).*
+ Compressive foree — ; tensile foree 4.

From equation (10a) T = -

Acroar Fonces mv vie MEMmpERS, INoLUDIxG THE REDUNDANT MEMBER

ey
e By Superpoaltion of
Member. W, BT, t Work. ¥
etnl L] Wy P n_“,g BT, Two Perfect Frames.®
Tons, Toms.
B . = 20 = -36 - 2-36 - 28
oF. . - -2 ~ -6 - 0-80 - 1-45
DE.. - - 30 - (50 - 350 -39
R 19,0, + 17 - 032 + 1-38 + 1-08
EG o I - 9.2 4+ 0-50 - 1-70 =11
B bt - + -G + 0-68 + 14

k, dus to o force T, acting at the support is zero for all members.

* The positive sign indicates that T', acts in the direction of the applied
unit load, and vies versa.
+ Each perfect frame takes the whole loading, and the resultant foree in
n member is the mean of the two f{orces.
The agreement between the forces in the same member dumh upon the
areas of the members: in one case, known ; in the second, unknown.
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Iustrative Problem 32.

Find the forces in the members of the loaded frame given in Fig. 1224,
The ealculations are given in the three tables shown on pages 203-204.
The cross-sectional arcas of the members are given in the first table on
page 203
E is the same for all members,

Bays: 60 in. long; height 80 in.

bn
r Dotted lines for
At when JH & KL
’ / are redundant.
(k) L.
Ti& |G g c
N eS| M Ik i
FNLA S | W i
£ ¥ D c }'I"B A al']
a1 E 1 ef
j;: ti st &’

Re=7" Force-Stress Diagram
for the perfect frame.
Fra. 1224 E;fdj.rga ﬁf‘ﬂff

Scale-5Tons to % Inch.,

107. Work Due to Bending, Using Moments Instead of Forces.
In Chapter I1I it was shown that the internal work stored in
a beam between two limits of 2 =0 and x =z, due to

bending was
2-1‘1-1!2 d
M2 . dx
i oK1
Ze=i}

By similar reasoning as for forces, if the total internal work
done by bending is a minimum, and this work depends upon
some unknown factor, then differentiating the total internal
work with respect to the unknown factor, the result must be
equal to zero.

108. A direction-fixed-ended beam carries a central load of
W tons.

Find the end fixing moments. (Fig. 123, page 204.)
Moment at a section X between the origin and W

W

=Jlr!u--;;-z

where M is the end fixing moment.
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TABLE A FOR ILLUSTRATIVE PROBLEM 32
Tensila Forces 4 ; Compressive Forces —

Foree dos Foreo due
to force to fores
Forces due palr of i
Member b Speetiad e n . v
on direction of
‘hnw' tbl':n.;'l.:l dim palr, il["“ L in win | 14
ZEW. Toma | T, :
ot j‘:‘l!ﬂ“r:f‘ at -):' jﬂd.'ﬂl.l..
AF . = . - &0 U] 1] L) 2:0 30
AG . - = 50 0 0 G 25 24
AT . - = B0 =0-70 0 60 30 0
AK . - B0 0 - 0-70 60 3-0 20
AM . - - 70 0 U] Gid 2-5 24
AN . = 70 0 0 60 20 30
BN . i 0 U] a0 10 1]
gL . + 70 0 =070 B0 16 40
DH . + 50 =0-70 0 (1] 1-5 40
EF ] 0 ] Lit] 1-0 G0
Fa . 4+ 70 (1] (1] 85 10 85
GH . - 30 - 070 0 60 10 B0
BY . . ] + 48 + 100 0 85 | 10 85
JE . - . 0 —0-70 = 0-T70 1) 10 (1]
KL . : + 16 0 + 1-00 85 1-0 B85
LM . - . - 1-0 0 -0-70 60 1-0 a0
MN 5 A 4+ 100 0 0 B85 1-0 85
Redundant T, (1) . = (1-0) — 85 | 20 | 425
" (8. —_ — (1-0) B5 | 20 | 426
Member. K K¢ KKy | (ZkW)- Ky [(ZkW)- Ky
AF [1] 0 0 0 0
Aa . (1] 1] 1] 0 1]
AT + 0-50 0 [T} + 58 0
AK . - 0 4 0-5i 0 o + 56
AM . . 0 0 0 0 0
AN . U] 0 0 0 1]
BN s 1] ] (1] 0 1]
oL . - g 0 + 0-50 0 0 —4-8
DH ., . .| 4050 ] ] -535 (1]
o s L 1] 0 0 (1] (1]
FG . % 0 U] U] 0 0
GHE . . .| 4050 0 0 + 21 ]
’J % A 10 0 L] + 4-5 0
JE . Ll 4080 4 0-50 + 0-50 0 0
KL . i] + 100 1] (1] + 1-6
LM | 0 + 0-50 0 0 + 07
MN . ] A ] 0 0 0 0
Redundant T, (1) .| (10) ] 0 — —
- L 0 (1-0) 0 e —
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I 1 : Total
T . ; {ZEW) :\-c‘I 'I-’-l'-'l'n?i !im
Momber., K. b K. ¥ Ky.Ky. a K, - = E.*: Msnbar
‘Tons
AF i 0 0 0 1] = b5
Al 0 0 0 0 0 = 500
AJ -+ 10+0 0 0 + 1120 0 = b-46
AK 0 + 10-0 0 (1] + 1120 | — 7-04
AM 0 L] L] ] 1] = T-00
AN . 0 0 0 1] ] - 700
BN 0 0 0 0 0 0
ook 0 | +200 0 0 | -1960| + 708
DH + 20:0 0 0o | —1400 0 |+ 654
EF 0 0 0 0 0 0
FG 0 0 0 0 o |+ 700
iy AR + 30-0 0 0 | +120 0 | =148
HT + 85:0 0 0 | +3825 0 | 4+ 230
JEK + 30-0 | 4 30-0 | + 30-D 0 ] + 160
KL . 0 + 85-0 0 0 4+ 1275 | 4+ 1-44
LM 0 + 30-0 0 0 4 4240 - 094
MN 0 0 1] (1] 1] + 10-00
Redundant Ty (1) (42:5)] — = = % _ 9.2p
" Te(2) — (42:6)) — - - - 008
Totals . .| 4 217:5|4+ 217-5 | 4 300 | 4 480-5 | 4+ 855 _—
|
217-57; + 30T + 4805 = 0
217-57, + 307, + 855 =0
On Solution Tl = - 2-20 tons
= — 008 ton
Hllrr
Mo s l [
gl e
ﬂm:g.r'n T_E-#'Jr !
——————— >
2
L wT
'RD 7 Eﬂ = i
Fia. 123
Total internal work due to hend.ing
Wz\?
j-f -
— (A= 2 /| .dx
0 25T

e
=E_,[M, 5 MW

w2
+£m]
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The redundant quantity is 3, and the total internal work
must be a minimum for the application of M,.

all 1 Wiz
Thl,]:!, ra-‘ﬁn=m(‘”“f_ ?) == ﬂ

M, = ? units (¢f. Chap. IV)

109. A Continuous Beam (Fig. 124) of two equal spans is
uniformly loaded with w tons per foot run for both spans, Find
the value of the fixing moment M, at the centre support, the

Mg

supports being at the same levels. For the first span, the
moment at a section X distance x from the origin is

My st iz
i AN
Total internal work for the first span,

)
1 Mz  wz® wlx\?
”=mf (—r*“*z"?) 0
o

M, wl w
Let ‘—‘-—Ez.‘lﬂ.ﬂd—ﬂ-—ﬂ

My = +

1 ' a
. i
= % [ (242 + 24Bx® + B%) -dx
Jo
Integrating and substituting the value x = [,

1 / I3 AB* B
= b : s o ik
U*zm(“’ i A 5)
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Substituting for 4 and B

sl (Mnﬂr_.u,wﬂ M,mﬂ)
~ 2EI\ 3 3 4 )
U, = total internal work for the two spans = 2U.

My is the unknown redundant*; therefore
aU, _2MJ wl* _
i i B s

(¢f. Chap. IV.)

) Lo )

Hlustrative Problem 33.1

Two vertical posta 15 ft. apart and 15 {t. long, made of 5§ in. % 3in. British
standard beam sections, are hinged at their bases, and their caps are con-
nected by a beam of the same section rigidly attached to each. If this
beam carries a central vortical load of 1 ton, estimats the maximum bending
moment on the beam and on the posts. (Fig. 125.)

1Ton

Fro. 125

The structure of Problem 33 is an example of a rigid frame
structure, where the members consist of beams and eolumns.
The joints of the columns and beams are assumed rigid, i.e.
the rotation of all the bars meeting at a joint is the same.

*® Ses Chapter IV.

t Problem set for solution. Morley, Theory of Structures. A goneral solu-
tion of the hﬁ of structure given in this problem has been stated by E. H.
Bateman in Philosophical Magazine.
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The bases of the columns may be fixed or hinged. In the
example given, the frame is made up of two columns and one
beam which is centrally loaded. There will therefore be two
couples of equal magnitude, which will act at the horizontal
ends of the beam and will oppose the free rotation of the ends,
so representing the action of the vertical bars on the beam.
The end beam couple M, can be considered as the only static-
ally indeterminate quantity (see Chapter IV). The couple M,
will also act as the couple at the end of the vertical posts
bending the bars.

As the beam is rigidly fixed to the posts, the fixing couples
at the ends of the beam will cause a horizontal force at each
of the base hinges; as there are no horizontal forces in the
system, these will be equal and opposite (and their direction
is shown in Fig. 125). The vertical reactions at the hinges

’ - |
wnl.'[bauach:-i—ﬁtrnu.

The diagram of forces and moments is shown in Fig. 125.
Neglect work done due to direct and shear forces.
The total work done by bending on the beam and columns

15 AL Tl
(M‘ﬁ) o f (M — §z)%d=

{eolmnns) {beam)
E and I the same for columns and beam.

1 ([ M T° M,z f_]ﬂi
H='ET{[3><225]0+[M“ =T bk
1 7-5%

- — __‘I[ﬁﬂfﬂl + T‘ﬁM{" - ESMI + 'ﬁ]

Let M, be the unknown redundant,*

al
then Y 5M,-28=10

M, = -+ 1-12 tons-feet
Maximum positive moment on the columns = 1-12 tons-ft.
beam =112 A

" L1 n L

= See Chapter IV, page 78.
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Maximum negative moment for the beam
=~} X 75+ 112 = — 2:63 tons-ft.
1-12
o= 15 tons = 075 ton nearly.

109a. The Solution of Statically Indeterminate Structures
from the Moment Deflection Method. In para. 10la it was

shown that
el M. .m.dx
o f EI

where M = moment at any section of the structure due to the
specified loading and m = moment at the section due to an
imaginary unit load applied at the point at which it is desired
to find . In the following example it will be shown how the
above equation can be applied to the solution of the statically
indeterminate problem in general.

ExamrLE,

Determine the reaction of the centre support (B) of a continuous girder
ABC resting on three rigid supports all at the same level.

Remove the centre support and imagine the simple beam
AC acted upon by the specified loads. Calculate the displace-
ment y'y at the section B. Imagine now the reaction at the
centre support &, only applied to the simple beam AC. Then R,
will be of such a magnitude that the displacement of B for R,
only on the beam will be equal (but of opposite sense) to the
displacement of the simple beam AC under the specified loading.
"¢ Mmydz
A

M = M, + Rym,
where M, is the simple beam moment due to the specified loads
at any point of AC, and Rym, is R, times the simple beam
moment of any point in AC due to unit load applied at B.

S . A C my? . dz
-’:’B-““_[ T*-*Rnﬁ I

;
f M, . my . de|EI :
L1 y

Then 4y =

H

e [ = y
f my? . dxEI -
4
Compare equation (105).

Ry
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The general equation is of the form
ys = 0 = ¥’ + Ryyus (see also Equation (10a) )

Generally, if a beam ABCD is continuous and rests on four
rigid supports all at the same level, then suppose the reactions
R, and R, at the intermediate supports are the redundant
ones, and referring also to Equation (12b), page 199.

th =0 =yy + Be¥un + Blfuo - . . « (15)
and yo= 0=y’ + Bulon + Beiec . . ' . (18)

In Equation (15) above y,’ and yy, have the same definition as
in the previous example and

Dy . mo . dx
i et PR
= deflection at B due to unit load only acting at
¢ on the simple beam AD.

Similar definitions and forms apply to ¥, ¥es, and Yeo.
Al50, Yo = Yuo from Maxwell’s theorem of reciprocal deflec-
tions.* The equations can therefore be solved for R, and R..

The following problems illustrate the above method for
singly determinate structures.

(@) The Continuous Girder of Two Equal Spans and Carry-
ing a Uniform Load. (Fig. 126.)

EI = Constant

w per unit length
g

AY;
I "?3 |
e S s
I |
A 18 _I..,:
P
rAY lff&- A
Fio. 126

Treat the centre support as redundant and take the origin
at 4. Working from A(x = 0) tox = L

wax? x
M, = wlx~ --:;— and my = 5

* Soe page 64, and Reference (6), page 219.
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e L ed Wf)d_ﬁiﬁ‘f
y“_Ej (“"E'T * = 2451

9 pL g Lt
Fln=m‘£ msz#ﬁ"u Idx
sl
~ BEI
b
' .—'I‘.UL"
Bure=Dm Bl sl ur
Yum £ 4
G

The sign of R, is negative which indicates that it acts in an
upward direction.

MB=—ngxL+wLxg

2
= % (¢f. Para. 109.)

(b) Portal Frame.

A general solution of the portal shown in Fig. 1274 by use
of the equation (16).

P
l’_{"z"‘[ &
8 =1
r? ¥ 1
£l ; :
| i
£ £ 3 '
B
, SR iz
Hy xﬂ ﬂx ’ H;—'* —_
Fia. 1274

The horizontal reaction is treated as redundant, and the
effects of longitudinal and shear force strains are neglected.
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The fundamental equation is

M, .m,.dz
e
S — 3
s m,_.d:l;
2 gy
[

Efjf..m;.dz 2 fi'ﬁ'h‘dx=_ﬂﬂf

S T 1 8EI,
m? . dx bt dx  [hdx 2 R WU
2 Jo=g =2£ “ET, T ), BL, " 3EL T,
PhE? re
8EI, 8f,  when E is the same for all

fj‘l:

T2 A4 2h W  members.

3EL, T EL, 3L
The unit load was applied outwardly : the minus sign shows that
H, acts inwardly.

The moments at the joints are obviously equal to H,h in
magnitude.

If the properties of the column and beam of Problem 33
are inserted in the equation for H,, it will be found that its
value is — 0-075 tons.

(¢) Portal Frame with Side Horizontal Load P at the Top of
one Column. (Fig. 1278.)

Negleot the effect of the axial and shear forces. Let H, be
the redundant quantity.

M;.m,.dx
el
y m,? . dx
e > [ B

M, =0 for AB; M;= E?z for any section distant z from

the origin B for beam BC.

M, = Pz for any section distant z from the origin D for the
column CD.

m, = 1 % z for the columns with origins at 4 and D.
my = 1 % h at any section of the beam with origin at B.
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M. m; ‘Pﬁx .’i dz Pz? . dz
2w "f ot [

g 1&:{, Eﬂ_ﬁ

oo

CP ————— ——

1 .

____}‘____H
-~
m
-
m
-
3
]

L

' T
1
I
[
|
|
| b
-

X

Fio 1278

ml’.dz__ﬂ bt dx th? ., dx
Ef T A WS et Ao v
2 A h4l
=3EL T I,
PR PR
. How ZEL T SEL " P
S SR e a S
EI, T 3T,

This value is also given by the usual approximate formula
for P acting at the top of the column, and for no axial shorten-
ing of the members.

1096, In connection with the solution of rigid frames and
continuous structures, special analytical methods of solution
have been developed, and the reader who iz interested is
referred to works dealing with these methods. Well-known
ones are the Slope-deflection method, the Moment-distribution
method sponsored by Professor Hardy Cross, the Slope-distribu-
tion method of Goldberg, and the Remainder-distribution
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method of Bateman. Also in certain cases, solutions can be
obtained by the use of the theorem of three moments applied
to continuous frames.

Consider the frame given in Problem 2 of the examples at
the end of this chapter. As AB is shorter than DC, there will
be a displacement of B relative to A and C relative to D.
These displacements y will be the same and imagine the move-
ment takes place to the right. The distorted frame can then
be imagined opened out as in Fig. 1270,

£ is the same For all members
=315 wnits

AL
= s -
‘"_.;" TW‘TA lw (=375 umits L
el g — . S— e, i
I 8 | 7.:N\_‘vy
| ; | D
1-!——-5"———-:.-‘—-5'---1-:— B b — == 2 — - -
Fi1G. 1270

As there are hinges at 4 and D, no moments can occur ab
these points. Let M, and M be the hogging couples at B and
C. (See equation (24), Chapter IV.)

Considering members A5 and BC,

EM.( gl aicio ) 10 375W  6Ey

sitas) T ¥ss-toxss 8 - 47

(Considering members BC and CD,
10 10 12 375W GEy
M“( ::.Ts) i EM“( 315 " 315) o TS T T

If H is taken as the horizontal component of the reactions
at the hinges 4 and D, then M, = 8H and M, = 12H.

Substituting in equations (17) and (18), eliminating y and
solving for H, it is found that H = 0-234 ton.

100c. E. H. Bateman has shown that the strain energy
U in an elastic bar AB, of stiffness I,uflis = Kus, which
is bent by any distribution of transverse loading and by end
moments M, and My, is given by

BEK U = (M, - F.)*— (M, - F,)(My - Fy)
ST A s A R e

E=—{T.5430)
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where E is Young's Modulus, F, and Fy are the end moments
at A and B which would be produced by the transverse loadings
if the ends of the bar were fixed in direction, and C is indepen-
dent of M, and M,. The determination of F, and F; is simple.

For a concentrated transverse load P, at a point distant z
from A,

F, = Px{l -xJl)*, Fy= Px(1-zl).zfl
and for a distributed load

F‘=£‘wx[l—xﬂ}*.dx. Fn='/:wx{1—zﬂl-xﬂ~dx

where w is any function of z.

If F, is taken as acting in a positive direction, then it is a
positive number, and Fy acting in a negative direction is a
negative number. If M, and M, act in the same directions as
F, and Fy, then their signs are the same; if they act in the
oppositive direction, then they are of the opposite sign.

Signs of Moments.

End moments and end-fixing moments are all positive when
operating in an anti-clockwise rotation. Downward vertical
forces acting on horizontal members give a positive fixing
moment at the left-hand end of a member, and a negative
fixing moment at the right-hand end. Similarly for a vertical
member, if the applied force acts horizontally in a left-to-right
direction, then the fixing moment is positive at the bottom,
and negative at the top of the member.

The complete solution for the portal frame and loading given
in Fig. 127A is now easily derived by the application of Casti-
gliano’s theorem of minimum strain energy.

Considering the beam BC, we have, using equation (19),

BEL[l.Uy, = (My— Fy)® — (My— Fy)(+ M, - F,)
+ (4 M- Fo) + Cy

Let My be the redundant we wish to find. Owing to symmetry

M, = - M, in magnitude and Fy, = — F, as the beam is loaded

Fi

at the centre. F,=E~
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Py Fl Pl
Bl Vo= (-5 ) -(a0-F)(- 3+ )
Pl
(- M+ ) + O

Considering the columns AB and €D, the fixing couple at
the end B of column AR is — M, and at the end €' of column
CDis 4 M,: as these members carry no transverse load then

F*2F3=j‘c=Fn-_—'ﬂ'

Also M, = M,
There are no fixing eouples at the hinges.
Then 6ELh . U= M* + Cya
and SELh . Uy = My + Cp

. Adding together
Fof ) o

2\ , 1 .
0 xe(2)s w25

+ Coc + Cis + Cov

Solving for My
all 4h PSR oo
ﬁE.a—Hn'=-I—l,M3+ ﬁMp.I—!—ﬁ—g.L=ﬂ
3P
BI’; -+ for beam BC'
My=37—37 \ - for col. BA )
L' L
M, = — H,h . when considering columu AB.
pe
H,=- ET*SIJ_M (See equation for H, on page 211.)
TR AL
‘Pmblem. The solution of the Portal Frame loaded as in
Fig. 1278.

Referring to this figure. As there are hinges at A and D
there will be no moments at these points. There will be fixing

couples at B for the column AB and for the beam BC. Let
these #buples be -+ M,; there will be equal couples at the
end C of beam BC and the top of the column CD: let these
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couples be 4+ M.. M,and M. may be regarded as the unknown
quantities: they are not independent, for it can be easily
shown that M, 4+ M, = M = Ph. Let M, be the redundant
couple it is desired to find. The direction-fixing couples F for
the three members are all zero for the loading used.

Strain energy equations for the columns are

ﬁE%Ul = My* and t‘i[.‘%n‘.’f2 = M3
The strain energy equation for the beam is
EEIT!UH = M- MM, -+ M2

The total strain energy for the portal is
= H’f ...r'.
~ BEI, 6EI,
The equation of equilibrium between the external forces and
the terminal couples is
M.+M¢+M=‘rn . . - = - {ﬂﬂ}
where J is the moment about D of the horizontal components
of all of the external forces, in the direction of a positive ter-
minal couple. Since M, and M, are not independent, only
one equation will be required to establish the condition of
minimum strain energy, and this is written

all

l
+ EE’T:{M’!'M'M“ + MF) + M2

0= A, " a 3 - (21)
Also we have from equation (20)
?J‘r‘_’ ey
aM,
Then equation (21) becomes
al | R l l h
ﬂ:ﬂf; = EMBT + };{EJHB— ME} + -IMHI;_ EHE'I:- EME-T; =0
Also, My=-M-M
h
(7 +2p)
Then My =-—-2 1
6l h
7+ 4y

1, I
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Now M=+ Ph
- My, = - Phf2

Cunﬂldenng the column AB.

Let H be the horizontal thrust at the hinge A, which is
balanced by an equal and opposite shear force H at the top
of the columns. Then Hk - M, = 0.

Then H = + 1—; and acts in the opposite direction to P, i.e.

towards P, because Hh is positive and this couple has positive
sense (and therefore sense of rotation is anti-clockwise). The
same procedure is adopted for Portal Frames having fixed
column bases: the general solution for such portals when all
the members are loaded transversely has been given by
Bateman in his paper in the Philosophical Magazine, May,
1934. From the general solution, the result for any kind of
loading can be easily ascertained.

Solution of Problem (2) Examples, page 220, by the Previous
Method.

There will be no couples at the column bases, but there will
be equal and opposite horizontal forces acting inwards equal
to H. The terminal couple at the top of column AB will be
8H and at the top of column DC it will be 1} x 8H = 12H.

Let 8H = M which is the terminal couple at B of the beam
BC: the terminal couple at C' of the beam BC will be - 3/2M.

As the beam BC is centrally loaded, the direction-fixing
couples for B and € will be + F and — F respectively.

The strain energy for the whole system can be written

M

6EU = M?® ¥ 7-+ (M-F)*—(M-F)- 5 + F)

315{
= 3
+(235+ F) J +375(3‘M) +¢
a2

10
== (8420 + 55 M!-—MFJraFt} +C

Gnnﬂelling 6F and differentiating,

al 70 10 /19 15
(Zar

aar = 35 T 318 -?F)ﬂ'
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M TE—F < %5 tons-ft. .. M = 1:33 tons-ft.

~ 1538
8H = 1-83 tons-ft. .. H = 0-23 ton
and acts from left to right at base of Column AB.
(Cf. 0-234 by continuous beam method.)

For the solution of portals and continuous frames having
built-in or fixed column bases, the student is referred to the
papers by E. H. Bateman, which are noted in the references
at the end of the chapter.

109d. Mechanical Solution.* Experiments on models of struc-
tures to determine the redundants of reactions or stresses for
the corresponding full-scale structure. Only the ountline of the

8 Lfc D

A.
5 P P Fa¥

1 T"fs -f .f

Fia. 127p

method can be given, by showing the application to the con-
tinuous beam of Fig. 127p.

In this method the fundamental structure is not the simple
structure with all redundants removed: it is the structure
obtained by the removal of the redundant it is desired to find,
and no other. Let it be supposed that in the above girder it
is required to find the value of the reaction X, for a unit load
at any point E on the beam, The support at B is removed and
the girder ACD is considered and is our base system. Let A
be the deflection at any point on the beam, then

X;=PRy=- Ao
bR
where in general Ay is the deflection at B due to unit load at E
on the girder ACD, and Ay is the vertical deflection at B
due to unit load at B.

For solution, a model of the beam is made to scale, and by
means of suitable arrangements it is supported and hinged at
the corresponding points 4, €, and D. The value of I of the
beam is proportional to that of the actual girder. The model

* A full disoussion of this solution is given in the two papers of referenco
(9), page 220, and in the paper of reference (8), page 210,
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is displaced at the corresponding point B by an amount yyy in
the direction of Xp: the amount of displacement of the model
at the corresponding point E in the direction of the actual unit
load is then measured. This is equal to yys which is equal to yus.
It has been shown that the model ratio of deflections

Yem  Voe . Apg

o is equal to o
for the full-scale structure, Thus, in general, the ratio of model
displacements is equal to a force ratio for the actual structure;
and if P, is the load at a point E on the full-scale structure
and X, is an unknown redundant (which may be a couple),
then

Yun "X_n

en P‘I+

Good results have been obtained by the use of relatively simple
and easily constructed models in celluloid. Cardboard has been
used for model making, but as it is not a homogeneous material,
it is not recommended for use in cases where the full-scale
structure is of homogeneous material. Care must be taken in
the design of model members to eliminate, so far as possible,
axial and shear force strain effects where these are neglected
in the analytical discussion. The reader is referred to papers
dealing with this subject, a few of which are given in the
references which follow.
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EXAMPLES

1. A horizontal beam of span [ is rigidly connected to two columns of
length A, which are hinged at their lower ends. The moment of inertin of tha
section of the beam is [y and of the columns is . The beam carries o uni-
formly-distributed load of w tons per foot run. Neglecting the effect of

thrust in the columns, determine the bending
lw moment diagrams for the beam and columns,
} (U. of B.)

c
7 2, The frame ABCD (Fig. 1284) has rigid
joints at B and O, and is hinged at 4 and D to
| fixed supports. W is a lond of 3 tons applied
|, ot the centre of BC. The moment of inertin of
2’ the cross.sections of AR and €D is 375 in inch
i units, and that of BC is 315 in inch units. Find
i the bending moments at B and O, and the
| horizontal thrusts at 4 and D. Draw the
L bending moment diagram for AR and B,
(U. of L.}

o

|
5.
=i

TR 3. The lnttics g‘in:lar shown in Fllg, 128m is
Fio. 1984 10&&1'.11 nt the jl'.'li-l'l'l- H with a load of 50 tona
3 ; Find the forces in the members dus to the
loading. The ratio of length to area of cross-section is the same for every
e ber,

4. If the bases of the columns of the frames in Questions 1 and 2 are

rigidly fixed, deaw the moment diagrams for the columns and beam for both
frames under the respective loadings.

B
Af E
p‘l‘
Fia. 1288 Fia. 128¢

5. Find the forces in the members of the lattice frame shown in Fig. 128c.

The ratio of length to area of the cross-section is the same for every member.
AF = 12{t., FE = 10 ft., DE = 10 ft.
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8. A beam is continuous over two spans of 20 and 30{t. It is simply
supported at the ends and the supports are at the same level. There are
loads of 5 tons and & tons at distances of 10 and 35 ft. from tho left-hand
support. Find the fixing moment at the centre support by the principle of
least work. (Check the result by the theorem of three moments. )

E = 12,000 tons/sq. in., and I = 144 in. units for both spans.

7. A boam having the supports at the same height and simply supported
at the ends, is continuous over three spans of 20, 30, and 20 ft. There ara
londs at the middle points of the first, second, and third spana of 5, 8, and 4 tons
respectively. E = 12,000 tons/sq. in., and I = 144 in. units are constant.
Find the fixing moments at the contral supports by the principle of least work.

8. A beam of length | is fixed rigidly at itsends. It carries aload of ¥ tons
at n distance nl (where n = 1) from the left support. Find the general
expression for the fixing moments at the supports, E: the principle of least
work.

El is a constant.
Nore. When moment dingrams are drawn, they are usually placed on the
tension sides of the various members,



CHAPTER X
Beams axp Frames wiTH Live Loaps

110. Moving Loads. The determination of stresses in bridges
and structures subjected to rolling loads is an important factor
in bridge design. It is often facilitated by the use of *“ Influence
Lines ” and diagrams. Such lines and diagrams will be con-
sidered for bending moment and for shear. Fig. 129 gives a
few typical examples of moving loads which bridges may have
to carry.

111. Definition. An influence line for any given section P
of a structure is such a line that its ordinate (to the beam as
base) at any point X gives the bending moment, shear, or
similar quantity at P when a load is placed at X. In the
case of bending moment, shear force diagrams, ete., for dead
loads, the ordinate at a section X gives the particular quantity
for this section X only; whereas as regards an influence line
for one particular section, the ordinate at any point on the
beam gives the value of the moment, shear, ete., at the par-
ticular section, and each seclion along the structure has its ouwn
influence line.

112. The unit influence line will be developed by consider-
ing a load of 1 ton crossing over a beam or frame ; and from
this unit influence line the moment, shear, ete., for a number
of moving loads or distributed loads can be simply ascertained.

113. Influence Lines for Simply-supported Beams. 45 is a
s%mp]e beam [/ —Unit Influence Line of Bending Moment
(Fig. 130).

To construct the unit influence line of moment for the
point P when a load of 1 ton is placed at any point on the
structure AB,

AP =a I'B =b

(a) Let the load of 1 ton be at any section X between 4 and P
distant z from 4 and { - 2 from B.

1% (I-2) 1%z
_-t—r 'R:I= I

R, =




Railway Bridges.
Ade load inTons 7 1B B8 : B 156 51 B4

L&NE.Rly.(GN.R.) Train of Locomotives as above.

Axte Load i Tons 3B SIE BE BB 8BS oo 8% 00
(4] (] # ==- # (] i

L M.85.Riy. (LINWR) 2 culinder &wheels coupled Goods Engjne.
Highway Bridges.

Ade LoadinTons 12 72 2 & [ & 8 &
e - D - y f f ?
7 g0 | a0 | o |sol go Ll 0
Light Railway.
Adeloadinfons 78 T4 | A 44| 4eaw 4

I
Tupes of Tramcar Loads

4xks Load in Tons 20 20 20 ®
= a2 § .|.= "
;g[ @0’ mo na'g
= a =

30 Ton Ending and 40 Ton Trailer.
(Z sets taken.)

-

T AddeloadinBva .
Tans

dule Lowd in 0 0
=
=
Two 16 Ton Tractors each with a ﬂE'ﬁw‘lgn e
\ a I o " 0
-‘E. g 'I*ﬂ!-l-ﬂ!--ﬂ aﬁ ihiEF ﬂ'\:ﬂ'n ca
L*lﬁ = = = (=] [=] f=] [=1]
30 Ton Tractor with 3-20Ton Trailers.

HAuxle L oad in Tons

Fia. 129
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Retaining the ordinary signs of moment,

xh
The moment at P = M, = - Rb = - T

R, is proportional to z and, therefore, M, is proportional to z,
and is a maximum when z = a.
Maximum value of M,

= o

[

Vil B ! When the 1 ton is at 4,
A fy * yl' '§f B Rn =) Mr = ().
PR 2, P b2 At P erect an ordinate
E::::f:::"{ff::l’::j PC equal to 2 tons . to
Ra Re scale,
Fio. 130 Join ' to A4 ; then ACis
the unit influence moment

line for the point P with the load of 1 ton in any position
between 4 and P,

Consider the load at X,

al xh
e then Y=

M|t

which agrees with the equation M, = - Rb = _:%b
(b) Similarly for the load at any section between P and B,
considering B as origin and a section X, distant z, from B.
Join € to B, and the unit influence moment line for the sec-
tion P is completed for the load at any point on the beam.

¥, the ordinate at X, is equal to - %E tons-ft. to scale

=M.=—Rlaz...—.

Thus, the ordinate of the unit moment diagram for the load
of 1 ton at that ordinate gives the value to scale of the
moment at the section considered.

(¢) If a load of a value greater than 1 ton crosses the span,
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draw the unit influence moment diagram and multiply the
ordinates by the value of the load.

Let the load = W tons.

With 1 ton at X, M, = —frb tons-ft. to scale

With W tons at X, M, = - E.E:ib tons-ft.
For !-? — reaction at B = Ry and M, = — B
W, W & Wzb H"}b
| I . Influence,
— —{/nit Moment Diggram
for P,
4 - B
Vi ) (o, DI
i Bl el el
.___a_l,__._.....l‘——__b_—
Fic. 131

114. The Moment at a Section P when a Number of Loads
Cross the Beam. (Fig. 131.) Construct the unit moment
influence line for P. PC = - %b

Let some of the loads be between 4 and P, and distant
%), &y, %, ete., from A, the loads being Wy, W Wy, eto.

Let some of the loads be between B and P, and distant
zb, x2, x from B, the loads being W%, W, W2, ete.

Let the ordinates to the unit line be y,, ys ¥, etc., and y,°,
¥t ysd, ete.

Considering Fig. 131,

M,= Wy, + Wy + Wbyt + Wiy,
due regard being paid to the sign of the moment.
Let the angle CAP = a, and angle CBP = §.
Maximum unit ordinate
= —-%; y, ==xtana; .. Wy =tana W,z,, ete.

M, = tan o(W,x, + Wz, + ...) + tan B(Wis} +

Wik <09
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Therefore, for any number of loads on the beams,
M, = tan a Wz + tan pXWezt,
where W represents the loads between 4 and P

and W? o ' i P and B,
and where M, will be of the negative sense in the case of a
simple beam.

Tue Maxmom Varve oF M,. M, will be a maximum

when the loads are in such a position that
tan aXWz + tan S is a maximum,

It will always occur when one of the loads is at the section.

To find by trial, place the loads on the beam with one of the

W, W, W loads at P; caleulate the

moment. Move on the

loads to bring another on

8 to P; again find the

moment. The maximum

_______ value can thus be found.

Cantrs oF Bairs Professors Lea and

a1 Andrews have shown that

2k to obtain a maximum

moment, place a load on P, so that if considered as part of

EW, then bEW — aXW® is positive, and if a part of EW?, then

bEW - aZW? is negative.

115. To Find the Section Having the Greatest Possible
Moment under any given Load for a System of Concentrated
Loads on a Beam.* (Fig. 132.) Let WV, be the sum of all the
loads on the beam, and acting at the centre of gravity of the
system, distant = from the support B. It has been mentioned
that a maximum moment for a section occurs with one of
the loads at the section. In Fig. 132, let ¢ be the point of
maximum possible moment under W, the given load.

Let W, be the sum of the loads, including W, on the
portion AC of the beam. W, will act at the centre of
gravity of these loads, and let it be at a distance b from C.

Let ¢ be the distance between W, and W,,.

Now R, = !lif

* Or find the position of any given lond so that the bending moment
under it is the maximum possible for this particular load.
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The moment at € = M,

therefore, M_=~-Wzia Wb ool et o)

By hypothesis this is the maximum possible moment : it is
of negative sign.

For the given loads, b is a constant; but both z and a are
variables : therefore, M, is a maximum when za is a maximum.

Also for the given set of loads, as ¢ and [ are constant, then

(I-¢) = (x -+ a) is a constant,
ie. =+ a= K = constant
na=K-=
Let z = ax = z(K -=x)

d ;
d—i=5—2x=ﬂ for a maximum
= K=z-+ta
For maximum moment, z + a= 2x
e

Hence, for a maximum value of M,, in Equation (1), the
wheel under which the maximum moment occurs and the
centre of gravity of all the loads must be at equal distances
from the supports: this requires the centre of the beam to be
midway between the load under which the maximum moment
occurs and the centre of gravity of the loads. The maximum
moment at the section under the given load is

Woa®
My=-——+ Wb ; S %)

116. In determining the greatest possible maximum moment
for a given set of loads, it is usually necessary to calculate
the maximum value for several sections (usually near to the
centre of the beam). On comparing these maximum values,
the amount and position of the maximum possible moment is
obtained, and also the position of the loads causing this moment.

117. Important General Cases. Case I. Two equal loads
of W tons and distance d ft. apart. (Fig. 133.) Using the
Rule given in paragraph 115, and referring to Fig. 133, the
maximum possible moment is at two sections X, both distant

i from and at either side of, the centre

2W 1 d\*
- ()
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Case I. Two unequal loads W, and W, distant d ft. apart.
Let W, be greater than W, From the example No. 34 it will
be noticed that the greatest moment occurs under the greater
load. (Fig. 134.)

W+

A (%"'i" é’)}%
A ‘tr;(w)

B i
Centre of Beam.
Fro. 133 Fia. 134
The greatest possible maximum moment occurs at the
section under W, d.{stantg (Wx_l:i’—w:) from the centre and is
oL W, + H’,(__ W, d)'
A e s
W, 4+ W, ( 7 W )’
AR 4l W+ W

Hllustrative Problem 34. (Fig. 135,)

A beam is 20 ft. long, and loads of 2 tons and 4 tons, 4 fi. Apart, move
from loft to right. Find the maximum mement at the centre of the beam.

{a) 4T load leading
M (4"at O) = 4 % 54 2 % 3 = 26 tons-ft.
M(2at C) = 2x 54 4 x 3= 22
therefore, max. when 47 at centre,
ie. TW-ZWt= +6-0 f ;
SW-ZWd— 2-4——9 } using rule given
() 2" load leading
M, (27at C 47 at m:z % 5+ 4 X 3= 22 tons-ft.
(2%at 14 4"at C) =2 3+ 4 5= 26
In both cases a maximum when 4, at the centre,

Notas. The gmmt. moment :-ecunmg under ]ilr will be when H‘-’, is at &
distance of = | 1 Ws ) th
4 2, ( “_-I + ]F- - E" (ﬁ".-!-—lﬂ) from o centro,

L W, + W Wd '
I it el b g 1
Ita value will bo 3l (! W, 3 W,
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(B) Loads of 2%, 27 and 4" at 4 ft. centres cross the beam

Find the maximum moment at the centro and the load under which it
DECUTE.

M, (4 tons at centre) =4 X 54+2x 3+ 2x 1= 28 tons-ft.
M,— (Mid 2" atcentre) =4 X 3+2x5+2x3=28
M, = (Last 2" at centre) = 4 X 1+2x34+2xo6=20
Conditions for maximum,
bEW - aXW* to change sign.

Unit Influence Moment
Line for the Central
Section .

Gnr ;FI': T J-r;zrr: ’fﬁn- mn
w—@ @
s
5 =@ @ @
[P A&
Fia. 135
4T at centre 8-0=8-}
Mid 2r = 4—-4=0
Last 27 s 2 _6=-4

A maximum moment for the centre when either 47 at C
or middle 27 at C.

In the previous problem for the 2-ton plus d4-ton loads
crossing the span, find the section having the greatest moment
and also the value of the greatest moment.

(@) The 2-ton and 4-ton loads only. The C. of G. of the two
loads is at

1 4
P e 5 ft. from the 4-ton load.
The section having the greatest moment will be at

10 4 3;_:;'_2 — 10§ ft. from the left support,
with the 47 lond leading from left to right
Froit e A & right to left

(If the londs nre reversible then with the 47 load leading from right toleft,
the ecction of greatest moment will be at 0} fi. from the left support.)
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M t 5 20 g 4)t
ax. moment = -—ﬁ B X

6 562
=55 X 5 = 2618 tons-ft.
118. Simple Beam with a Uniformly-distributed Load Moving
on the Beam. (Fig. 136.) Let the length of the load of w tons
per ft.-run be [, and let I, be less than [ the length of the span.

Lpad- w per unit length Linit moment
influence line

| L-u—-.I,a——l+|-.Iz-n-|
. DA B |
e A A I

Fro. 136

The unit influence moment line for a section P with a maxi-
. ab e
mum ordinate = — T8 shown in Fig. 136,

The load on an elemental length dz = w . dx, so that moment
at P due to w.dx = dM, = w.y.dz, as y is the ordinate of
the unit diagram for w.dx. Now y . dx is the area of the unit
influence diagram above dx; hence total M, = wly.dx
= w X area of unit influence diagram above the length of the
uniformly-distributed moving load, i.e.

M, = w x area CDEFG to scale

118a. Maximum Moment. (a) For a rolling load as long as,
or longer than, the length of the span, the maximum moment
for any section will obviously occur when the whole span is
covered.

() For a rolling load of length [, less than the length I of
the span.
dM

M, =w % area CDEFG: for a maximum—dz—'=

0
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Accordingly M, must be expressed in such a form that it
can be differentiated—

x

]
| O

GP=-EF; tan a =

tan f =
x, — EP, 2, = PF
AE = (a-=,), FB = (b-2)

~3 ~&

Hence ED = AE tan a = (a - x,) :3, FG = {b—;r,}?
Then M, = w{area CDEP 4 area CPFG]

(ED + CP) CP 4+ FG
[ 2

b b ]
= w[:‘;l{“' 331}'!1_ T ET] -+ ?[[E‘ — Zy) i‘: +Ei':|

Substituting z, = (I, - 7,), it can be shown that

w be,?  ally-z)*
a0, = 5ot -5 - 2457
M, (w 2bx, w 2a(l, - z;)
P --(9)% +(7) -0

o

Hence M, is a maximum when bz, = a(l, - ;) = ary

i.e. when < Tl
o b
so that the maximum moment occurs at the section, when the
section point divides the load in the same ratio as it divides
the span.

119. Equivalent Uniformly-distributed Load for Moments—
For Concentrated Loads Moving Over a Span. For a single
concentrated load moving over a span, the maximum bending
moment at any section occurs when the load is at that section,

Wil -
and this maximum moment is equal to = Iﬂﬂ
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where W tons is the moving concentrated load and z is the
distance of the section from the origin ;

that is, M .. for any section = ;:—F [:r! —-x’]

This is an equation where M. depends on z*; and a curve
plotting M., as ordinates against z as abscissae will be a
parabola (as in Fig. 137).

Singie Load only.

Fro. 137

The maximum ordinate will be at the centre of the span
Wi

B e

it is also equal to the ordinate of a moment parabola for
an equivalent uniformly-distributed load w,, thus,
wl* Wi o 2W

—— = i w, i

8 4

w, is the equivalent uniformly-distributed load for W. A
maximum moment for a uniformly-distributed load always
occurs for any section when the beam is totally covered.
For any system of concentrated rolling loads, find the maxi-
mum moment for various positions of the loads on the beam.
Draw (a) a polygon on the length of the beam as base to
enclose the maximum moments for different load positions
when all or the greater part of the loads are on the beams.

Then to find the equivalent uniformly-distributed load 1,,
take the maximum height (at the centre) in moment units of
w,l*

the enclosing parabola and equate to 8
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Draw (b), a polygon to enclose all the maximum moments
and to include cases when only a few of the loads are on the
beams, ie. near to the end supports: then the maximum
ordinate of the enclosing parabola in this case will in most
cases be greater than that of the case (a). Equate this
w, k"

maximum moment ordinate to 3

.-"'JF W

@) > Q

Loads of unequal Magnitude.
Fia. 138

The student is requested to find the equivalent uniformly-
distributed load for various lengths of beams using the loads
given in the loading diagram (Fig. 129).

120, ExAMPLE.

Two rolling concentrated loads crossing s span. To draw the curve of
maximum moments (Fig. 138)—

{a) Construet the unit moment infloence line for a number of sections.
Find the moment for these sections with the first load leading, say, from
left to right and with the first lond at the section.  Construct a curve having
85 ordinates the moment at the section when the load is at that section.
Now let the loads move from right to left with the other or second load
leading. Construct a eurve having as ordinate at s section the moment at
that section with the second load at the section.

* Examples given in—
{a} Arrol's Bridge and Structural Engineers' Handbook, by Adam Hunter,
M.LC.E. (Spon.) In paragraph on Moving loads—graphical construction.
(b) Structural Engineering, by J. Husband and W. Harby. (Longmans,
Green & Co.)
Also consult Papers by Professor F. C. Lea on “ Influence Lines " in the
Phr:u-ediﬂgl Institute of Civil Engineera. (See references at the end of the
chapter.)
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Now draw an enveloping parabola to enclose the maximum
moments which occur at the sections with either of the loads

at that section. This curve will be of the parabolic form :
2
take its maximum ordinate and equate to w,_ﬂ_

where w, is the equivalent uniformly-distributed load.

For two loads of equal intensity, the curve of maximum
moment will be as shown in curve (4GFB), Fig. 139. Again,
draw the enveloping para-
bola to enclose the curve
of maximum moments
for the sections.

Nore ox Fie. 138.
AFDGB is the curve of
moments for the sections

Loads of Same Value. when the smaller load is

Fio. 139 at the section and lead-

ing from left to right.

ACDERBR is the curve of moments when the larger load is at the

section and going from right to left. Then, obviously, ACDGB

is the curve of maximum moments for all sections. If the loads

were reversible, then the curve of maximum moments would

have to be symmetrical about a vertical line through the

centre of the beam, and would be ACC,G,B shown dotted in
Fig. 138.

Noteox Fie. 139. AGEDBisthe curve of maximum moments
for all sections. It is a special case of the preceding one.

121. Unit Influence Line of Shear Force for any Section of
a Simple Beam. The shear force at any section of a beam
is the algebraic sum of the external forces to the right or left
of the section.

Forces acting upwards and downwards to the left of a
section are negative and positive respectively ; forces acting
upwards and downwards to the right of a section are
respectively positive and negative.

Let AB (Fig. 140) be a simple beam ; it is required to
construct the influence line of shear for any section P when
unit load crosses the beam.

With the unit load between A and P, the shear at P is

equal to - R,:

With the Joad between P and B, the shear at P is equal

to - RA! 4
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because in their respective cases they are the only forces to
the right or left of the section.

With 1 ton at 4, B, = - 1ton R,= 0
With 1 ton at B, R, = +1ton R, =0
At 4 and B, erect ordinates AD| =-1 ton and BEC ¢
= + 1 ton to scale.
Join 4 to €, and B to D.

With unit load at any section X between A and P, and
distant z from A, y is the ordinate of the diagram ABC.

ie. y =£T — R, when the load is at X

And similarly for any section between A and P. Therefore,
AEP is the unit influence diagram and positive for the shear
at P when the load is between A and P.
Let the load of 1 ton just move to the right of P, then the
single foree to the left of P is R, 1 and of negative sense.
Let the load be at any section X, distant x, from B and
between P and B, and let y, be the ordinate to the R,
diagram ADBR,
h 1 I
then S h=-7
¥, = — R, with the load of 1 ton at X ;

therefore, PFB is the unit influence diagram and negative for
shear at P when the load is between P and B. The complete
unit influence shear diagram for P is AEPFEB when unit load
crosses the span, Similarly for any other section P, the unit
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influence shear diagram is AE, P, F, B, If aload of W tons
crosses the span, construct the unit diagram as shown for the
particular section, and multiply the ordinates of this diagram
by .

122, If & number of loads cross the span, then the shear
at a particular section will be equal to

IWu - EWays . . . (3)

where W, and y, represent loads giving positive shear at the
sections and ordinates of the positive unit shear diagram
respectively, and W, .
representing  loads  giving
negative shear and negative
g ordinates respectively.
- The sign of the shear force
will depend on the magni-

' 2} | tudes of the quantities in

fe-a-Se——5-——>] Equation (3).

123. The Position of the

Loads to Give Maximum Shear at Any Point is found by trial ;
that is, take different positions of the loads, and the maximum
shear is easily ascertained by finding the largest sum total of
shear ; it occurs with a load at the section, and usually one
of the largest,

124. The Shear at a Section when a Uniformly-distributed
Load Moves Over a Beam (Fig. 141). Construct the unit
influence shear diagram for the section. As in the case of the
moment diagram, the shear at the section = w . dx . y = w . d4

Fra. 141

dd = small area of the unit diagram ;

therefore, the area of the unit shear force diagram between the
right limits X w gives the shear at a section when a uniformly-
distributed load crosses the beam.

125. Case I. IﬁnsthutﬂoﬂhrglmdﬂmtarthanthaSm-
Let the load cross in the direction 4 to B. It is obvious that
the shear of positive sense will be a maximum when the
portion AP of the beam only is coversd (Fig. 141), and
that the shear at P of negative sense will be & maximum
when only the portion PB of the beam is covered., If AP
and part of PB is covered, then the shear at P will be
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+ (w X area AEP)- (w X part area of PFB). The sign of
the resultant shear will depend on the magnitudes of the areas.
Case II. Length of Rolling Load Less than the Span.
let AP—=a: PB=25,and a <b.
Let the length of the moving load be I, < a, and moving
from left to right.

Then maximum positive shear at P is when the beginning of
the load is at P, and maximum negative shear at P, when

/i (b) Loads reversible.

Fia, 142

the end of the load is at P. Also vice versa for the load
moving from right to left.
Referring to Fig. 141, the maximum positive shear at P is

= w X Area PXYE
[I,[PE-J—XI’]]
== 10 —-2—"

126. Maximum Shears (Fig. 142). (1) For a single load
moving over a bridge, the maximum negative or positive shear
for a section occurs when the load is at that section. For two
loads rolling over a bridge, the maximum positive or negative
shear can be ascertained by the use of the unit influence shear



238 THEORY OF STRUCTURES

diagram for the section : it will oceur when one of the loads is at
the section. A diagram can be plotted giving the maximum
shear at the section. (See Fig. 142.)

(2) For a uniformly-distributed rolling load over the span and
longer than the span, the maximum negative or positive shear
oceurs at the span, when either one or other of the portions of the
beam made by the section are wholly covered. It has been
shown that the shear is the corresponding area of the unit
influence shear diagram to scale. In this case, therefore, maxi-
mum shear is a function of 2, and consequently the curve of

Fig. 143

maximum shears plotted against z is a semi-parabola as
illustrated in Fig. 143.

127. Equivalent Uniformly-distributed Load for Shear for
any Section. As discussed previously, find the maximum
shear at a section by placing the loads at different positions
on the beam with a load at the section. From the magnitudes
of the loads and the corresponding ordinates of the unit
influence shear diagram for the section, the maximum shear
at the section can be found.

Let — Sy be the maximum negative shear for a section X,
then the negative portion of the unit influence shear diagram
must be covered by a uniformly-distributed load of value 1w,
to cause the shear — S;. (8ee Fig. 144.)

Vit e (#%E)(I-Tr)w. &l = 2)?

2

(I—=x)*

w, = _'Slmu;-
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Similarly for maximum positive shear,

o
w, = + SXMES':!—E

The maximum possible shear obviously occurs at the ends
of the structure, and, therefore, the maximum equivalent
uniformly-distributed load will occur for end shear.

128. Influence Diagrams for Perfect Frames of the Warren
and N-girder Types which have Parallel Flanges. Influence
diagrams are specially applicable to frames, as the loads are
generally applied at the joints ; the stresses in the members

are ascertained by a con- 3
sideration of moments and wnity
shear forces, ik :
INFLUESCE LINES FOR - aXxyaao L
A Warrgx GIRDER, OF &
“Taroven” TyeE, single “"I¥
members as shown in Fig.
145. Let aunit load = 1 ton Fra. 144
cross from A to B.
(1) To ascertain the stress in a member of the fop flange, say
CE, take a section line (1) — (1); then the force in CE is found
by taking moments about the bottom joint D, i.e.

Force in CE % p = moment at D = M,

Therefore it is required to find the influence moment diagram
for a joint in the lower boom. Take R on side of section line
away from the load, then with unit load between A and D,

M" = RB . BD
also with unit load between ) and B,
j’f[, - R* - AD

R, and R, are found in the usual way by the method of
moments.

The influence moment diagrams for the joints on the bottom
flange are the same as those for the different sections of a simply
supported beam. The ordinate at D of the unit influence

moment diagram for D is A—%ﬁ

The maximum stress in CE = My(Max)/p
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(2) The stress or force in a member of the bottom boom such
a8 DF is found by taking moments about a joint (here E) in
the top flange. (See Figs. 145 and 146.)

Force in DF x p = M,.

.. Force in DF = M,fp, so that the maximum force in DF
depends on the maximum moment at E.

(@) With unit load between F and B, distant a, from B,

H;=-R;.AE=R‘I1; R}E

ol

l

so that M, = xTJ‘: this is a linear equation in z (each term
being of the first degree, it is the equation of a straight line).

Fia. 145

Let d = length of one bay, then BF = nd and I = nd,
where n = number of bays in the bottom boom and iy = num-
ber of bays from F to B.

When the 1 ton load is at F, z, = BF — iy,

S T AL L S
s M nd

L
At F erect an ordinate F§ — ’—1‘ tons-ft. to scale,

When the 1 ton load is at B, #, — 0 and M, =0, Join &
to B, then GB is a portion of the unit influence moment line
for joint E.

() With the unit load between 4 and D, distant x, from A
(see Fig. 145)

My = Ry.BE = Ry,; Ry = x,Jl and M, — f‘-’i'—l'

which is again the equation of a straight line.
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When z, = 0; My= 0.
When #, = ngd (where n, = number of bays from 4 to D)

nd. .l noy
MeE e

At D erect an ordinate DH to scale = nyly/n tons-ft. Join
H to A, then AH is a portion of the unit influence moment
line for joint E with the load of 1 ton between 4 and D.

(¢) To find the Influence Line for Moment (or Shear) for a
section in the bay, when the load is in the bay and transferred
to the main girder at the bay points by cross girders.

AHGB s the unit influence moment
line for the joint E.

Fic. 146

In Figs. 145 and 146, when the load is in the bay DF, the
load will be applied at points D and F. It is required to con-
struct the influence line for moment (or shear) for any sec-
tion X, in bay DF. Let y, = ordinate of unit influence
moment (or shear) diagram for section X; when unit load is at
D: it has been shown that y, = nuafn; let y, = ordinate of
same diagram for unit load at F, then y, = ml/n. Let the
1-ton load be between D and F, distant z from D, and let
DF = d = length of bay.

The load transmitted at F

= Reaction at F = R, = z[d
also the load transmitted at D
= Reaction at D = Ry, = (d - z)/d
Let the moment (or shear) at X, be represented by y.,.
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d—
Then y,, = ;;l'!d"r} 7 (Tz)yn = ¥p + Ef.lh — ¥n)

as ¥y and y, are ordinates of the unit influence diagram for

(Proof: If 1 ton is at D, z = 0 and hence g,, = ys, and if
ltonisat F,z =d and y,, = ¥y, + g{y,-ybj = ¥y.)

Accordingly, the influence line for a section in the bay, with
the load in the bay DF, is found by joining the tops of ordinates
¥y and y,. The complete unit influence moment line for joint
E is thus AHGB. Force in DF = M/p.

129. Maximum Moment About a Joint. For a single load
crossing the frame, the maximum moment will occur when the
load is at the maximum ordinate of the unit influence moment
diagram. With a uniformly-distributed load of length longer
than the span, the moment is & maximum when the whole frame
is covered; for a load of length less than the span, by trial
the position of the load to give the maximum area of moment
diagram above it can be readily ascertained. For a joint in
the bottom flange of a Warren girder, the position of the load
will be the same as that obtained by using the form in para-
graph 118 for simple beams. The rule for maximum moment
for lower joints due to irregular loading is the same as for
simple beams,

Maximum moment due to a number of irregular loads for the
upper joints of a Warren girder. Place the loads on the span so
that one load is at F, Fig. 146; find the moment for this case.
Move the loads along a little to the right and re-work ; by
trial, the position of the loads for maximum moment can be
found. The equivalent, uniformly distributed, can be found
for both cases in the same way as for a simple beam.

130. Btresses in the Diagonal Members. The stresses in the
diagonal members depend on the shear force in the particular
bay. For example, consider the bay DF (Fig. 147). To find
the stresses in the diagonals DE and EF. With the load of
1 ton between F and B, the only force to the left of F is R, :
so the shear force in the bay DF is - R,: With the load of
1 ton between 4 and D, the only force to the right of D is
R, and the shear force in the bay DF is then + R,.
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AD = n, bays
FB=n, .
Length of bay = d
With the load at F, B, = -7 X md tons

Fig. 147

At D and F, erect ordinates to scale.

DH = + ﬂ——f ; F@ = - ﬂ—:d

Join 4 to H and B to @, then AH and GB are portions of
the unit shear influence line for the bay DF.

Join H to @, and by the previous theory in paragraph 128 (c),
HG is the influence line for the load between D and F, that
is, when it is in the bay.

H@ cuts the bay DF in the point J.

shear force in bay DF
gin 0

The force in DE =

shear force in bay DF
sin 6

The force in EF =

If shear in bay DF 4, force in DE -+, force in EF F
where tensile force 4+ and compressive force —.

Thus, the kind of force in the diagonals varies according
to the position of the load ; that is, negative shear in a bay,
the left-hand diagonal is a strut, the right hand a tie, and
vice versa for positive shear.
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The maximum load in the diagonals will depend on the
maximum shear in the bay. For a single concentrated load,
the maximum shears will occur at the bay limits D and F.
For a uniformly-distributed load longer than the span I, the
maximum positive shear in the bay DF will occur when the
portion AJ of the span is covered, and maximum negative
when the portion JB is covered. For a uniformly-distributed
load less than the length of the span I, and moving from left
to right maximum positive shear occurs when the front of the
load is at J, and maximum negative shear when the end of it
is at J.

131. Maximum Shear in a Bay Due to a Uniformly-distri-
buted Load Longer than the Span. (See Fig. 147.)

By similar triangles
LA LA TR
JD HD y, nd

JP g

JD +JF — nd + ngd
But (nd + nygd) = (I -d); and if number of bays = n, [ = nd,

o L
(l-d) (n-1)

7 g JF _ m
Also JD 4 JF = d; hence e ey
JF = (—“’ g )u!.
n—1

It has been indicated that the maximum negative shear occurs
when the length JB = FB + JF is covered by a uniformly-
distributed load; so that maximum negative shear oceurs for
a continuous loading in a bay, e.g. the (n, + 1) bay from the

so that

s0 that the expression

right-hand support when a length d(n.l + ;111—1) is covered,
i.e. when (nl + ﬁ-ﬂ_—li) bays are covered by the load.

Similarly for maximum positive shear in the same bay:
working from the left-hand support, a length of

a(m+525) = (m+ 25)

bays must be covered to give maximum positive shear.
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132. Maximum Shear in a Bay Due to Irregular Loads. Con-
sider bay DF in Fig. 147. The loads move from left to right.

(a) Let W, be the resultant of all the loads in the frame to
the left of the bay, Wy the resultant of all the loads in the
bay, and Wy the resultant of all the loads to the right of the
bay.

Let 4y, ¥s, ¥= be the ordinates of the unit influence shear
diagram at the positions of Wy, W, and Wy respectively.

Then the resulting shear = (Wyys + Ways + Wat), regard
being paid to the signs.

For this position of the loads, this equation gives the total
shear.

(b) Move on the loads until the first heavy load passes D
and comes into Wy: find the resulting shear for this new posi-
tion of the loads.

(¢) Continue thus until the maximum is found. Professors
Lea and Andrews have shown that in the limit and when the
loads are very close together

Wi+ Ws+ Wa

n

“'T] —

i.e. the maximum shear in any bay occurs when W, the sum of
the loads in the bay, is equal to the total load (Wy + Wa+ Wy)
divided by the number of bays. As a general rule, the maxi-
mum shear occurs in a bay when the first heavy load passes
the general point D. (See Fig. 147.)

133. Framed Girders with Vertical Posts of the N or Pratt
Type. (Fig. 148.) The moment influence lines for any
joint will be the same as for the lower flange joints :
of the Warren girder; and for shear in any bay, [}
the influence line will be the same as for a bay l
of the Warren girder. The maximum load in an
upright member will be equal to the maximum ..o
shear force ; the maximum load in a diagonal will ;
be equal to

Maximum shear force where § = angle diagonal
cos i makes with the vertical

For shear in the bay 7, load in the left-hand vertical T, load
in the diagonal 4 where compressive forces —, and tensile
forces + .

o—{T.3430)
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134. Frames or Trusses with Curved Flanges. (Fig. 149.)
The frame in Fig. 149 is a curved flanged frame ; it is required
to find the forces in the members EF, CD, and FC as being
typical of members in the top and bottom flanges and the
diagonals.

moment at F M,

Force in OD = =¥
"M By
Fﬂme in EF.__,DME.= M;.
p P

.- + Moment.
T“Gr':..{_L , | T~ ~Moment,
gl STee /i A

-" = - I

R R —~1F '
i 1/ e |
X _!?.---" n,d—= b————nd .
AHLJB is the Unit Influence Moment ﬂagﬂam
for the point G.

Fia. 149

The moment influence lines for €' and F are as for the bottom
and top joints of the Warren girder considered previously.
Force 1x FC. Produce FE to cut BA produced in G.
From (@ drop a perpendicular to FC' produced
i e Tt O moment about & _ M,
Ps Py
(1) Referring to Fig. 149, let a unit load be between D
and B distant  from B. Let XX be a dividing line cutting
the three members EF, FC, and OD. Then the left-hand
half of the girder is in equilibrium under the external loads,
including the reaction and the forces in the members EF,
FC, and CD acting as external forces. Let the unit load be
between D and B distant z from B; then the only external

load to the left of XX is R, — '_-“'_;TE
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Moments about (&,

M, = —-? X AG=—zT % g, negative

as it will cause a compressive stress in F'C. This is a linear
equation in x, and, therefore, the unit influence moment line
for unit load between D and B is a straight line BJ,

BDg' _ ngdyg _ "y
[ I n
ny = the number of bays in BD,

d = length of one bay,
n = total number of bays.

Let the unit load be between A4 and C, distant x, from A.
Considering the portion of the frame to the right of XX,

where JD = -

the only external load will be R, = "1; tons.

Moment about @,
M, = R,(AB + AG) = R,(l +g)

=? (I + g) and is positive,

as it will cause a tensile stress in FC,

§ .-r,(i + %)

This is again a linear relation in z,, so that the unit influence
line when the load is between A and C is a straight line AH,
the ordinate CH being equal to

Aﬂ'(l + gf) = ﬂltf(l + %—) where n, = number of bays in AC.

The unit influence moment line for the load crossing the bay
is found by joining H to J.

HA and BJ produced meet in one point K, which is
vertically below . Join K to G.

K@, considered as an ordinate of BJ, produced

__U+g)

] where s =1+ g
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K@, considered as an ordinate of H4, produced
__(+gw
] | i
therefore, K is vertically below G.
Thus, to construct this particular influence line of moment,
set down from @ an ordinate K to scale

__(+g)k
I

where z, = —g

Join KA and produce to meet a vertical through C, to give
the ordinate 4 CH.

Join K to B; from D drop an ordinate DJ to meet KB
in J. Join H to J. The unit influence moment line for the
point ¢ will then be AHJB.

Maxmom Loap 1% CF. For a single isolated load, this will
occur when it is situated at the maximum ordinate of the
unit diagram, that is, at the bay points, to give a maximum
tensile or compressive force; at D a maximum compressive
force will occur ; at €' a maximum tensile force.

For a uniformly-distributed load of length greater than the
span, the maximum occurs when AL or LB is covered : for
length of load less than the span and moving from left to right,
maximuom positive moment occurs when the front of the load
is at the point L, and maximum negative moment when the
rear of the load is at the point L in the bay CD.

Tests for maximum moments about €' and F are as pre-
viously determined for parallel flange trusses and simple
beams.

135. In dealing with the forces in the members of the
flanges, care must be taken that the kind of force in the
member is correctly determined. This can easily be ascer-
tained by the consideration of the turning direction of the
moments of the known external loads about a point. A force
in a member acting towards a joint indicates a compressive
force, and a force acting from a joint indicates a tensile force.

REFERENCES 1o ParErs axp Works ox INFLuEscE Lives

Proceedings of the Inatitution of Civil Engineers, Prof. F. C. Lea ; Vol. clxxxv,
p. 288 ; Vol. clxxxv, p. 277—" Influence Lines for Continuous Girders
and Lattice Girders ™ Vol. clxi, p. 284, * Notes on Equivalent Uniformly-
distributed Loads."

Higher Problems in the Theory and Design of Structurcs, Ewart 8. Androws.
(Chapman & Hall.) Influence lines for and frames.

Influence Lines, Sprague.  (Scott, Greenwood & Son.) Including also notes on
impact.,
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Hlustrative Problem 35.

A symmetrical N-type deck bridge has six equal pancls and spans 120 ft.
The depth of each main girder is 20 ft. 1f on each truss there acts a uniform
dead load of 1 ton per foot run and a uniform moving load of 1 ton per foot
run, determine the forees for which the members DE, DK, LK should beo
designed. Assume the dead load is concentrated at the top chord panel
joints. (0. of L.)

Considering the forces in the members due to dead load only.

Referring to Fig. 150,

R‘ = ﬂ'{} t{:llls — Rr

oo W X 2w ®
A C B
60 60

M L e H

: Unit Moment Line
Uit Moment D T et K
Joint D. AR T

A‘- ¥ L ﬂ1

K
Unit Influence Lines for Jonts D and K.

-‘--F-‘l
a—

Dyt L ot
+
TA2 - e
I [
1 =,
e e P = e Kz
S M g Unit Shear Diagram for Bay 3
Fra. 150

Force in LK, considering the equilibrium of the portion of
the girder to the left of the dividing line and taking moments
about D,

(Force in LK) % (-20) =20 X 20 4 10 X 40 — 60 x 40

(Force in LK) = 80 tons and is positive, giving a tensile

force.

For the force in DE,

Let a dividing line cut DE, KE, and KJ.

Taking moments about K,

(Force in DE) x 20 = 400 + 800 + 600 — 3600

(Force in DE) = 90 tons, and is compressive.
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The shear in bay 3 = — 60 4 50 = - 10 tons.
Considering the forces to the left of the bay, EK takes this,
and, therefore, the force in the diagonal DK will be
10
i cos 45°
Maximum forces in the members due to the live load of
1 ton per foot run.

The maximum ordinate of the unit influence moment line
for joint D will be

= 104/2 = 14-14 tons, and is tensile.

40 »x 80
-— ft, = — 26-6 -t
120 tons-ft 6-6 tons
The maximum moment at D will, therefore, be
- 26-6
1% T * 120 = - 1600 tons-ft.
: : — 1600 -
Foree in LK due to live load = = 80 tons tensile force.
The maximum ordinate of the unit influence line for the joint
60 x 60

K LB-W = — 30 t.onsvft-

Maximum moment at K will, therefore, be
30
=g ¥ 120 x 1 = — 1800 tons-ft.

Foree in DE due to the live load,

- 1800

A T 90 tons, and is compressive.

The maximum positive shear in the third bay from the
left-hand support will be (see paragraph 131) when (2 -+ %)
bays from the left-hand support are covered: maximum
negative shear when (3 4 g) bays from the right-hand support
are covered.

Maximum positive shear in bay 3 therefore
2\ 20

1
_—_1>«:3—x(2+§)~2~=+smns.

[4 = ordinate unit load influence line with 1 ton at D ]
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Maximum negative shear in bay 3,

=1 1)(3 i 18 to
= ]| X +E 2—- Mns.

2
[4 = ordinate unit load influence line 1 ton at E.]
Max. compressive force in DK Ay 8 ol e
due to the live load cos 45
Maximum negative shear causes a tensile force in DK.
Max. tensile force in DK 18
due toﬂliva load ~— cosd5’ ARt eab
= 25:43 tons.

The members, therefore, should be designed to carry the
following loads.

LK, + 804+ 80 = - 160 tons
DE, - 90-90 = - 180 }
DK, + 1414 + 25-4 = -+ 30-54,,

Minimum tensile stress in DK = 1414 - 113 = 2-84 tons.

If the resultant load in a diagonal is changed from a tensile
force to a thrust, then the bay can be counterbraced by a
member along the other diagonal to take a tensile force,
assuming the first diagonal cannot take thrust loads.

REFERENCES
Design of Modern Steel Structures, L. E. Grinter. (Macmillan.)
Kinetic Theory of Engineering Structures, Molitor. (MeGraw-Hill.)
See plso thoso listed at the end of Chapter VII, page 175.

EXAMPLES

1. A girder 40 ft. long is supported at ite ends, and two isolated loads of
10 tons and 4 tons travel slowly across it from opposite ends at the same
speed, passing each other at the centre of the span. Draw the diagram of
maximum bending moment and shearing force for the girder.  (U. of L)

2, A load of wlb. per foot run moves from left to right over a Pratt
girder which is divided into N panels of length . Show that the maximum
shear S at the nth panel point from the left is given by the equation—

8= _wn¥l
TEN-1) (U. of B}
3. A Pratt truss, 104 ft. , depth 13 ft., is divided into 8 equal pancle
Tt carries a uniform dead load of 06 ton per foot run and a uniform live load

of 1} tons per foot run, both supported at the joints of the bottom chord.
Determine the maximum stresses in all the membars of the third and fourth
pansls from one support, and state whether these panels require to he
counterbraced.
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4. A Howe trussed girder of 120 ft. span is divided into 10 bays of 12 ft.
each. The depth of the girder is 16 ft., and it is subjected to a dend load
of 3 ewt. per foot run. Find the maximum shear in each panel when n live
load of 2 ewt. per foot run rolls over the bridge, and the number of bays
that require counterbracing. Width of bridge = 15 ft. (U. of B.)

5, Railway bridges have a great variety of wheel loads moving over them
at different times. Show carefully how vou would determine ** the equiva-
lent load per foot run ™ for a given span for any type of load—

{a} for end shear,
{b) for bending moment at all points of the girder. (U. of B.)

8. An N girder of 120 ft. span has 6 equal bays in the lower boom. A
rolling load of 2 tons per foot run passes over the girder. Determine (1) the
maximum foree in the top boom of the second bay from the left ; (2) the
maximum fores in the diagonal of the same bay. (U. of B.)

7. An N girder 160 ft. span is loaded on the top boom and illtlo:l;g;
ported at the ends of the top boom. It has 8 panels, each 20 ft. long.

depth of the girder is 25{t. There is & dend load of 0-5 ton per foot run
and a travelling load longer than the span of 1 ton per foot run. Determine
the maximum forces in the vertical members 40 fr. and 60 ft. respectively
from the left abutment, and also in the three members eut by & vertical
section 50 ft. from the leit abutment (Le. the three members connecting the
two vertical members). Neglect impact, (0. of L.}

8. A lattico girder of the Warren type has 4 equal bays of 20 ft. in the
lower boom and, consequently, 3 equal bays in the upper boom. The
diagonals of the girder are inclined at 60° to the horizontal. Draw the
influence diagrams for the three members cut by a vertical section 35 ft.
from the left abutment ; and determine in each case the maximum foree
produced in the member when a uniformly-distribated load of 2 tons per
foot run, 80 ft. long, passes over the girder, (LB.E.)

8, Two loads of 10 and 15 tons reapectively at 6 ft. apart roll over a
girder of 30 ft. span. Draw to scale a diagram ulmwi.u% the variation of
maximum bending moment that ocoura under the load of 156 tons. Deter-
mine the maximum shearing foree at the centro and also at the end of the
girder. (U. of L.)

10. A locomotive, having wheel loads as shown in Fig. 151, passes over a
bridge of 50 ft. span. Determine (a) the bending moment at the centre of
the girder when the load of 18 tons is at the centre, (b) the maximum
ghearing foree ot the abutments due to these loods,

11. Show clearly how you would find the equivalent load per foot run for
bending moment for the wheel loads shown in Fig. 151 for any span. (U, of L.)

w B 15 1
b6 b

Fra. 151

12. An N girder has a span of 150 ft. and heas 10 equal bays in the lower
boom., The girder is 20 {t. deep. Show how to find the influsnce diagrams
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for (1) any boom member, (2) any dingonal. A load consisting of a loco-
motive having 16 tons on each of 5 axles spaced 6 ft. apart rolls over the
girder. Neglecting any impact factor, find the maximum forces in the
members cut by a vertical seation 40 fi. from ons abutment.

13. The floor of a single line railway bridge is carried on cross girders
which rest on the main girder at the panel points as shown in Fig. 152. The
span of the main girder is 100 ft. and thers are five panels each 20 {t. The
girder is 15 ft. at the centre and 10 ft. deep at ED. A uniform load of 2 tons
per foot runs over the bridge from @ to H. Show that the forees due to
the moving load in the two members AR and AC are a maximum when the
front of the load is 71-1ft. from &, and hence determinoe these forces in
magnitude and kind. a (U. of L.)

Fic. 152

14. The student is requested to take the frames mentioned in the problems
end to carry out oxercises for himself to test any results and formula given
in the text, using any of the types of moving loads given in Fig. 129,



CHAPTER XI

THrEE-PINNED MeTAL ArcHes, Ries, axp
SUspENSION BRIDGES

136. Ax arch rib may be looked upon as a curved girder, either
a solid rib or braced, supported at its ends and carrying
transverse loads which are frequently all vertical. The arch,
as a whole, is subjected to thrust, because the transverse
loading at any section normal to the axis of the girder is
at an angle to the normal face, and the force can, therefore,
be split up into a tangential or shear force across the face,
and a forece or thrust normal to the section. The line of
resultant thrust is called the * linear arch.”

For an arch carrying vertical loads, it can easily be drawn,
when, in addition to the vertical loads, the horizontal com-
ponent of the thrust at the abutments is known. The vertical
components of the reactions at the abutments are determined
algebraically or graphically as for a straight beam, and they
are not affected by the horizontal thrust if the abutments are
at the same level, as is evident if moments about an abutment
are considered.

Arches are of three kinds— 3

(a) Three-pinned, having hinges at the crown and the
abutments.

(b) Two-pinned, having hinges at the abutments only.

(¢) Fixed or solid arches, having no hinges at all.

The former is a statically determinate structure; the two
latter are statically indeterminate. In this book the theory
of the three-hinged arch only will be considered.

137. The general condition of loading for an arch is as
illustrated in Fig. 153. .

Let the external loads act vertically downwards. At the
abutments there are, in general, (z) a fixed moment M, resist-
ing bending ; (b) a reaction R, due to the thrust of the arch,
and which can be resolved into V, acting vertically upwards,
and H, the horizontal component acting towards the other
abutment.

254
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The straining actions at any normal section € are as in
Fig. 153, and they are resolved into (2) a bending moment M,
and (b) a shearing force S (as in a straight beam); in addi-
tion, a thrust P normal to the section. These three actions
are statically equivalent to a single thrust T' acting at some
point D on the normal face ' produced, and where

M
Glﬂ = F
D lies on the linear arch ; €, is a point on face C lying on the
axis of the arch, the axis passing through the centroid of the

Fia. 153

section. For continuous loading, the linear arch will be a
curve having the direction of the resulting thrusts as tangents
to the curve.

The straining action may then be specified by the normal
thrust P, the radial shearing force S, and the bending moment
M ; or simply by the linear arch. When the straining actions
are known, the stress intensities in the rib can be determined.
As in straight beams, the shearing force may be neglected as
producing little effect on the stresses. If the curvature of the
rib is not great, it is usually sufficient to calculate the bend-
ing stresses as for a straight beam. The uniform compression
arising from the thrust P is added algebraically to the bending
stresses,
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138. The general equations for all types of arches are—
Considering the equilibrium of the portion AC, in Fig. 153,
y = height of the axis of the arch at €, above the supports.

Resolving the forces horizontally, 6 = slope of tangent to arch
axis at C.

Pcosli—8enb-H,= 0 . . A - (1)
Resolving the forces vertically,
P sinf+ 8 cos+ (E0 W) -V, =0 S a2

Ha=H,

Moments about €, (the signs being the same as for straight
beams),

M-M-Vz+Hy+ (EWxm)=0 . . (3
The Three-hinged Arch. Thus there are six unknowns in

these three equations: the general case, therefore, requircs
three more equations which are developed from the strains
produced. But for the three-hinged arch, i.e. the arch having
hinges at the abutments and the crown, and which is statically
determinate, three of the unknowns in the general equations
are easily found. M, is zero, i.e. there is no moment at the
springings or abutments; and also the moment at the crown
hinge is zero. The horizontal thrust H, is found from these
facts and, consequently, the line of thrust or linear arch. The
line of thrust passes through the hinges, and V, is found as
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for a simply-supported beam. Therefore, for the three-hinged
arch,
M=-Va+EWa)+Hy . . . . 4
Moment at the section as for
=( a simply-supported beam ) A s b (3)
=M, + Hy . : (6)
M, will always be of negative sign for dow n“&rd luuds

139. A few cases of loading will now be considered for the
three-hinged arch.

A single dead load between the abutment and the crown.

Abutment hinges are at same height.

W is distant #! from the origin @, and between O and C.
Referring to Fig. 154, page 256.

F,:l—fﬂuni]:wu—n}, 4 S adion oy ol
F,—~ITF+111 = Wn. ; . . PR

Considering moments about the crown hinge C,
= height ecrown hinge above the origin.

_rr,;.+w(2i_nz)+ﬂ,y,=u SRR RT )

- W(l -u}é—-}- H"(‘l}——n) l4+Hy,= 0

Wnl
Sllmigs ()

Similarly if W be between ' and B,
W
ff,, = "2-‘;;; {1 - 'I‘i:}lrr

Wnl .
and T" = moment at C, as if the arch was a simply-supported
beam.
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HWat(,n= ;—
moment at the centre of a simply-
a1 M oported beam with. W st dhe
2 2 2 4 centre.
Then H, = ;:TI and is & maximum.

The moment at any section X between 4 (the origin)
and the load point,
Win y

Mx=—V,1:+H,y=—W[1-n}x+T.y— A )
Moment at any section X, between the load point and the
crown hinge = My, =- Va2, + Wix,— nl) + Ha,

Win
= -W(l-n)x, + W(zx,- ni) + S0E ':_—r:
_ Win (22, sg)
_T(t"z"'y, . : . (12)
Moment at any section X, on the unloaded half
= My, = H,y,— Vgzx, where z, is measured from B
Wnl y,
= '—"2—- .ET - ]Fﬂif, “3}

140. Graphical Solution of This Problem. Referring to
Fig. 155, as there is no load on BC and as the moment at C
is zero, the thrust at B must pass through €' to meet the line
of action of W in Z.

R, R, and W are in equilibrium, and the line of the
reaction B, at 4 must, when produced, meet IV in Z.

The vector diagram to the right represents ef = W to scale
acting downwards.

Jh= Vzand ke =V,

From f and e draw fo and eo parallel to R, and R, respect-
ively to meet in O; then fo = R, to scale and eo = R, to,
scale. O is the pole of the diagram.

Then Oh is horizontal and to scale

= horizontal thrust at 4 and B = H,,

Now triangle AZB represents the moment diagram to scale
for a simple beam, and is of negative sign.
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The curved figure ACBA represents to the same scale the
moment diagram for H,y and is of the positive sense.
Y. is common to both diagrams.

Thus the resultant moment diagram to scale for the arch is the
shaded diagram 4ZCXBCA. For the loaded half, the resultant
diagram is negative, and, for the unloaded half, positive.

=

L=
-
o
o T
g — = = R === ]

Fia. 155

If H, in tons and any ordinate y, of the shaded diagram is
measured in feet to the same scale as y,, then the moment at
the section corresponding to y, = H, X yp tons-fi., due regard
being paid to the sign.

Thus the resultant moment at any section is represented
by the ordinate of the diagram formed by the linear arch and
the axis of the arch.

141. (a) The Graphical and (b) the Algebraic Analysis of the
Three-hinged Arch Carrying Several Vertical Concentrated
Loads. (Fig. 156.)

(a) Tue Graraicar, MerHoD. Calculate H, by the method
stated, and also calculate V, and ¥V, by the usual methods as
for a simple beam.

Referring to Fig. 156, draw the load diagram of the vector
polygon to scale; draw the pole line Oh horizontal equal to H,
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to scale, & being the point on the load line splitting the total
loads into the two vertical reactions. Join O to the different
points on the load line. The outer radii will be B, and R, in
magnitude and direction.

Draw the funicular polygon as for a simple beam and thus
obtain the linear arch, which will pass through C.

The resultant moment diagram is again represented by the
diagram formed by the linear arch and the axis of the arch.

If there are only a few loads on the arch, the linear arch
can be easily found by constructing the simple beam moment

Fro. 156

diagram by finding the moment at the different load points
and erecting ordinates to a scale equivalent to y,, where ¥,
will represent the moment at €,

(b) Tue ArcEBRAIC SOoLUTION. Let M., represent the simple
bending moment at any section X due to the vertical loads
acting on a straight horizontal beam.

Then the actual moment at X = M,

= My, + H,y from equation (6)
Let My, be the simple moment at the centre D (see Fig. 156)
of a span AB; then since the bending moment at C is zero
0= My + dec
or H,= - M,
Yo
Hence for any other section

My = Mex - Mucg

o
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due attention being paid to the sign of the simple moments;
they are of the negative sign for downward loads.

The normal thrust at any radial cross-section X (Fig. 156)
may be found by multiplying the resultant thrust (represented
by eo) by the cosine of the angle between the tangent to the
arch axis at X, and the direction of the thrust (eo); the
transverse or radial shearing force may be obtained by multi-
plying the resultant thrust (eo) by the sine of its inclination
to the tangent of the arch axis at X.

Algebraically, the resultant thrust may be obtained by
compounding the constant horizontal thrust H, with the ver-
El::.l shearing force determined as for a straight horizontal

m.

142, Uniformly-distributed Load of Length Equal to the
Span on a Three-hinged Arch. The moment diagram for a
simple beam is a parabola, and it has its maximum ordinate
at C.

The resultant moment at C is zero, and therefore the
resultant moment diagram for the whole arch of any curve
will be of the same sign throughout. If the axis of the arch
is a parabola, then obviously the resultant moment for the
whole arch is zero; because the curve of the simple beam
moment line is parabolic and it passes through C, therefore
the two curves coincide.

llustrative Problem 36.
.1
The equation of the axis of a three-hinged arch is y = = _:_u‘ the origin

being the left-hand support. The span and rise are 40 ft. and 10 fu. I::EN
tively, The left-hand half is loaded with a uniformly-distributed 1 of
1 ton per foot run. Find the reactions at the supports, and the normal
thrusts at sections 10 ft. and 30 ft. from the left-hand support. What are
the positions of maximum moment. Draw the linear arch.

The linear arch is drawn in Fig. 157. Note y. = 10 ft. to
scale = 1in., and for the linear arch diagram being the
moment diagram for the simple beam, M, = 100 tons-ft.

= lin.

Therefore, Jl—rf = E-ﬁ
We 10

M, = 10y, or M = 10y.
A formula required for finding the slope of the linear arch.
Now V,= 15 tons. Fy= 0 tons.
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Taking moments about € and equating to zero,
207
(H, X iﬂ) +? —(15 b4 21}) =0

H,= 10 tons
R,= 15+ 10° = 18 tons
Ry= +/ 8+ 100 = 11-2 ,,

The linear arch is constructed by finding the simple
moments about a number of sections (i.e. the effect of H, is

.,._.. Linear Arch

Fia. 167

not taken into account) and plotting the moments to such a
scale that at C' the linear arch passes through C.

The resultant moment diagram is the diagram enclosed
between the linear arch and the axis of the arch. The linear
arch is a straight line from € to B.

The resultant moment for any section X between 4 and C is

M,:-lﬁx—f—;—:-’—}- H}y
2 x2 2
=152 + 3 + iﬂ(x—zﬁ) = -5z+7

L _ dM,
This is a maximum when e 0

i.a.ﬂ=—5+;ur z =10

that is, the section of maximum negative moment is 10 ft.

from A.
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The maximum resultant moment is — 25 tons-ft., and agrees
with the amount in the diagram.

Between € and B, the resultant moment equation for any
section X, distant z, from B is

M, = -5z + 10y,
z® 2
= -5z, + lﬂ(xl—~ﬁ-)= 5.-1:,--41-

The maximum positive moment occurs at a section X, distant
10 ft. from B, for

73 = E-E = 0 from which z; = 10 ft.
And the maximum moment at this section is
= -+ 25 tons-ft.

To Fixp e NorMaL THRUSTS AT THE SECTIONS DISTANT
10 Fr. AND 30 FT. FROM 4.

The resultant thrust at any section
= 4/(vertical shear at the section)® + H?

The direction of the resultant thrust is found from the slope
of the linear arch ; the direction of the normal thrust from
the slope of the axis of the arch.

For THE SEctioN 10 Fr. FROM A.

Equation of the linear arch is

(+ M) = + 52—

2P
3

due regard when considering it being paid to the sign.
In terms of the y ordinate of the axis of the arch,

2
(+ 10y) = 152—

The slope at any section is
dy x
E = 15— ﬁ
The slope at z = 10 = + -5.
The equation of the axis of the arch

e z
y_x_'m



264 ; THEORY OF STRUCTURES

The slope of the axis of the arch,
dy @
=1 "%
At £ = 10 the slope is 1 — -5 = - -5,
therefore, §; = 27° (tan 27°; = :5),
that is, at £ = 10, the slopes of the linear arch and the axis
are the same ; therefore, the resultant thrust is equal to the
normal thrust.

Normal thrust = /(- 15 + 10)* 4+ 10* = 11-2 tons
or Normal thrust = 10 cos 27 + (15— 10) sin 27° = 11-2 tons
using formula given in paragraph 140,

The radial shear force will be zero.

NormaL Trrust AND RaDpiarn SHEAR AT 4. The direction
of the resultant thrust (A,) = angle § = tan! 1-5 = nearly
57°. The inclination of the axis of the arch is

= angle 6, = tan!1 = 45°

-6, =12°
Normal thrust at 4 = R, . cos 12° = 17-6 tons
Radial shear at A =R, .5in12° = 375 ,,

where B, = 18 tons.
Secrion 30 ¥r. ¥roM A.  This is a section in the right-hand
half of the arch, and where the resultant thrust is the same

for all sections. Take B as origin and x to the left as positive.
Resultant thrust = B, = 11-2 tons

and its direction is §° = tan‘! .;.g
e 2T

The slope of the axis of the arch is also 27° at this section,
therefore, resultant thrust = normal thrust = 11-2 tons.
[Normal thrust equal to 10 cos 27 + 5 sin 27 = 11-2 tons.]

At B, the slope of the arch, considering B as origin and z
to the left as positive is the same as at 4, 6, = 45°.

f,- 0 = 18°

Normal thrust at B = 11-2 % cos 18° = 10-65 tons

Radial shear at B .= 11-2  gin 18° = 3-46

TagE A SeEctioNn X 5P vrOM A

The slope of the linear arch = 1-0 . = 45°
The slope of the axis of the arch = -75 ', 6, = 36°50’
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Normal thrust = 10 cos 36°50° -+ 10 sin 36°50
= 14 tons.

or resultant thrust = /10% - 10 = 1414

~. Normal thrust = 14-14 X cos (45° — 36°50")
= 14 tons.

143. Three-hinged Spandril-braced Arch with Dead Loading.
(Fig. 158.) A frame having its bottom boom curved or
arched, and hinged at the supports and the crown, is called
a three-hinged spandril-braced arch; it is illustrated in
Fig. 158. Calculate R, and R, as for a three-hinged ribbed

e, M e et T

Fra. 158

arch, and proceed to find the stresses in the members as for
ordinary frames, that is, by the force-stress diagram, method
of sections, ete.

144, Influence Lines for a Three-hinged Ribbed Arch.
(Fig. 159.) Of Horizontal Thrust. Let a concentrated load
of 1 ton move across the span, and let it be at any time dis-
tant nl from A (Fig. 159) and between AC. As before, the
reactions are made up of

V, and H, (the horizontal thrust) and
Vy and H,.
Referring to Equations (7) to (10) and substituting 1 for W
F,= (1-n): V= n
H, = —;?1 , that is, H, depends upon n . (14)

For unit load between € and B, and distant /(1 -n) from

B, by similar working as before,

H, — 1(1-m)

= (15)
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Again a linear relation between H, and n,
when n = 0 from (14) H,= 0

a=} . (14 Bt L S g

4y,
n=1from (18) H,= 0
ST

n=% , (5 Ho=_g . (16a)
-I— is & maximum value for H,, and it oceurs when the unit
load is at C.

Thus join 4 and B to €, and let y, represent
i
H,E 4'—!": tons,

and the unit influence line for the horizontal thrust at the
abutments is obtained ; that is, the ordinate of the diagram
to scale gives the horizontal thrust at the abutments when
unit load is at that ordinate : let it be y.

For a number of loads, H, = ZWy, where y is the ordinate
of the unit diagram at the position of the load.

For a uniformly-distributed load, H, is represented by the
area of the unit diagram to scale underneath the length of the
load over the arch.

For the uniformly-distributed load of 1 ton covering half
the span AC in Problem 36,

s %x?xl:lnmns.

145. Influence Diagram of Bending Moment. Let the unit
load be at any section @ between 4 and C, and distant nl
from 4, Fig. 159.

To draw the unit influence moment diagram for any
section X distant x from A4, it has been shown that the
moment at any section X

= M, = Negative moment for a freely-supported beam
-+ Positive moment due to the horizontal thrust,
therefore, the resulting influence diagram of moment will be
the difference of the influence moment diagram for a simple
beam and the moment diagram due to the horizontal thrust.
The horizontal thrust is a maximum when the load is at C,
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B8
s—Hp= Ho
Ve @)
Lm
PL(nI};;%
R . B, (%)
el
Unit Influence Diagram - Horizontal Thrust.
)

Unit Inﬁuenc\e Moment Dragram
for Section X.

&)

: M4J,- Jf.'C.B‘IhvsUnrt Ini'lum

Fio. 150
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therefore, the maximum moment at X doe to the horizontal
thrust

=gyt = AR LR

where y is the rise of the arch at the section X. The moment
due to the horizontal thrust at X is Hy where H, varies
with the position of the load and y is a constant. Thus the
horizontal thrust moment diagram is found by erecting a

central ordinate on the horizontal span toscale = ;::— (Fig. 159),
[

and joining C; to 4, and B,.
The maximum moment due to a simple beam is when the

e AT aa ML)

l
scale as for H,y.

The resulting unit influence moment diagram for the section
X is shown shaded in Fig. 159, and it consists of two triangles,
A,DE negative and C,B,E positive.

Maxmaum Momext. With a single concentrated load, the
maximum negative moment is when the load is at D, and
the maximum positive moment when the load is at €. With
a uniformly-distributed load longer than the span, maximum
positive and negative moments occur when BF and AF are
covered respectively.

146. Shear and Thrust Infiuence Lines. Radial Shear.
It' f, is the inclination of the tangent to the arch at the point

X (between A and C), then the shear at X will be the resultant
force normal to the arch axis at that point,

With the load between 4 and X,

8;= Fycos8,+ H,ginb,, . (18)
Load between X and B,
8.=—V,cosb,+ H,sinf, . (19)
The signs are due to considering the forces to the right and
left of a section.
For unit load on the arch, (18) and (19) are as for a simply-
supported beam with unit load multiplied by cos 6,, together

with a load H, sin 6, added. The unit influence shear diagram
is shown in Fig. 159(d),

and must be drawn to the same
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Diagram A4,DB,is positive,
o A;EB, is negative,
i AsC,B, is positive.

A,C,B, is the unit influence shear diagram for H, sin f,.
H, is a maximum when the load is at the centre of the arch

and for unit load = —I— tons.
4y,
[ sinf,

4y,
and the triangle 4,C,B, is the unit shear diagram for /. sin0,.

A JXKB, is the unit shear diagram for the section X as for
a simple beam,

With the unit load between 4 and X, the radial shear at X
(see (d) Fig. 159) is 8, = +y + vy

With the unit load between X and B, 8, = + y;— v,

With a uniformly-distributed load, the shear (8;) will be
the area of the diagram under the load to scale, due respect
being paid to signs.

147, Influence Line for Normal Thrust. The normal
thrust at a section X, between 4 and €, will be the resultant
force tangential to the axis of the arch at the section. 0, is the
direction of the tangent to the arch rib at X.

For the load between 4 and X, the thrust at X

Thus CC, to scale = H, sin , =

=T.,= H,coab,- V,.8nf, . - . (20)
Between X and B
T.= H,cosl.+ ¥V, sinf, Z : o L B

By similar reasoning to that for shear, the following is the
construction for the unit normal thrust influence line. (See (e)
Fig. 159.)

Make B,D, and A,E, equal to (1 sin ).
Join D,4, to meet the vertical through X in J,
{11 B{.El E1 ] " LL] iIl Kl
At the centre of the span, set up an ordinate CCy
leosfl,
= -+ o

then the shaded portion, 4,J,XK,B,C,, is the unit normal
thrust influence diagram for the section X.

and join C, to 4,8,
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To construct the unit radial shear and normal thrust diagrams
for a section between B and C, use B as the origin and take x
to the left as positive, and work as given in paragraphs 146 and
147. Or, by similarity, the diagrams for a section distant
z from B, will be the * reflections” of those for a section
distant x from A.

148. Suspension Bridges. A Haxemve CasLe axp Irs
Reratio¥ o THE Lixear Arcn. If it is assumed that the
cable has no resistance to bending, the form of the centre line
of a hanging chain or cable carrying wertical loads is that of

U

the funicular polygon for the loads and end-supporting forces,
the horizontal pole distance from the load line in the vector
polygon representing the horizontal tension in the cable.
In all cases, each vertical load is balanced by the tensions in
the two segments of the cable meeting in its line of action.
The horizontal tension which evidently cannot vary through-
out the cable, since no forces having horizontal components
are applied except at the ends, fixes the precise outline of the
cable centre line and supplies the remaining condition to fix
the pole 0. The horizontal distance from the pole to the
load line represents the horizontal component to scale of all
the tensions in the various segments. Thus the hanging
cable is the * linear arch ™ itself.

An arch supports vertical loads by material exposed to
thrust, and for an arch we have seen that the funicular polygon
represents the line of thrust, or the linear arch.

In the case of the three-hinged arch, the resultant moment
is zero at the crown hinge. In this case, the linear arch may
pass outside the axis of the arch; while in the case of the
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flexible cable, the axis of the cable and the line of resistance
must coincide. The cable is in stable equilibrium ; the arch
is in unstable equilibrium.

149, Let a chain be loaded as in Fig. 160, and let the
supports be the same height. 4 and B are the support
points at the same level.

At the supports the reactions will be 7', and 7'; respectively,
which can be divided into ¥, and ¥V, vertically, H and H,
horizontally.

As all the loading is vertical, then H = H, and acts in
opposite directions outwards.

The horizontal component of the tension in each member
AC, CD, ete., is also = H.

Point C is in equilibrium under W,, T, and Ty, and these
three forces form the sides of a triangle.

Point D is in equilibrium under W,, 7'y, and 7', and these
forces form the sides of a triangle and similarly for the other
points,

The shape of the cable will, therefore, be the funicular poly-
gon which is constructed from the vector diagram by the
usual methods.

Taking moments about B,

Vi—= W,l-a)+ Wyl-a-b)+ ... . (22)
¥V, can be found and subsequently V,.

Let the vertical component of the stress 7', in the '
member from the origin 4 be T7'.

Po=V,—-Wy=Wy...-"W,, . - . (23)
Horizontal component of T', will be H.
P, = JTAF H'= Heecl, . . (24)
Let the slope of the member be tan 6,
then tan 6 = ;}' : 7 . - . (25)
and T, = H sech . : (28)

Let y, be the maximum depth of the cable below the sup-
ports at any point € and at z, from 4 then

Hy, + W(z,- a) + Wy(z.—a-b)+ ... = Vize (27)
x the external loads
iy Prmm e E
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150. Consider a Hanging Cable on which the Load Carried is

a Continuous One.
Let this be w per unit length of horizontal span.

]

Total load = f w.dx
Let the slope of the cable at some section X distant 2 from
the left-hand support be d'_y

d
V- [ w.d
o a = ﬁ w . dx
then R g = fanf . ; . (28a)
Differentiating,
%y
Ty
dy *
d*y Biesis 1 da?
FA= T med JFore = sy
f = angle tangent to the curve makes with the horizontul
or ¥ axis
H
therefore, = sec? f = 1,
and H = wr cos®8 . ; . (29)
w T =wrcos®d . : . (30)

At the vertex of the curve where r = r,,
w=w,and cosf = 1,
T=H=wpr, . . . (31)

151. Hanging Cable and Uniformly-distributed Load. When
the load is uniformly distributed over the span of the cable,
as approximately in some suspension bridge cables, and in
telegraph and trolley wires, which are tightly stretched and
loaded by their own weight, the form of the curve in which
the cable hangs is parabolic.

If the uniform loads are applied at short intervals, then the
funicular polygon will be circumseribed by the parabola
corresponding to continuous loading; ie. the points of
application of the load will lie on a parabola, which the cable
would follow under continuous loading.

* Radius of curvature, Ses Mathematical textbooks
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If w is a constant,

we have H % = —w from Equation (28a)

g wz® | wl
Integrating twice, y = 2

- of o= SH . (32)
which is the equation to a parabola having the left support as
origin, and, therefore, the form of the cable will be a parabola.
# will be positive downwarils, :

Let the maximum depth of the cable having supports at

the same level be y,, and this will be at z = -I—

5 -
WF
i sy Al e . . . (33)
wi?
H = ﬁ: g : ; : . (34)
wi? | .
Note 5 B the moment as for a simple beam,
4
and y = Tfn‘{.t—.-r}x, L Y (86)

and is positive downwards for all values of x.

The greatest tension in the cable will occur at the support
points where the slope is a maximum.

wi® AL
=§EJ1+(-I—) EEE e

The load carried by a suspension bridge cable, including the
stiffening truss (paragraph 153), is nearly uniform in intensity
in reference to a horizontal line ; and so nearly so, that it is
assumed to be exactly uniform.

Length and dip of cable or chain having parabolic form.*

4
y= .E%’{; — x)x, where | = horizontal span.

8yt 32yt
L = length of nhain:l(l-l—-—a'—uﬁ- -—t-.g:— + ... )

(37)

* Working from the leit support as origin.



274 THEORY OF STRUCTURES

For very flat curves,

2
L 1(1 +s§';,) N R

%’ generally between -2 and -05.

The approximate greatest length of span*
21y,

e _3P;-3— MR A LA iy

14 He

3;!.

where p = weight of 1 cu. in. of steel = -2836 Ib.
t = 60,000 Ib.[sq. in. for steel wire.
= 30,000 Ib./sq. in. for nickel steel eyebar cable.
152. Anchorages. Loads in the anchorage cables and on
the piers. Assume the side cables in a straight line from the

tops of the supports to the anchorages.
(1) Cable over a fixed pulley or roller on the top of the
support,
T, = tension in the anchorage cable, making an angle
with the horizontal ;
T = tension in the hanging cable at the support and at
an angle a to the horizontal.
In this case, T' = TY.
Horizontal pressure on the tower = H,
Hy= T cosa-T cosp . . (40)
o= ﬂ, Hl =)
The vertical load will be
P,= Tsina4+Tsing . . (41)
(2) To avoid horizontal pressures on the piers, movable
saddles over which the cables pass are placed on the top, free

to move over rollers.
In this case, H; = 0, neglecting friction, therefore

Tcecosa=T,cos58 . - . (42)
If @ and § are known, T, can be found.
Ha=§1T=1T, . ¥ . (43)

* From Suspension Bridges, by Burr (Wiley).
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Vertical pressure on the tower
:P.= TI Ei.na-i-T,Eiﬂﬂ- = IM]

Illustrative Problem 37.

A cable of span 100 ft. and & maximum dip of 10 ft. carries & uniformly-
distributed load of # ton per foot of span. Find the maximum and
minimum tengions in the cabla.

The maximum tensions will be at the support points
= T,.4s; the minimum tension will be the horizontal com-

ponent of all the tensions = H.
Now H = m_!’ (equation 34)
8y,

=5 % 100 x 100
T U

S e Ty
Tres = ,/ (6250 + L=

T,ee = 67-25 tons.

__ Find the alteration in these tensions due to a rise in temperature of 30° F,
if the cosfficient of expansion is -000008.

Now- length of cable in a flat parabolic curve is
8 y?
- 4
l=gspan: y, = dip;
100

-4
L at normal temperature = 100 4 & X {00

= 102-7 ft. nearly ;
L after rise of temperature of 30° F.
= 102-7(1 } -000006 - 30)

L=1+

= 102-718 ft.
-V P
S§ 00
2718 X
BRI S
8
} x 1000
H becomes A, 617 tons

Tyez = Eﬁl tons.
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Ilustrative Problem 38,

A chain having a span of 99 {t. carrics & uniformly-distributed load of
1 .

55 tons per foot of span. The left-hand and right-hand support are 4 {t.
and 16 ft. reapectively nbove the lowest point of the centre line of the chain.
Find the tension at the supports and at the lowest point.

Let the lowest point be a horizontal distance z from 4 and
z, from B,

wa® wr,*
B =—-—-—-—-=|:—-1
Then H Txd 2% 16
Mkt
s
e

therefore z = E} = 33 ft.

1 33 ¥
H = i x = 30-25 tons.
Let V, = wvertical reaction at A
Ilrl o L1 ] 1] B

; 33
e Tk tons = 7-33 tons

T,= V3025 & 7-33% = 31-2 tons

yo_ 88
»= g3 = 1466 tons

", Ty= 4/30-25% F 14-66® = 33-6 tons

153. Stiffened Suspension Bridges. To make suitable for
heavy traffic, the suspension bridge requires stiffening to
resist changes of shape in the roadway.

This is done by—

(1) Carrying the roadway on a girder hinged at the two
ends of the span.

(2) Carrying the roadway on two girders, each taking
half the span, hinged together and at the ends of the span.

(3) Replacing the cable by two stiff suspension girders
hinged together midway between the piers. These virtually
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form a three-pinned arch, which is statically determinate.

The determination of the reactions and stresses is exactly

analogous to those for the three-hinged ribbed arch.

154. Three-hinged Stiffening Truss.* Fig. 162(a). The function
of the stiffening truss is to distribute to the cable, uniformly
along a straight line, any load whatever applied to the structure,
so that the parabolic form of the cable is preserved under all
conditions of loading,

Thus the chain keeps its parabolic form, assuming the live
load is evenly distributed along the whole length of cable.

Working from the left support of the chain as origin, the dip
at any section distant x horizontal from the origin is

4y,
y=—§-{£-—x}z P L P S (s
General case. w,= dead load weight per foot-run
S = Hvﬁ 31 o
: d*y .
S4+w,=-H Tt from Equation (28a)
8y. y
§4+w,= H. - (Equation (34))

Forces on the stiffening truss : its weight, the reactions due to
the moving load, and the upward pulls of the hangers.

The loads in the hangers produce moments M, in the
trusses opposite to those in general caused by the vertical loads
on the truss.

.. Resultant moment at any section of the girder
e | I SR T
Now the whole weight of the girder is taken by the cable,
and therefore, neither moment nor shear in the girder is due to
its own dead weight : thus M, is simply due to the live load
acting on a simple beam. M, will be the moment due to
the evenly-distributed hanger load equivalent to the live load.

Now let W = live load ;

and w, = uniformly-distributed load on the hangers
due to the live load ;
W
L wl= W and w, = -;-

* Case (2), para. 153,
10—(T.8430)
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Now the reaction acting downwards at the end hinge of

the stiffening truss assumed simple will b-e:.=%~I

which is also the reaction acting upwards at the cable support
due to the live load.
For the stiffening truss, therefore, the moment at any
section X distant x from the left-hand hinge is
R i
S NIRRT
2 2
M, = moment in truss as a simple beam due to live load.
For the cable, section distant x from the support point

- jwlx + jwat . -Hy =0 A ! : . (48)

Neglecting the small hanger loads represented by lwz?,
we get

Iz
M=-M, + W.E . . . A . (49)
b
and w5 = Hy . : : : - . (50)
M= Mo Hy etk . (51)

For a three-hinged stiffening girder, the moment at the
centre hinge must be zero: i.e.

Tt By ) 9 R ey

At C (Fig. 162, page 280), M, = M, — 0.
M, = simple moment at €. Then
Hy,= M, and H= “;— TR AT
155. Single Concentrated Load on the Stiffening Girder.
(Fig. 162.) Let W be at a distance nl from E and between
E and C. Then

Win
= ?F; (54)
If W between C and F,
H= M : [55]

2y,
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H is a maximum when n = },
i.e. when W is at € and

A RN R ST RO

The shear at any section of the stiffening girders is
8. = Positive or negative shear at the section of the
girder as for a simple beam (8,,) plus the vertical
component of the cable tension at the corre-
sponding section of the cable.

St= iSII-}- H tﬁ.ﬂ.ﬂ, 'y . {51}

where 0, is the inclination of the axis of the cable at the
section.

8= + 8.+ H&; . ; . (58)
4y,
y="Tn-z . . . . (89)
dy 4.
T="Rl-22). . . . (e0)
For any section when the load is between E and C, and at

a distance nl from E, using Equation 60 for i——-i
Wal 4y,
5= k8t g (1-20) 3
2Wn(l-2x
= g 2RCEB T e

When the load is between €' and F, and at a distance I(1 - n)
from E,

B ﬂ;:” (:-zx)%

2W(l-n)(l-2x
= + 8, + {?” :'. 3 . (62)

156, Influence Lines of Moment and Shear for any Section
of the Stiffening Girders. Let unit load cross the girders.
Then the unit moment influence line for this case is exactly
the same as for the three-hinged ribbed arch.



280 THEORY OF STRUCTURES

57. Unit Shear Influence Line (Fig. 162). It has been shown
that at any section X distant x from E, the resultant shear

d
S:__' isu"lr" Hﬁy

x= % E, PQC,F, -Um]; Influence Shear
Diagram for X.
x>L EPQCFEQ= do.  do
(b) &
T &
i
¥ Oz
.Jz Q, Unit Inﬂuer{l.l:e Shear 3 E
© Diagram for Section o<
Fia. 162

The influence shear diagram for the section X will, therefore,
be a combination of two diagrams—

(1) The unit negative or positive influence diagram as for
a simple beam.
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@y

iz "

For the unit load between £ and € and distant nl from E,
o dy 2n(l-2x)

H. j—g is thus proportional to n as x is a constant, being the

distance of the section X from E.

(2) The unit positive diagram for H . e

H d—i is 2 maximum when the unit load is at ¢ = ( —Iﬂx}

il
(when n = 0, H = 0.)
Similarly for the load between €' and F,

H ;—i = BiLs ng (=) and H(j—i) is proportional to n
when n = 1, H%={}
1 dy . -
when n = 3 H-ﬁ is a maximum
l-2x
= {_i—:' o T It R

d
The unit positive diagram for H Ey will, therefore, be a triangle

with the span as base and the maximum ordinate at the centre
_ (i-2x)
-
To construct the complete unit influence shear line. (See
Fig. 162 (b).)
First draw the unit shear influence line E G, F.J, as for a
simply-supported beam.
EJ,=-1; F)G,= +1
Diagram E,G,F, is positive.
Diagram E,J,F, is negative.
At the centre ' set down 2
e, — ! I_a:
and join (7, to E, and F, : this triangle is of positive area.
The difference of the two diagrams shown shaded gives the
~ influence diagram required for the section X.
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l :
Note. If x less than T F,Q comes above F,C',. (Fig. 162 (c).)

Ifax= % , F,0 and F,C, coincide,

ie. no shear at X when the load is between €' and F.
If = greater than } . F1Q below F 0. (See Fig. 162 (5).)

and the shear wholly negative for load between X and F.

R Lo
7 ¥ : T i 7
wi gl + "{:\'}""”’f sz.
hﬁ_\-.l e 2o T b *_ 6
¥ —-"""‘-JQ')/J ﬁ
wl wl  wl
6 8 6
Fiao. 163

Curves of maximum shear due to uniformly-distributed load,
longer than the span, are given in Fig. 163,

158. Maximum Shear. The maximum shear force curves for
a single rolling load may be deduced from Fig. 162 (b) and ().

The maximum shearing force curves for a uniformly-
distributed load may be easily found, also from the areas in
the influence diagrams, the loaded lengths for the different
maximum values being the projections of the areas of like
sign in Fig. 162 (b). The positive and negative areas are equal
for any walue of z,* and so the positive and negative curves

are similar. When z = 0 (n particular case of z < ‘%) in

: i
Fig. 162, the loaded lengths are 5 for maximum negative and

i—l for maximum positive shear at the origin and both shears
1 wl wl

SR e

* See Andrews, Problems in Higher Struetures,
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The student is requested to prove the maximum shears
given in Fig. 163.

IMustrative Problem 39.*

A ion cable of 100 ft. span and 10 ft. dip is stiffened by a three.
hinged girder. The dead load is } ton per foot run. Determine the maxi-
mum tension in the cable and the maximum bending moment in the girder
dus to a concentrated load of 5 tons erossing the span, assuming that the
whole of the dead load is carried by the cable without stressing the girder.
Find the bending moment in the girder at 4 span from either pier when
the concentrated load is 25 ft. from the left-hand pier.

Tensions in the cable due to the dead load :

1002
Horiacntel tension e

1 %8gx10
= 31-25 tons.
The vertical reaction at the support is
wi 100
12-5 tons = T T ax?

Due to the live load of 5 tons on the girder, H is a maximum
when the load is at the centre of the hinged girder, ie. at
50 ft. from the support points.

H ... due to the live load
o x 100
T ax10
Vertical reaction at the support due to the live load is 2-5 tons.
Maximum tension in the cable

= V/(12:5)F + (31-25)* + V/(2:5)* + 12:5° = 463 tons.

Maxisos MoMEST 15 THE GIRDER DUE To THE Live Loap.
Draw the unit influence moment line for a section X distance
z from the left-hand end of the girder. (Fig. 164.)

y = dip of the cable at the section X
¥, = maximum dip = 10 ft.

y = %‘ z(l-x) (equation for the cable)

(:—i reduces to ::{IE— .'1:))

* Problem given for solution in Morley's Theory of Structures,

= 12-5 tons.
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To find the sections at which the largest negative and
positive moments occur ; the maximum nogutive moment for
any section occurs when the load is at X, i.e. al = z; and the

i
maximum positive moment when nl = ?

Unit negative moment at X (Fig. 164).

(= _Ml e Hﬂ}
z(l - x) xz(l - x) {umng equation (54)
] e for H)
-zl s
M= TR

or-M = (-al* 4+ =% 4+ 220 -22%) . A . (64)

As for
Simple Beam

o I.
. x| J#%
A
[T S
jy reduces to KHE-I}
™ Parabolic Cable
Fioc. 164

for

To find the section having the biggest negative moment

(- M.F) ]
e P+ Gxl-62*= 0
x = -5l 4 -289]
= »2111 or -789I.
Substituting in (64) the biggest negative moment = 096l
per unit load.
The maximum positive moment for any section = Hy - M,
z(l-z) =z 2xl-22- 2l
e

1242
=5~ . . . e
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To find the section having the largest positive moment
d( + M.2l)
—_—=-d=0
dx
l

IEI

3l
and also for z = T by similarity.
Substituting in (65) the biggest positive moment per unit

Sl L/ R I
i L D=
a-z:rl\._l-;r-{ 0-096 W1 H‘@aqnl
(@) Single Load W’

0-01883wl?
CME
| = = |
0234 E‘T.;x i G g, {j.fa 234l

(b) Unifnr'm!H Distributed Load w
Fia. 1656

Maximum negative moment due to the 5-tons load
= 096 x 500 = — 48 tons-ft.,
for sections 21-1 and 78-9 ft. from the left-hand end of the girder.
Maximum positive moment
%ﬂ — 4+ 31-2 tons-ft.,
for sections 25 and 75 ft. from the left-hand end of the girder.
The curves of maximum positive and negative moment for
any section due to a load W are shown in Fig. 165 (a) and the
curves for maximum positive and negative moments due to a
uniformly-distributed load of w tons longer than the span, for
any section, are given in Fig. 165 (b).*
* These curves of maximum positive, and nagﬂhm moment (Fig. 165 (a)
and (b) ) also apply to the parabolic three-hinged arch,
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The student is requested to show that the biggest positive
and negative moments for the girder which are of the same
value 01883 wl?, are those for the sections -234] and 766/ from
the origin (the left-hand hinge).

Second Part of the Problem. (Fig. 166.)
Moment at 10-foot section when 5 tons at 25 ft. from G

=( A T"+4a)5=—15 tons-ft.

Moment at 90-foot section when 5 tons at 25 ft. from 0

9
- ( + 45 ~50 % 25) 5 = <4 10 tons-ft.
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EXAMPLES

1. A three-hinged segmental arch of 100-ft. span, rise 30 ft., is loaded
with a load of 30 tons at a point 20 ft. from the centre of the arch. Draw
the bending moment disgram for the arch, and find—

(1) The horizontal thrust in the arch ;

(2) The resultant thrusts at the abutments ;

(3) The maximum bending moment and the point at which it oocurs,
(U. of B.)
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2, The axis of an arch rib is parabolic ; it has three hinges, the span is
00 ft., and the rise at the contre 16ft. There is a concentrated load of
%:t.u‘m at a point 30 ft. from the crown of the arch, measured horizontally.

ind-—

{2) The axial thrust, and the normal shear at the point of application
of the load.

{5) The maximum bending moments—positive and negative. (U. of L.)

3. In a suspension bridge consisting of a cable supported on towers and
stiffenad by girders hinged at the centre, find an expression for the maximum
bending moment due to & single concentrated load on the bridge at one-
quarter the span. (I.C.E.)

4. A three-pinned segmental arch has a span of 150 ft. and & rise of
30 ft. A load of 10 tons rolls over the arch. Determine—

(1) the maximum horizontal thrust in the arch ;
: {2} the maximum bending moment at a point 50 ft. from one abutment,
and the resultant thrust and radial shear in the arch at the abutment when
this maximum bending moment ocours. (U. of L.)

5. Explain what you understand by “link polygon" and * reciprocal
figurea” Six equal weights of 1 ton, placed at aEua.l horizontal distances
of 6 it nmin one plane, are supported by a link polygon of seven bars.
The end aro inclined at 60° to the vertical. Find{g-nmnphiculcnn-
struction the foroes in the bars, and mark the magnitude of the stresses on
the corresponding bars of your shketch.

6. A footbridge, 8 ft. wide, has to be supported across a river 75 ft. wide
by means of two cables of uniform cross-section. The dip of tha cables at
the centre is O ft., and the maximum load on the platform is to be taken as
140 1b, per aquare foot of platform area. The working stress in the cables
is ot to exesod 5 tons per square inch, and the steel from which the cables
are made maigh.n 0-28 |b. cubie inch. Determine s suitable cross-
sectionnl aren for these cab

7. Each chain of a suspension bridge of 120 ft. span has a dip of 12 it.
and carries & dead lond of 6001b. per horizontal foot run. The chain is
stiffened by & horizontal threo-pinned girder. A uniform travelling load
longer than the span traverses the girder and is 300 Ib. per foot run per chain.
Dotermine the maximum positive and negative bending moments in each
half of the girder, and the positions of the load at which these occur. Find
also the maximum pull in the chain. (U. of L.}

8. Question 7 (cont). Determine the maximum shear forces in each
hali of the girder and the positions of the load at which these cccur.

9. A three-pinned segmental arch has a span of 120 ft. and a rise of
30 ft. The arch is loaded with 2 tons per horizontal foot run over the whole
span, and with an additional load of 1 ton e, =
per foot run over half the span only from  g97 5 12
one abutment. Find the maximum h.-ndi:ﬁ " i
moment in the arch rib and the horizon lf—'?-—+ ==
thrust. . (U. of L.)

10. A three-pi parabolic arch has n span Fio. 167
of 120 it. nndEuri“:de 40 fr. The loads shown
in the dingram (Fig. 167) rest on the arch with the load of 15 tons over the
central pin.  Draw the dingram of bending moment for the arch ; determine
the horizontal thrust and the maximum bending moment. (U. of B.)
11. Let tho loads in Question 10 move over the span. Find—
The maximum bending moment at a section distant 50 {t. {rom the
loft-hand support, and the resultant thrust at this section when tha
MAXImMUm moment Gceurs.
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12. A bri hns 6 segmental three.pinned archea 7 ft. apart, ths span
being 150 ft-.ds:nd the rise 30 ft. The dead load is 2001b, per square foot,
and the live load equivalent to 400 b, per square foot. What is the hori-
zontal thrust when the span is half covered by the live load. If the plate
girder riba are 4 ft. deep over angles, flange plates 18in. X 1 in., angles 4 in.
¥ §in, wab plate § in., caleulate approximately the maximum stress in the
rib. (See Chapter VI for combination of bending and direct stresses.) (LS.E.)

13. Taking the same bridge as in Question 7, determine the maximum

itive and negative bending moments in each half of the girder when two
onds of 2 tons each, 6 ft. apart, oross the girder. Also find the maximum
shear forees in each hali of the girder,

14. A suspension bridge has a span of 600 ft. and a dip of 50ft., and
carries by means of two cables & total load of 100 tons uniformly distributed
along the length of the platform. Assuming the hanging rods to be very
numerous, determine the tension in each eable at the lowest point and at
the piers. The cables are attached to saddles resting upon rollers on the
topa of the piers, and the anchor cables make an angle of 30° with the
vertical. Determine the maximum stress in the anchor eables and the
total vertical pressure on each of tho piers.

15. A three-hinged arched rib has hinges at the sbutments A4 and B and at
the crown €. € and B are respectively 35 ft. and 60 ft. from the vertical
through A, and ively 11 it. and 5 ft. higher than A.

Construct the influsnce line for the horizontal thrust M for unit load crossing
the . Using this line, determine the magnitude of H produced by a uni-
formly distributed load of 1000 1b, per ft. extending over the whole of the span.

Note. The reactions ot the hinges 4 and B will consist of the vertical
reactions R, and Ry as for a simply supported beam and & thrust H, in the
directions 4 to B and B to 4. Show that the horizontal component H of

Hi=R,. %fur the unit load between ¢ and B where a = 36 ft. in the pro-

blem and f = vertical rise from line AB to hinge . Similarly H = By . ;far

unit load between O and A. Continue problem as for case where abutment
hinges at the same lavel,
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PRINCIPAL STRESSES

159. Oblique Stresses. Referring to Fig. 168, let a small
prism of cross-section @ sq. in. be under an intensity of tensile
stress p in the direction of its length. This is normal to the
section 4'B’. It is required to find the stress intensity normal
and tangential to AB, a section at an angle § to A'B'.
Area AB = A'B’ sec § = a sec 0.

P = Total pull on the prism, normal to A'B’

P, = Total pull on the section AB

P, = Total shear force on the section 4B.

P,= P cosf
P, P cosf .
P“_aaeuﬂmcr'__ﬁ_z}cusﬂ ; : (1)
P. = Psinf
P sinf
P e i 7 P = < 2
Pe=—.—5 p sinf.cosf (2)
P 18 a maximum when sin § = cos 0, i.e. when 6 = 45°,
— ] P
Then p, = p cos®l, A
p )
and = = = 3 P
Pampom sl o (8)). P |—>P
When p, is & maximum, H R
f is 45°; that is, the B B
maximum shear stress Fic. 168

occurs on planes inclined
at an angle of 45° to the plane A'B’, the plane for which p is

a normal,
Hlustrative Problem 40,

Construet the polar dingram for the stresses on a plane obligue to a direct
stress p.  (See paragraph 159.)

6 = angle between direction of p and the normal to the

plane ;
or = angle between the plane of direct stress p and the other

plane.
289
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Tangential stress = p, = p sinf.cos b
Normal stress = p,= p cos*l

As shown in Fig. 169, take the plane as vertical on which
p is normal. From a centre (), draw radiating lines at angles

of 15, 30, 45, 60, etc., to 180° to this vertical; and along
these lines to scale mark off the corresponding values of p,:

Zera Normal Stress
Tangential Stress
(psin B-cos6)
Table for the Problem, \
{ Fi. 165) . for GA0"
0 |cosBles’® |sin B
o |10 (1o o
15 57| 54 26
30 87| 76 50
45 T | 50 T
60 | 50|25 | -87
75 ‘26| 068 | 97
80| @ ¢ |10
105 |=-26| 068 97
120 |--50| -5 | -87
135 |=Tr | -50 71
150 |=87| 7% | -50
165 |--87| 5« | -26
80 | +O |10 o

the vectors p, are drawn normal to the radiating lines; join
up the ends of the vectors required by a smooth curve and the
required diagrams are obtained, which are given in Fig. 169.

160. Principal Stresses. If a body is under a complex
system of stresses, these stresses may be resolved into three
simple normal tensile or compressive stresses in planes at
right angles to each other. These simple stresses are called
Principal Stresses and the planes are called Principal Planes.
The direction of the principal stresses are called the Axes of
Stress,

In many cases, one of the principal stresses is zero or
negligibly small, and consequently there are only two principal
stresses to be considered, and these will act in the same plane.
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161. Examrre. (Figs. 170, A and B.)

Let us consider principal planes and stresses when com-
plementary shear stresses are accompanied by a normal stress
on the plane of one shear stress. (For Complementary Shear
Stresses, see para. 57, Chapter V.)

Fig. 170a shows the forces acting on a rectangular block
ADEC of unit thickness perpendicular to the plane of the
paper, and of indefinitely small dimensions parallel to the

7 i - 0
A g G g
el b g o
T R, 7
A HT—"F
R
. 15 N .
Y
c =
a
Fra. 170a

figure (unless the stresses are uniform). Let a be the inclina-
tion of a principal plane BC to the plane AC which has a
normal unit stress p and a unit shear stress of ¢ acting on it,
and let R be the unit stress wholly normal on BC. The face
AD has only the unit stress g acting tangentially to it.

Problem.

To find the principal stresses and plancs.

Consider the equilibrium of the wedge A BC (Fig. 1708).

Let p and g act on a plane, cutting the plane of the paper
in AC, and let BC represent similarly one of the planes of
principal stress. Let the intensity of
this principal stress be R.

Then if AB is at right angles to AC,
we have acting along AB (since for
every shear stress there is an equal and
opposite shear stress at right angles) a
shear stress of intensity q.

Let the width of the wedge at right
angles to the plane of the paper be Fig. 1708
unity.
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Resolving along AB and AC,

p.AC 4+ q. AB=R .BC cosa . : . (4)
qAC = R . BC sina . . (5)
From (4),
' AC AB
piﬁ,rkq.m,:ﬁ’cnau
peosa+ qsina= R cosa v ; s L)

or p+qtana= R

From (5),
AC

q.E—G=Rsmu
qeosa= R sina : ; : (7)
or gqeota=R

From (6) and (7),
q tan a X g cota = R(R - p)
or RiB=p)=g¢* . - .5 oERee(E)
RBR-pR-¢*= 10
Ve + 44°
2

=%(1:t.fl+4f;) ey

The negative sign of the root corresponds to the second
principal stress R, and the plus sign to the maximum principal
stress R. R, is at right angles to R, and acts on a plane GH
at right angles to the plane BC (see Fig. 1704).

The direction of the plane on which the stress R acts is—
From (6),

-
R_E;t

R cosa-p cosa=q sina
From (7), i sihna=gq cosa

COs a
- R=9gnq
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cos® a ;
fjgm*}}cuﬁt‘.I:qSlﬂu
_ pceosasina | sinZa
1= cosfa—-sin*a * ' cos2a
it thn o S 10Y

P

The planes of maximum shear are inclined at an angle of
45° to the principal planes, and the intensity of the maximum
shear stress is

Fmaz = R 'I:I . . A {ll}

For the shear stress on a plane at 45° to the principal plane
of R will be

T A
%=§(l +Jl o4 %) from Equation (9)

Similarly, the shear stress on a plane at 45° to the plane of &,

-5(-41+%)

The shear stress due to R, is of the opposite sign of that
due to R,

therefore q”":ii(l+&/l+%)_§(]_Jl+%)
= :

In the example taken, p is a tensile stress : the same result
holds for p as a compressive stress.

162, Two Perpendicular Stresses. Case L Like Foreces.
Let a block of material 4 BCD (Fig. 171) of unit thickness be
subjected to Two Pulls, P, and P, at right angles to one
another, and let p,, p, be the stresses per unit area across
sections normal to these forces.

Let p, be > p,.

Nore.—p, and p, are two principal stresses.

Let EF be any section making an angle 6 with the direction
of the force P,.
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The normal component of P, across KF = P_.sinf

T

L
Normal stresz on EF due to P, = 7 - Sin [/
F
=p,+%minﬂ=p,ainfﬂ 2 - e {13)

Similarly the tangential stress on EF due to P,
P_cosf C.F
=" RF ~Pagp -’

(13)

AN A
)
]
i
i
E =2
i s
BOrE Fr

Fic, 172

Normal component of stress on EF due to P,
L A'F
= .ETF ‘cogfl = Py ﬁ
= p, cos?§ A 5 . . (14)

Similarly the tangential stress on EF due to P,
=-p,sinf.cosf i - . (15)

It is negative, since this tangential force is of the opposite
sign of that due to P_.
The total normal component of the stress on EF

=P, = P.8in*0 + p, cos?h . . . (18)
The total tangential component of the stress on EF
=P = (P~ p,) sinf.cos0 . . . (17}
The resultant of these components is
P, = V.2 + pd
= \'P{iﬂ;éinz b+ p,cos?0) + (p.— p,)2sin®8 . cos® B
= Vp,2sin?f + p,* cost b ; : - . (18)

*cos
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If p, makes an angle a with EF (Fig. 172),

then tan a = i
(]
__ p.sin*l 4+ p, cos*f  p,tan®l + p,
= (pa—py)sinb.cosb  (p.-p,)tand
If & is the angle p, makes with p,, then
tan a = cot &
or cot a = tan d
If f is the angle between p, and P,, then
B=a-8
tan a - tan 0
1+ tana.tanf

Substituting the value of tan a from (19) and working out,

(19)

tan f = tan(a—0) = (20)

tan g = %fmt-ﬂ S s i el
P = (p.— py)sinl.cosb
T ¢ )
and is a maximum when 20 = 90°,
thus P, mes = &_2—?' . . (23)

and acts on the plane making an angle of 45° with p..

163. In the Case of Two Unlike Forces P, and P,, that is,
say, p, tensile and p, compressive, the above results hold
good with a change in the sign of p,.

In this case the maximum shear or value of p, will be

e L S AR )

If p, = p,: the maximum p, is on the plane at 45° to p.
and the corresponding p, = 0, . 4 . . (25)
these results corresponding exactly with the case of pure shear.

163a. (i) From equation (16), if p, = p. and of the same
sign, then p, = p..

And from equation (18), p, = Pz .\ Pr = Pn = P=-

Also @ = 90° and 4 = 0°.

From equation (17), if p, = p., then p,= 0.
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Therefore, if the two principal stresses at a point are of like
sign and of equal magnitude, then the stress on a third plane
through the point is of the same intensity and is normal to the
plane. These stresses are called “fluid” stresses. If the third
plane makes an angle 6 with the direction of p., then the
normal and resultant stress on the third plane makes the
angle 6 with the plane (principal) on which p, acts. If p.
is horizontal, then the angle 6 is made with reference to the
vertical through the point considered. (See (4), Fig. 172a.)

(ii) Also if p, = p. but of unlike sign.
Then p, = p. = p, in magnitude.

From equation (19)
p.tan®f—p, tan®f-1

S o p.tanld Btang C0H)
But tan @ = cot § = — cot 20
Lod=(—20)

Therefore, p, will make an angle (—28) with the normal to
its plane, which makes an angle 0 with the direction of p..
The interpretation of the

above is as follows—
\i If a pair of principal stresses
at a point be unlike (one ten-
P?;ﬁ sion and one compression)
Px and be of equal intensity,
80,

then the resultant on any

I

I

I
i plane through the point is of
sl the same intensity, and is in-
e : clined to the normal to the
! ! i direction of p, at an angle 0,
l. bl DA but on the opposite side to
s ~77 the resultant obtained in (i)
7 e Lt = when p, = p, of same sign.

Fig. 1724 (See (B), Fig. 172a.)
164. Exampre. (Refer to para. 162.)
Find the plane across which the resultant stress is most inclined to the

normal, when p, > p, but of the same signi. Heoro
makes with' the plans will be & minhnue, Haiangle. Nee resntiant

Let 8,5 = ¢ = maximum inclination of the resultant stress
to the normal.
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From equation (19), page 295, tan 4 = cot a

- I {P,—p,}coﬂﬁ.ﬂiﬂ&
"~ pesin®f + p,cos*l

(26)

when & is a maximum, then tand is & maximum ; so that

d(tan 9)
e
Differentiating and simplifying

(p, sin*d + p, cos®d)cos 20 — (p. — p,)eos B .sin B . sin 26 = O

has to be equal to zero.

Then p, cos 24 —p, sin 260 = 0

therefore tan 20 = Pr _ tana = cot B oz = cot b

P

Now cot ¢ = tan (g-qﬁ)

&
-—g or %':E'ﬂ . . (27)

a relation between 0 and ¢ when the maximum conditions hold.
Substituting the value of 6 from (27) in (26),

':Pi = py} cos 'i!'
p(1 —sin @) + p,(1 + sin §)

which, on simplifying, gives

tan ¢ =

P _1 rsind
P’——--l e . . . (28)

. P — Py
— e . . 2y
ek o P+ Py (29)

From (29), ¢ can be found : Substituting in (27), 6 can be
found, thus giving the plane required.

The results obtained are used in the theory of retaining walls.

Equation (29) gives the maximum inclination to the normal,
and Equation (27) gives the inclination of the plane to the
direct, stress p,.

Let A = inclination of the normal to the direct stress p..
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+

b8

Then A=§;—a=

bz =
- T

A=

+
[E1R N

(30)

L]

Equation (29) leads to a graphical method for finding the
value of the resultant when sin ¢ is known, and also for find-
ing the principal stresses given the angles two resultant
stresses make with their respective normals.  (See Problem 41.)

165. Ellipse of Stress. (1) Like Stresses. Draw two
concentric circles as in Fig. 173, whose radii are respec-

Ellipse of
Stress.

Fro. 173

tively equal to p, and p,, (p. and p, are principal stresses) and
P> 1y
0}: = P UF —. P’

and let EOF be the plane inclined at an angle 0 to 0X; and
0AB, the normal inclined at (90 - 6) to OX.
Draw BD and AG perpendicular to OX, AC perpendicular

to BD, and join OC.
It can be shown that
0C = VOD® + AG* = Vpsin* + pleos) = p.
and that angle = DOC = §
and angle COF ='a
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It follows that € is on an ellipse whose major axis is 2p, and
whose minor axis is 2p,, because

2
F;—% 4 %ff = sin®f + cos? = 1

This ellipse is called the Ellipse of Stress. From it-can be
obtained the resultant stress on any plane, for by drawing
OB at right angles to the given direction and BD parallel Y ¥,
to meet the ellipse in €, then OC is the resultant stress on
the required plane in magnitude and direction, and the angle
{JEF is the angle between this resultant stress and the given
plane.

(2) Usuike Stresses. Let p, be negative, p, positive.
The construction is similar as before to drawing OAB. From
A, drop a perpendicular to cut the circle p, on the opposite
side in 4’. Drop a perpendicular from B, and draw A'C
perpendicular to it to meet in C'. Join OC'. Then OC' is
the resultant stress on the plane OF, and €’ lies on an ellipse
which is the Ellipse of Stress, for here tan B is negative.

CrreLE oF STrESS. (See (a), Fig. 173a.) In the cases when
the principal stress intensities p. and p, are of equal magnitude,
the ellipse of stress becomes a circle. If they are of the same
sign, the resultant stress OF on any and every oblique plane
EF perpendicular to the figure is normal to that plane and
equal in magnitude and sign to the stresses p, = p, (see
para. 163a (i)).

If the stress p, is of opposite sign to p., then the resultant
stress (OP;) on any oblique plane EF perpendicular to the
figure is of magnitude p, = p, but makes the angle (- 26) with
the normal to the plane and where 6 is the angle the plane
makes with the direction of p..

The case of unequal principal stresses of the same sign may
be treated by the circle of stress by writing (when p. > p,)

_Pt+p'l Pe— Py
Pl_ 2 + 2
P+ Py Pa—Py
N e

Every unit area of the plane EF is then subject to equal
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Pe + Dy

— ———

like normal stresses

2

and to equal and opposite stresses
Pz=Py byt of opposite sign to '&_%.?3: (See para 1634 (ii))

To find the resultant stress p, in the plane EF it is necessary

(@)
OX = p, = 0F = p,.
OP = p, making angle § with
OY and normal to EF when p,
= p, and of the same sign. OF,
= o, in magnitude, but makes

angle (- 20) with normal to plane
EF when p, = - p,.

_ o Direction

Fe

fﬁ'+
Lot OP — ’L‘:—P' Case (a)
OP, =Ee2Pe  Case (3)

where p, = p, but of the same sign.
From P draw PP,’ equal and paral-
lel to OP;, then OF,’ is the resultant
stress p, on EF in magnitude and
direction. PP," makes the angle 20
with OP. Produes OP to Py,

The hisector of OPP,’ is parallel
to OF and the birecror of Py'PF,
is parallel to OX

Fro. 173a

-

to find the resultant of the two stresses L2 1_ Py and Pz~ P ;P ¥

which can be geometrically added together.

Referring to (b), Fig. 1734, OP,' = p, in magnitude and

direction.
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If P,'P is produced to cut OY in 8 and PP,’ produced to
cut X in @, it can be shown that

OP =8P =PQ=232r

and therefore SQ is the diameter of a semicircle having P as
centre,

Also, SP, = p, and P,Q = p,.

Now as the plane EOF moves through all angles, the point

Fic. 173m

P will describe a circle with centre O and radius 2= 2# ang

Py will describe a circle about P with a radius 22 é-?’-'-', OP

and PP,’ keeping equally inclined to the vertical OY but on
opposite sides of it. The locus of the point P," is an ellipse
which is the ellipse of stress for the point 0, within the body or
material at the point 0.

When 6 = 0°, p, = p,: when § = 90°, p, = p..

The maximum value of § = ¢, the angle the resultant makes
with the normal to the plane EOF, will be when p, is tangential
to the circle traced out by the point P, about P. (See Fig.
173B.)

pp; =PezPe. op_PetPs
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OP,' = p, making the angle § = ¢ with the norma.] to the
plane. OP;' is tangential to the circle of radius 22_ 2 2 o )
From the right-angled triangle OP,"P,
Py -
- 22
Pe_ 1+51n¢urp,_luain¢
py l-sing — p, 1-+4sing

Equation (29)

Also 22 =3 + ¢
m-z=§+§ . et Miquation (80)

also 20 = - {;—%-‘ﬁ

EL .
.. "% Equation (27)
Conjugate Stressés. (See Fig. 1730.)

Take an elementary prism represented by the face A BCD,
of unit thickness normal to the plane 4 BC'D. Let this be acted

5
%7

)

/ o
Pe .
Fie. 173c

upon by the equal and opposite stresses p, on the faces AB,
CD and the equal and opposite stresses p,” on the faces AC, BD.
The direction of p, is parallel to the faces AC, BD and that of
p.’ parallel to the faces AB and CD, That is, the stresses p,
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and p,’ all make the same angle, & with the normal to their
planes, The prism will be in equilibrium under the system of
forces, and the stresses p, and p,’ are known as conjugate
stresses. Principal stresses as considered are a particular case
of conjugate stresses.

FProblem.

Let there be within a mass of material at a point O a pair of conjugate
strosses p, and p,’ acting on their respective planes. Let the angle 4 be their
obliguity with respect to the normals to their planes. Find the ratio of p,
and p,’. Assume they am of the same sign.

Refer to Fig. 173p, draw any line ON; draw OP, making
‘an angle 8 with ON; make OP, = p, and OQ on OP, = p,’.

Fic. 1730

From M the middle point of QP, erect the perpendicular
MP to cut ON in P. Draw QP, PP, and the semicircular arc
HQP,N.

OP represents =72+ and PP, P22

2

where p, and p, are the principal stresses of the system.
1t can be shown that

DP=:PI'+PI‘ _:P-"—I_Pi

2cosd 2
p,-;n,_._\/pr%‘z?r_‘ Y AN
aﬂd _2' i ( ﬂﬂﬂﬂfs ) PP
Pz "'Pl . 'l'PrPr’ Dﬂrﬂ-‘ﬂ
PaoPyiY=' Sy SFle QR0 S5 A L L a0a
and(;u,%-;ﬂ,) (pr +2-) (00

OAJOP, = cos & and cos 24 = (2p, 008 & — Pz — P,)[P= = Py
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When the resultant makes the maximum angle 4 = ¢ with the
normal

P 1+4sing p.-p,

thon e = T=sin g ™ p. + 2,

From equations (30a) and (306) it can be shown that

Pe=Py Jnos’d-cu&’;ﬁ
Ff""?r’—I cos®d

£ _ 2

Thenp.:zcmd:{:v’wsd 005

Pr  cos d F Voos?d - costd

also OP, = Od sec d = p, . ; . - . (30d)

An interpretation of this equation is given in para. 1724 in
the chapter on Retaining Walls.

Ilustrative Problem 41.

At u point in a material subjected to two direct stresses on planes at right
angles, the resultant stress on a plane A is 4 tons per square inch, inclined
at 30° to the normal and on & plane B ia 1 ton per square inch, inclined
8t 45° to the normal. Find the principal stresses, and show the position of
the two planes 4 and B relative to the two principal stresses.

Let the stresses be of the same kind. Referring to Fig. 174.
Draw AB = 1 ton/sq. in. at an angle of 45° to the line AD.
Draw AC = 4 ton/sq. in. at an angle of 30° to the line AD.

Construct a circle to pass through B and €, and to have its
centre O on the line 4D,

Then 40 — ™ of the pm;mpal stresses _ R,..x -12- Toinin
difference of the principal stresses
2

=ging . . (306)

(30¢)

and OB = 0OC =
_Ru ar ™ Rﬂ'ln
e
Scaling off from the figure,
R-It + RM-IJ'I
2
Rnu: = 'Rm!n
SR owt 2:13
from which R,.. = 4-85 tons per sq. in.
i B = +59 ton per sq. in.

i
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Let AF be the tangent to the circle of radius
Bopos— Boia
2
Then AF is inclined to A0 at an angle ¢, which is the plane

C

Ringe — K
ﬂﬂ.mp_”.m%
Rm+£mfn

2 T
AD = Rpmax =485 [59.in.
AE=Rmin = 059" [5q. in

D

W =

oa and ob are the
required planes.

oc =1 tons persq.in
d, m i ﬁ.
axr = 485 do.
oy = 0:59 do.

Fio. 174

on which the resultant is inclined at the possible maximum
angle to the normal,

o Rﬂl#_ Rmi!&
ful‘ mn é =5 Rﬂﬂ' + Rﬂlﬂn
The positions of the two planes required may be found by

(verifying Equation (29))
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constructing the ellipse of stress, From the origin of the two
axes, find where forces of 1 ton/sq. in. and 4 tons/sq. in. cut
the ellipse; then the direction of the normal to the plane
has been established, the plane being at right angles to the
normal. (See Fig. 174.) Or the directions of the planes
with reference to the principal maximum stress may be found
by solving the necessary equations.

Using the Equation (17),

= (Bugzs— Buin) sinfl . cos 6 = p,sin ¢

p, and the principal stresses are known, as well as ¢ ; there-
fore 6 can be found.

From which the plane of the
1 ton resultant is at 9-5° or (90— 9-5°) = 80-5° to the maximum

principal plane
and of the 4 ton resultant at 35° to the max. principal plane.

From the graphical method (Fig. 174),

P the angles are 80-5 and 34° respectively.
'_'Ir_"'% 166. EXAMPLE.

On two mutually parpendicular planes, normal
stresses—one of intensity p and one of intensity
T py—act, in addition to two equal shear stresses of

intensity g. Find the direction of the principal
P
(.

planes and the intensity of the principal (normal)
stresses upon them.

®  As before, let AB and AC be the two
planes at right angles. Let BC be a
principal plane and R the maximum
c principal stress. Let the wedge ABC be
Fig. 175 of unit thickness. (See Fig. 175.)
Let BC be at an angle a to AC.
Let p and p, be two compressive stresses and g the intensity
of the shear stresses.
Resolving along 4B and AC,

p .4AC+qg. AB=R.BC cosa . . . (&)
p.AB+4+q. AC=R.BCsina. . . (B)
AC AB
me{ﬁ},p.ﬁ-&+q.ﬁ=}{maa
p.cosa+g.sina= R cosa 3 . (31)
AB  AC

From (B), Pigot1-po= Rsina

psina+ g cosa= R sina. : . (32)
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From (31), g sina= (R-p)cosa

PR B, v g e ik L8
From (32), g cosa= (R-p,)sina
gqeota=R-p,. 3 : 5 +  (34)

From (33) and (34),
g tana 4 p = q cota + p
q (tan a—cot a) = p, - P,
or g(cota—tana) =p-p,

2q
or fan ﬂa=P—P‘
]
fon Bg e 0 (35)
pP=m

Solving Equation (35) for a will give the direction of the
two principal planes, as 2a will have two values differing by
180°, and which will consequently give the inclination to AC
of the two principal planes which are mutually perpendicular.

From (33) and (34),

(R-p)(R-p,) =g tana.q cota

(RB-p)(B-p)=¢* . . . . (36)
R-R(p+p)-(*-pp) =0
R=P:PI:I:~/{F_:J'F+|‘F / . (37)
Therefore R e, = 252" + ,j {1}1?“—’14_ ot sy tBS)
and it is of the same sign as p and p,.
Bpin =" ;P‘-,/w _f‘}g*k G-I Ly S i (B}

and is of the opposite sign to p and p,, if ¢* > pp,.

These results are used in the analysis of the stresses in a
dam given in Chapter XIIIL.

The planes of maximum shear stress are inclined at angles

of E to the principal planes found, and the maximum shear
stress is

- R —m.)2
qmuz-ﬁuuﬂ nf-,:/J{P 4?]] +g: A {m}
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Note. 1If p is of the opposite to sign p,, the modifications
necessary are easily made by a substitution of the necessary
signs in the preceding formula.

It p,= 0,

_r, 9
R““‘_2+JI Tl s

A o=
and fmae = E+q

both of which agree with the results obtained in Equations
(9) and (11).

167. Having found the principal planes and stresses, and
their directions, the ellipse of stress can be drawn, from which
aTsm can be found the resultant stress on any

A) zrsem. plane. The maximum principal plane
A — g  will be drawn at an angle a to the
vertical ; this fixes the axis YY of

TSaN. principal stress. The axis XX of
57N principal stress for which p, = 7 | o
measured is at right angles YY ; thus

rsam, (%) - the position of the ellipse of stress
: will be fixed in space. Obviously the
minimum principal plane makes an
c angle of (90° + a) with the vertical.

Fra. 176 Ilustrative Problem 42.

At a point in a structural member there are two tensile stresses of 5 and
2 tons per square inch on two planes at right angles to each other, accom-
panied by o shear stress of 2 tons per aﬂm inch. Find the direction and
magnitude of the principal stresses, (Fig. 176.)

Let a = angle the maximum principal plane makes with the
S-ton stress,

tan 2a = ﬂ;i g = 2 (See Equation (35))

2a = 63° 26 or 180 4 63° 26"
S.oa=31°.43" and a, = (90° + 31°43') = 121°43".
The maximum principal plane is at an angle of 31°43" with
the 5-ton stress plane and the minimum principal plane is at

an angle of (a;) 121°43' with the 5-ton stress plane working
from the vertical.
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(5-3) T . \
R=%5+3)+ 7 + (2)* (See Equation (37))
=4+ V5
= 6-236 or 1-764 tons/sq. in.
R,: = 6-236 tons/sq. in. (tension).
B T84 (tension).
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EXAMPLES

1. Define principal planes and principal axes. If a specimen (cross-
sectional area, A 8q. in.) carries o tensile load of I tons, show that a maxi-

mum shear stress of 34 tons per squaro inch oxists on a plane at 45* in the

direction of the load. (U. of B.)

2, Define principal stresses and principal planes. At a point in a speci-
men there is o normal tensile stress of 5 tons per square inch on a certain
plane, accompanied by a shear stress of 2 tons per aquare inch. Find the
maximum principal stress and the angle the direction of this makes with
the direction of the 5-ton tensile stress, (U. of B.)

3. In a bar subjected to pure tension, show graphically (e.g. * polar™
dinfrum} the magnitude of the normal and shear stresses on any plane
inclined at an angle f to n eross-section st right angles to the axis of pull,
when § varies from 0 to 2=. A bar, 1in. diameter, is loaded with 5 tons.
Determine the normal and shear stress in a plano inclined at 60° to the axis
of the bar, (U. of B.)

4. The normal tensile stresses on two planes at right angles in a solid are
3 tons and 2 tons per square inch respactively, and the shear stress is 1 tn:lf-_-r
square inch. Determine the principal stresses in direction and magnm itl ]3,
.of B.)
5. Show that the two principal stresses at o point in o member are equal
to half the sum of the normal stresses on any two planes at right angles
through the point plus or minus the maximum intensity of shearing stress
ot that point. (I.C.E.)
. B A boiler is 6ft. 6in. diameter, §in. thick, and is subjected to an
internal pressure of 150 lb, per square inch, the ends being unstayed. Find
the intensities of longitudinal and ecircumferential stress in the material,
and of the normal and shearing stresses on & plane at 45° to the length of
tha eylinder. 5 (L.C.E.)
7. At a point in a piece of steel there is o shear stress of 1 ton per square
inch, and tensile stresses of 3 tons per square inch and 2 tons per square

1—{T.5450)
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inch respectively scting on planes at right angles, Determine graphically,
or otherwise, the maximum principal stress, its direction, and the maximum
ghear stross. Draw the ellipse of stress. (U. of B.)

8. Prove that the sum of the normal components of the stresses at a
point in & member on any two planes at right angles is a constant quantity
for that point.

9. A system of loads is applied to a body and produces principal stresses
at & cortain point as follows : Tensile stress of 4 tons per square inch, act-
ing on a horizontal section ; compressive stress of 3 tons per square inch,
acting on & vertical section. The system of loads is removed, and a second
system is applied which produces at the same point principal stresses us
follows : Tensile stress of 3 tons per square inch, acting on 8 section at 30°
to the horizontal ; compressive stress of 4 tons per square inch, acting on a
section at 120° to the horizontal. All thess sections may be taken at 90°
to the plane of the paper. Find the principal stresses and the sections on
which they sct (showing them eclearly in a diagram) when both systems of
londs are applied simultaneously. (U. of L.)

10. At a point in a material under stress, the intensity of the resultant
stress on o certain plane is 3 tons per square inch (tensle) inclined at an
angle of 30° to the normal. The stress on a plane at right angles to this
has a normal tensile component of intensity of 2 tons per square inch.
Find {a) the resultant stress on the sscond plane; (b) the principal planes
and streases.



CHAFTER XIII

RErTamnineg Warts axp Graviry Dams

168. A Retaining Wall is one for sustaining the pressure of
earth, or other filling or backing which possesses some fric-
tional stability. The backing may be level with the top of the
wall, or it may be sloped upwards from the wall when the
backing is higher than the wall; in this case the wall is
positively surcharged.

If the earth surface slopes downwards from the top of the
wall, then the surcharge is a negative one. The pressure of the
supported material will depend upon the material, the method
of placing, moisture content, and other factors. It will be
assumed that the materials are semi-fluids, possessing no
cohesion, of indefinite extent, the particles being held in place
by friction on each other. Loose earth will remain in equili-
brium with its faces at slopes whose inclinations are less than
an angle ¢, which is called the angle of repose, or more properly
the angle of internal friction. The coefficient of friction will be
u = tan ¢. Now, if a homogeneous, unlimited granular mass
is in equilibrium, and if p, and p, are the two principal stresses
at a point within the mass of the material, then the greatest
. angle which the resultant on a plane at the same point can
make with the normal to the plane is ¢, the angle of repose.
The greatest ratio between p, and p, will be

py, 1-sing

p. 1+sing
To determine fully the pressure of the filling on a retaining
wall it is necessary that the resultant pressure be known (a)
in magnitude, (b) in line of action, and (¢) in point of applica-
tion. Theories for the design of retaining walls come into two
classes—

(1) The Theory of Conjugate Pressures, due to Rankine, and
known as Rankine’s Theory; and

(2) The Theory of the Maximum Wedge, commonly known
as Coulomb’s Theory.

Rankine’s theory completely determines the thrust in magni-
tude, direction and point of application. In Coulomb’s theory,

311
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the magnitude of the thrust is ascertained, but the direction of
it and its point of application must be assumed, thus leading
to numerous solutions of more or less merit. Experimental
work has been carried out within recent years, notably in
Great Britain, by Professor Jenkin. The results of this work
must be referred to in technical publications. The solution
of the thrust of the filling for the simplest cases of retaining
walls only are given in this chapter. For the graphical
solutions using the ellipse of stress and the earth pressure
triangle (wedge theory), reference should be made to more
advanced works. (See list of references at the end of this
chapter.)

169. Theory of Rankine. In this theory the filling is assumed
to consist of an incompressible, homogeneous, granular mass,
not possessing the property of cohesion or resistance to shear,
the particles being held in position by friction on each other.
The mass is of indefinite extent, having a plane surface, resting
on a homogeneous foundation and being subjected to its own
weight. These assumptions lead to the ellipse of stress and the
development and use of formulae already found in the previous
chapter. If a wall is vertical, then the pressure or thrust of
the earth on the wall will be parallel to the top surface. The
vressure on other than vertical walls can be determined from
she construction of the particular ellipse of stress, although this
method gives indeterminate values for some walls when they
lean towards the filling. The earth face (i.e. the face of the
wall in contact with the filling) of the wall is looked upon as a
plane passing through points within the filling itself. The work
given will determine the pressure actively exerted by the filling
upon the wall which is less than the passive resistance which
may be developed by pushing the wall against the earth.*

Conditions at the moment of failure when the retaining
wall begins to slide. The space between the back of the wall
and the earth filling as soon as the wall begins to slide is
presumably filled up by a vertical fall of earth, which exerts
a tangential effect uP, where u is the coefficient of friction
for the earth and wall, and P is the earth pressure normal to
the wall. In Rankine’s theory uP is not considered, and the
retaining wall is made thus automatically a little more stable
than is required.

* See Ketchum, Walls, Bins and Grain Elevalors (McGraw-Hill).
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SurFAcE oF THE EartH Backive HORIZONTAL WITH THE
Tor oF THE WaLL, Back oF WarLn Verticarn. In Fig. 177,
take a column of earth height h and having unit area. Negleot-
ing friction on the sides of the column, and assuming the filling
is subjected to its own weight, the pressure per unit horizontal
area at depth A will be wh where w, = weight of 1 cu. ft. of
earth. This pressure will be the maximum principal pressure,
and consequently on a vertical
surface, which will be a principal el Li“f'f
plane, there will be a minimum i
principal horizontal pressure. The
problem is to find the intensity of
this horizontal stress.

Consider any plane intermediate
between the two principal planes,
then the condition that sliding
shall just not take place is that a
resultant pressure p, on this plane shall just not make an angle
with the normal = ¢ = angle of friction.

p, is the maximum principal stress or pressure on a small
cube of earth ; p, is then the minimum principal stress at right
angles to p,.

Now sliding will take place along some intermediate plane,
on which the resulting stress is at an angle ¢ (the angle of
repose) with the normal to that plane.

Equation (28), Chapter XII, shows that the relation between
two principal stresses p, and p, for this condition is

i 1 4 sin ¢

P==Pv1 _sing

Now p, > p,, so that changing over and substituting v for
.z and & for y,

..-Fl":q__

' Back of Wall.

: H:WE?L
P

Fia, 177

where p. > p,

¥ 1+ sing

Pi"" Pﬁ Ei.n&

1 — sin
and py = wh (5 —) 1)
or p, = wh . tan? (45“—3) : : R L)

This is the horizontal intensity of pressure due to the earth
on the back of the wall at a depth of A ft.
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The total horizontal force on a wall of height A per unit
length or run of wall is because p, is proportional to the depth

of a point,
— sin ¢
Py = lhw.i':(l —]—smq!-)

— sin ¢
- (i) e
and it acts at a depth of § h from the top of the wall.

170. Graphical Method of Finding p,. (Fig. 178.) O is the
centre of the semicircle CDBOC. Produce BOC to some point

D

i
A c (0] B
Fic. 178

A, from which the tangent AD to the semicircle makes an
angle ¢ with ACE.

Now AB will represent p, = wh and AC will represent

Py = w,h(l ;:.m :) to the same scale p, = AB.
oD

0D "
0A—4B-op—"n¢
then O = AB siné - 0D sin &
OD(1 + sin ¢) = AR sin ¢
sin ¢
GDEAB‘—I—J-sinq!.
AC = AB - 20D

_4p.2dBsng 1 - sin
ARy g "33(1—“&,‘1—.,5)

Proor,

* 04 = "--’-:—p-l ; OD =Bt

AB = 0A + 0D = p,

ACQ = 04-0D = p,.
Ses Chap. XII.
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If AB represents w,h,
1 - sin ¢
then AC = w.h(m) = P

171, Sloping Back of Wall and Horizontal Earth Surface (Fig.
179). Let 6 be the slope of the back wall face with the vertical,
the wall sloping away from the filling. Then
the intensity of pressure across the face at a _ Earth Level
depth k is given by

p, = Vp,5in% + p,*cos*d
(Eqn. 18, Chap. XII)

|
I
k
where p, > Py I
Therefore, in this case of the retaining wall, :
(1 -sin ) A
where w.ﬁ . r_m = Pr= Py Fro. 179

and = wr'h = Py
p, = Vpsin% + p,toos¥

— 3
L= J w,2h%&in% -+ w,“h‘(:—_i_:—?;i) cos*f

— wh [ sin% + cos® . t.u.n*(w-';) Iele)

Total P, per foot-run of wall

h : w7
=P, = lwh X b stm*ﬂ + cosf tan‘(dm - E)
(5)

P, =}w}t,/ tan®0 + t.un‘(d.ﬁ : ';) A o ey

and it acts at a point on the back of the wall at a depth of
two-thirds the height of the wall.
The angle § at which it will act with the direction of the

maximum principal stress is given by

tan § = ?‘J .cot@  (Eqn. 21, Chap. XII)
where B, and R, are the two principal stresses equal to
p, and p,
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Ltanfl = Hib(ﬂré) .cot

wh\1 -+ sin
an® 45° —?—
73 | g:ﬁ [/ 2) )

172. Graphical Method of Finding p, (of para. 171) (Fig. 180).
p» and p, will be found either by caleulation or p, by the
graphical method given in paragraph 170.

Now p, and p, are principal stresses

Pv > Pa

To find the resultant force p, acting on a plane making an
angle 6 with the direction of the maximum principal stress.

Fra. 180

Referring to Fig. 180, OY and OX are the directions of the
maximum and minimum principal stresses respectively. Draw
g = F#ﬁ to scale and making an angle 6 with OX, ie.
{)a is normal to the plane.

From a, draw ab = p,_;pi to scale and making an angle 20
with Oa. s

Join b to O, when Ob will represent p,.
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Proor, (Ob) = (Oa)® 4 (eb)— 2.0a.ab.cos 20

e (Do)
= 7Y + i el A

= 4w, + Pa)(pe — pa) cos 20

L

P

3

(1 - cos 20) + 2% (1 + cos 20)
cos 20 = 2¢cos® -1 = 1 - 2&in®f

(Ob): = prsin®0 + pyteos*l = pt?

If 6 = zero,

e (52)-(52) -

If 8 could be equal to 907,
v - .
o (:ﬂ_2 Ph) + (?’_.2__??5) =

172a. Vertical Earth Face. Retaining Wall with Positive
Surcharge 4. In Fig. 1814 take a small parallelopipedon of
earth at a point at a depth & below the surface. It is held in
equilibrium by the forces, p, vertical, z normal, and p," whose
direction is not yet known. The stresses on every part or any
imaginary plane in a granular mass will be parallel. The
stresses on a vertical plane will be parallel to the plane of sur-
charge where the surcharge is positive. The unit pressure

wh

~ secd
positive angle & to the horizontal, and it is vertical in direction.
P, acts on a vertical plane, and will therefore have the direc-
tion of the inclined plane on which p, acts. Therefore p, and
p, are conjugate stresses. The resultant pressure P, on the
back of the wall per foot-run will therefore be parallel to the
plane of surcharge.

Note. The resultant pressure on a wall not vertical will
not be parallel to the top surface.

To find the intensity of p,’. It was shown in para. 165,
Chapter XII, that

pr co8d + V' cos?d - cos®d
Pr cos d F 4/cos®d — cos?d

where, in this case, ¢ is the angle of repose of the fllling.

— wh cos § is uniform over the surface inclined at the

P

(8)
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Equation (8) represents both the active and passive thrust
at the point, the two stresses being equal in amount but
opposite in direction.

Since p,’ is less than p, for active forces, equilibrium of the
wall will take place with the upper signs. Reversing the frac-
tions, solving for p,’, and putting

P, = whcos d
we obtain

cos § — v"c_qﬁ“ﬂ—cus’qé_ . . (8a)
" cos & + Vcos?d — cos®P
Therefore for a wall of height A, as p,’ is proportional to the

P, =wh. cos.d

d
A g Il B
I ] ]
i | |
i I ]
I | |
|
A i k2
| T | Py at
’I% : depth h,
1 i |
X h
b= Bi- =
~—at depth h

Fra. 181a

depth of a point, then per foot-run of wall, the resultant thrust
will be

cos 8 — V'cos2 — costd

cos 8 + V'cos?d — cos?d

2
Lt T i

wh?
=t O

Pt 05 d .

2
= ,_ wAh* 1-sgin ¢
Iféd=0 Pr— 2-.m S&GP&T&.I&Q.

IncLiseEp RETATNING WALL. The earth face leans away from
the filling which is positively surcharged to the angle 4.
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The ellipse of stress can be used to determine the resultant
pressure on such an inclined retaining wall. This solution deter-
mines the amount and direction of the resultant. For the
method and proof, recourse should be made to more advanced
works on retaining walls.* The same results may be obtained
directly from the discussion of the pressure on vertical walls,

AB represents the earth face of the wall inclined at an angle
fi to the vertical. In Fig. 181n, let P, = pressure on a vertical
wall BC per foot-run as given by equation (8a). P,’ acts

gc  Pisthe resultant of
5 DE=A!and

i D=
L X
.3
Fia. 181w

parallel to the top slope and at a point BCf3 above B. Let
W represent the weight of the triangle of earth ABC and of
unit thickness which acts through the centroid of the triangle.
It intersects P,’ at the point D on the face of the wall AB.
Then P, the resultant of P,” and W, will be the resultant pres-
sure per foot-run of wall at D. The angle it makes with the
normal to the wall, and with the horizontal, can easily be found
from the force polygon constructed. The algebraic equation for
P is complicated, but is given in textbooks on retaining walls.

173. Wedge Theories. In these theories, it is assumed there
is a wedge of the filling, having the earth face of the wall as
one side, and a plane called the plane of rupture as the other
side, which exerts a maximum thrust on the wall. The plane
of rupture lies between the earth face of the wall and a line,

* p.g. Walls, Bins and Grain Elevators, Ketchum.
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drawn from the bottom of the wall, making the angle of repose
of the filling with the horizontal. The theories do not determine
the direction of the thrust or its point of application. There
are many assumptions as to the direction of the thrust, but
its point of application is generally assumed to be one-third up
from the base, when the filling starts from the top of the wall.

In Fig. 181c, let AB be the back of the wall making an
angle p with the horizontal: let the filling be positively sur-
charged to the angle 4, which cannot be greater than ¢, the

Fig. 18lc

angle of repose of the filling. Let AF be a trace of the plane
of rupture, which will lie between 4B and the line of repose
A4, of the earth drawn from the base of the wall. It is assumed
that the triangular prism of earth above AF will produce the
maximum pressure and that in turn the prism will be supported
by the reaction of the wall and the earth. When the prism is
just on the point of moving, P, the thrust of the earth on
the wall, will make an angle § with the normal to the earth
face. It can be shown®* that, per foot-run of wall,

P, = jwh. sin® (p — )

e . [sin(8 + ¢).sin(¢-8) ¢
sinp . sin (p + f) [1 T//Egin{p + ) .sin(p - *5}]
b Q

* See Ketchum, Walls, Bins and Grain Elevators (MeCraw-Hill),
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where ¢ = angle of repose of the earth and h = height of the
wall. P, is assumed to act at a height A3 above the base of
the wall.

The value of P, will therefore depend upon the angle B,
and various experimenters have given various values to this
angle. One assumption is that § = ¢, another that § = ¢/2,
and that f# is equal to the angle of friction of the filling on the
back of the wall.

Using equation (9), P, can be calculated from the various
values of &, p, 8, §, and ¢, or the formula may be simplified
for known conditions.

eg.if p=90°6=0,and § =0,

2
then P,' = tiﬂ_ tant (45 ol %)
wh* 1 -sin ¢ . I

; "2 "1+4sing
and acts normal to the wall. If p=90°, =0, = ¢
w,h? CO8
then P, = — ,———=———
1 2 (1 + V2sin ¢)
and makes the angle ¢ with the normal to the wall.
If the wall is vertical and the surcharge and f arezero, it can be

Ly

shown that the plane of rupture makes the angle 45 - ;S with

the vertical, i.e. it bisects the angle between the back of the
wall and the line of repose. If the wall is vertical and the
positive surcharge is 4 = ¢, the plane of rupture coincides with
the plane of repose.

174. Resistance of Masonry Retaining Walls.* DistrisuTION
oF NorMAL STrEssEs o8 A Horizo¥rarn Sgcrion. Take unit
length of wall. (Fig. 182.)

Let R = resultant of the earth pressure and the weight

of the wall on the rectangular area 4B X 1.

Its point of action on AB is at D, which is distant = from C,

the centre point of AB. It can be resolved into V, vertical,
and H, horizontal. H will cause shear.

V can be replaced by a couple Vz and a force V acting
at the point €. The normal stresses at points on A B will there-
fore be the algebraic sum of a bending stress and a direct stress.

* Only masonry walls are considersd in this book. The student is referred
to textbooks on Conerete for the design of reinforced concrete walls.
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Thus the resultant stress at 4 will be the sum of two
compressive stresses, and where D is between 4 and C,

V d '
Pa E!}(-ITFI:X ds}{lg (JH=,I"!—‘I)

Wiwall)

Pomnt on

Line of Thrust Plearth)

A !
Bl §  Distribution Stress :{g

“\Jnr
Distribution Stress .::)gr i
) rc)

_____ (e

Final Stress Distribution nﬁfn
FB cannct take Tension

()
Fia, 182

=§(1+i—“). 0 el )

P-=d*]:(1—%z)‘ ot ; arails)
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i
If 2> &
Mortar joints cannot resist a tensile stress, so the limit of

Py becomes a tensile foree.

B
the point of action (D) of the reaction i.BAT =

If R falls within the middle third (i.e. when x < d[6), no
tensile stresses are possible; but the wall is heavy in material.
Let R fall outside the middle third at a distance from

d
4 =y, such that y <4
then a tensile stress will be developed at B; as the mortar
iz assumed to take no tension, then a erack will be developed
until the tensile stresses disappear. This will occur at some
point B’', where
dy d

AR = d,, ]m=g andAD=§‘

The effective width of the base is now d,; and for no stress
d
at B’, y must be equal to 3.

Thus from 4 to B, compressive stress; and from B’ to
B, no stress.
B'B = length of crack.

2y
The maximum stress at 4, will now be T and if
1

this compressive stress is within the safe limits of the
material, the wall will be safe, unless water gets into the
crack at B, when it will exert an upward pressure on the wall,
thus throwing B further towards 4, and increasing the com-
pressive stress at 4 until such a time when the material fails.

175. To Find the Line of Thrust for a Wall. Take a number of
horizontal sections within the wall; to ascertain the point
of action of the reaction, find the resultant of the weight of
the material above the wall (acting through the centroid of
this piece of the wall), and the total earth pressure above the
section acting at a depth of two-thirds the height of the wall
above the section. By the parallelogram of forces, the
resultant can be obtained in magnitude and direction; and



324 THEORY OF STRUCTURES

the point where its line of action cuts the section gives the
point ) required. Join up all the points D for different sections
and the line of thrust is found.

Note. In working out the loads, it will be found con-
venient to work in cubic feet of wall, and equivalent cubic
feet of wall for the earth per unit length of wall. The total
earth pressure divided by the weight of a cubic foot of wall
will give the equivalent cubic feet of wall. To
convert into force units of lbs. or tons, multiply
the force in cubic feet of wall by the weight of
1 cu. ft. of wall.

For the method of working, see the example
for a dam given in paragraph 185, and Figs. 184
and 185.

176. Foundations. (Fig. 183). When the
ground is sufficiently firm to support a structure
without any reinforcing, such as piles, the
average safe or normal bearing pressure

total weight borne

= area of the foundation

total weight borne
safe unit-bearing pressure

or area of foundation =

At the front edge of a foundation, let the normal bearing
pressure be p, assumed uniform. Inorder to resist any squeezing
out of the earth, there must be a horizontal pressure p, to
resist this. This in its turn is supported by a virtual pressure
e at the outside of the base, and p, must be equal to wh,
where h, is the depth of the footing.

A p(l - ain:ﬁ)*

1 4 sin ¢
__ P (1 — sin¢\?
h‘_w,(l —i-s-:ind.'») > e AS)

If p = average unit-bearing pressure,

% W (1 - sin¢\?
hy = i‘u:! (m) 5 ; . (18)
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IMustrative Problem 43.

A concrete foundation for a wall has to earry 6 tons per linear foot at
1'5 tons per square foot bearing pressure. Estimate the necessary depth
of the foundations if the angle of repose of the earth is 35°, and its weight
1101b. per cubic foot.

p = 1-5 tons/square foot.

The pressure at right angles to p is

_f1 - gin 35°
i Emi “(1 + sin 35°
= -405 ton/square foot.

Let hy = depth of foundation in feat,

then wh; = 110 h; = -405 x 27 x 2240
therefore, Ay = 2-24 ft.

If the weight of the concrete foundation is not included in
the weight of the wall, it must be allowed for in designing the
depth of the foundation. The depth of concrete will be b, ft.*

177. Dams. Dams, which are walls of masonry or concrete,
are used for impounding or holding up large depths of water ;
they can be put into two main classes—gravity, and arched
dams. This section will only deal with gravity dams.

178. Notes on Gravity Dams. (1) The resultant thrust.
whether the reservoir be full or empty, must be within the
base, or the dam will overturn; and no normal tensile stresses
are developed if the resultant thrust fall within the middle
third, (The water face of a dam must be nearly vertical.)

(2) The maximum compressive stress on any section must
not be greater than a safe working stress.

(3) The resistance to sliding on any horizontal plane must
be greater than the horizontal pressure H, ie. uW > H,
where u is a coefficient of friction and W the weight of the
dam above the plane. The base of the dam is not generally
the critical plane as regards slipping.

(4) The shear stress must not exceed a specified amount.

(5) The maximum principal stress developed must not
exceed the safe compressive working stress.

(6) On the water face there shall be no tensile principal
stress.

)z 1-5 > -27

* If the foundation pressure vru-rim uniformly from a maximum p, to a
minimum p,, then

i !-[—uinqb)' ey L + sin g4\*

= (1 —mg) e nI M\ T

Pa
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179. The Analysis of a Gravity Dam. Assume the form,
then find the stresses. For loads, work in cubic feet of water
and consider unit length of dam. The egquivalent water load
on a cross-section due to the dam above it is equal to the area of
the cross-section of the dam above it (X unit length) multi-
plied by the density of the masonry = p

=y

D

Mid 3rd
= Point

when Reservoir Full

Fic. 184

180. First Case. Consider the stability of the dam with no
water in the reservoir. (See Fig. 184 and Plate 1.) The force on
any horizontal cross-section 4 B = weight of masonry above it,
acting through the centroid of the mass of masonry.

Find its point of application on the cross-section. Take similar planes at
distances, say, 10 to 20 ft. apart, and find corresponding points of application.

Connect all these points, and the line of thrust is obtained
equal to the locus of the points of action of the thrusts on
the horizontal planes.
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For no tensile stresses on any plane or section, the resultant
load W on such a plane 4B must be within the middle third.
Thus the line of thrust has to be within the middle third, and
as near as possible to the water face boundary line of the
middle thirds of all sections.

c D Water Level
By — % g W
LV
&
3
m
= A

Application of Fa

Fia. 185
181. Becond Case. CoxsipEr THE Dam wHEN THE WATER
¥ THE REsErvoin 18 AT Its Maxmuom Depry AT THE Dam,

(See Fig. 185 and Plate 11, page 334.) The total water load
on the dam above the section taken (AB, say) will be equal

to Po= w-;-h « h = wh? per unit length, and where & = height
of water above the section; P, will act normal to the water
face at a height g above AB (w = weight of 1 cu. foot of
water = 62-4 1b.)
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The resultant force acting on the section will be found by
compounding the water load, and the load due to the masonry
above the section. This will throw the point of action of the
resultant away from the water face towards the downstream
face; and, for no tensile stress in the dam, the point
of action of the resultant must fall within the middle
third. For no stress at the water face, the point will be the
further middle third point from the water face. Therefore,
the line of thrust with the reservoir full will be towards the
middle third boundary line farthest from the water face.

3
AR :
a e g#:::f ?fbarfﬁcte E%E.)
g B
px Py

— -A
Normal Stress
q,ml_ B, Dﬂj‘%ﬁ“t;ﬂnf’j
pression. I Eff;ng.ﬂzﬁ'i“

Fia. 186

If the water face is battered, then the water load normal
to the face will tend to make the resultant force steeper, and,
therefore, its points of action on the horizontal planes will lie
nearer the centre and tend towards increased stahbility.

The normal stresses on horizontal planes can be found as
for retaining walls ; the maximum compressive stresses must
be within the safe limits of the masonry.

182. General Case of Analysis of a Dam. SueAr STRESSES
ox HorizoxTaL Pranes. (Figs. 186 and 187.)

AB = any horizontal plane at depth A
Py == normal stress at B

= T 1 4

At B take a small length along 4B — Az — Bg.
At g erect a vertical to cut the face of the dam in k: let
gk = ah. kB is very small.
Let the mean intensity of water pressure on LB be Py = toh.
Angle kBg = f'.
Consider the equilibrium of the triangle gkB.
The total upward load on gB = p,. Az



RETAINING WALLS AND GRAVITY DAMS 320

The vertical component of p, = p.sin(90 - ")
= p, cos f’
Total load on Bk = wh . Bk
whose vertical component = wh . Bk cos ,H’

= wh . Bk . H.‘:

= wh. Ax

Neglecting the weight of masonry gkB, the shear force on
gk = pyAx-wh. Az.

= (p—wh) cot @'
when pg > wh,

Horizontal Shear Stress Diagram.

Fia. 187
Ax Ax
Shear stress on gk = p,.-ai—mh s

= p, cot §'— wh cot §’

The intensity of the complementary horizontal shear stress on
gB = Az is equal to the intensity of the vertical shear stress
at B;

then gy = (py— wh) cot §’

If g = 90°, q, = O, i.e. there is no horizontal shear stress
at B.

If p, = wh, then the vertical shear stress on gk acts down-
wards, and the complementary shear stress on Az acts from
right to left ; that is, it acts in conjunction with the hori-
zontal water pressure.

Note. Ah is to the left of B.
Similarly at 4, the vertical shear stress on a vertical sec-
tion to the right of 4 will be
p, cot f
and it will act downwards
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The complementary shear stress on a small length Az at 4
will be p, cot #, and will act from left to right, resisting the
horizontal water pressure and the tendency to slide.

If py > wh, q,is positive, 7, is negative.
Or if p, and p, are of the same sign, then always g, is of the
opposite sign from g,.
This curve of horizontal shear is a parabola.*
To construct the curve.
guandg, can be found. Erect perpendiculars B.Cand A,D
to scale = q, and ¢, at B, and 4, (Fig. 187).
Now the total shear force along AB is equal to the total
% horizontal water load on the dam
"—#= above the section 4B ; this is easil
‘ﬁt'}‘- ascertained. Let it be H. .
T‘/ij. &  Thetotal shear force on 4 B=area
T e T 1 of shear stress diagram A,DFCB,
Fio. 188 where DFC is a parabola. Excep-
tion see paragraph 186. Join € to
D to ent 4,8, in E. Fiod the area of 4,DECB, and to secale
= total shear load = 8.

Making allowances for the different kinds of shear stress
(positive or negative), H — 8 or S - H will be nearly equal to
the area DECF to scale, and will be so when g, — O oris of the
same sign as g,. Measure DC and at the centre point F of DC
erect a perpendicular X in the necessary direction, such that

CD x %) to scale = H -8 or §- H.

If gy of the opposite sign from g,, then re-check, to ascertain
if 4, DFCB,= H. If not, by further trial the correct curve can
be ascertained.

As q, must be small, § must not be much less than 90°.
If p is small, ab, Fig. 188, becomes subjected to a bending
moment which may be fairly big. Concrete is weak in tension,
and it is supposed with concrete dams that small cracks occur at
points & which upset the values of the stresses found
theoretically.

183. Normal Stresses on Vertical Planes. (See Fig. 189,
Assume that the horizontal shear stresses on two planes
A'B' and 4B, sk apart, are known.

* See paper, Proceedings Insfitution of Civil Engineers, Vol. clxxii, p- 89:
* Strosses in Masonry Damas," by E. P: Hill,
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Shear stresses opposing the water pressure are negative.
The difference in shear force between the planes acts as a
normal force on ab.
Let X = area of shear stress diagram for A’B’ to the left of ab
and ¥ = » ) " AB "
Then ¥ - X = P, on ab = total normal force on ab,
Y¥-X

then the normal stress p, =

Ah

At the point 4,p, is g, cot §;
and at B it is equal to the
mean intensity of water pres-
sure on Ak due to the height
of water above the mean point
of AR, less or plus g, cot .
Ah is very small, therefore p,
at B

= wh F gy cot §’

The curve of p, is a cubic
parabola, which is nearly a
straight line; thus set down
an ordinate at B = BB, =
wh + gz cot B’ and join to
A4, where 4,4, = g, cot §,
and the diagram for the normal
vertical pressures is found.

184. Theory of Stress. The Aormial Sfregpea [fn48)
stresses acting on a small
element at a section of the 30, 151
dam are shown in Fig. 190.

p and p, = normal stresses on the horizontal and vertical
planes respectively.

It has been shown that the stresses can be compounded so
that on two planes the stresses are normal. These stresses
are the principal stresses R,.,, and R,,,.

The connecting formula is

(R-p.)(R-p)=q* (See Eqn. 36, Chap. XII)
The maximum principal plane is inclined at an angle a to the
vertical,

where tan 2a = ? 2 F (See Eqn. 35, Chap. XII)
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For any section, the normal, horizontal, and shear stresses are
known ; by the use of the formula, the two principal stresses
and the direction of the principal plane can be found. Thus
the ellipse of stress can be drawn. (See Plate I1.)

Both principal stresses must be positive, i.e. both com-
pressive.

If the water face of the dam is vertical and there are no
tensile stresses, then no tensile forces at all will occur. It is,
therefore, important that neither of the principal stresses is

tensile.
N
3;1—,7" 1 a—* 41&
' Kt

e, o q

Pnhci;ﬂf T o Principal
Planes. Planes.
P P
negative on the* positive on the
T ag;eﬂmn. T section.
Fia. 190

CoxsipEr THE Warer Face. It is essential no tensile
stresses should ocecur on any plane normal to the water face.

Referring to Fig. 191,

One principal stress = R, = wh
9s = (po— wh) cot f'
and (R-p,)(R-p)=q* (C)
P P, and g, are known and also R,.

Solving Equation (C), two values of R are found, one of
which is R, = wh. The other is on a plane at right angles
to the water face, and can be found from (€). It must be positive,
i.e. compressive.

An analysis of a dam is given in Plates I and II.

185. Notes on Plates I and II. Take unit foot-run of the
dam. Work in weight units of 62-5 Ib. (the weight of 1 cu. ft.
of water) ; then the density of the masonry will be
weight of 1 cu. ft. of masonry in 1b.

62:5 |b.
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Divide the dam section by horizontal planes equidistant apart
(if possible), such as aa, bb, cc, . . . ll. Find the weight in
the required units of each section of masonry, aabb . . .
jjkk, Umm, which will be equal to the area in square feet
#% p. These weights will act through the centroids of their
sections. By known means, find the centroids and join
together by a curve to obtain the centroid locus.

(. is the centroid for block jjkk

C, is that for kkjj.
From €, drop a perpendicular to cut Ul in I’ ; from Cy drop a
perpendicular to cut kk in &', Similarly for the other sections.

Fra. 181

Construct the polar diagram for the masonry loads, and
from this the link or funicular polygon for these loads. With
the reservoir empty, the total load acting on the base I is
the total masonry load per foot-run. To find its point of
application on the base [I, produce the outer lines of the
masonry link polygon to meet in a point L. Draw a vertical
through L. This vertical gives the position of the resultant
total load with respect to I’ on lI. The resultant acts at the
distance *I' from I' on the base. Similarly for the other
planes; join up the points of application and the line of
thrust, dam empty is found.

Resgrvoir Furn. Calculate the water pressure acting at
each section point a, b, ¢, . . . I per foot-run of dam.

(p = wh: w = unit weight of 62-51bs. .. p =h).

Set out to scale these pressures at right angles to the water
face at their section points, and join up the ordinates to obtain
a water pressure line al,. To find the water loads acting on
each section of masonry, such as ab, be, ete., find the areas
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of each section of water pressure diagram to scale, such as
kkl,, and these give in water units the water loads on the
similar faces kl; these act through the centroids of their
particular sections and at right angles to the wall. These loads
are represented by P,, P, ... P, The total water load
is the sum of these. On the area aace, the water load will
be P, + P,, and similarly for the other sections. Construct
the water load polar diagram, attaching it to the masonry
load polar diagram.

P

.

AB=d :{
Ryt @ ?‘I’ |
1l
&
¢ ]
0 gf-r
huwe 0 |
I
Y. ¥y
A B\k

Fio. 192

Construct the funicular or link polygon for the water loads
from the polar diagram, and from this link polygon can be
found the direction of application of the resultants of the
loads required. The resultant water load above the section
ccis P, + P, = p, and acting as shown.

Produce p, to meet the resultant weight of the masonry
aacc in €y, From the joined polar diagrams, the resultants
of the corresponding total water and masonry loads are found
in magnitude and direction ; these are B, . R,. R,. . ..

Through C; draw a line parallel to R, to cut the base cc,
and the cutting point is the point at which R, acts. Simi-
larly for the other section lines ; join up the points of applica-
tion and the line of thrust, reservoir full is obtained.

By the methods indicated, the direct normal horizontal
and vertical, also shear stresses, are found for the different
sections and the stress distribution diagrams drawn.
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In Plate IT are given the distribution of stress diagrams,
and the ellipses of stress for various horizontal sections and
points in these sections.

TABLE FOR PLATE 1I
Unit stresa = 62-5 |b. fsquare foot.

WET FACE STRESS UNITS, Dny Facm STRESS UNITE.
Base, Horlzontal, [ Vertical, Shear, Horizontal.| Vertical. Elhear,
cC 15-0 2102 145 3-34 41-5 12-32
FF 3747 114 306 26-44 105-5 52-T8
II 50-08 14-12 2-84 90-75 118-1 104-4
LL B2-46 G1-4 2-32 220-0 87-3 138-5

PRIXCIFAL STRESSEE.
Ellipse, Minaor. Major.
A 1502 21-0%
B 588 34-75
a 35 37-6
D 97 74-3
E 11-85 60-15
F 250 137-5
& 338 84-5
H 61-14 84-9
I 65-85 118-95
J 81-7 164-3
K 40-35 226-45

186. Notes on Question 4 in Examples (page 337, Chap. XIII).
(Fig. 192, page 334).

h = height of dam
d = required width of the base
w = weight of 1 cu. ft. of water
pw = weight of 1 cu. ft. of masonry
d

Total water load
Total masonry load

3
= 7 for resultant to hit middle third point

3
e | d
et 10 ¢ A
3 X gwht= 3

b2 =

dﬁtﬂp Fe d —_ —
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Max. stress = p = E?HJ =d{§dﬁwp]| = hwp and is a
function of &
Triangles DEg and CAB are the normal horizontal stress
distribution diagrams.
Shear stress in A" dam for the conditions given.
Take two section depths h and &,, and dh apart.
Max. stress on base depth h = hwp

" e lri-|_= .Fi-lwp
Slope of horizontal normal stress diagrams,
w wph
tanf="2";  tanp, ="
A k&

d= E; SoB=5
Shear on ef section = p - p + weight of efgk
= weight of efgk

=wp.a:.d.h
wp .x.dh
Shear stress nnzj=T=wpx

. Shear stress diagram is a straight line when there are just no
tensile stresses on the base.
From the general case considered in paragraph 1582

Py= Wp.-h]
g, = wp.h, cota
d,
ﬂﬂtﬂ—uE

and g, = wp.d
., shear stress is a function of the length of the base.
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EXAMPLES

1. A wall of rectangular section 14 ft. high is to retain an embankment
of dry earth having an angle of repose which is 30°. Find the necossary
thickness of the wall, and the maximum vertical stress on the base if tho
earth is horizontal and level with the top of the wall.

Wheight of sarth, 100 1b, per cubic foot.

Weight of wall, 150 1b, per cubic foot. (U. of B.)

2. A retaining wall is 10 ft. high and 5 ft. wide at its base, and 2 {t. wide
at ita top, which is level with the ground surface. The back of the wall is
vertical. It carries a super-load equal to 10 cwt. per square foot at 3 it
below the ground level. Determine the position of the resultant pressure at
the base, using Rankine's formula for the lateral pressure of the earth, if
the specific gravity of the masonry is 2} and that of the earth 1§, and the
angle of friction of the earth 45°. (LC.E.)

3. A piece of level ground is to have a portion of the surface excavated
to a depth of 14 ft., and it is necessary to support the earth at the boundaries
of this excavation by concrete retamning walls. The earth face is vertical
and the width at the top of the wall is 3 ft. Determine a suitable trapezoidal
cross-section for the retaining walls, if the earth weighs 1251b. per cubic
foot and has a natural slope of 2 to 1. The concrete may be assumed to
waigh 140 1b. per cubic foot. Discuss the validity of any formula used in
connection with the ealeulation.

4. A mesonry dam 50 ft. high has s vertical water face. Assuming the
dam has a trinngular section, determine the width of the base so that there
shall just be no tensile stresses on the base. Show that the shear stress
diagram on the base is a triangle. Construct the ellipses of stress for various
pointa on the base. (U. of B.)

5. A wall 15 ft. high of rectangular section has to retain earth, the sur-
face of which is horizontal. The angle of re of the earth is 30°
Determine the dimensions of the wall so that the line of thrust shall be in the
middle third of the bass. Weight of earth, 100 1b. per cubic foot; weight of
wall, 150 b, per cubic foot. (U. of B.)

_ 6. A masonry dam of trapezoidal section 100 ft. high has a base 60 ft.
wide. The water face is vertical and the width at the top is 10ft. Find
the normal stress diagram for the base, and deduce approximately the shear-
stress dingram. Weight of masonry, 140 Ib. per cubic foot, (U. of B.)

7. A trapezoidal masonry dam hos a height of 42 ft. and the water face
ia vertical. The base is 25 ft. and the thickness at the top 8 {t. Weight of
a cubie foot of masonry, 150 1b.  Determine—

{1) The resultant thrust on the base per foot length of dam ;
{2) The distribution of normal stress on the base. (U. of B.)

8. A concrete retaining wall with a vertical face is 12 ft. high and 5 ft.
wide at the base, and 2 ft. 6in. wide at the top. If the concrete weighs



33s THEORY OF STRUCTURES

1401b. per cubic foot, find the horizontal force per foot run of the wall
nocessary to overturn the wall, the force being applied on the vertical face
4 ft. from the base.

9. Prove the Rule of the Middle Third, as stated for solid masonry
structures with rectangular bases, subjected to overturning forces. A
parallel brick chimney of hollow square section ia 2 {t. by 2 ft. inside, and
the thickness is also 2 ft. The chimney is 40 ft. high. Find the greatest
allowable intensity of wind pressure perpendicnlar to one face, 80 a8 not
to canss tension at one edge. The brickwork weighs 120 1b. per cubic foot.

(U. of B.)

10. Determine the width and depth of & conerete foundation which sap-
Ezﬂa a wall having a load on the of 6 tons per foot run, if the earth
as & bearing pressure of 1} tons per square foot and an angle of repose of
30°. The weights of concrete and earth are 140 and 1001b. per cubic foot
reapectively. (U. of L.)

11. Prove that the intensity of the horizontal pressure per unit area on
the vertical back of a retaining wall at a depth & is

oy l-sing)

ok sin )
and hence deduce s formula for the safe depth of a foundation on which
the muirnmum is 3 tons per square foot. (U. of B.)
12. The face of a retaining | 20 ft. high is vertical. The angle

of friction both for earth on earth and for carth on masonry is 40° ; the earth
weighs 110 ]hm cubic foot. Take account of friction between the earth
and wall, and the resultant earth pressure on the wall. Also find the
pressure by Rankine's theory., The earth surface is horizontal.

13. Taking the dam in Question 7, determine also (a) the distribution of
shear stress on the base; (b) the normal stresses on vertical planes at the
base. Construct the ellipses of stress for sections on the base distant 0, B,
12-5, 20, and 25 ft. from the water face.

14. The base of a retaining wall is 9 ft. wide ; the vertical component of
the resultant thrust is 12 tons, and it acts (a) at the centre, (b) at 6 it. from
the earth face ; (c) at Tt from the earth face. For each case, draw the
normal stress diagram for the base. Assuming a mortar joint along the base
which cannot resist tension, for case (¢) what is the maximum compressive
stress on the base ' and draw the diagram of normal stress distribution.

15, Work Questions 1, 3, and 5 by both the Rankine and Wedge theories ;
the coefficient of friction of earth on wall being the same as for earth and
earth ; i.e. = tan (angle of reposs of the earth).



CUHAPTER XIV
ReixrorcEp Brams

187 Flitch Beams. A flitch beam is one consisting of timber
to which are bolted steel plates. The aim is to obtain a beam
which is stronger than the timber, yet economical in cost.
The reinforcing material must therefore have an elastic modu-
lus (E) greater than that of the reinforced material. In some
flitch beams the plates are bolted to the outsides of the timber;
in others, a single plate runs down the centre of the timber
beam. The plates may or may not be of the same depth as
the timber beam.

The beam will be built up symmetrically with respect to
the neutral axis, as shown in Fig. 193.

188. Consider the Case where there is a Centre Plate, whose
depth is less than that of the timber; the following theory
will apply also to two or more plates, as all the plates can
be put together to make an equivalent single plate.

£, = Young's modulus for the steel plates.

E,= - 2 . timber,

d, = depth of the timber.

d, = o plates = or < d,

b, = total breadth of the timber,

b, = i ,»  steel plates.

I; = moment of inertia for the timber portion only.

i fr - » Bteel plates only.

Iy = effective moment of inertia of the whole beam, work-

ing, say, on a timber basis.

fi = skin stress in the plates.

fo= % ;» timber.

d E )

E’ = k: EE = m = modular ratio.
i [}

For any beam, the external moment at a section = internal
moment of resistance at that section.

External moment = moment of resistance.
330
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I,
M ‘—ft + L-E:
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=27+ 21‘,.;" > 53 e et
2 E, 2
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Then M = 2{5 (m.I,+41,). A . . (4)

=’r'|[r.,}. x . A S {4

where Iy = mi, + I,
= effective moment of inertia of the beam
on a timber basis | : : (6)
Let [,, = moment of inertia of a whole rectangular cross-
section of the beam, given that it is only made of timber

_ (b + b)d
e

Then the ratio of the loads which can be carried for the given
heams to develop the same working stress in the timber is

T
1
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Tllustrative Problem 44,

A timber beam, 4 in. % 2in. eross-section, 100 in. long, is simply supported.
Find the size of two steel plates 4 in. deep to be fixed to the timber beam,
go that it may earry o central load of 2500 1b. with o maximum stress in
the timber of 2000 Ib. [square inch.

E yimter = 1:6 X 10%1b.[aq. in.

Euer = 30 x 10°1b./sq. in.

Elml

o E.Hmhr

Then the maximum external moment on the eompound beam

has to be equal to the internal moment of resistance

2 43 43

2500 % 100 I3 T
',fzﬂﬂﬂi}x 5 4+ 20 x 2000 X 5

where b in inches is the total width of the plates required.
64

G4
62,500 = 1000 KE + 20,000 x b x 12

= 20

b= o jin,

Two plates are required. to be fastened one on each side of
the beam and to be of cross-section 4in. x }in.

189. Reinforced Concrete Beams. Concrete is a heterogeneous
material (consisting of cement, sand, and stone) having a fairly
good compressive strength, but a very low tensile strength,
which is usually assumed negligible. It is cheap, economical,
and easy to make, and can be adapted to many purposes. For
use in beams and structures where tensile stresses may be
developed, some material is required in the concrete to take
the tensile stresses. Mild steel in round and other shaped
rods is used, and the two materials together give a reinforced
cuncrete beam, column, and other structures. This section
will only deal with steel rods placed in the tension side of
a beam ; in many cases, steel rods are also placed on the
compression side to assist the concrete in taking the com-
pressive strains.

In designing beams of this reinforced character, and know-
ing the safe load to be carried, the first step is to find the
position of the neutral axis of the cross-section, and then
always to remember

12—{T.5430)
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External moment at a section = internal moment of
resistance, which is a couple ; that is, the total tensile force
on one side of the neutral axis = total compressive force
on the other.

For steel only on the tension side, it is assumed that the con-
crete will only take compressive forces, leaving the steel to
take the tensile forces; then the total internal compressive
force in the concrete is equal to the total tensile force in the
steel.

If steel rods are also put in on the compression side, then
the total internal compressive force in the concrete plus the
compressive force in the steel on the compression side, is equal
to the total tensile force in the steel on the tension side.

The notation given is that stated in the L.C.C. regulations
for reinforced concrete work. '

190. Notation for Beams and Slabs.

A = area of tensile reinforcement in sq. in.

7L R — compressive |, 7

a = arm of internal moment of resistance in inches.

B = Bending moment due to external loads or forces.

b = breadth of a rectangular beam in inches or the breadth

of the flange of a Tee beam.

¢ = permissible compressive working stress in Ib. per sq.
in. of the extreme edge of the concrete in compression.
It depends upon the mix and grade used: varying,
for instance, from 750 Ib. per sq. in. fora 1- 2 - 4 mix
to 9751b. per sq. in. for a 1-1-2 mix: both of
ordinary grade concrete. These values being increased
to 950 and 1,250 for high grade mixed concrete.

d, = total depth of slab or beam in inches.

d = effective depth of the beam in inches ; that is, the dis-
tance from the compression edge of the concrete to
the centre of gravity of the steel reinforcement in
tension.

d. = depth of the coentre of gravity of the compression

reinforcement (when used) from the compression
edge of the concrete.

i, = Modulus of Elasticity of concrete in compression Ib.
per sq. in.
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E, = Modulus of Elasticity of steel in tension, 1b. per sq. in.
I = length of effective span of a beam in inches.

E . 40,0
m = E—?' = modular ratio. A suggested value is - '3.:'?9 where
[
3¢ = minimum cube strength at 28 days (works
tests).

n = distance of the neutral axis from the compression edge
of the concrete in inches.

n ; 2
=5 = neutral axis ratio, so that n = n.d.

A
p. = percentage of tensile reinforcement = 100r where r = i

R, = internal moment of resistance in terms of the com-
pressive force.
R, = internal moment of resistance in terms of the tensile

force.
Bl
r= bd an e = bd
d,
& = slab or beam depth ratio = -

d

{ = tensile working stress in the steel in lb. per sq. in.
(18,000 to 20,000 Ib. per sq. in. suggested values for
mild steel.)

t, = ratio of the tensile stress in the steel to the skin com-
pressive stress in the concrete.

W = working load in lb.

191. Assumptions Involved in the Theory of Reinforced
Concrete Beams.

(1) A plane section before bending remains plane after
bending.

{2) Tension in the concrete is neglected.

(3) The stress in the concrete is proportional to the strain.
(See note in assumption 4.)

(4) The modulus of elasticity for the concrete is assumed
to be constant. The stress-strain diagram for most concrete in
compression is a smooth curve right from the start; there-
fore, the glope of this curve varies for all stresses, and, conse-
quently, £, which is the slope of the stress-strain curve.
If working the concrete at, say, 600 1b. per sq. in., then for
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the particular kind of concrete, E,, corresponding to this
stress, should be nsed.*

(5) Adhesion between the steel and the concrete is perfect
within the limit of proportionality of the steel.

192. Rectangular Beam. AXALYSIS WHEN THE LiviTiNg
STRESSES ARE KNowN. Reinforced on the tension side only.
Assume one row of rods area 4. (Fig. 194.) The beam will

-
»
G-

e

e s

Fra. 194

bend about the neutral axis (N.A.), which is at a depth n from
the compression skin, Here b, d, m, ¢ and ¢ are known.

The problems are (a) to find the position of the neutral axis,
() the maximum permissible bending moment for the beam
with given limiting stresses, and (c) the steel area A.

i stress
Now strain e = ——
E
Maximum strain in the steel d-
Maximum strain in the concrete ~ n
;
. B, d-n
ErRa
E,
[ L fd—-n d-n -
E=E(T) ="‘(—n‘) T R AT

* Seo Modulus of Elasticity of Concrele, by Professor Lea, Institution of
Concrete.
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TSt LR L R e Y

i
As t, ¢, and m are known, n, can be found and therefore n.
Assuming working stresses of ¢ = 16,000 lb./sq. in.
c= 600 7
and m=15
16,000 l-n
0~ (=)
ny = 36
orn = -36d . . - . (9

The. total tensile force in the steel = the compressive foree in
the concrete.

Then t4 = (E—-tf)b E:gf

2

04¢ . :
->— = the average compressive stress in the concrete.

-

The internal moment of resistance is B, = R,
bne n n
R,:Z—E X(d—§)=!.‘1({f—§)=ﬂ, : . (10}

{ T i
Now a=d 3

2 o e iy
=i(1-3) =4(1-5)
i.e. when ¢ = 16,000 Ib,/sq. in., ¢ = 600 Ib.[sq. in.,, m = 15,
ny = -36, a = -88d o eI
Wl = b’Tm X gy (From (10) )

bx»aﬁd:-_:l}mx-s&i

2

= 05 bd*
therefore the external moment = B = 05 bd® . o (12)
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Ingvenamlﬂ,=R.bd‘whereR——-§.ﬂ.,.(l-%)

u.lauR,=R.bd2whem}!=!.r.(l—g]-)

The quantity R is called the coefficient of resistance.
Relation between A and bd,
4 = rbd (by definition)
b t n

then rrbdz? and =

n m(d—n) : .
therefore Ry from Equation (8)
and 7% = 2mrd(d - n)

Solving n = §-mr 4+ Vm¥?® 2mr }d
7 cannot be minus.

oa=nd=(Vmi¥ L 2mr—mr)d . . {13)
or n; = Vm¥® L 2my—mr. g . (14)
If n, = -36 and m = 15 (for the conditions taken )
-36 = V/225r I 30r- 15 . . (15)
Solving Equation (15),
r=-0068 . : . (16)
and . A4 = -0068bd . : o L HEET)

Equations which give the relation between the area of the
steel and the effective area of the beam when

t = 16,000 Ib./sq. in., ¢ = 600 lb./sq. in., and m = 15
(The economical percentage of steel — P. = 100 r = -68.)

Rework examples given, taking ¢ — 800 Ib. per sq. in.
A s 40,000
t = 18,000 Ib. ‘per sq. in., and m = 5400
== 16, say.
- *
From Equation (7) (i)(l) - % A
m/\e n e

Alsutd:b?m.

* Oy = ifm is the stress at tho depth d of
line distribution of stress on the concrete bus

the section assunving o straight
is. See pago 347,
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d-n bine
.mc.--n—~.,4=—2.
L mAd-m=txz . . . . (18)
audc,+{mA}=bd—: ; ey L . (19)

ANALYSIS WHEN THE STEEL AREA 4 15 Knowx,
Interpretation of Egquations (18) and (19). ¢, is the equiva-
lent tensile stress in an equivalent concrete area (md) on the
tension side. The equivalent elastic modulus of the equivalent
concrete area (md) or transformed concrete area is E,. That is,

b ¢ £
B Ty =l
1 ' 1 gtm&s e
1
; ’:l ~ Dragram
Cl G Ja o i
. - Apusent gt
5 (d-n) * \Diagram /| Strain
2 ;W ¢ 1 Diagram
i_ - Y ] i
L ‘_i' ) KCp™ Eym Stran of
mA =tm (mA)
Fie. 184a

the reinforced section has been transformed into an equivalent
concrete section having a transformed concrete area on the
tension side equal to mA. (See Fig. 1944.)

The transformed concrete area is distributed parallel to the
neutral axis and its axis is parallel to the neutral axis. The
area is concentrated along the axis. From equation (18), to
find the neutral axis of the transformed section, take the
moment of the transformed section about the neutral axis and
equate it to the moment of the compression area about the
neutral axis.

2
We have b—; + mdn = mAdd from equation (18).

bk A
Lot S =—
2mA m2d2  m2d?  2mAd

e “=+T.n+_.b-l_=-_bt_+ 'b‘
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mA m2d?  2mAdd
" BESSg LN TR T
Thus, in any given beam when b, d, A and m are known, the
neutral axis has a fixed position (through the centroid of the
transformed section) and therefore the ratio of ¢ and ¢ is con-
stant. Also from equation (18), it can be seen that any
increase in 4 for a given m will increase the value of n, because
(d —m) decreases; in other words, the neutral axis is lowered.
For a given 4, a lower value of m raises the neutral axis, that
is, decreases the value of n. A higher value of m lowers the

neutral axis for a given value of A4, ie. the value of n is
increased.

ExaMpPLE,

A rectangular reinforced concrete beam has b = 10in., d = 20in., 4
= 28q.in., m = 15. The beam carrics a bending moment of 480,000 in.-Ib,
Caleulate ¢ and @

To find the neutral axis position.
bﬂ_!
mAld —n) = 5
30(20 — n) = 5n.
Lo n? 4 6n = 120.
n? -+ 6n -+ 9 129,
n=11-36-3 = 8-4in.

I

n
d—i =20-28 = 17-2in.

n B T e
(‘*'E)

480,000 1 ;
=179 Xp= 665 1b. per sq. in.

 bme e Bending Moment 480,000
& s 2 = s =

480,000 > :
t = {73 % 2 = 13,950 Ib. per sq. in.

What is the maximum moment which the beam of the foregoing problem

can earry, assuming that the limiting stresses for ¢ and ¢ are 750 Ib. per
si]. in. and 18,000 1b. per sq. in. respectively

If m = 15, n = 84 in. again, and the arm of the resisting
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couple is therefore 17-2in. If ¢ has its maximum value of
750 1b, per sq. in., then the corresponding resisting couple is
el

2
If ¢ has its maximum value of 18,000 Ib. per sq. in., then the
corresponding resisting couple is

2 x 18,000 x 17-2 = 619,200 Ib.-in.

10 x % 84 % 17-2 = 541,800 Ib.-in;

The maximum bending moment which can be carried is
541,800 in.-1b. when ¢ = 750 Ib. per sq. in. and ¢ = 15,267 Ib.
per sq. in. Thus the limiting steel stress is not realized.

192a. Design a Rectangular Beam with Tension Reinforce-
ment to Carry a Given Bending Moment at Given Stresses. The
most economical beam results when both materials are stressed
to the limit and the problem is to determine b, d, and A for
a given value of m, such that the permissible stresses will be
realized simultaneously when the internal moment of resist-
ance is equal to the stated bending moment. If A is the steel
area and ¢ the given tensile stress, then mA will be the trans-
formed concrete area, and the equivalent tensile stress in it
equal to ¢fm. If ¢ is the limiting compression stress, then n is
found from the equation

c ¢ i d -

n e
n m(d — n) e m.e . ® from equation (7)

2 == e

B=FR. b “hemR—f.nl(l 3)

We have, therefore, a single equation containing the two

unknowns & and 4. It is thus necessary to make an

assumption regarding b in relation to d, i.e. b = zd. For

small rectangular beams z = } to § and for large beams z
= } to §.

Now d can be caleulated. In practice b and d would com-

monly be made an integral number of inches, and if d as

calculated consisted of a whole number and a fraction of
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inches, then it would be necessary to re-design the beam to
meet the condition that d would be an integral number of
inches. Knowing B, b, d, t, €, and n, A can be found.

Reference should be made to advanced works on design for
the principles underlying the method of changing from the
theoretical dimensions to an exact integer.

Therefore, to find » or n;, when the fibre or skin stresses are
known, the formulae

nzd( £ )orn1=£—c~wiﬂbeuaed.

£
=S o

193. Tee-Beams. In practice tee-beams usually form part
of a floor system and act integrally with the slab on either side,
which forms a flange giving added strength in the compressive
part. If the beams are widely spaced, the compressive stresses
are not distributed uniformly across the whole width of the
slab. In order to investigate or design the usual tee-beam, it
is necessary to make some assumption regarding the width of
the slab which will be considered to act reasonably with the
stem or rib and be uniformly stressed over the whole width.
In British practice, for the breadth of the flange, the least of
the following is taken—

(a) one-fourth of the effective span of the tee-beam,

(b) the distance between the centres of the ribs of the
tee-beams, or

(¢) twelve times the thickness of the slabs.

The minimum breadth of the rib should not be less than one-
third of the depth of the rib below the slab. There are, how-
ever, two methods of designing a tee-beam with the flange
provided by a floor slab. The first method assumes that the
full breadth of flange is available for use. The compressive
stress in the flange is usvally found to be low by this method.
The other method assumes that the limiting stresses are
realized, and that the breadth of slab called into play is only
that necessary. This breadth is usually less than the limit set
by the various codes. The position of the neutral axis, and the
arm of the resisting couple, will have different values by
these two methods. Both assumptions are no more than
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conveniences which give satisfactory results. The design of
tee-beams consists in proportioning the stem or rib, and
determining the tension steel area. Proportioning the stem
requires a consideration of the shearing stresses,

STeEEL Rops 1 THE TeExstox Sme Oxty. (1) When the
neutral axis falls within the slab, the analysis is similar to that
of the rectangular beam with reinforcement in the tension
side only, remembering that b applies to the slab breadth and
not the rib breadth.

(2) When the neutral axis falls below the slab. (Fig. 195.)
The compressive stress in the small portion of the rib will be

neglected. Assume that the breadth b is such that the limiting
stress of ¢ is realized in the slab, and ¢ in the steel.

b, d,, d, t, ¢ and n are known -
Maximum strain in the concrete E.
Maximum strain in the steel

E,
e By m
=B doa
¢ T
t m(d-n) {39)

knowing ¢ and ¢, n can be found.
The compressive stress in the concrete at the base of the
slab

n—d,
n

=c X : (d, = depth of slab) (21)

The total compressive force in the concrete will act at a
depth y from the maximum compression edge.
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(From Fig. 195.)
- 'D (€O
Area ABCD x y= AOB x AT{}_'DL_?_B(T + AU)
from the stress diagram.
Now n =nd and d, = s,d

o 8,d(3n, - 2s,)

Then y = 3(2n, = 5;) (22)
AT O & 3n,— 23
and d—y-a—d{l—a(——ﬂﬂ]_sl)] ; : . (28)
Total tensile force = total compressive force
2n-d,
t;!:c( n )Em‘, - A . (24)
2n—-d
where % = average stress in the slab
From the equation, the steel area 4 can be calculated.
Substituting for n and d, as before, it can be shown
Zrm - s,2 5
' = 3rm + 25, (25)
&2 o dmrs® - 12mrs + 12mr
And consequently a = d { Gmr(Z=ay) }
(26)
')
Approximately, a = d-;f - ; . o 27
The internal moment of resistance — R, — {4 . a o (28)
2n-d,
=R, = “M'(_'zu )a . (29)

Substituting the value for a, the moment of resistance in
terms of ¢ or ¢ can be found. The problem can again be easily
golved by the transformed area method.

194. The Investigation of the Maximum Stresses at a Given
Section of a Tee-beam for a Stated Moment, and of the Maxi-
mum Permissible Moment for a given Tee-beam with Certain
Limiting Stresses Given. Here b, d, d,, 4 and m will be known.
The analysis follows the same lines as for the similar case of
the rectangular beam. It will be best considered from the
transformed area method, and the compression in the stem
will again be neglected. The compression area will therefore



REINFORCED BEAMS 3563

be considered as acting at a depth of d,/2 from the compression
skin. A will again be transformed to m4, and from the equation

bd,(n—%')= mA . (d-n)

the value of # and hence the position of the neutral axis is
found.

Draw the equivalent stress diagram, where the maximum
compressive stress is ¢, the stress at the under-edge of the slab

is equal to E{ﬂ —d,), and the tensile stress in the transformed

steel area is {fm. ’

If the moment B is given, it is a simple matter to compute
the total compressive stress €' in terms of ¢ and hence the lever
arm a.

Oa = B, an equation from which €' and hence ¢ can be found.

Alig O :1 " mA = 4 from which # is caloulated.

If the limiting stresses and 4 are given but not b the breadth
of the flange, the investigation may be concerned with the
maximum moment that can be carried by the beam and also
the breadth of the flange. As in the preceding discussion, locate
the position of the neutral axis from the stress diagram drawn
with the extreme stresses taken as equal to the limiting stresses,
and calculate the lever arm a. As in the case of the rectangular
beam, calculate the moment assuming the limiting stress of ¢ is
realized. B = tda.

The total compressive stress will be ¢ = 7. Calculate the

average (', per unit breadth of the flange : then = LET Compare

this caloulated b with the value of b allowed from one of the
limiting formulae.

b= g will in general be less than the maximum allowable
value Df'b.

[llustrative Problem 45.

A reinforced concrete beam is 3:5 in. wide and 4-25 in. deep to the centro
of the tensile steal reinforcement. The working stresses are 600 and 16,000
Ib. per square inch for the concrete and steel respectively,

'E? = 15

£,
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Find the depth of the neutral axis from the compression flange, the area of
the steel in tension, the percentage reinforcement, and the moment of
rogistance.

From paragraph 192,
16,000 (4-25 - n)

600 1
Solving n = 1-53 in.
Total force in the steel
__ 600 x 3-5 X 1-53

3 lb. = 1605 Ib.
1605 e
Area of steel = 16,000 — -1 5q. in. nearly
: -1 X 100 *
Percentage reinforcement = 325 % 3.5 — 617 per cent

53
Moment of resistance = 1605 x (4»25_ ]3' )

= 6000 lb.-in,

195. Distribution of Shear Stress in a Reinforced Concrete
Beam of Rectangular Cross-section and with Only Reinforce-
ments on the Tension Side. (Fig. 196.) Consider the forces
acting on a length of beam dz between two vertical planes
AD and BC. The concrete again carries no load in tension.

Let the compressive stress in the outside fibre at 4 be ¢
and at B, ¢ + de.

Let q be the shear stress on a horizontal plane of area b . dz
situated at a height y above the neutral axis; then qg.b.dx

1 [ 1 de
=—E(c+—ﬂg){ﬂ—y}ﬁ.+§(c+ﬁc+ E‘Ll]y)fn—y}b

k/

de y
1 de(n?- y®)
e 5 S R e S )
This is zero when y = n, and a maximum when y = 0
.. e,
Jmaz 8t the neutral axis s . < (81)

= Jmaz D the vertical plane through a point on the neutral axis.
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The curve of vertical shear distribution in the compression
side of the beam is a parabola, being zero at the skin and a
maximum at the nentral axis.

Below the neutral axis, assuming the tensile forces in the
concrete negligible, the shear stress must be constant between
the neutral plane and the plane of the tensile reinforcement,
where the whole of it is balanced by the difference in the
tensile forces in the steel at K and L.

M '("A SL-\HH- &M

8 b =l =
N i Jacioad
Novtral Axis
X[,
AD '
S5

Fio. 196

Let M be the bending moment at 4D and M + 4M at BC.
Let a be the arm of the internal moment of resistance.
The internal moment of resistance at 4D is Ca = Pa= M

where ¢ = total compressive force in the concrete
and P,= , tensile o steel,
M M+ M
Now —F+f—;——= ~C + (C +40)
= 440 R R T
b b b
Now 80 = (¢ + 8¢) 5 —¢ 5 = de .
bn 6M 8.dx
e T B 3 4 ] e

where § is the total shearing force at the section.
But §.é8c.nb = Ques - b . 6z (From (31))
where ¢,.q. is the shear stress at the N.A.

S o = bia — vertical shear at the N.A. . (34)

For rectangular beams and for tee-beams where b is replaced
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by b, the breadth of the stem, an average value of a is usually
taken as {d. Actuallya=d - E‘

196. Diagonal Tension in Reinforced Concrete Beams. In
the chapter on principal stresses, it was shown that a tensile
force could be compounded with complementary shear forces
acting at the same point within the material to produce prin-

cipal stresses &t
T A P
R—E:I:J*-f‘?

where - p is the tensile stress and g the shear stresses. If it
is assumed that the concrete cannot carry tensile forces then

that is, there will be two principal stresses, one a tensile stress
equal to + ¢, and the other a compressive stress equal to — g.
These planes will be at angles of 45° and 135° to the plane of
the initial tensile stress. The tensile stress B = - ¢ acting at
an angle of 45° to the plane of the initial tensile stress is
known as the diagonal tension stress. The concrete in a rein-
forced beam is no stronger in itself than when unreinforced,
and it cracks in any loaded beam when the tensile stress limit
is exceeded. In all loaded reinforeed beams, therefore, on the
assumption that the concrete cannot take tensile load below
the N.A,, lines of eracking (cracks inclined at 45° tq the line of
the beam) will develop in the beam when the tensile limit stress
of the concrete is exceeded. The direction of the cracks will
be away from the supports. Now if reinforcement known as
diagonal tension or web (or more incorrectly, shear) reinforce-
ment is placed in the beam, either vertically to the line of the
tension reinforcement or normal to the probable line of diagonal
tension crack, then this web reinforcement will function to keep
any one crack from opening up widely and compel the formation
of many minute cracks in place of the single large one which
would cause failure. In order to proportion the web reinforce-
ment, knowledge must be had of the diagonal tension.

The web reinforcement in practice consists of stirrups,
generally vertical, looped about the main steel, and of main
longitudinal rods bent up at an angle across the region of
diagonal tension stress in those portions of the beam where
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they are no longer needed to resist the normal tension. Tests
indicate that the concrete is effective in resisting small amounts
of diagonal tension, and may be counted upon with safety to
perform this duty when the shearing stress is less than about
40 Ib. per sq. in. for most ordinary mixes. When g exceeds
this limit, the concrete is ordinarily still counted upon as
carrying a portion of the diagonal tension. The principal com-
pressive stress = —q can, of course, be carried effectively by
the concrete itself. The working maximum allowable value of
g is usually 120 Ib. per sq. in., but the suggested code recom-
mends values dependent upon the proportion and grade of
concrete to be used.*

StrEssEs 1IN Discovan Texsiox RemsrorcEMENT. The
methods given are purely approximate, producing empirical
rules that have been found to give safe and economical results.

)
1 ch _'F
a0 cr®

157

= i 1
S L G e
..;;- ;--rs.,.'.'hé..J1~
I ol
Fra. 107a

(a) Vertical Stirrups. The centre stirrup of the three shown
in Fig. 1974 is assumed to carry all or part of the vertical
component of the diagonal tension acting over the distance y
along the 45 degree line of potential cracking. The horizontal
opening of the crack is prevented by the longitudinal steel,
which may be considered to carry the horizontal component of
the diagonal tension. The concrete, too, is credited with carrying
a certain portion of the vertical component of the diagonal
tension. The total amount of the diagonal tension within the
distance y is g . b . y and the vertical component is ¢.b. .

The stress (T',) in the stirrup then is g,bs where g, is the
amount of shear denoting the share of diagonal tension carried
by the stirrup. g, is often assumed to be §q or equal to (g - 40)
Ib. per sq. in.

NoTe. The vertical component of diagonal tension in any

* Suggested Code of Fractice, sce Reforences at end of chapter.
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distance along a R.C. beam is taken as equal to the total hori-
zontal shear in that distance.

If ¢, Ib. per sq. in. is the tensile stress in the vertical stirrup
and 4, is the total cross-sectional area of the legs of the stirrup

8. 8,8

thnn!,.ﬂi,=q1.b.s=b—;.ﬁl.3=% g . . . (35)
where S, is the proportion of the average shear force over the
distance s and a is the lever arm of the internal moment of
resistance.

(b) Imeclined Rods. Assuming that the vertical component of

s = = i
Fio. 1078

diagonal tension in a horizontal spacing of s is the vertical
component of the tensile stress in the 45° inclined rod, then

tA, = qby
= q,bs sin a
= 0-T07gq,bs = 0-7078,s/a . (38)

Comparing the spacing of the vertical and inclined rods, if
t, A, q, and b are the same for both cases, then s for the ver-
tical stirrups is equal to 0-707 of the spacing (s) for the inclined
rods. Therefore inclined rods are more effective than vertical
stirrups for taking up the diagonal tension. The limiting spacing
for vertical stirrups is one-half the depth to the main steel centre,
and for inclined rods, three-quarters the depth. Of course, the
vertical stirrups can act in conjunction with inclined rods.

Spacivg OF THE Diaconar Tessiox REINFORCEMENT.
Analytical Method. Let the distance between two sections A
and B of a reinforced concrete beam be ( Al) equal to s. Let the
moments at A and B be M, and M respectively (say My > M,).
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Then the average rate of change of moment over the
length (Al)
_ My-M,

e I A

(al)
or 8, (Al)=M,- M,
Therefore equations (35) and (36) can read
t..4d,.a=kMy;-M,)or 0:T0Tk{M; - M,)

If 4,15 assumed and constant, then ¢, . 4, . a, will be constant
for a beam of uniform ecross-section, if @ is assumed constant,

Then M, - M, is a constant, for & and 0-707k are constant.

. My - M, = rﬁ'd O = ur';?}fi = constant.

To find M, — M, ; assume a value of 4,; ¢, a and k will be
known, and the change of moment can be found.

Construct the moment diagram for the beam on the length
of beam as base : on a vertical axis and from the horizontal
axis mark off intervals corresponding to M, — M,. Draw lines
parallel to the base of the moment diagram from these interval
points, to cut the moment diagram (generally) in two points.
From these points of intersection drop perpendiculars on to
the base (length of beam to scale) of the moment diagram.
Where these perpendiculars touch, the base will give the position
of the stirrups at the tensile reinforcement.*

If A, is not assumed, the first stirrup is usually placed at a

a
distance not less thang-fmm the support. (E or other distance

will correspond to a!.) The change of moment over this dis-

tance can be measured from the moment diagram, or it can be
calculated. A, can then be found using the required equations
(35-36). The spacing can be found as before. It will be
found that for more or less uniform loading the stirrups are
spaced closer together near the supports than at the centre
of the beam.

If stirrups are too far apart there will be opportunity for
inclined cracks to open between them, and the limiting spacing

* For practical rules of spacing, see Problom 455, page 360.
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is often taken as df2 for vertical stirrups, and as 3d/4 for
inclined rods, A further point to be watched is the anchorage
at the ends of the stirrups and bars. They may be very highly
stressed at the neutral axis and, therefore, the question of the
“bond” between the bars and the concrete is called into play.
If the ends are anchored by a hook, a satisfactory anchorage is
obtained. The discussion of bond and anchorages must be
left to books on reinforced concrete design.

Hlustrative Problem 45a.

A rectangular reinforeed concrote cantilover beam 12 ft. long carries an
end load of 20,0001b. The beam section is b = 10in. d = 20in. If one
vertical stirrup can carry 8 load of 4500 Ib., how many stirrups will be required !
Assume the conerete can carry one-third of the diagonal tension.

8 20,000 :
We have qg= b?l = m 1b. Per sq. .

Load to be carried by vertical stirrups

= gq .1.51b.

2 20,000
=310 § x 20
= 109,500 1b.

109,500
No. of stirrups = 7 503 = 24

» 12 % 12 % 101b.

144
Spacing of the stirrups = 5g — 0 in.

Hlustrative Problem 455,

A simple reinforced rectangular concrete beam is 24 in. deep to steel centro
;._ndﬁm in. wide. llt- lllp[ﬁ:rrbfkﬂla Ilftﬁi}luiifunnly-dist.ribumd fma of 3000 1b.
per ft. run on a clear span o . Use single loop stirrups of § in. round
material, which can be assumed to be nmngud to Emmssum u!: 18,000 1b.
per 6q. in. Design the diagonal tension reinforeement, using vertical stirrups,
and assume no stirrups are required where the maximum shear stress is less
than 40 Ib. per sq. in.

The total end shear is 30,000 Ib. decreasing uniformly to
zero at the middle of the beam. The intensity of maximum
shear stress at the end of the beam is

30,000 :
9= 12 x § x 24 — 1191b. per sq. in, say 120.
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Let y in. be the distance from the middle of the beam along
which no stirrups are required.
120 _ 40
120 v

The vertical stirrups will be required over 80in. at each

end.
A single loop stirrup of { in. round material can carry

2 % 011 x 18,000 Ib. = 3960 Ib,

ing that the concrete can carry diagonal tension repre-
sented by g = 40lb. per sq. in., then the total diagonal ten-
sion load to be carried by the stirrups in 80 in. length from the
support is

Then Sy = 40in.

1(120 - 40) X 12 % 80 = 38,400 Ib,
The number of stirrups required is
38,400
3060
The average spacing will be

10,

ﬁ=3m.

Note that as the spacing varies inversely as the shear, then
the end spacing will be

H120-40) o

30 = 41n.
whilst at a distance of 80 in. from the support it will be
BN 80) Eﬂu‘ 19) & — infinity

24 : .
which is greater than 5 the maximum spacing allowable.

In choosing stirrups for a beam, a convenient practice is to
calculate the number required in each end and space them
approximately, the spacing being given in multiples of 2 or 3 in.
Some designers prefer to calculate the spacing at several points,
and place the stirrups accordingly; others prefer to employ
more stirrups than required, in order to keep down the spacing
to the maximum allowable.
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For the stirrups required in the present problem, a suggested
spacing is
24 6-6-6-9-9-0-12-12-12
the first dimension being from the support. In practice the
stirruping would be carried through the whole length of beam,
a number of stirrups at about maximum spacing being placed
across the central portion of the beam where g is less than 401b.

per sq. in.

IMustrative Problem 45¢.

Two § in. steel bars are bent up at an angle of 45°, 15 in. from the support
of & reinforeed concrete beam of effective depth 20 in. and breadth Ygom
The average shear over the 15 in. is 110 Ib. per sq. in. Are vertical stirrups
required to assist the bent-up bars in taking diagonal tension? Assume
limiting stress in bent-up bars to be 18,000 Ib. per sq. in.

Assume concrete can take diagonal tension to the amount
represented by 40 lb. per sq. in.
Then using equation

t,A, = 0-707g,bs

49
where A, = 2 X 0-785 X 7 1-2 gq. in.
gy = (120 — 40) = 80 Ib. per sq. in.

b= 10in. § = 15in,

“T07 % 80 = 10 2 15
then ¢, = I‘lj_{l_x I:-; 1 ___ld

which is less than 18,000 allowable.

Therefore vertical stirrups are not required. As the shear,
say, at the point of bend is 100 Ib. per sq. in., vertical stirrups
will be required in the length of beam from this point to
the point where g = 40 lb. per sq. in.

196a. Bond Stress and Anchorage or Embedment. The ques-
tion of proper length of embedment of steel in concrete arises
whenever there is stressed steel in concrete. Whether the stress
is tension or compression, a rod must extend beyond any point
of stress a distance sufficient to develop in bond the total stress
there existing. For instance, suppose a number of tension bars
of a cantilever beam to be anchored in a supporting mass
of concrete. What is the length the bars must extend into
the mass concrete, such that the resistance to pulling out

= 7070 1b. per sq. in.
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developed with the allowable bond stress is equal to, or greater
than, the total stress in the bars at the face of the mass concrete ?

Let u be the allowable bond stress between the steel and the
concrete in the mass concrete. Let Zo represent the total
perimeters of the bars, I the length of embedment or anchorage,
f, the stress in the bars at the face of the mass concrete, and
YA, the total sectional area of the bars. There results as a

general expression
u.l.Xo=fZ2A,

For a single square bar of side D and for a single round bar
of diameter D it can be shown that

1
=4 D.

There are other ways to secure the necessary anchorage such
as hooks and mechanical devices. Specifications lay down
acceptance rules and dimensions for such devices.

Bond also plays its part when considering the rate at which
stress passes from the concrete to the rod, in the case of rein-
forcement for tension or compression in beams.

Consider the rate of transfer of stress from concrete to the
tension steel in beams. Referring to para. 195, it will be seen
that the bond stress, the tendency of the rods to slip, equals
the horizontal shear; and therefore if we consider unit length
of beam of breadth b and a horizontal plane below the neutral
axis, and if ¢ be the average horizontal shear stress over the
plane, and u the average bond stress between the steel and the
concrete, then

w.30.1=¢q.0.1

where Eo is the sum of the perimeters of the rods.
b
Then u = %

u in general is kept below 100 Ib. per sq. in.: this value is,
however, sometimes exceeded where effective end anchorage
is provided.*

However, tests show that this theoretical relation between
u and g does not quite cover all the facts. Nevertheless, it
forms a useful basis for comparison in beams in which the
dimensions and general make up are similar.

* See nlln mw:&l:ll}ﬁ i-'u;r t |_n_'r-jw recommended Code of Practice,
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If 8 is the shear force at a section

qb S.b S

e = . D

where a is the arm of the resisting moment.

Now i )
3
e B
: (8 —my)dZo
Comparing the values of u and g for the same steel area,
e i S VIR
S T TS

If Zo < b, then u > q.

Therefore to make 4 = or < g, for the same steel area, itis
only necessary to increase the number of bars, and at the same
time decrease the diameter, so that Xo = or > b.

E |

E.g. assume one bar, d = 1, perimeter = 7, area = -

thy

Assume d = }, number of bars required for area 7 is 4, giving
a perimeter of 2x.

. 4 bars of dia. = } have twice the perimeter of 1 bar of
dia. = 1:

Hlustrative Problem 45d.

The overall dimensions of a rectangular reinforced concrete beam are
26in. by 12in. The centre of the steel area of 3 84q. in. for 3-1in. square
bars is 2in. from the nearer edge. The shear load at & section 8 24,000 Ib.
Caleulate the intensity of the bond and shear at this section,

Assuming @ = d, then for the section given
@ = §(26-2) = 21in.

S 24,000 p
Then  Quesr = =12 x o] — 18 Ib. per =q. in.
8 24,000

i = E‘z‘°= mE 06 1b. Per 8q. in.
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mn

Assuming m = 15, to find a = d - 3

We have md,(d-n) = b.i

o 3{24-:rt]=~];3 ® nt
S 180-T7-5n = nt
n® -+ 7-bn = 180
E et ]'5! 755
n® — T-6n + = 180 + rg
7.5 L
45 =4 VI
n=139- 3756 = 10-15 in.
1 5
5 3-381n.

. a = (24— 3-38) = 20-62in.
of. a=§ X 24 = 21in.

Assuming there are 3 — 1 in. round bars instead of 3 - Lin.
square bars, and a = 21 in.
24,000
4= 12 21

24,000

=l x3xn

197. Reinforced Concrete Columns with Axial Loads. The
usual type of reinforced concrete compression member has a
circular, octagonal, or rectangular concrete section with a
series of rods, parallel to the longitudinal axis of the member,
set about 2 in. back from the surface all around the perimeter.
The steel reinforcement is from -8 to 8-0 per cent of the cross-
sectional area of the concrete. The main reinforcing bars are
held in place either by being wired to an encircling series of
hoops or ties, or to a closely spaced steel wire spiral. The ver-
tical or longitudinal reinforcement deforms the same as the
surrounding concrete, as the column shortens under load. The
action of the ties is to bind the rods together and into the
mass of concrete in such a way that they themselves will not

= 96 Ib, per sq. in.

= 121 lb. per &q. in.



366 THEORY OF STRUCTURES

buckle and eause failure. As heavy initial stresses are induced
in the longitudinal reinforcement during the shrinkage of the
concrete whilst hardening, the function of the ties is impor-
tant. The task is more efficiently performed by the spiral
reinforcement, as it serves to restrain lateral movement of the
concrete during shortening. As the spiral only comes into
play after the column passes its elastic limit, certain authorities
consider that no allowance should be made for the increased
strength which it affords, whilst others make this allowance.
Reference should be made to the work of Considére in this
respect. Most reinforced columns are so short that their ultimate
strength is not limited by any tendency towards buckling or
bending; their length is ordinarily less than 15 to 18 times their
least dimension. For slenderer columns, the working stresses
must be reduced below those allowable on short columns of
the same section. In columns exposed to fire, the steel must be
adequately protected by a covering of concrete at least 2 in.
thick. Sometimes this additional concrete is credited with
being part of the column; in other cases it is only the concrete
within the spiral or longitudinal bars which is effective in carry-
ing load, i.e. the core is the effective concrete. The value of m
is taken the same for columns as for beams.

(1) Suort Coruvmxss. (a) With lateral ties or hoops.

Let 4, = area of concrete only, in sq. ins. ; not including any
finishing material applied after column is cast.

A, = area of steel only, in sq. ins,
w A = total area = A, + 4,
W = axial load in lb.

s € = compressive stress in concrete lb. per sq. in.
. 6 = e i steel TR
K,
g M == E
Then W =e¢d. + ¢4, * : . . : . (37)
Now, as the strain in the concrete and the steel is the same,
Ce €y
then .= E

* The code states that W shall not be greater than given by this equation :
therefore ¢, and ¢, shall not exceed their maximum permissible values.
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E

G, = 1{‘4_1 « Gy = TC,

From (37) W = c A, + me.d,

oA e Y, R R S ()
= ¢, (effective area on a concrete basis)
= ¢,(45) b e e il Bl st
d,= A—A,
then W = {e,.4 + A4,(m- 1)} 2 : . (40)

(b) With spiral reinforcement. The Code of Practice for rein-
forced concrete suggests the following. Where spiral reinforce-
ment iz used, the axial load W on'the column shall not exceed
the value given by equations (40), or (41), below, whichever is

the greater.
W=c¢d; +ecAd,+ 2024, : . (41)
where 4, = cross-sectional area of concrete in the core.
t, = permissible stress in tension in spiral reinforce-
ment.

and 4, = equivalent area of spiral reinforcement (volume of
spiral per unit length of the column).

In no case shall the sum of the loads contributed by the
concrete in the core, and by the spiral, exceed 0-50f.4, where
f.'is the crushing strength of the concrete required from the
works tests, and A4, is gross sectional area of the concrete.

The value of ¢, i= dependent on the kind of concrete used,
and varies from 600 to 1250 lb. per sq. in., whilst the maximum
¢, and ¢, depend on the kind of mild steel used, but vary
from 13,500 to 15,000 lb. per sq. in.

(2) Loxg Corumws. The Code suggests the following. The
permissible working loads of axially-loaded long columns shall
not exceed the values given by the equations for short columns
multiplied by a buckling coefficient which depends upon the
ratio of effective length to least lateral dimension of the
column, or ratio of effective length to least radius of gyration.
For further information reference should be made to the Code.

Ilustrative Problem 46,

A reinforced concrete column is 14 in. square. It is reinforced longi-
tudinally with 4 2-.in. diameter steel rods placed near the corners ; it ear-
ries 60 tons. Find the load earricd by the concrete and steel respectively.
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E, (steel)
E. (concrete)

29 x 10%1b./sq. in.
3 x 108

T
g H

1
g
Total area of steel = 4= sq. in.

Area of concrete

= 196 — 47 = 183-44 5q. in,
W.= load taken by concrete

W, = Vi steel.

60 tons = W, 4+ W,
¢, = stress in steel.

%:—._ - i—j{ - ¢, = 9-B6c,
60 tons = 183-d4¢, + (D-66c, % 4m)
¢, = +197 tons/sq. in. = 440 Ib. per sq. in.
Load taken by the concrete = 183-44 x -197 = 36-7 tons
" W steel = 60 — 367 23-3
SALe 23-3 :
Stress in the steel = i 1-90 tons/sq. in.

£, = stress in concrete.

or ¢, = +197 % 9§ = 1-00 tons/sq. in. = 4,2601b. per sq. in
[liustrative Problem 47.

Design a column to carry an axial load of 100,000 1b, Take ¢, = 600 1b.
per 84q. in. and m = 18,

(@) ¢, will be equal to 18 x 600 = 10,800 lb. per sq. in.
Total area of concrete required for the transformed section is
100,000 _

500 — 167 sq. in.

A 12 x 12 section furnishes 144 sq. in., leaving 23 as the
transformed concrete area of the steel.

5 (18=1)4, =23
23

and 4, = = 1-35 sq. in.

1-35
143 % 100 = 0-94 per cent.

If the cross-section and steel first chosen are unsatisfactory
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for any reason, further trials must be made. The design is
facilitated by the use of tables and diagrams.
In the above example stress has controlled the design.
(b) If the effective length of the column is, say, 18 ft., then
the dimension of a square section would be
18

ST 1-2 ft. = say 15in.

The total load on the column is 100,000 lb.

100,000
Then ¢, = 555 T (18- 1)4,

The steel area should be between 0-8 and 8 per cent of the
section, or between 1-8sq.in. and 18sq.in. As stiffness is
controlling the design of the section, the steel area need not
be too high—say 4 — 1 in. round bars (area 3:14 sq. in.).

100,000
Then ¢, = 555717 x $14)

100,000
278-5
¢, = 360 % 18 = 6500 lb. per sq. in.
Therefore, as 4, diminishes, ¢, and ¢, will both increase.
Alsoasthe column dimensions decrease, ¢, and ¢, will increase.*
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EXAMPLES

1. Design the central section of a reinforoed conerote beam of 20 ft. span
to carry & load of 600 1b. per foot run.  Tensile stresa allowable in the steel,
lE.ﬂ)Drfh. per square inch. Compressive stress in the concrete, 800 1b. per
square inch. Ratio of modulus of elasticity of stesl to that of concrete, 12.
Hatio of breadth to depth, 1 to 3. Show how you would maks provision
for resisting the shear stress in the beam. {U. of L.}

2. Dwfine resilience. A concrete pillar is 12 in. square in section and has
four 1in. diameter rods as vertical reinforcement. A load of 20 tons is
placed on the column. Find—

() The shortening of the column ;
(5) Resilience of the column.
E, = 30 x 10°1b./sq. in. K, = 2 x 10%1b./sq. in.
(U, of B.)

3. Aload of 2 tons has to be supported midway between two walls 10 fr.
apart. Design a suoitable reinforced conerete beam for the purposs. The
outside dimensions are to be 18 in. deop and 10 in. wide. (U, of B.)

4. The wertical sides of a circular reinforced conerete tank, 60 ft in
diameter, are reinforced with circular steel rods embedded in the concrete.
If the tensile stress in the steel is limited to 5 tons per square inch, calculate
the area of steel required per foot in depth between 8 ft. and § ft. depth of

water, and botweon 8 ft. and 10 ft. depth of water. (LC.E.)
o
bt e e el

e e e e [ e e e e

2barsk
Fic. 108

&. The reinforeed conerete beam shown in Fig. 198 earries two equal con-
centrated loads symmetrically placed on the span and 5ft. apart. If the
modular ratio is 12, and ¢ and ¢ are not to exceed 800 b, per square -inch
and 16,000 1b. per square inch respectively, find the maximum values of the
loads, taking into account the weight of the beam itself. If vertical stirrups
made from {-in. round steel take the whole ghear, find the necessary spacing.

(U. of L)

6. A meinforced conereto alab, 7§ in. thick, has an effective span of 10 ft.
The reinforcement consigts of §in. diameter bars at 6-in. centres placed
lin. above the bottom of the slab. Determine whnt uniform load per
square foot the slab will carry in addition to its own weight, if the allow-
able maximum stresses aro 15,000 lb. per square inch for steel and 650 1h,
per square inch for concrote, and if the ratio of the modulus of elasticity of
steel to that of concrete is 12, Weight of slab, 150 1b. per cubic foot.

(0. of L.)

7. Write down the ex ions for, and explain what you understand by
{a) the equivalent area of a reinforced concrete column ;° (b) the equivalent
moment of inortin of & reinforoed concrete beam 12 in. deep, 8in. wide,
reinforced with two steel bars § in. diameter st 1 in, from the underside of
the beam. {U. of B.)
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B. A reinforced concrete beam @ ft. long, 5 in. wide, and 7 in. effective depth,
earries n load of 2 tons applied at two points symmetrically placed relative
to the centre of the beam. The area of the reinforcoment is 0-6 sq. in.
The distance between the supports is 5 ft., and the distance between the
points of application of the load is 3 ft. Find the maximum stress in the
concrote and in the steel. m = 15. (U. of B.)

§. A flitched timber beam consists of two timber joists, each 4 in. wide
by 12in. deep, with a steel plate { in. thick and 8in. deep, placed sym.
metrically between them and firmly fixed in place. If the span is 20 ft.
and the ends are simply supported, calculate the maximum uniformly-
distributed load the beam can carry if the stress intensity in the timber is
not to exceed 10001b. per square inch. What will then be the mAXImum
stress in the steel ?

E for steel = 30,000,000 Ib. per square inch.
E for timber = 1,500,000 1, i (U. of L.

10. What do you understand by the “ equivalent aresa " and " equivalent
maoment of inectin " of a reinforeed eoncrete column ' State what assump-
tions are made in deducing mathematical expressions for these.

A concrets column is 13 in. % 15 in. square in section ; it ia reinforeed with
four 2in, diameter mild steel bars. 1i the maximum stresses allowable are
800 lhuﬁunm inch in the eoncrete and 16,000 1b, square inch in the steel,
what load ean the column safely carry ! Take the modular mﬁnUMJfa.B

(L8 3

11. What is meant by the “ economical percentage of steel " in a rein.
forced comcrete beam with tension reinforcement only ! Deduce expres-
sions for the depth of the neutral axis, the percentage reinforcement, and the
momént of resistance of an * economical beam,"” assuming maximum stresses
of 600 Ib.[sq. in. (compression) in concrete, and 16,000 Ib. sq. in. (tension ) in
steel. (Take m = 16.) (U. of B.)

12, If kd is the depth of the neutral axis of a rectangular conorote beam
reinforced on the tension side only, p the steel ratio, and m the modular ratio,

prove that
k = +/(2pm + p*m®) — pm

A rea reinforced concrete beam is 15 in. wide and 30 in. deep to the
eentre of the steel bars, which have an area of 4 sq. in. If m = 15 and the
limiting stresses f, and f, are respectively 18,000 and 800 Ib. per sq. in.,
determine (a) the position of the peutral axis, snd () the maximom moment
which ean be carried. (U, of B.)

13. A rectangular conorete beam reinforced in the tension side only is to
be designed to resist o moment of 600,000 inch-pounds. Design the ceonomieal
section for an ordinary grade concrete having & minimum 28 days crushing
strength bassd on works tests of 2250 Ib. per sq. in. and a mild steel having
an ultimate strength of 30 tons per sq. in. Take m = 18, (U. ol B.)

14. What are the functions of bent-up bars and vertical stirrups in
rinforeed concrete beams !

maximum compressive stress in s reinforeed concreto beam is 300 Ib.

per sq. in. and the stress in the steel is 18,000 Ib. per sq. in. The effective

depth of the beam is 25 in. and m is 15. Caloulats the stress in } in. U vertioal

stirrups ot 4 in. spacing whero the shearing force is 8 tons. - Assume that the

conerete can carry one-third of the diagonal tension. (U. of B.)

15. A double reinforced rectangular conerete beam is 15 in. wide and 30 in.
deep from the compression edge to the centre of the tension steel. The arcas
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of the compression and tension steel are both 4 sq. in., and the centre of the
cumlnmiuu steol i one-third of the neutral axis depth from the compréssion

. If m is 15 and the bending moment at the seotion is 120,000 pound-feet,
ealeulate the maximum stress in the concrete and the stresses in both the
compression and tension steel. (U. of B.)

16. A reinforced concrete pit prop is 6 ft. long and 6 in. square in
soetion. The hooped longitudinal reinforcement consists of four § in. square
milil stecl bars. If m is 156 and f, is 500 lb. per sq. in., caleulate the work-
ing load of the prop. (U. of B.)

17. Design a square reinforced concrete column, 14 ft. high, reinforced
with 1 por cont longitudinal bars and ordinary hoops to carry an axial load
of 100 tons. The permissible stress in the concreto is 500 Ib, per sq. in. and
m o= 12, (U. of B.)

18. The section abed of a short reinforeed conerete column is 15 in. by 15 in.
The reinforcernent consists of four 1in. square bars whose centres are 1§ in.
from the edges of the column. A load of 70,000 Ib. is applied on one of the
axes of symmetry and st a distance of 2 in. from the centre of the section.
Calculsto the maximum and minimum stresses developed in the steel and in
the concrete, m = 12, (U. of B.)

{Note. Transform the whole section and solve as for & homogensous short
eolumn. )

19. Discuss the design of short reinforced concrete compression members.
(U. of B.)

20, Deduce an oxpression showing the relation between the bond and
shearing stresses in o reinforced conerete beam.

Loads of 12 tons are applied at points 6 ft. and 12 fi. from one ond of o
simply supported reinforced conorete beam 18 ft. long. The tensile reinforce-
ment consista of eight 1-in. round bars with their centre of gravity 18 in. from
the outside compressive fibre of the beam. Caleulate the maximum bond stress
developed, if the maximum compressive stress in the concrete is 750 1b. per
8q. in., the tensile stress in the stecl is 18,000 Ib. per &q. in., and m is 18,

How far into the su of a cantilever beam should a 1-in. round bar be
earrisd to develop its full working tensile strength, nssuming o safe bond stress
of 110 1b. per sq. in.? (U. of B.)

2]. The flange of a Tee beam is 60 in. by 3} in., and the stem is 10 in. wide.
Tha area of the tension reinforcement is 2 aq. in., and its centre of gravity is
2} in. from the upper face of the Aange. Determine the moment'of resistance
of the beam and the steel stress developed, if f, = 220 |b. per sq. in. Tako
o= LG,

Over o length of this beam the ing foree is constant and equal to
14,000 Ib. The spacing of §-in. vertical U stirrups is 6 in. Assuming that the
conorete carries disgonal tension represented by a shenr stress of 40 Ib.

8. in., ealoulate the load carried by o stirrup. (u. a[ﬂ

22, A simply supported reinforced concrete beam has a breadth of 0 in.
and an effective depth of 18 in. I the limiting streases, f, = 750 Ib. per aq. in.
and f, = 18,000 Ib. per sq. in. are realized, mlgﬁulum the moment of resistance
and the area of the tensile steel, Assumo m = 12,

If the moment of resistance is increased by 30 per cent, find the tensile
and compressive steel areas required, assuming that the centre of the com-
pressive steel is 2in. below the compression skin, and that the limiting
stresses aro again realized. (U. of B.)
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Nore ox Question 7 (b)—Examrres XIV
Refer to Fig. 194
Moment of inertia of the concrete above the N.A. and about the N.A.
bn?
peaay
Moment of inertin of the steel nbout the N.A. on o concrete basis
= mA (d-n)?
hnﬂ‘? ;quivnlmt moment of inertia of the beamn on a concrete basis about
L M

3
Im—b%-t- md (d —n)t

Now td w= E‘-:E

and ¢ = “ﬂ‘:—'ﬂ .+ . (equatienT)
. bnt

Oy 7y

bnd bt (d—n)*

3 2 (d-n)

2 (o3)

Equivalent compression modulus = = (d——-)

Then Iy =

Moment of Resistance = R,

T (+-5)

15—={T.5430)



CHAPTER XV

TuE SLOPE - DEFLECTION AND MoOMENT - DISTRIBUTION

Meraons oy THE SoLUTION oF Ricip ok CoNTINUOUS

FRAMED STRUCTURES, WHERE BENDING MOMENTS ARE
THE DETERMINDNG Factor v DESIGN

Tur discussion of the methods will be based upon the assump-
tion that the moment of inertia remains constant throughout
the length of each member in the structures: i.e. members are
prismatic members,

198. Preliminary Discussion and Sign Convention. A frame
with rigid joints is a structure in which the member inter-
sections are so constructed that the original angle between the
members is maintained under any loading. For a steel frame
joint with heavy gusset plates and ample riveting, and for
welded connections, it is assumed that complete rigidity is
justifiable. For monolithic reinforced concrete construction the
assumption is made without question. By far the most impor-
tant case of the rigid joint frame is to be found in the column
and girder combination in building construction. However,
there are other examples of rigid frame construction, e.g.
culverts, trapezoidal frames, roofs with sloping members, the
framed bridge span or open webbed girder (Vierendeel Frame).
In the past, it was the custom to analyse a building frame as
independent beams and columns without due regard to its
essentially monolithic character. It is now recognized that such
a method is inadequate; and that such a structure can be
economically designed only by treating it as a multiple rigid
frame. The present chapter will be devoted to two modern
methods for the analysis of the rigid frame and to the study of
a number of simple numerical problems. Special problems of a
more complex character and of more complex structures can be
found in the references given at the end of the chapter.

In a rigid frame all the members meet at joints, and because
of the interaction of members and the applied loads, the joints
will rotate. The amount of rotation will depend upon the
restraint offered by the connecting members, Any or all of the
members of the frame may be loaded transversely, and any
joint may be deflected relative to its original position. Building

a74
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frames, bents, culverts, lurch sideways or “sway * under the
action of lateral forces or of unsymmetrically placed vertical
loads. In general, when loads are applied to a rigid frame which
is unsymmetrical in outline, in the cross-sectional dimensions of
its members, the end or support conditions, or in the nature and
position of the loads, or in any combination of these, there is a
tendency for the joints to be displaced or translated, resulting
in a lateral sway of the frame. (Obviously with a framed bridged
span there will be a translation of the joints under the vertical
applied loads.)

This effect causes joints to be translated as well as rotated
under the action of the applied loads. However, in a great
many cases, the relative linear displacements of the joints are
negligible. Therefore a general form of equation giving the end
moments in a member, must include terms stating the effect of
joint restraint, the effect of applied loads, and the effect of
joint movements.

Let & member AB tie into joints at 4 and B. Let it be sub-
jected to transverse loads, so that there is rotation of the joints
A and B. Let us consider the internal moments of resistance
induced at the ends 4 and B of the member. If we cut the
member at these ends then we must place at the cuts, (a) a pair
of equal and opposite couples (moments of resistance), one
acting on the joint and one on the end of the member, (b) an
equal and opposite shearing force pair, and (c) an equal and
opposite normal force pair. In general, the effects of the
shearing and normal force strains on the moment distribution
will be neglected. That is, the moment distribution is due to
flexure only.

The end moment in a member will be designated as M with
a subscript. The first letter of the subscript indicates the end
of the member at which the moment exists: e.g. M,y is the
moment at 4 in member AB, and My, is the moment at Bin
the same member. If the ends of the members are fixed in
direction (built-in or restrained against rotation), then the end
moments will be designated as, e.g. My, p and Mgy, for the
member AB. The determination of the magnitudes of these
fixing moments is given in Chapter IV.

199, Sign Convention. Note carefully the convention for the
algebraic sign of end moments, which will be used in considering
statically indeterminate structures by the slope-deflection
method and later by the moment-distribution method, the two
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methods which are considered in this chapter. The student
will find this convention different from that given in the previous
work on simple, built-in, and continuous beams, While in
general it is not desirable to use two such conventions, the
advantages which result would seem to make the two conven-
tions desirable. The student should thoroughly familiarize
himself with these conventions and learn to recognize at a
glance whether a moment is positive or negative.

The convention now given is as follows—

A moment which tends to rotate the end of & member in a
‘counter-clockwise’ direction is ‘positive ()’ the moment
which tends to rotate the end of a member in a ‘clockwise’
direction is ‘negative (—)." (Conversely, moments acting on a
joint in a ‘cloekwise’ direction are ‘positive,’ and those in a
‘counter-clockwise’ direction are ‘negative.’)

The rotation of the tangent at the end of a member (or the
rotation of a joint), is measured from the original direction of
the axis of the member. A ‘counter-clockwise’ rotation of the
tangent at the end of a member is ‘positive’ and a ‘clockwise’
direction is “negative." These rotations are denoted by the
sign 0: e.g. 0,5, 0, ete., and they are in radian measure. If
the ends 4 and B of a member AB are direction-fixed (or
built-in), then 0,5 = 05, = 0.

The deflection or displacement (A) of one end of a member
relative to the other end is measured perpendicular to the
original direction of the axis of the member and it is termed
‘positive’ when the movement of the deflected end is ‘clock-
wise’ with respect to the other end. The opposite movement of
the deflected end is ‘negative.’

If I is the length of the member, then the angle ¢ (in radian
measure = A/l) through which the axis of the member rotates,
is "positive’ if it is in a “clockwise’ direction, and ‘negative’ if
it is in a ‘counter-clockwise’ direction.

200. Examples of the Sign Conventions are given in Figs.
1994 to 2058. In these figures, pi stands for point of inflection,
T'T indicates tension on the top side of the beam and T'B on
the bottom side of the beam. These are given, as the bending-
moment diagrams. (Figs. 1998 to 2058) are drawn on the
tension sides of the beams.

Fig. 199A denotes the conditions for a built-in or direction-
fixed ended beam subjected to transverse loading. In Figs. 2004
to 2058, the beam AB is not subjected to transverse loading.
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In Figs. 2004 and 201a the end 4 is caused to rotate by
means of an external couple through an angle of -+ 0,5 radians,
whilst the end B remains fixed in direction, ie. g, = 0.
Moments M,y are induced in the member at the end 4, and
note that moments M , are induced in the beam at the end B:
in the moment-distribution method of analysis, this moment
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Fro. 203n

¢-+- _. ---------- lBT

i:
! BA-GBIA. =0

Al___--.---___?i-:-u e 5

Fra. 204a

Ll

HAE*I\
YA
B a
X Maat =Myg+

Fia. 204n ¥

NovE: A minus sign before o moment indieates that It s a negative moment.
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My, is called a ‘carry-over’ moment. In Figs. 2024 and 2034,
the end B is rotated through an angle of + 6y, whilst the end
A remains direction-fixed.

In Fig. 2044 the end B is displaced or translated by means of
an external lateral force relative to A in a positive direction
through a distance + A, both the ends 4 and B remaining
direction-fixed (i.e. 6,5 = O, remaining = 0). The student
can deduce for himself the conditions for 4B when B is displaced
through a distance equal to — A. In Fig. 2054 the end A is
translated relative to B through a distance = — A, 6,5 = Op,
remaining = 0.

The bending moment diagrams corresponding to the loading
conditions given in Figs. 1994 to 2054 are given in Figs. 1998
to 2058. In the Figs. 2008 and 2018, it is indicated that the
induced moments in the beam at B are Mg, = =+ M, /2 for
the member 4B when it is of constant cross-section. When the
end B is rotated, the moment in the beam at the end A is
M,p= 4+ Mg,/2 for a beam of uniform cross-section. The
proof of this is given in a subsequent paragraph. For beams of
non-uniform section, reference must be made to other works
(references to which are given at the end of the chapter) for the
value of the carry-over moments. In the diagrams, Figs. 2048
and 2058, it will be noted that the moments induced in the
beam at the ends A and B due to the relative displacement of
these ends are equal in magnitude ; their values are determined
in another paragraph. :

In Fig. 206 there is indicated the signs of the induced
moments in a length of a continuous beam.
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Fig. 207 (a) shows the displacement of an unsymmetrical
portal, direction-fixed at the bases 4 and B, due to a transverse
load acting from left to right on the column AB: the moment

& e o Y R R
. L HTT+ pi x'T'T  pafteied
_\Jé T~ 5 %;%‘(L Beam
! pi ; :
Y N
\J \\/ of Beam
Frao. 208

diagram is given in Fig. 207 (b). TL indicates tension on the
left side of a column, and TR tension in the right side of a
column. In the diagram 207 (a), the joints B and € have

@t

-
=

e mmmmm=se=s o]

(b)

-4
g

0 on and Hac mustbe
L N numeri y al.
£ s ABisloaded +
ﬂl'ﬂ* latera.!lu HAB ALE."G H:n and Hcp
Fia. 207

rotated as well as being translated. Figs. 208 (a) and (b) are
for an unsymmetrical portal, when the ends 4 and B are hinged.

Fig. 209 (a) is of an unsymmetrical portal ABCD with the
column bases 4 and D direction-fixed so that Oip =0pc=0.
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The frame has been displaced from left to right without any
rotation of the joints B and C, so that iz, = Ocp = 0. Let
AB =h, and DC = h,, then ¢, 5 = ¢y =+ Ak, and ¢gp

T ol

Mep*

Displacement
Diag, Diag,
(b

Mgs and Mg are
numerically equal.
Also Mcg and Mep

Hlnge
Fia. 208

— ¢o= + AJh,. The lateral displacements of B and C are

both equal to + A, and the sway angles ¢ are both positive ;

also % = % The moment diagram is given in Fig. 200 (b),
C

and note that My, = M,y and Mgy, = Mye and that they

are all positive. These cases of sway correspond to that of the

beam in Fig. 204a. If the portal sways from right to left,

By
b B4\ 80 60 e cNeo
F
1]
E D
Moc=Mep
+ o+
t Di
E‘uﬁms AE?'.DC.
Ag
Mag=Mpa

Fia. 209

i.e. A is negative, the joints are translated from right to left
and the angles 4, and ¢ are negative. This case corresponds
to that of the beam in Fig. 2054,

The cases for the beam where one end is rotated and the other
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end is a hinge are given in Fig. 210. The member is, of course,
free to rotate at the hinge. Fig. 211 indicates the displacement

)
Displacement Diags. Moment Diags
Fio. 210 ;

of and the moment diagram for an unsymmetrical portal with
the column bases hinged. The sway is from right to left.

Let the beams in the previous discussions be prismatic
beams: i.e. the cross-section and therefore the cross-sectional
area 4 and the moment of inertia 7 are constant. Consider the
beam system given in Fig. 2004 and the moment diagram for
which is given in Fig. 2008 to show that 3 BA = M, /2.
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The support B will be below the tangent at 4 by the amount
[6 5 where [ is the length of the member. By the moment-area
method, and taking moments of the moment diagram about
the vertical through B, and letting I,p be the moment of
inertia,

¥
t:h'En E.I_&Ewﬁn = MA'B" T HBAE' E

| A orfeg =0
':JF‘EJ{* B 5 Meo

|._ :"L-"'Im .
A B
" ko b
'ﬁr#lg;,ddf i» (b)
Bnc=Bp
and+
Moment Di
Columnsﬁ.ﬁ?&ﬂ.
——A
Fia. 211

The change of slope of the tangents from A to B is 0,5

{ {

(area of the moment diagram between A and B).

From these two equations, it can be shown

Wiy 14

e T e )

In the case considered both M, and M,, are positive.
Similarly, considering the beam in Fig. 2024 it can be shown

that

that —M,g=—My,2 . : . (2)
Sl:rh'ing too for M,y (case given in Fig. 200), it will be found
that M,y = E.'?‘-rj'&‘-’.nm : g . {(8)

In the moment-distribution method, the ratio of 1/2 given in
equations (1) and (2) is known as the carry-over factor.
A rule is, therefore, that if a prismatic beam or member is
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locked at both ends, and if one end is released and rotated
through an angle 6 radians by a moment or couple M, & moment
M is induced in the beam at the rotated end and a moment M2
is induced in the member at the other end which has been kept
locked in position. The sign of the two moments is the same
i.e. if the moment at the rotated end iz + M, then the induced
couple at the locked end is - M/2: if the moment at the rotated
end is — M, then the induced couple at the locked end is — /2.

(Nore—For non-prismatic beams the carry-over factor is
not 1/2 and reference must be made to other works.)

201. Consideration of Equation (3).
47
Let M,py= E«"'ﬂl-ﬁml = (M,)rg-

l
i . 4,5 . ;

As 0,5 is in radians, then E . o3 as the moment required to
rotate the end 4 through unit angle, the end B remaining fixed.
If A is kept fixed, and B is rotated through an angle -+ 6,
radians, then My, = K. %"} 0y = (M,)5a.
Imagine a number of prismatic members keying into a ringed
joint (4) and with their other ends locked in position. Let
the joint rotate (without translation) through an angle of + 0
radians. The ends of the members at the joint will all rotate
through this angle. The moments induced in the ends of the
members at the joint will be

+M gy = (E . 41,51,3)0,
+ M= (E . 41_11::.'[119]'9:
+M,p=(E.41,,1,,)0, and so on,
Assuming that E is the same for all the members,
then
FMap A Myo: + My, = U upflas : 4, oflao : 41 pflap
=TI pflyn : Iicllac ¢ Iapflav
= K“n : K_M-; . K;n
One-half of the moments - Myn, + My, + Myp, + .0«

would be carried-over to their respective locked ends and they
will be of the same sign as the moments at the joint ends.

i.e. Mps =+ Mup/2; M, = + My /2, ete.
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If the joint rotation 6, had been negative, then
Mypg: Muo: M,p:..
= —d4l,yflyg : =4 oflyo : =4 s p[lap ¢
and Mnl——-ﬂ_&nfﬂ; MC.&.=MAC‘JI2! etec.
i.E‘; Mﬂi = — EIA.I!J”&E: Mﬂﬁ = Ef_id!.iﬂ‘-' eto.

In general M = 4EIf/l and this product is called the
* Moment Stiffness Factor (M,)."

Consider the case of the prismatic beam or member AB,
where A4 is fixed and B is hinged, Fig. 210 (a). Let the fixed
end 4 be rotated (and without translation) by an external couple
through an angle of + 0, radians. (There will be an induced
rotation of the end B (— fy, radians), The induced moment
in the beam at 4 is 4+ M,y; then considering Fig. 210 (a),

I 2
E.Iig-l.0yg=+ Myp.5-3,

I
GE+H13=3E-¥*5152[M-L1H . (4)

No moment is carried over to the hinged end. In general
M= 3E % .0 and it is the “moment-stiffness factor (M,)"”

for a beam fixed at one end and hinged at the other.
If A is hinged and B is rotated without translation through
+ 0p, radians, then

I
+M33=3E-_'E_H-ﬂﬂj,=[ﬂl]li.& . a ('ﬁ]

Suppose two prismatic members AB and AC key into a
joint A. The end B is direction-fixed and the end C is hinged.
Keeping B locked in position, and rotating A (without transla-
tion) through an angle of - 6 radians, then the induced
moments in the members at 4 will be—(both members have
the same E) :

Lip . 2 =AG
+ M,y =4E. 7 0 M o=3K. i .0
: ; 2EI, 5,
At B the induced moment will be + My, = R (/]

+ M 4T Tl e e
Thep AP __ ZTAB/TAB _ 4 = : . (8
g 1 HM: Hj.cfha '}'TEIACﬂM: Eu: ( :I




386 THEORY OF STRUCTURES

where K in general = Il for a member fixed at both ends and
K = 31/4] for a member fixed at one end and hinged at the
other,

Therefore, if one end of each of several members is rotated
through an angle 6 while the other end is held fixed, the required
moment in each member will be proportional to a constant
K = Il, if the cross-section is uniform, and in any case to
some constant K. If one end of each of several members is
rotated through an angle 6, while the other end is fixed for part
of the members and hinged for the rest, the required moment
in those members which are fixed at the far end will be pro-
portional to K = I/l, and for the others to K — 37 /41, if the
cross sections are uniform and £ is the same for all the members.

Suppose, for example, that four prismatic members key into
a rigid joint: two of them 4B and AC are fixed and locked at
B and €, and two of them AD and AE are hinged at D and E.
Let joint 4 be translated through an angle of -+ 6 radians
(without translation) by a couple M. Then the induced
moments in the members at 4 will be—

K K
Ma=M.= - AR i sl (7
AR Kyp+ Kyo+ Kin+ K,y X LK &
where Kap=1Igflin; K,q= Iyollycs
Kyp= SEap/4lyn; K= 3y p/4l,yp
K K,y 0
JH’&CZJI.E_E.E; ﬂfAD:J"-Eil; M.&E=M':§;_1'E

My, = M, y/2 and both My, and M, are of the same sign ;
Moy = M,c/2 and both M, and M, are of the same sign;
Mpy=0; Mgy =0. :

Note—In the slope-deflection method it s assumed that all
the members in the rigid frames are fixed at both ends. In the
developed equations K will be equal to 7/1 for all the members,
and for those ends which are hinged the moment here is equal
to zero. In the moment-distribution method, for a one-
hinged end member the other end being fixed, K is in general
taken as it actually is, and the value of K for this member is
then 37/41.

202. Consider, now, the direction-fixed ended beam AB
given in Fig. 204a and the bending-moment diagram in
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Fig. 2048. Here the end B is displaced or translated relative
to A by means of a lateral force through a distance of + A.
There is no rotation of the ends 4 and B (i.e. O,y = Oy, = 0,
after displacement).

There being no change in the slope of the tangents between
A and B, then EI ;.0 = 0.

2 S
= M‘_B = Hn&, . " . {Bj
Sk

Hm{'(“ !
F e b+ A

¢+ — 94-

= _9*”&'"&5*
4 E

Fro. 212

and they are both of the same sign, positive in this case.

Faw 2 Tk
Also, E’Im.ﬁ:M_m.—’—é-‘-'.E.Im—MM.-%'-‘.-‘TB
F
——-M_m.—;;—n
I
.'.Mm=M34=uﬂ.i,’i.a_-{ﬂr',} : . (9)

If A is negative, then M, and My, are both negative.
The product 6E . 5 . A is known as the “sway-moment stiffness

0
fﬂﬂtﬂr {'M"].lf
The end shearing forces S due to the translation of B relative
to A are as in the previous problem (refer to Fig. 212). Con-
sidering the equilibrium of the prismatic beam AB between
the end cuts, we have TM = 0.
S Slg (D) + Mg () + My () =0
Mip N

L S=2-A2B_19F 22 A=(8,) . . (10)
lan Pyn
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In this case, the shearing force S at 4 will act vertically upwards
and at B vertically downwards.

If A is negative, then the two equal end moments are
negative, and 8 will act vertically downwards at 4 and
vertically upwards at B.

I
The product 12E .- . A is known as the “shear-stiffness

IE
factor (8,).”

Consider the case of a vertical member such as the column
of a portal. Referring to Fig. 213, both ends of the prismatic

M
= s_"" e
(b) ()
+
Vg DN T )
Fia. 213

vertical member AB are direction-fixed, and B is translated
relative to A4 through the distance 4 A but without any
rotation of B. The shearing force S will act from left to right
horizontally at the top of the member and from right to left
at the bottom. The induced moments at 4 and B will both be
equal and of the same sign, positive. If A is negative, i.e. B
displaced relative to 4 from right to left, then the two equal
end moments would be negative, and § would act from right
to left at the top of the member and from left to right at the
bottom. If A is the length of the member, then for the case
given in Fig. 213,

BE=2M =My, . b .oad)

Ao, My =Sy whenS—128.5A . . (12

I
Bﬂ.d H.&I‘l = J"f!':d‘ = ﬂl‘fﬂi . ﬁ = {M.‘j an.d is pmiti\"‘ﬁ. {1'3}
If 8 is known in magnitude and direction, then the sign of
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the two equal end couples will depend upon the direction of S:
S acting at the top of the member from left to right, the equal
end couples are positive; S acting at the top of the column
from right to left, the equal end couples are negative.

Consider the portal as displaced in Fig. 200, and considering
the two vertical members AB and CD, whose lengths are A
and h, respectively. Let E be the same for both members and
I,y and Iop the respective moments of inertia. The upper
ends B and C are displaced to the right by an amount + 4,
but without any rotation of B and C.

Then My, =6E. {',:;? . A, and Moy = 6E -*f;fli-‘ A
LMy, My LW (14)
Mep Moo 61 op/hy*
Also Sip= 12E.{f,9 . A and Spp = 12E I;E: -4
Sap _ 12L4n/R o ey ka2 [ 16)

Referring now to Fig. 211, in which the vertical members
of the portal are hinged at A4 and D, and the joints B and C
are displaced to the left by an amount of —A, but without any
rotation of the joints. The members will rotate at the hinges.
The lengths of AB and CD are respectively & and Ay, and
I, and Iy, are the respective moments of inertia. E is the

h 2
same for both members. In general, EIA=M. 53 h where
M is the induced moment at the fixed end.

1 ) o=
-gf.amdﬂfﬂnz—m. op A

hy*
and, in this case, they are both negative.
, Mas_ = 3ap/W
“* Mep — 3len/h?
The end shearing forces S will, in general, be equal to
EE.}{j.ﬂ.furﬂfsSh‘
. Sap _ /W
“*8op  Son/h®

S MH&-_——'EE.

(16)

(17)
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Here, the shearing forces will act from left to right at the tops
of the columns. The “Sway-Moment Stiffness Factor (M )"

is here equal to 3K . ;%' A, and the shear stiffness factor (5,)

1
is equal to EE.F.ﬂ.
Thus for a beam AB direction-fixed at B and hinged at A,

7
Mniz_ag.ﬂl—ﬂ,.a. o (18]

ﬂnd-i'maﬁﬂ.%%. Ay 2SS T 0
AR
If AB and CD are the vertical members of a portal which is
fixed at 4 and hinged at D, and B and O are translated but
without rotation a distance of +A, and letting AB = A&
and CD = h,.

Mun _ Myy  GELG/.A oI,/

e Won ™ Moy ST AT X opfhst
d yp/h® K5

s ﬂ'ﬁjﬂ]’_}]’l&ls & H’uu

where, in general, K = I/h? for a member fixed at both ends
and K’ = 0-5 I/h* for a member fixed at one end and hinged
at the other.

The ratio of the end shearing forces in the members is

Sap _ L2ELo/l3. A I.m ko,

Sop  3EIop/h®. A~ 0250 o pfh® ~ Koy

where, in general, K* = I/h3 for a member fixed at both ends
and K" = 0-25 I/A* for a member fixed at one end and hinged
at the other.

Nore.—If the ends of several members having the same £
are moved Iaterally with respect to each other through the
same distance A. whilst the fixed ends are restrained against
rotations, the induced equal end moments at the fixed ends
will be proportional to a parameter K’ — (I for members fixed
at both ends and to K’ = 7/2* for members fixed at one end
and hinged at the other,

Again if the ends of several members having the same F

(20)

(21)
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are moved laterally with respect to each other through the
same distance A, whilst the fixed ends are restrained against
rotation, the required lateral or shearing force for each member
will be proportional to a parameter K* = I/ for members
fixed at both ends and to K* = I/4I® for members fixed at one
end and hinged at the other.

203. The student should carefully note the rotation and
deflection conditions which have been discussed, and thoroughly
familiarize himself with the necessary relations between the
moments and forces and the rotations and deflections.

BusMsany :
. Beam with one
BG:'JJ: zmw" end fixed and
the other hinged
Moment-stiffnoss factor (M) X A 4EIGN IETAN
K in a4
Carry-over factor (prismatic members) .| 13 0
Sway-moment stiffness factor (M,*) . GEIAR 3EIA[R
K’ 12 FfE o
Shenr stiffness factor (5,) . . L 12ETA [ SETA/P
K" I Ij4m

204, The Slope-Deflection Method. A method which can be
used in the analysis of any continuous frame subjected to
bending moments is commonly referred to as the Slope-
Deflection method. It was developed by Otto Méhr in Germany
(1892), and also by G. A. Maney, University of Minnesota
(1915). It is an algebraic method, generally requiring the
solution of two or more simultaneous equations.

One advantage of the method results from the selection of
deflections (or translations) and rotation of joints as the
redundants or unknowns, rather than unknown moments and
shears, which can readily be expressed in terms of the deflections,
hence the name slope-deflection. :

Consider the case of prismatic members. Let such a member
be AB, Fig. 214 (a), of length [,y moment of inertia [y,
E — modulus of elasticity. Let -+ M,y be the couple at the
end 4 of the member, and -+ My, that at the end B. Let the
end A4 rotate throngh a + angle f,5 and the end B rotate
through a - angle 0y,. Let the end B be displaced relative
to A by an amount + A so that the sway angle 0 = Afl,y is
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positive. The alternative moment diagrams are given in Figs.
214 (b) and (c).

Lhsbas

T

At

(© \[um

(b} and (c) Alternative Moment Diags.
Fiao. 214

Now we have: letting [,;, = land I, — I,

- I 2 i1
-E”m_{n‘f' 'ﬁ}:MABE'EE_'MBLE'E‘I
“ I 1 2
and Lftrﬂﬂ-“"‘ a’}:ﬂ!&BE.E“MBA%.EI

; et 2 l
Bl(0in+ 7) = Man. 3= 2y, L

; A 2 4
EI(E'?B_&"I—BT):-_M}.B EI‘I‘MBA?

1
EI(EE}M + 05 3%) = SMp,l

or Z-Er;(?ﬂﬂi + B.&B + ST&) 1 Mﬁi
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or 2EK(205, + Oan + 3¢) = Mps - . (22)
where K=1Ifl
Similarly, OEK(20,5 + Ona + 3¢) = M, . . (23)

These are the fundamental slope-deflection equations.

Thus we see that M ,; consists of three moments—

(a) 4EK0,p = (M,),y—the moment induced in the beam at
the end A by rotating this end through an angle of 0,5 radians,
whilst keeping the end B fixed or locked.

(b) 2EKlp, = l:—'E‘r%"—i..-h\‘an moment induced in the bea

)

at the end A whilst fixed or locked and the end B is rotated
through an angle 0g,.

{Hﬂtﬂ a.gll.il:'l., EEK&BL is one hll]f of EKHHLI Which is t-hB
moment induced in the beam at the end B when rotated through
an angle fy,, the end A being fixed. The sign of 2EKflg, is
the same as that of 4EK60y,.)

(c) 6EK¢ = BEKA|l = (M) —the moment induced at the
ends of the beam when one end is displaced relative to the other
through an amount A, whilst the ends are not allowed to rotate.

i}m amount of sway ¢ is equal to % Similarly for the moment
BA-

If loads are applied to the member, the total end moment
will be equal to the moment for no end distortions (direction-
fixed, or fixed beam moment), plus the moment caused by the
end distortions: i.e. the beam is first restrained against end
rotations and translation, when the end moments will be those
for built-in beams, and afterwards allowed to be rotated and
translated. Then the total moment at the end A4 of any member
AB of constant cross section is,

M,pg= M+ 9EK(20,5 + Ona + 34) . (24)
and at the end B of the same member it is
My, = Myps+ 2EK(0x5 + Wua + 34) . (25)

where the first term represents the proper fixed beam moment,
and the second term the moment added or released by the
joint deformations. When using these general slope-deflection
equations, it must be kept in mind that moments acting on
the ends of the beam are positive if they are anti-clockwise
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and negative if they are clockwise. For the usual cases M FAB
will be positive and My, , negative (see Fig. 215).

For a beam fixed or jointed at 4 and hinged at B, the moment
at B will be zero. Then writing down the two slope-deflection
equations—

Myp = 2EK(20,p + 054 + 3¢) + (£)Mgsn
Mg, = EE-E':B.{H + 205, + 34) 4 {ﬂ:}ﬂrna =0
E*H.tu = ZEK{‘MAB T E'HH-J; T 'B‘i” o} {:i::'EMF.'.B

B B
r. “'ﬂ'lm" fhﬂmi-
HFAH-+ HFM- — . —
.= o r— —
AN —
\AMraet & | Mpap-
A A
Fie. 215

Subtracting the expression for M pa from that for 200, ,
S 2Myp = 2EK(30,y + 34) + (£)2My5 — (+)Myppy

or M,y = 3EKO,y + 3EK¢ + (L . e H:}‘E‘zi'?é . (26)

the correct signs being given to the direction fixed moments.
Assuming that the beam is not loaded, and

(@) that there is no sway, then
M sy = 3EKD, 5 —see equation (5)

(b) that A is direction fixed and that there is sway, then,
M,y = 3EK¢ —see equation (18)

Consider equation (25). Tt will be seen that the moment at
the fixed end 4 is made up of —

(a) the direction-fixed moment at 4 (if any),

(b) the moment due to the rotation of the end A through an
angle f, i, the end B being locked,

(¢) the carry-over moment from the end B, assuming that
4 is fixed when the end B is rotated: this Ccarry-over moment
is equal to one-half the moment at B due to rotation here for a
beam of uniform section and is of the same sign as that at B, and
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(d) the moment due to the displacement of B relative to 4
corresponding to the sway angle ¢ = A/fl, the ends 4 and B
remaining locked.

These modifications of the direction-fixed moment due to
the distortion of the member have been shown separately in
the previous discussions.

The slope-deflection equations are perfectly general and apply
equally to an isolated beam and to any member of a framework
acting as a beam. Since they state the final value of the end
moments in any given case in terms of the known fixed-beam

I S ! L Sk B R
..-_._a_;h——;T(—{—}»fb——-)L——ﬁ 2™
a
e[ —>

B

. 1 Iy T
I 'ru
ﬁ; I;

(k) -—-.In—l'
1 ﬂ,—

Fic. 216

moments and the changes in slope and the relative displace-
ments of the points of supports, the equations are commonly
known as the slope-deflection equations.

By far the most important application of the slope-deflection
method is in the analysis of stresses in multiple statically
indeterminate structures under any given load conditions where
the slopes and deflections or displacements are taken as the
unknowns for which a solution is sought.

205. Joint Equations. Consider a continuous beam with rigid
supports and a portal having two vertical members of different
length and a horizontal beam, with no sway (see Fig. 216 (a)
and (b). The length and moment of inertia symbols are given
in the figures.

Let the ends 4 and D of the beam be direction-fixed and also
the column bases 4 and D of the portal, direction-fixed.

Let the members of the frame be loaded in any manner and
let there be no displacement of the supports at B and C; and
let the rotation of the beam at B and C be 0 and ¢ respectively.
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f sy and 6, will be equal to zero: also let Ops = Ogo =05,
and they will be of the same sign.

Similarly, fgp = 0 = 0.

Let the members of the portal be so loaded that there is only
rotation of the joints B and €' (i.e. there is no translation of the
joints or sway of the members 4B and CD). Also there will be
no rotation of the axis of BC' (neglecting the effect of axial
strains in the column).

When the bars are sufficiently rigid so that the compressive
axial forces are small in comparison with Euler’s eritical load.
the influence of axial forces on bending can be neglected, The
corresponding small shortening of the bars can be neglected
and it can be assumed as a first approximatidn that the rigid
joints only rotate by a certain angle due to bending of the bars.
Any corrections necessary due to axial strains are usually small
and can be disregarded in most practical caleulations,

'ﬂ.il] ? ﬂ"c = 0; HBA = ﬂBU — ﬂﬁ and of the same S.ig'll:

o) - Wit o 0 1 T v

Now write down the slope-deflection equations for all the

members giving the correct sign to the direction-fixing couples.

Remember that 6, — 0, — 0.

Let K, = Ii/hy; Ky = Lfly; K, = el e
Myp = 2EK,(0y) + (4 Mp,p)
My = 2EK,\(205) + (4= Mpy,)
Mg = EEKJEHB + O¢) + i Mrnc]
Mop = 2EK, (05 + 200) + (+ Mycp)
Mop = 2BE,(260) + (+ Myop)
Mye = 2EK(0c) + (& Mypop)

Now the end couples are a function of two unknowns i and
B¢ and of the known direction-fixing couples. We desire, there-
fore, only two simultaneous equations in , and f, in order to
find these values from which to caleulate the six unknown M's.
These can be obtained by considering the equilibrium of the
joints after rotation. These joints will be in equilibrium.

There are also shearing forces transmitted to the joints. The
forces will be in equilibrium with the axial forces of the members

and will not enter into the equations for caleulating the angles .
The moments acting on the joints are evidently equal and
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opposite to the corresponding end moments of the bent members
of the structure.

The sum of the moments acting on the joints is zero. Thus
we can write down for

iﬂintl B— MBA + Mnc = U, &[“i for
jomtr{:'—- MCB+MCD=U

These equations are known as the joint equations.

Similarly, if there are a number of members meeting in a
rigid joint, then ZM, = 0, where n stands for near moment,
i.e. moment in a member at the joint end.

If the joint equations for B and € above are solved for Oy
and 0., then all the end-fixing couples are known. In the

_..E.I 1r B I! ";_‘
BA-Gl'(___{I A=0 ’Ez HC-D
Fio. 217

examples given we have only two unknowns, and therefore only
two equations are required. Similarly if there were p joints,
then only p equations would be required for solution.

In the particular example given, solving by the Theorem of
Three Moments, there would be 4 unknowns—M ,; My; Mg;
M,—to be found and this would require 4 simultaneous
equations for solution.

If, however, the ends A and D were hinged, then by the
Theorem of Three Moments, there are only two unknowns
My and M ., and by the slope-deflection method four unknowns,
f,,05, 0cand f, However, we can, by the equations developed
previously, eliminate f, and 0, and solve for fy and 6, from
the two joint equations for joints B and C.

206. Example. Consider the continuous beam, direction-
fixed at the ends, given in Fig. 217. The support at B is non-
elastic or rigid and therefore no A occurs at B.

0,=0; A=0; 0o=0; K;= Ijl,; K= ILf.
AB, BC are loaded in any manner; then generally,
My, = 2E1K1wﬂn} + Mypa
Myc = -‘}‘E:K:{Eﬂﬂ] + Mpgpe
the correct signs being given to Myp, and Myge.
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Joint equation for B, EM — 0.
i EEIKII:EE?B} o= EEnKafﬂﬂn} = Mrn;. or HFEC =0

o By — — Hysa+ Mypo
SAE SRR A ARK,
s LT P
~ 4E\K, + 4E,K,
4E,K
SoMp, =— — -X+MFB&

4B.K, + 4E,K,
Divide top and bottom of first factor by 4E K,

X X
Mm.=‘—_‘“m+ﬂrna='-_"— + Mypy

1+-n.m

1 L

EK,

E, K,
where ﬂ——E-,:andm=E.

Similarly for 3 .

.". In solving this type of problem, we may deal with relative
values of E and K: i.e. the ratios n and m will not alter, so
that My, will always have the same value. If the actual values
are not used, but any relative values of E and K, then 65
obtained will not be the true 6, but a relative By, which, when
substituted in the M equation, will give the correct value
of the M. In other words, 6 is a function of the K’s and E's
used.

Similarly, if there are a large number of K’s and E’s, then in
this type of problem stated we can deal with the relative values
of E and K.

(See further notes in the **Mechanical Solution of Statically
Indeterminate Structures.”)

207. In other types of problems, such as those of finding
moments due to temperature changes, and those of finding
moments due to a known displacement of a support or supports
in continuous beams, and known displacements (linear and
angular) of the members of a portal, the actual values for £
and /, and therefore K, must be inserted in the slope-deflection
equations. These are cases of non-elastic deformation.

Let a portal consist of two vertical steel columns AB and
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DC of lengths 100 in. and 150 in. respectively, and let their I's
be 200 in.-units and 250 in.-units respectively. Let the steel
beam BC have a length of 120 in. and an I of 180 in.-units.

Column AB Beam BC Column CD
Length (in.) . . 100 120 150
T, 200 | 180 250
K =Ifi ey 2 1'5 5/3
Relative K . : 1 0-75 0-83
Relative E . - 1 1 | 1

Therefore, we could use in the slope-deflection equations for
this portal either,

g Column AB ‘ Beam BC ‘ Column €D
W ool N 2.0 _|_ 15 ] 166
PR N 1-0 | 076 ] 083

or other corresponding relative quantities.
If, say, the beam of the portal was displaced left to right by
a known amount A= 0-10in., then ¢,u = 0-10/100, and
dop = 0-10/150. Then, as these are correctly known, we should
have to use for EK the actual values for the members. .
Let E = 30 x 10-Ib./in.?

| Column AB | Beam BO ‘ Column CD
|
EK (Ib.-in. units) 30 x 108 x 2 30 x 108 % 1:5 | 30 x 10 x 186
= 60 x 10* =45 = 10* =560 x 1

ﬂus.mnmwrmblamwhanswarinﬂmnidm (See
Figs. 218 (a) and (b). With regard to the continuous beam, let
the support B sink to B’ below 4 by an amount of A; let the
support € fall to ¢’ by the same amount A so that BC remains
horizontal. Let the support D fall to D', 2A below 4,0r A
below (", 50 that dop = b = Afhy and is positive.
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Now ¢$=}%and95¢-—_£
Therefore Pahy = dohy or o = dulyfhy

With regard to the portal, let the joint B, as well as rotating,
be translated to B’, where BB’ = A, and let the joint C, as

(@)

C &B:%* i
BIA‘D & J I ;.}
Ib C —"3\\.;_%_‘___ ?ﬁn.ﬂ
p I |0
b LF
g
Iy
—{b
%tlﬁ ¢m-h+
(b
Fia. 218

well as rotating, be translated to €', where, if axial strain is
neglected, BB’ = CC" = A.

A A
‘hnzi=¢aﬂﬂd‘iﬁun=l—=¢c
1 2

and both, for the case given, are positive (see Fig. 218 for the
gymbols).
Let the rotating at B be designated 0 and at ', 6.
The slope-deflection equations are—
Mg = EEK:WB + 3a) + (L Mna}
My, = EEKﬂ:zﬂn + 3p4) + (£ MFHA]
Myc = 2EK, (205 + 00) + (+ Mepo)
Moy = 2EK, (05 + 200) + (& Mpcp)
Mop = 2EKy(200 + 34c) + (4= Myep)
Mo = 2EK (00 + 340) + (£ Mppo)
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In the above equations we have 4 unknown deformations,
O, Oy d4 and e, but $g is known in terms of ¢, so that we
have to find 6y, O and ¢,. We have only two joint equations,
one for joint B and one for joint €. We therefore require a
third equation so that we can solve for the three unknowns
g, 0 and dy.

We can therefore consider the equilibrium of the columns of
the portal, or the 2 end spans Mea Mo
of the continuous beam. As a _@ F-Ha —u@
result we develop an equation > T
known as a ““bent” equation if /]
it is in terms of the end moments .
of the columns, or a “‘shear” , 4,
equation if we consider the T‘) — oy,
shearing forces at the tops of a
the columns, or at the ends of :
the beam spans. With reference i —
to Fig. 218 (a) and (b), and Figs. Mag
219 (a) and (b). Fia. 219

Let the column AB of the
portal be acted upon by a horizontal force P acting left to right
and at a distance from A equal to a. There are no horizontal
forces acting on CD. At the column bases there will be a
horizontal force H, acting at A in the right-to-left direction
and at D, a horizontal force H; also acting from right to
left, such that H, + Hp = P.

Let the moment couples at A and B be Mg and My, in the
portal, both positive. .

Let the moment couples at C and D be My and My in the
portal, both positive.

Both columns after distortion are in equilibrium. Then for
column AB summing moments about top of column, i.e.
about B = 0,

My + (— Haby) + Mpu+ Ply—a)=0 . (27)

elockwise anti-clockwise

~. P acting from left to right will be taken as acting in the

positive direction.

Considering column DC, and taking moments about c,
Myo+ (— Hphs) + Mop=0 . . (28)

chockwise
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Eqn. (27) Xy = ng ant My )he—H ybyhy + Phyhy—Pah, é9)
Eqn. (28) Xhy = (M e + Mop)hy, — Hphih,

=0 . - - A ‘ (30)
adding (29) and (30)

(Mup + My by + (Mpe + Mop)hy — hiho(H, + Hyp)
4 Phihy— Pahy = 0
Bl-l.t- 'H.ﬂ. + .Hu = P
So(Myp+ My )by + (Mpo+ Nop)hy = Pahy

and, dividing by h,,

h
(Mg + Mgy + .;T:{Muc + Mgp)=Pa . (31)

This is the “bent” equation for the given portal. Pa is called
an overturning moment. Pa is positive on the right-hand side of
the equation for P acting in the left-to-right direction. Pa is
negative on the right-hand side of the equation if P acts in
the right-to-left direction.

Dividing (31) by h,,

(Myp+ My,) (Moot Mcp)  ,, @ 2
'ﬁl 'J"B hl :

This is the “*shear” equation for the given portal. Pf is of the
same sign as P, 1

the equal and opposite
Man+ Mps _ - p shearing forces acting at

Now Iy AB = the ends 4 and B of the
colomn AR,
the equal and opposite
and Myo+ Mep _ sav H... — Shearing forces acting at
hy = 88Y Hop = the ends € and D of the
column CD.

If the fixing couples are positive, then H ,;, acts in the direction
left-to-right at B (top) and from right-to-left at 4 (bottom) of
the column AB; and vice-versa if M, and My, are negative.
(Remember that 4 and B are the cut ends of the column.)

An example of moment and shear signs, and the bent and
shear equations are given in Fig. 220.
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In problems where the members concerned are of the same
length it will generally be more convenient to use the bent
equation, but, where they are of different lengths, the shear
equation.

Again note : that if the shearing forces represented by H act
in the direction left-to-right at the top cut end of the column

B C

B " Pt“""_‘H Hep—1+
Pi. rﬁ“u" "‘cu*‘,r‘\T —|_" A o

A, (@ hy ()]

o

a

w14 Ak
[ H"“&'- Moc " e Hap ch-'l- =

B (g M)+ 1 oMo Man M Heorploc B i

B Hag+ Hep  =Fo

¢ -k,
me *nﬁ' § S S
'R* (€)

ha
&
Mg~ Mpc- }ﬂ P Hep o

D MantMpy  +Mep+Mpe =P
Bent 2 % BA bc .
Ean. i”‘hﬂ"‘“sﬂ*{*m’"tﬂ -Pir _%—.'. =

%
Hyg + Hep ..-1"‘i:z

PE) (d

=2

Fia. 220

or member, then the corresponding end moments acting in the
member (e.g. M,y or Myp,) are positive. If H acts from right-
to-left at the top cut end of the column or member, then the
corresponding end moments are negative.

Referring to Fig. 221, a portal consists of a number of bays,
and the columns are all of the same length.

The bent equation is

3 column end moments = EPa

On the right-hand side of this equation P is positive, acting
from left to right, and negative acting from right to left: and



404 THEORY OF STRUCTURES

Pa is positive acting in a clockwise direction and negative when
acting in a counter-clockwise direction.

If a portal consists of a number of bays and the columns are
of different lengths,

th column end moments Pa
i column lengths 2 h
= > Han+ ¥5,) ZP T )
e !il! Il-
-~
£¥ e
I ‘ p m
pr r a, aT h
a T' U3
ik ol l EEme Ly

Fio. 221
B c E

SR

b Ay
p h _LDJ sz

L

F

Ko

. Frz. 293

P is positive in this expression on right-hand side of the
equation when acting left to right, and negative when acting
right to left. This is the shear equation. Thus for a portal of
the type given in Fig, 222,

MytMy , MytMo , Myt M,

Iy hy i (e
= P

Whﬂl‘E Mrﬁ., JIH-“ ML':I M
moments at 4, B, C, D,

[l ¢

TR B ()
My and M, are the end-column
» and F respectively.

Kl

=1
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In the right-hand side of the equation (34)
P and Pa/h are positive acting left to right —
P and Pa/h are negative acting right to left «——
The bent equation is

h h
(M, + My) + rl'i*'" p+ Mc) + ,.-T;tﬂfp + M)
'h'l '&i
= Pa + P, +}.t-;+ P“‘:jl;

h
or {ML + Jfﬂ]fh;_j + {M 1] "E" J}IEI + {MP + jfﬂ}}';:

hy
== Pa%:—l— Pb+ P’cft: . - . {35].
p_ B Tc TE P
T )ﬁz ‘E
A ;
i
L l-?
A -
Fio. 223

Similarly for the portal loaded as in Fig. 223, shear equation—
Myt My  Mp+ Mg Myt My

J‘], 'ﬁ‘a 'hE = PI o {_PE}
BB B s A s )
and bent equation—
M+ My + 3200+ Mo + M+ M)

=h1|:Pr‘P::l=P1"“1—P=h1 =""1[P:_Pz}
or (M, + Mnf,‘;:+ Oy + Mcng—:Jr (Myp+ My
L T e S R

4—{T.5430)
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Nore—The same equations hold good even if there are hinges
at the bases of the columns, there being, of course, no moments
at the hinges.

Worked examples introducing all these equations and their
method of use are given at the end of this chapter.

209. Interpretation of Equation (33), page 404.

Z end couples/length = 3‘%“
—

The right-hand side of the equation is equal in magnitude to
the shearing forces at the top cut of the members, treating the
members as simply supported, but its sign is opposite to that
of the simple beam shears.

Therefore, the sum of the top shearing forces due to the end
couples are equal to the sum of the simply-supported beam
shears in magnitude but of the opposite sense of action:
i.e. they act in the same direction as the sum or resultant of the
external transverse horizontal forces: i.e.

¥ end couples/length = — X simply-supported beam shearing

forces at the top of the members — -+ Eﬁ

a
If a vertical member of length A is loaded with a uniformly
distributed load w per unit length over its whole length, then

Ph £
+ $"' would be replaced by + ﬂ—:é if the load acted from left
i 2

h
to right and equal to — f‘; if the load acted from right to left.

(See the illustrated problems, pages 473-6, for the case of a
uniformly varying load on a loaded member.,)

Againifa = h, b = &, ete., then X end couples/length = EP,
i.e. the sum of the top shearing forces due to the end couples in
the case of vertical members is equal to the sum of the transverse
forces acting in the frame at the joints into which the members
tie and they are of the same sense of action. If the frame is a
multi-stories frame, then ZP includes all transverse loads
acting at and above the joints into which the members tie.

If a vertical member AB is transversely loaded by a load P
at a distance a from the bottom (4) of the member and where
@ is < h, and if there are other loads P,, P,, etc., acting at the
top joints and at other points above the joint at the top of the
member, then the top shearing force at B due to the end couples
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i

in the member must be that due to W together with Py, Py,

ete. Or, for a number of vertical members,
P
% end couples/length = Tﬂ + Py + P, ete.

(see equations (38) and (39), pages 408, 409).
For the horizontal members which sway in a horizontal framed
girder see illustrative problem.

Norte—The total shear at the ends of a member is finally

Mact  Meat &

B { - P
' Els

[, @ EL

[=L.o

Displacement Dhag

-ndimhnsﬂ
Moment and Shear Direchions
Fia. 224

equal to the sum of the simply-supported beam shear having
its correct sense of action plus that due to the end couples.

Eln.ThnAmb'siso!ﬂmmesgh&ninFig.Mhrthn
Slope-Deflection Method. The frame will sway from right to
left so that — dan = — $pec = —¢. Also, My, = Mcp;
M, = Mpo=0 for AB and CD are similar members and
they will be both displaced similarly.

I-lﬂt' GB.& = &EC == BH“ Rnli ﬂCH = ﬂﬂﬂ — BC; alﬂﬂ, '&B = BL"
I
NBW MBL = E%{Eﬁu — 3‘#} a"d j.[u{_— = EE_]?{?-H“ + ﬂu}

— EK,(305 — 3¢) = 2EK,(305)
Joint equation— My, + Myc="0
- SE04(K, + 2Kg) — S3EK$ =0
Bent equation— 2My, =— Ph

- 6E0y . K,— 8EK$ =— Ph
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or 6E0, K, — 6Elz(K, + 2K,) = — Ph
or O %= iﬁ%‘,
My i, 2 P
Mgy, =— %
Hh— Pg = S H= g

and will act in the left-to-right direction at the column bases;
or shearing force at the top of the columns = P/2 and acts in
the direction right to left.

211. Similarly for a Multi-storeyed, Multi-bayed Frame.*

P E M

’ 0
3
Io J |
i i
f,
Pl i
B :
R blg 6 ,1[
P~ fi
TR 1 R G i D
Fio. 225

Shear equations—Total shearing forces in the top of the
columns in the ground floor

M M
- E —'ﬁ% =+ P% -+ Z horizontal forces above the
ground Hoor

= +P PPt Pt PPy . (39)

* Bee also, Analysis of Rigid Frames by Amerikian (distributed by Supt. of
Documents, Washington, D.C., 1842}, in which are given the maﬂnml}m a
large number of single and multiple s frames of both rectangular and
trapezoidal form. The formulae are derived by the use of the slope-deflection
equations.
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For the 1st floor,

ZM._—“ + Mcn = 4 P:i L ¥ horizontal forces above this
ky h floor

[}
=+P1};+P3+P4+Pn . . (39)

Due notice must be paid to the sign of the forces. The bent
equation can be easily built up. (See the worked examples.)

If there are no horizontal forces acting in the frames, then
the overturning moments are zero and obviously the terms
Pa/h, etc., and the right-hand sides of the bent and shear
equations are equal to zero.

219. The method of slope-deflection is one of the most
general and most powerful of the special methods developed
for the analysis of continuous framed structures. It is most
advantageous when applied to structures where there are fewer
joint rotations and movements than there are redundant forces
and moments.

213. Consider a prismatic beam AB of length [ with its axis
horizontal and direction-fixed at the ends. Let it be loaded
transversely so that the end fixing moments are + My, and
— Mypa, when the ends are restrained against rotation and
translation.

(a) Let the axis of the beam rotate through an angle + é.
Kﬂﬁp 'BAB = ﬂ'ﬂ.& =0
I
Then My, p will be modified by a moment = +“E3¢u

— M}, and Mg, will be modified by a moment
= EE{ AB

Then Mg = Myan + 6EI$n/l,
and My, = —Mypa + 6EI$4n/l

(b) Let the end A now be rotated through angle + f,p by
a moment = + E . 4105/l = (M,)sn; fip, Temaining
= ZETO.

Then & moment = + B . 210, 5/ will be carried over to
the end B. 0,y is with respect to the original position
of ARB.
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Then the end moments at A and B will now be further
modified by the above amounts.

Thus Myp = + Mysp + 6EI$,n/l + 4E10, 41,
-El-nd ﬂ!HA —— MFD.&. -IL EEI¢ﬂ3f£ + E'Efﬂa“;flv

(¢) Now let the end B be rotated through an angle + 0y,
(with respect to the original horizontal position of 4B),
by a moment + 4EI0y,/l = (M,)y,, 0,5 remaining at
its previous value: i.e. 4 is locked against rotation.
Then a moment of + 2E16,,,/I will be carried over to
the end 4.

Then M, 5 now becomes

=+ My,p+ 6El¢, 5/l + 4E10, g/l 4+ 2EI0,, /1
and My,

= = MFHL + EEI¢_J‘HJ{I + EEI&AB:I’I + 4Efﬂ“_‘lﬂ+

(d) These are the general slope-deflection equations. They
can be modified correctly when the sense of the dis-
tortions is known (negative or positive).

Note. Fized-end Moments can be calculated by the method
given in Chapter IV. Values for different types of loading are
tabulated in a number of references, e.g. Shepley, in Continuous-
Beam Structures,* who gives tables of classified types of loading,
bending-moment diagrams, and tables of fixed-end moments.

214. The Moment-Distribution Method or the Calculation of
End Moments by Successive Approximations. We have seen
that the deflection of axes and rotation of joints govern the
distribution of moments, thrusts and shears in rigid frames.
It is important always to visualize deflections and rotations in
relation to the corresponding moments and shears.

A distinctive American method of analysis of continuous
frames, the method of “Distributing Fixed End Moments,”
originated by Professor Hardy Cross,} will be used. This final
form of the method of successive approximations was obtained
in the paper by Professor Hardy Cross, published in Trans.
A.C.E,, Vol. 96, 1932,

This is also a most general and most powerful method for the

* Continuous-Beam Structures, Sheploy. (Concrete Publications, Ltd.)

 Method of Buccessive Approximations developed by 0. Mohr, 1906.
Extension to frames due to K. R. Calisev, 1923. Its final form given by
Professor Hardy Cross, 1032,
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analysis of rigid frames. It is advantageous for the same type
of structures as those for which the slope-deflection is most
useful. As the number of unknown deflections and rotations
increases, requiring more simultaneous equations for a solution
by the slope-deflection method, the relative advantage of the
moment distribution method will become greater. The method
may be modified in many ways and offers a number of short
cuts in specific problems. Once the general principles of the
method are understood, the student will have acquired a
point of view which should enable him to arrive at a reasonable
solution of any statically indeterminate problem involving a
continuous type of structure, where the moments are the
controlling factor in the design, without the necessity of any
mathematical work except the simplest arithmetic. It is
recommended, however, that certain work, especially when
sway is concerned, is carried out in an orderly fashion on sheets
which are kept numbered.

In this chapter, the discussion will be concerned only with
rectangular rigid frames whose members are prismatic (i.e. of
the same cross.section throughout). The student should refer to
other works for problems in connection with trapezoidal frames
and frames whose members are of variable cross-section.

DEFINITIONS :

Fized beam moments (F.B.M.) are the end moments due to
loads on any member, which occur when the ends of the member
are fully restrained against rotation and translation.

Moment-stiffness factor (M,) is defined as the moment required
to rotate one end of the member through an angle 0 radians,
when the other end of the member either is fully restrained
against rotation, or has no restraint against rotation (e.g. a
hinged end).

For members of constant cross-section,

M, — 4EI0/l and is proportional to K= Ifi
if the far end of the member is fixed, whilst M, = 3EI6/l and is
proportional to K = 31/41 if the far end of the member is
hinged, assuming all members in a frame or structure have the
same F—otherwise M, will be proportional to K = EIft or
K — 3EI/4l. (See equation (7), page 386.)

The sway-moment stiffness factor (M ) may be defined as the



412 THEORY OF STRUCTURES

moment produced at the ends of a member when one end is
displaced laterally a distance A with respect to the other end
and when both ends are restrained against rotation, or when
one end only is restrained against rotation. For members of
constant cross-section M,' = 6EIA[I* and is proportional to
K’ = I[I* if both ends are fully restrained against rotation.
while M, — 3ETA/I* and is proportional to K’ — I/28® if one
end is fully restrained against rotation, and the other end is
free to rotate. See equations (9), (13) on pages 387, 388,

The shear-stiffness factor (S,) may be defined as the force
required to displace one end of a member laterally a distance A
with respect to the other end, when both ends are restrained
against rotation, or when one end only is restrained against
rotation. For members of constant cross-section, 8, = 12EI AP
and is proportional to K" = [/13, if both ends are fully restrained
against rotation, and is proportional to K* = /413 if one end is
fully restrained against rotation and the other end free to rotate.
See equation (10) on page 387,

Carry-over factor (C.0.F.) is the ratio between the moment
produced at the other (or far) end of a member when one (or
near) end of the member is rotated through an angle § radians,
and the moment required to rotate the near end through the
angle 6. For members of constant cross-section, the carry-over
factor is plus one-half if the far end is fixed, and zero if the
far end is hinged.

Positive end moments are those which tend to rotate the end
of a member in a counter clockwise direction (or the joint in a
clockwise direction). Negative end moments are those which
tend to rotate the end of a member in a clockwise direction (or
the joint in a counter-clockwise direction). The signs are the
same as those used in the slope-deflection equations.

Also, as for other methods, it is only necessary to use relative
values of £ and 7 except when shears and moments are due to
non-elastic effects such as changes in temperature, definite
yielding of supports, shrinkage, ete,

215. It has been seen, in the slope-deflection method, that
an end moment at a member is equal to the fixed or direction-
fixed bending moment modified by the moment due to the end
rotation, the other end being locked, plus & moment due to the
rotation of the other end of the member, when the end con-
sidered is locked, and, if sway occurs, plus & moment due to
the axial rotation of the member, the ends remaining locked.
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In the moment-distribution method, it is assumed at first that
all joints and supports are fixed against rotation and translation.
Then the moments induced at the ends of the members are those
due to the loads on them and these are the fixed bending
moments, Mg x5, Myns, Myop, Mypc, ete. These are then modi-
fied in turn due to (a) the rotation of a joint at the end of a
member, (b) the rotation of the joint at the other end of the mem-
ber, and (¢) the axial rotation or sway of the member, if any.

Thus, if the rotation or translation of the joints is restrained,
then apart from the transverse loads on the members, there
are imposed locking couples at the joints and external forces
restraining sway. Now to cause the joints to rotate, we apply
to them releasing couples to get rid of the locking couples, but
the sway restraints are kept on whilst the rotations take place.
This corresponds to modifications (a) and (b) in the previous
paragraph : when the members are allowed to sway (modifica-
tion (¢) ) there must be no further rotation of the joints : i.e. after
the joints are once freed, then before a translation of a joint
takes place, it must be re-locked in its freed or new position.

216. The problem now is: how to find these modifications by
the method of moment-distribution. The method is as follows—

(1) Caleulate the proportional stiffness factor K for each
member of the framework, K = I/l for two fixed ends or
K = 31/4l for one end fixed and one end hinged and for
uniform cross-section.

(2) Caleulate the carry-over factor for each member of the
framework (equal to plus one-half if the cross-section is uniform).

(3) Calculate the fixed beam moment at the end of each
loaded member of the framework. There will now exist in
general an unbalanced moment at each joint.

Allow one such joint to be released for rotation only,
keeping all the other joints fixed. This joint will rotate until
sufficient moment has been added to or released from each
member entering that joint, to balance the moments around
the joint. The amount of moment added to or released from
each member will be proportional to K (stiffness factor) of
the member, and the total of these correction moments will
equal the unbalanced moment at the joint. All corrections

will have the same algebraic sign, which will be opposite to
that of the original unbalanced moment.

*. (4) Distribute the resulting unbalanced fixed beam
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moment at each joint among the members entering the joint
in proportion to their stiffness factors, as a correction of
opposite sign to that of the unbalanced moment. This step is
“Bal M" in the tables of the various problems.

At the same time, if the various members are of constant
cross-section, there will be produced at the other (or far) end
of each member a correction moment (carry-over) moment of
the same algebraic sign and one-half the magnitude of that
produced at the rotated (or near) end.

.. (5) Multiply the correction moments in stage (4) by the
carry-over factor for the corresponding member, and carry over
this result as a correction to the opposite end (denoted C.0. in
the problem tables). As a result of these carry-over moments,
there will again result at each joint an unbalanced moment,
and therefore if there is no sway it is necessary to repeat
steps (4) and (5) until the carry-over moments are sufficiently
small to be neglected. If there is sway, after step (5) there must
be added another step (6).

(6) Consider a vertical framework supported at its base.
For sway due, say, to wind or horizontal loads on the vertical
members, after step (5) complete the total corrected moments
in the columns (or members) whose axes have rotated. Then,
e.g. for columns of equal length, compute the total column
moments in each storey. Add a correction moment in each
storey so as to make this total moment equal to the overturning
moment on the storey, distributing this correction moment
between the columns in proportion to their K’ = I/I* for two
fixed ends or K' = I/2]* for one end hinged (or K' = I/l or
/21 as [ is constant) and dividing the correction moment for
each column equally between the top and bottom. This is
denoted by Bal. § in the tables of the problems. (See notes on
the bent equations and equation (20),

In cases where the column lengths are unequal, the
shears must be computed (equal to the sum of the column
end moments divided by the length), and this value corrected
to equal the actual shear in the columns. (See notes on the
shear equations.)

The correction shear force will be divided between the various
columns in proportion to their K* = I/P® for two fixed ends
(or K* = I/41* for one end hinged) values, and will produce a
total moment on each column equal to the shear on that column
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multiplied by its length, this moment to be divided equally
hetween the two ends. As before, steps (4), (5) and (6) will be
repeated until the corrections are small enough to be neglected.
Note that when step (4) is repeated the corrections of both
steps (5) and (6) must be balanced; similarly when step (6)
is repeated. (See equation 21.)

Several examples are given illustrating these methods and of
the tabulation of the work. The signs of the side forces and the
directions of action of the shears are the same as those given in
the previous discussions for the slope-deflection equations.

Nore. In the tables used for the moment-distribution
golutions, a line is drawn under the moments at a joint after
every operation of balancing (Bal. M).

Nores ox Step (6): For a vertical framework supported at
the bases and with sway occurring due to horizontal loads or
unsymmetrical vertical loading, etc., write down the general
shear equation for each storey; then for the vertical members
of the ground floor,

Referring to the frame given in Fig. 2292,

Myp+ Mps , Moo+ Moo Mert Tre ,
hy ‘ ha - hy :
it b [+
=Pﬁ_1+Plﬁ_;+ PEE;—i- ete. =X . . (40)

After all distributions and carry-overs this equation must be
satisfied (X = 0 if no horizontal forces acting). If there are
more than, say, two vertical members (swaying), then it will
be better to work with the above shear equation, the correct
signs being used.

‘After balancing the fixing moments due to the first joint
rotations, and the first carry-over moments, moments will be
induced at the ends of the columns. Let these be M’ 5, M g4,
M'cp, M', ete. These moments will include the fixed bending
moments (if any), the moment as a result of balancing a joint
and a carry-over moment (if any). Now find the value of the
shears at the tops of the columns due to these moments.

Then calculate—

M'A_B;:'_Mﬂ ok Ei}r—ﬂﬂ: 4+ etc. = Y (say) . (41)
1 t 4

Then in order to balance X after the first sway, shear at the
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tops of the columns must be introduced equal to X — V.
K” ypn, K"cp, ete., are known.

Then X — Y is proportioned to each column according to
their K" values.

Then to AR, 8 n= S §

W x K‘Aﬂ:
and note will be taken of the direction in which it acts - (42)

X—¥ =
2x7 X Kon:

and note will be taken of the direction in which it acts . (4:3)

The direction of action of X will be known therefore, and also
from the signs of the M”, , ete., the sense of action of ¥ (finally).
Therefore sense of action of X — ¥ will be known,

Then the couples to be introduced in the columns for satis-
fying the shear equation will be

4 3———~"“2' f”‘, top and bottom of 4B, if 4 and B are fixed (44)

and to UD, S‘ED —

i S cnﬂ- .:‘ﬂ_", top and bottom of D, if € and D are fixed (45)

and similarly for other members,

If a column is hinged at its base, then there will be a moment
only at the top of the column, the correct K* to be used for
this case in relation to the K"s for the 2 fixed-ended columns or
members. Then, e.g. §,,,. lig =My, ifAis hinged.

These couples are inse in the tables in the first Bal. § line.
After the rebalancing of these and the carry-over couples at
the joints, i.e. after the second balance, additional couples will
be introduced into the columns, say M*,, M",,, ete.

Then using

Myn+ My M'op + M7y

i + tete. =X, . . (46)

1
thus X, must be cancelled out by introducing, to the tops of
the columns, shears in total value — _ X, ; as we have already

dealt with any external effects represented by X, then
L X -
S&H:—-fﬁ;‘f-xﬁn. . . [47]

and’similarly for the other columns,
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The additional couples to be applied to the columns will then
be found inserted in the tables for the 2nd Bal. S. These and
the 2nd carry-overs are re-balanced and the work carried out
to the end.

If there are only two vertical members we can easily use the
bent equation.

MAE+MBL Mcn'i'-“nc @ b
= P— + P+
o N W e @

h I
My + My + 32 op + Mpo) = Pa + Pb.hii —Z . (47a)

If there are no horizontal external forces operating, Z=0.
After the 1st Bal. M (Joint Bal.) and carry-over (C.0.) we
find the column couples

M, , and My, ete.
L r r h L #
Then M'yy-+ M'pa+ EEMBD+MDB:’=Q . . (48)

Now to balance Z, moments M",y equal to M"y,, ete., must
be added to the columns so that the bent equation = Z— Q.
K',p and K'gp, are known, so that

Wi _ Kas

Mop K'op
. " » hl K’L‘-D " K'cop "
S M+ M “_'_.IT, m-ﬂ ;BJ-‘K—"—r”-M AB

i B LR S R ST 5! ()

M" ;5 can be found in magnitude and sign (see equation Z — Q),
and consequently M"¢y. These couples are inserted in the 1st
Bal. §., after these have been re-balanced with any carry-over

moments that are introduced into the coluomns.
Find the bent equation total for these, say Z.

hyfK' 2 K'o 5
Then M",p5+ M"sp+ I{;(K_E M st K—';z .M M.)
— — Zl . i . A I:ﬁﬂ']

The moments M" thus found are placed in the table opposite
the second Bal. 8. The whole work is then carried on to
finality.



418 THEORY OF STRUCTURES

From the tables for a particular end moment, we see that it
is equal to
a fixed bending moment (if any),
a final moment due to rotation of the joint,
a final moment due to carry-over from the other end joint
rotation, and
a final moment due to the sway of the member.

217. Alternative for Step (6).* Consider the portal and its
loading indicated in Fig. 226. The structure is held against
: ; side sway, the fixed end moments
B 1 c due to the applied load calculated,

and the distribution ecarried out
T until the joints are balanced by
£, steps (4) and (5).

The bent equation is
-F,FT_, "ﬁ‘l Mg+ My,

M'l— +£‘:{MCD+MDG}=P‘;' (51)

Now without side-sway, values of
the column end moments have been

Fro. 226 found, Let them be M’,,: M'y,;
M'opand M.

Calculate the sum M’,
¥ i (] h L ’
where M-ﬁﬂin+ﬂn4+f{ﬂcn+ﬂuc} - (52)
]

Any difference between M’, and Pa is proportional to the
moment introduced into the structure by holding it against
side sway.

Let M',— Pa= M,
Caleulate K'(= I/k*) for each of the columns.

When sway takes place, the horizontal movements of B and
C will be the same; then the moments introduced into the
columns will be proportional to their K’ values, i.e.

* Bee “'Bide-sway Correction for Portals, with Hori tal Loading Analysed
by the Moment-Distribution l![ml:uudu": w. "!!‘ mm
Conerete and Uonstructional Engineering (July, 1942).
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Assume any convenient value for M .y, and My, and calculate
the corresponding moments Mop and M. These moments
are now distributed and the joints balanced as per steps (4)
and (5).

The sum

h
"H.AB 4+ My + I;'._:{M'c:u‘i' M'nc} = M7, . . (83)

The moment due to side sway has already been found to be
M',; the balanced moments for the second distribution are

M
therefore altered in the ratios M—,', and these moments are
L]

added to those obtained from the original distribution (no sway
distribution) to get the true moments.

Therefore, e.g.,

Ui g
M,y (true) = M'yp+ Man - ]{—5 . . (54)

and similarly for the other moments.

A number of worked examples are now given introducing the
various results given in the long discussion in the previous

paragraphs.

51%. Note Again, the Procedure in the Moment-Distribution
Method.

(a) All joints are locked against rotation, and all members
are restrained from axial rotation or swaying.

(6) Joints are unlocked in turn and moments distributed to
the members at the joint ends and carried over to the opposite
ends. The restraints against axial rotation of the members and
consequently the translation of the joints have remained on
the structure.

(¢) The joints are re-locked in their new positions before the
sway restraints are removed. These sway restraints are now
removed and the axes of members are allowed to rotate with
resulting joint translation, there being no rotation of the joints.
The resulting moments at the ends of the rotated members are
now calculated.

(d) As a result of these operations, locking moments and
further sway restraints are introduced and consequently steps
(b) and (c) are repeated until finally the locking moments and
sway restraints are completely eliminated.

Memeers wiTe VariasLe [. The discussion of the methods
has been based upon the assumption that the moment of
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inertia remains constant throughout the length of each member.
Though seldom strictly true, the assumption gives results
sufficiently exact for designing purposes for a large class of
problems in continuous girders, building frames, secondary
stresses in riveted structures, etc. There are many cases,
however, in which the deviation from a constant I value is too
great to ignore if the results are to be practically usable, and if
using the slope-deflection method, modified slope-deflection
equations are required. Similarly for the moment-distribution
method, this must also be modified for members whose moment
of inertia varies over all or part of the length. The fixed-end
moments and the distribution and carry-over factors will differ
markedly from the case of that for prismatic members. Tables,
in other works of reference, have been prepared from which the
modified values for these terms can be obtained, and when they
are determined, the solution is carried out in the same way as
for members with constant I (see references (2) and (4) ).

REFERENCES
(1) Bee Chapter IX, poge 219,
(2) Continuous Frames aof Reinforced Conerete, Croas and Mo 5
(3) Theory of Structures, Timoshenko and Young. :Muﬁmw-rgiﬂ & Co.)
(4) Fundamentals of Indeterminate Structures, F. L. Plummer, (Pitman
Publishing Corporation. )
(5) Reloxation Methods in Engineering Science, R. V. Southwell. (Oxford.)
(6) Continuons Beam Structures, Sheploy. (Concrote Publications, Ltd.)
(7} "“The Problem of Sway in Complieated Rigid Frames,” J. L. Matheson.
Inst. of O.E.: Paper No. 6, April, 1045,
(8) “The Sidesway Correction for Portals with Horizontal ing, eto.
W.T. Marshall. Conerete and Constructional Engineering, Vols, 37 and 38,
(0) “Frames subjectod to Multiple Sway,” A. J. Francis, Concrete and Con-
structional Engineering, Nov, and Dec., 1049

219. Illustrative Examples. In these problems, when solving
by the moment-distribution method,

Bal. = Proportionate amount of unbalanced moment to be
given to a particular beam. It is represented by

K[EK at the joint, or the ratio E’“ﬂ"-% a
the joint. Telative

C.0.F. = Carry-over factor,

F.B.M. = Fixed bending moment.

Bal. 8 = Balancing couples due to sway.
Bal. M = Balancing joint moment.
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Ilustrative Problem 15. (See Chapter IV, p. 98.)

Heam continuous over two spans of length I, and loaded with a uniformly
distributed load of w tons per unit length. Find the moment at the central
support. (Fig. 227.)

Assume EI constant for the two spans and that the ends are
simply supported, and that the supports are rigid.

4 per anit Itﬁﬂ'l B wrper unit lendth
c

gt s

Fic. 227

Solving by the Slope-deflection Method. K is the same for both
beams. Considering span AB,

wi*
M,p=0= 2EK(20,5 + Opa)t 12

wil?
Mna = ZEK‘.HJLB + ﬂﬂux} T

Due to symmetry of the beam and the loading about a
vertical axis through the support B,

Opa = Opc =0

+ 21‘-“1
- 2My, = 2BK(x8) — g
Qpl® wl®
Stk EMB_&'— MAS = 2MHA = = ].T'}.-__TE
wl?
.‘. MBA = — T

Notg. In all slope-deflection equations K for all members is
equal to I/I, whether they are fixed at both ends or fixed at
one end and hinged at the other. In the latter case, the moment
at the hinge is zero: but the right-hand side of the equation
includes the fixed bending moment, treating the beam as fixed
at both ends.

Moment-Distribution Method—No Sway. (a) Assume that 4
and C are fixed initially : as they are hinged the final moments
M, and My are = zero: .. Bal, will be 1 at 4 and C.

1 1
Myp =+ ‘I?,“‘P'- Mypy =— EWF:
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1 1
Myop = — 5ul; Mrnu=+i‘2‘ﬂ—‘3'+
E.&B=EBG=IIL e KLB H Knczl 1

Member AR B4 | BCO [#)]
K 1 ' 1
.0.F, 1K : < i
L, SRR Y e
o 2 Kgp+Ky 2|23 K+ Kps
Multiple wi®* F.BM. | + -t |+ = 7
Bal. M. | — 0 0 s
COF.| 0 —& |+ 0
M 0 —F 143 0
wi®
Hn.ﬂ. o Mnc R T8
Or—(b) Initially 4 and €' are hinged :
wit
et MPLB = MF‘GD = l]'a.nli Ml'ﬂai: —_ Mrnc =_T
Mexcbor | 4B BA ] BC cB
K | §x1 b |
Rel. K | 1 | i 1
Bal. ] ' ¥ 0
C.0.F. 0 ! 0
Multiple wi®; F.BM. - YR =
8 C.0. I 0 3 -
EM| o0 =k | +3 0
: wi*
.Mua:—-thz—T

Note. In the first solution above, each member has been
treated initially as a beam fixed at both ends, and therefore K
for each member is I/l (taken relatively as 1) and at each end
(including the hinged end) there is the fixed bending moment
due to the load on a beam fixed at both ends. As the final
moment at the hinge is zero, then the Bal. factor at the hinge
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is unity. There is thus a Bal. M at the hinge and also a carry
over from the hinge to the other end of the member. In the
seeond solution above, the members have initially been treated
as hinged at one end and fixed at the other. The K value is

then = § X % (relatively § x 1): the F.B.M. at the hinge is

zero and the correct F.B.M. is taken for a loaded beam hinged
at one end and fixed at the other. There is obviously no
balancing, in this case, at the hinge and no carrying over to the
fixed end.

llustrative Problem 16, (See Chapter IV, p. 100.)

1 Ton per ft. ITon per ft.
A o

Te— 20 rt___g;—zn ft—on
r h
¢ o1t Erﬂ-usfl'.
E%a* t *Bc‘j

Fia. 228

EI = 40,000 (ft.*-ton) units, and, as it is the same for both
AB and BC, then K = I/l is the same for both members.
. e 0-1 . ; 005
$ap i8 positive = 555 dyo is negative = —5.-
Slope-deflection Method.
Myp=Mcz=0
Myy+ Myc=00r My, =— Mye
M ;5 all equal to 1-1-"5 = l}-(la:ﬂrﬂ = .IJ.::_IJ tons-ft.
M,p = 2EK(20,5 + Opa T 3¢an) + 100/3 =0
Mpy = 2EK(0pp + Wpa + ) — lm.-'la
My, = 2EK(20,n + 40, 5’#‘&3)"‘ 200/3
. oM, — 2EK(30ps + 3ban)—100. . . @
2M o = 2EK(4050 + Weop + Bdpc) + 200/3
Mo = 2EK(0pc + 20cn + 3dpc) — 100/3 =0
- oMy, = 2EK(30pc+ 3$p)+100. . . (@)
Now Oy, =0ge




424 THEORY OF STRUCTURES

Adding (i) and (ii),
ZEK{EEEA + 3P + 39!'301 =0

6095, + g—g =5 %‘:‘].E =
c My, = %(- ™+ %&i) el
Mo = 505+ Tap) — 0
— 55— 50

= 22:5 — 50 = — 27-5 tons-ft.

Moment-Distribution Solution. (See Fig. 229.)

Fio. 229
Assume : = unity for both members :

l

Mamber AB BA | BC cB
K $x1 §x1
Rel. K 1 1
Bal. | O ' IE ] 0
C.0.F. [ 0
No sway. F.B.M. | 0 — 50 + 50 0
Bal. | 0 0 0 o
Sway fixing moment | 0 + 30 — 15 0
*Bal. M. | 0 —T86| =745 0
EM (tons-ft.) | 0 — 275 | 4+ 275 0

*Bal. 4 30— 15 = 4 15. Amount to BA = } X 15 and is negative;
Amount to BU = } » 15 and is negative.
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Norte. Sway Moments.
Moment My, due to sway and no rotation of B is

+ SEIA/? = 3 X 40,000 x 0-1/20* = 30 tons-ft.
Moment M 5o due to sway and no rotation of B is
— 3ETA[IP = — 3 X 40,000 X 0-05/20° = — 15 tons-ft.

Finally Mg, = — 275 tons-ft.
My = + 27-5 tons-ft.

For a beam hinged at one end 4 and direction fixed at the end

B, and carrying a uniformly distributed load,

wl® | wl® wl?

Mysr=13+ 248
In this example My, = —50-0 tons-ft.

2 tons per ft. itonper ft.  3tonsperft

Li— 20Tt —

i LR
30 ft——p——40 Fr——
Fia. 230

Tllustrative Problem 17. (See page 102.) See diagram Fig. 70
and Fig. 230.

Slope-deflection Method : No Sway.
EK for AB BC D

EI El EI

equals 30 20 20

* EK for AB : BC : CD
1 1 1
equals 35 ‘2 - %

equals 4 : 3 6

These are the relative values we shall use in the slope-deflection
equations ; the values of the 6's obtained will be the correspond-

ing relative ones.
Let the 0 terms be fi, O, 0 and 0y,
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Considering beam AB—
M,y = 0 = 2EK (20, + 0g) + 150
Mgy = 2EK,5(0, + 20,)— 150

Considering beam BC—
Mo = 2EK (205 + 0c) + 133} .
Moy = 2EKyc(0p + 200) — 133} .

Considering beam C'D—
Moy = 2EK (20 + Op) + 100
Mn.c = ﬂ _ EE‘HCD{HG + EED] r— !ﬂ[l'

Now we have that—
joint B equation: My, + My, =0

joint ' equation: Mgp + Mo, =

Considering equations (i) and (ii) and eliminating 6,
we find ﬂ'fuﬁ —_ 3EK$'I'!{0R}_ 225

Similarly for equations (v) and (vi)
ML']J —_— SE‘KCD{HC} -E— lﬁﬂ

Considering equations (vii), (viii), (ix) and (x),

we find fy =+ 4-16, and 0. = — 1-38

Substituting in equations (ix) and (x),
My, = — 175:08 tons-ft.
ﬂ.nd M._tn == + 125'15 tDnﬂl‘ﬂL

(i)
(ii)

(iii)
(iv)

(v)
(vi)

(vii)

. (viii)

(ix)

(x)

These agree well with the corresponding values found by the

three-moment method,
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Moment-Distribution Method: No Sway. Assume E = same
for all members = 1, and I = 1 for all members.

AB BA | BO CB | OD Do
K B v 1%
Rel. K 6 ’i s g’
Bal. | 0 =& | =1 - | =1 0
C.0.F. 0 ; ii ¥ . 0
FEBM. |0 — 2250 | +133-33 —133-33 | +1560 0
Bal. M. | - 14583 | - 4683 — 666 | — 10 E
i [ 0 _ 333 + 2201 0 =
Bal. M. | - L1467 | +167 —916| —1374 -
C.0. 0 — 458 +oB4| L0 .
Bal. M. | — +299| +220 —034| —03 Fd
co. |- 0 —017 + 116 0 =
Bal. M. | - + 0-09 + 009 — 0-46 — (-69 -
co. |- 0 — 023 -+ 005 0 %
Bal. M. | - Lo12| +012 —002| —003 3
c.0. | - 0 _ 001 - 0-06 0 3
Bal. M. | - o | 0 —003| —o003
EM (tons-ft.) | 0 — 17500 | +175:03 —125:00 | +126:00 0
(My,) |1 (M)

(‘ontinuous beam results: 175-00 tons-ft.  125-00 tons-ft.

(Slide rule working.)
Slope-deflection : 175-08 tons-ft.  125-16 tons-ft.
Moment-distribution : 17500 tons-ft.  125-00 tons-ft.

 llustrative Problem 18. (See page 107, Fig. 71 and Fig. 231.)
Fixed ends at A4 and D, therefore no rotation of the beam ends

_ihd nunperﬂ-.._————)-nd
le——1woft. —— 100 ft —a-r(—sufu
Fic. 231 I

at these points, and therefore no balancing moment is required,
i.e. Bal. = 0.
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ET is constant.

Elfl = EK for AB : BC : CD
o EL EL EI
100 ° 100 ° 60
Relative EK is therefore 3 : 3 : 5
By =08,=10
Let Opa = 0p; Oop = Ocp =0

Mpip =— Men, = 10,000/12 tons-ft. :
Mpo= Mop = 10,000/12 tons-ft. ;
Mycp = Mppo = 300 tons-ft.
My = 6(03) 4 10,000/12
My, = 6(205) — 10,000/12
My = 620y + ) + 10,000/12
Mo = 10(0.) — 300
M.y, = 10(20,) + 300
Mep = 6(20, + 0g)— 10,000/12
Joint B equation: My, + M, = u
Joint ' equation: M, + M, =0
Solving all the above equations for 0 and 0,

0p =— 437 and 0, = + 1748

It is found that—

M= + 807-11 tons-ft.
My, = — Myo = — 88577 tons-ft.
Mep =— Moy = — 649-60 tons-ft.

Mnc = — 125-20 tﬂﬁﬂ"&u
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Moment-Distribution Method: No Sway.

Member f AB BA | BC oB | oD ne
Rel. K's 3 l 3 5
3 1 3 s 38 5
Bal |0  §y5=3|3"5+3 5+5 8|8 3+8
C.0.F. E i i
FBM. | +833-33 —83333 | +833:33 —833:33 | -+-300-00 —300-00
Bal. M. | 0 olo +200-00 | +333:33 0
c.o.| o 0 | +100-00 0|0 116667
Bal. M. | 0 — 5000 | — 50-00 0|0 0
C.0. | — 2500 0|0 — 2500 | 0 0
Bal. M. | O oo + 0-38 | + 1562 0
co.|o 0| + 460 ol|o + 7-81
Bal. M. | © _ 235 | — 2356 o0
co. | — 118 oo — 118 |0 0
Bal. M. | 0 0|0 + 045 | + 073 0
co.|o ol +o2s  ofo + 087
Bal. M. | 0 — 012 | — 012 0olo
c.o. | — 008 00 — 008 | 0 0
Bal. M, | 0 oo + 002 | + 004 0
M (tons-ft.) | +807-07 —885-80 | +885-80 —G49-72 | 64972 —125:15
(M yn) (M) (Mop) (Mno)
Mﬁﬂ MB.& MC o M Do
Results (tons-ft.) (tons-ft.) (tons-ft.) (tons-ft.)
Slope-deflection .
method 807-11 885-77 64960 125-20
Moment distribution ~ 807-07 885.80 64072  125-15
(‘ontinnous beam §07-13  885-73  649-93 125-14

Iustrative Problem 33.

(See page 206 and Fig. 232.)

EI is the same for all members, .". K = Il is the same for

all members.

H,=Hyin magnitude but opposite in sign, as no horizontal
forces acting on the frame.
Slope-deflection Method. The beam is symmetrical about a
vertical axis through the load point and is symmetrically loaded.
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Wi 16
Myppe = + i 1—}; 2 = 1§ tons-ft. ;
Wi
MF'CB__E" =—1§tﬂn3ﬁ'
-Mﬂ_hz EEKIﬂ.!B"I_ ﬂﬁn&:l"f‘ ﬂ
Myp=0= 2EK (20,5 + Oga) + 0
EMEAC EEKEEH_&B‘!- 4&3&}4"{]
. 2My, = 2EK(20,5 + 405,) + 0
H; 1Ton
+ + C
J||_ L e | .
| fe—— 15ft —>!'
ls‘r'r:r i
'. i
S A TN TR
A ATTR D

Fro. 232

Subtracting the expression for M ;, from that for 2M,,
My, = 2EK(36y,)
Myo = 2EK (250 + O05) + 15/8
Due to symmetry, bop =— 00
5o Myo = 2BK(050) + 15/8
My, +Mg,=0
o EK(305,) + 2EK(fpc) + 15/8 = 0
Opc = gy
2. 8EK(65,) + 15/8 =0
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3
*+ 054 =—§FK
! 9
- MB.& — EK(—- m)-’* l]
= — 1-125 tons-ft.
1-125 -
NHy=—5 = 0-075, and acts from left to right.

Moment-Distribution Method : No Sway.
Let K = I/l be represented by unity for all the members.

AB BA | BO CB \ ¢D Do
Cols. hinged |
at base. K §x1 1 §x1
Rel. K 3 4

Bal | O il 4 (1 0

C.0.F. 0 i 0
FBM. | 0 0| + 1875 —1875|0 0
Bal. M. | © _ 0804 | — 1072 4 1072 | — 0-804 0
co. [0 0| + 0536 — 0536 | 0 0
Bal. M. | 0 _ 0230 | — 0-307 + 0-307 | + 0-230 0
co.lo 0| + 0154 — 0154 |0 0
Bal. M. | 0 _ 0066 | — 0-088 -+ 0-088 | + 0-068 0
c.o. |0 0| +0044 —0044 |0 0
Bal. M. | 0 _ 0018 | — 0025 + 0025 | + 0:019 0
c.O 1] 0| 4+ 0073 — 0-013 | D 1]
Bal. M. | © 0006 | — 0007 + 0:007 | + 0008 0
0. |0 0| + 0004 —0004 |0 0
Bal. M. | 0 _ 0002 | — 0-002 + 0-002 | + 0-002 0
M (tons-f.) | 0 117 | + 11125 —1-125 | 41187 0

(Mpa) (Mep)

These results agree with the slope-deflection method.

KE=%X lforthamlumsbemmtheyamhingadntths
bases.
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Hlustrative Problem 48. (See Figs, 233, 234 and 235.)
(If); Kyp: Kpo: Kep=20:20: 20

T T B |
K'{=r‘ IJ'IF'}: E’:A'ﬂ = Kl’ﬂﬂ= 2 : 4
=11:2
K.{z I.lrl.'r.s]g K'.i]] - K’cn = 02 : 08
; — [

E is the same for all members AB = h,; CD =k,
ol 1gf ——m
B [od
T E 1=200Funits

sft E
T=100Fkunits| 5Ft

12" I= 200t units
E
7
54t
Jq A

h
Bent equation: M., + My, + E-:{Mcn + Mye)

Fia. 233

= 12 X 5 = + 60 tons-ft.

. Mg+ My, | Mop+ Myo 12 ¢ 5
Shear equation : i + = g

= + 6 tons (equivalent to acting at B)

Distribution of the sway couples, assuming all joints locked
after a balancing (Bal. M) and carry-over (C.0.)—

(M'yn=Myg,): (Mep=Mp)=K'y5: Kcp=1:2
Corresponding shears at the tops of the columns—
Hyp: Hop=K"pp: K'gp=1:4
Myyp = 15:00 tons-ft.; Myp, = — 1500 tons-ft.
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fe-ton
7-50+ Required Gtons (total)
3 nﬁﬁ Co Bl Ic
i
128" E0-1.125 = |4:875 " additional
w10 shear rtfguircd
_ | to satisty sway
S A K=4| shear
0t L
o
1]
— T
wy == 125 ""A
fE-ton
t.-ton
Fia. 234
I'lE
E____._.—-—-——-_?ﬂ

Dm Diag.
Units-

B
ia Lo
f
I
I
}-mn- 1650 e 1 & :
Moment / Displacement
A

i T
Bt
-~

+—-I-1

: Shearing Force sr.szz

Diag,
¥ for ABand CD
|

Fiag. 235



THEORY OF STRUCTURES

434
Moment-Distribution Method, by Step (6) : Sway Problem.
Momber | AB BA | BC OB | 0D Do
Rel. K 1 : 1 1 1
1 1 1 1
i e b m G, Tt e 0
C.O.F. 3 i %
Rel. K* 1 0 2
Rel. K* 1 0 1
FBM. | + 1500 — 1500 | 0 0o 0
Bal M. | 0 750 | 4 7-50 00 0
Cc.O. | + 875 0|0 4+375 |0 0
Bal B. | + 485 -+ 4880 0| +87 4075
Bal M. | 0 —244 | —244 —675 | — 675
C.O. | — 122 0| —338 —19 |0 — 338
Bal. 8. | 4 2:39 + 230 | O 0| + 478 + 478
Bal. M. | 0 + 050 | 4050 — 178 | — 1-78 0
C.O. | + 025 0(—080 40350 — 080
Bal. B. | 4+ 046 4 046 | 0 0| +082 4002
Bal. M. | 0 +0:22 | 4022  — 068 | — (58 0
Co. | + o011 0|—02 o110 — 020
Bal 8. | +014 40140 0|+ 02 4+ 028
Bal. M. | 0 + 008 | 4008 — 020 | — 020 0
C.0. | + 004 0|—0l0 +o04|0 — 010
Bal. 8. | + 0065 +005|0 0| +010 +o0l0
Bal. M. | 0 + 003 | 4+ 008 — 007 | — 007 0
EM (tonsft.) [ 4 2585 — 110 | 4+ 123 — 645 | + 645 11-17
(M yn) (Mpy,) {(Mop (M)
1

Mg+ My, + 2(Mgy, + Mye) = + 599 = 60-0 tons-ft.

lst Bal, S. After the first balancing of the joint moments
and the carry-over, there have been induced in the eolumns
additional moments of + 7-5 and + 3-75 tons-ft., whose sum
is 11-25 tons-ft.

(The sum of the fixing moments on column 4B — Zero.)

NDWMLH-I"MBA—l"g'iIMcD‘E—HDC}
= Pa = 12 X 5 = 60 tons-ft.
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Therefore the sway of the frame has to introduce a further
-+ 48-75 tons-ft. into the columns. (60 — 11:25 = 48-75.)

Keeping the joints B and C locked, and swaying the frame,
extra moments M',p= M'gy and M'op = M'pe will be
introduced into the columns.

¥ i
Myn_ Kus_1

Now —_—— = 7
Moy, Kop 2
Mo = 2M'4y
Now h = A0 =2
hy 5

LM s+ M 202M 4 + 2M' )
= 60— 11-25 = 48-75

i 10M' = 4875 . My = + 488 tons-ft,
My, = + 975 tons-ft.

The joints are now out of balance again, so they must be
re-balanced and the moments carried-over. Additional moments
are thus introduced into the columns and these have to be
cancelled out by a further swaying of the frame.

9nd Bal. 8. Additional couples in 4B are — 2-44 and — 1-22
ft.-tons, and in CD are — 6:75 and — 3-38 tons-ft.

Then the bent summation becomes — 23-91 tons-ft.

Having already balanced the external moment of 60 tons-ft.,
this moment of — 23-91 tons-ft. must be cancelled out by a
moment of + 2391 tons-ft. divided amongst the column ends
by swaying.

s 10M = 2391 tons-ft.

Lo H’&B = M’u& —_— + 2-39 't-{.}l.'lﬁ—ﬂr. ﬂ:ﬂd
M'CD == Mtn{_- — + ‘!:'Tﬂ trur.'ls'ft'.
Balancing the column end couples for the column end shears

(see Fig. 234): after the 1st Bal. M and C.0., we have in the
columns (neglecting F.B.M.s),
-873
H additional at B = EIITE = (-9757, and

at O = 09756 X 4= 397
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These forces acting left to right and at the top introduce equal
couples at B and 4 of

+ 0975 X 10 = + 4-88 tons-ft.
and at C and D = + 3-90 % § = + 9-75 tons.-ft.

Similarly for balancing of the other additional moments which
will be introduced into the columns due to balancing the joints
and carrying-over.

Moment-Distribution Method when Using the Alternative Step (6) :

st Distribution—No Sway Allowed,

Member AR BA | BQ dB | CD ne
K's % 1

Bal. 3 0
C.0.F. : I i

FBM. | + 1500 — 1500 | O 0|0 0

Bal. M. | 0 7:60 | <4 7-50 0|0 (1]

C.0. | + 375 0|0 4+ 376 | 0 0

Bal. M. | O 0|0 — 1-88 | —1-88 0

Co.| 0 0| —084 0lo — 0-84

Bal. M. | O + 047 | 4- 047 0|0 0

C.O. | + 024 00 + 024 | O 0

Bal. M. [ 0 0|0 - 012 | — 012 [

Cco.| 0 0| — 0-08 0olo — 006

Bal. M. | 0 + 003 | + 0-03 0|0 o

CO. | + 002 0|0 4+ 002 |0 0

Bal. M. | 0 (T — -0 | — 001 [

EM (tons-ft.) | 4+ 1801 — 700 | 4+ 700 4+ 2:00 | — 201 — 100

(M ,g) {Mp,) (M) (M pe)

Mg+ My, + 2Mey, + Mpo) = + 6:00 tons-ft.
+ .Pﬂ'- —_— + ﬁ'ﬂ‘u tOIE'ft-., .,-. Bn'ﬂ_ ﬁ'm = + ﬂtﬂﬂﬂ'ﬂu*

introduced by sway.
For sway all joints locked, M’ = 2M',,,

or let M’y = + 10 tons-ft. and M’ ;, = + 20 tons-ft.
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2nd Distribution of the Proportionate Sway Moments.

Member | AB BA | BO cB| 0D Do
‘Ba’lr o : : i :
: i) i 0
C.O.F. i { i i
Sway F.BM. | + 10:00 + 10-00 | O 0| + 2000 + 20:00
Bal. M. | 0 — 00 | — 500 —10:00 | — 10-00 o
C.0. | — 2:50 0| — 500 — 250 | O — 500
Bal. M. | 0 4+ 250 | + 260 + 1-25 | + 125 0
C.0. | +125 o] +0638 +12]|0 + 0-63
Bal. M. | 0 — (32 | — 032 — {-63 | — 0-63 i
C.0. | — 016 0 | — 0-32 — 016 | © — 0-32
Bal. M. | O +016| + 016 +008 ]+ 0-08 0
C.0. | + 008 0| + 004 + 008 |0 4 004
Bal.M. | 0 — 002 | — 002 — 04 | — 004 0
c.0. | — 007 0| — 002 — 001 | O — 002
Bal. M. | O + 001 | + 0-01 o]0 a0
M (tons-ft.) | -+ 566 + 738 | —T3 — 10-67 | 4+ 10-66 + 15:32
(M yn) (My,) (Mop) (Mpo)
3 column moments = M,y Mg, + 2Mcp + Myo)
— - 67-95 tons-ft.

But £ column moments are to equal -+ 54-00 tons-ft.,
. the end column moments obtained must be reduced in
: + 5400
the ratio of o795 0-795
M .5 is then = 4+ 866 X 0795 = 1 688 tons-ft.
My, is then = + 7-33 X 0796 = 4+ 5-82 tons-ft.
My, is then = + 10-66 X 0795 — + 8-48 tons-ft.
My is then = + 15:32 X 0-795 = 4+ 12:15 tons-ft.
The final table is—

Member | AB BA | BC cB | D ; e
No-sway
Moment | 4 1901 — 700 — 301 — 1-00
Bwoy
Moment | -+ 688 -+ 582 + 848+ 1218
Final Values
{tons-ft) | + 25:89 — 1418 | + 118 — 647 | + 647 4 111B
s el
(M sn} (Mpy) | (Mye) (M) | (Mep) (M el

S T2 o iy A 5 W ool B s S e
Mg+ Mgy + 2(Hep T Myo) = + 59-05 = 60-00 tons-ft.
15—(T.543¢)
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Slope-Deflection Method.

Oan =0pc=10; dap=d, =%; '}!'nc=951:=£;‘
Sway is left to right, .", 104, = 54, or ¢p = 24, and both
are positive.

EK,y : EKpo: EKgp=1:1:1
M,y = 205 + 34,) + 15:00
My, = 2(205 + 3) — 1500
My, = 2(205 + Oc)
Joint equation: My, + My, =0
;. 885 + 205+ 64, — 15:00 = 0
Moy = 2(05 + 20)
Mop = 2(20, + 60,)
Joint equation: Moy + Mo, =0
S 205 + 80+ 124, =0
Bent equation: M, 4+ M,, + Mop+ Myo) = + 60
B‘ﬂ3+ IE&(}"‘ W,’.I-!_ 60
or g+ 205+ 10, = + 10
Joint B equation : 4+ 0o+ 3¢, =+ 75
Joint €' equation : Op 4+ 40+ 64, =0
Op = + 1-52; 0o = — 2:36; ¢, = 1-32
Thus M,y = 2506 tons-ft.: M pa = — 1-00 tons-ft.
Mop = + 640 tons-ft.; M, = + 11-12 tons-ft.
Note on the Moment-Distribution Method Alternative Step (6) for

Shearing Forces on the Top and Bottom Cut Ends of the
Members AR and DC.

(@) Shears due to the end couples, The only transverse force
is lem force of 12 tons acting from left to right on 4B and at
G ft. from 4.

Eﬂ: - 12x5
M3 = 6 tons
e M M M, M.
Now - “—"t‘—-; 4 iy —"—”—Ii— € has to equal 6 tons,
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o+ 2580 & (1) | 647 4 115

10 5
— 2-478 () at 4 + 352 (—>)atC
— 5-998 tons, nearly equal to 6-00 tons, and both shearing
forces act from left to right which is the direction of Pa/h.

The forces of 2-478 tons and 3-52 tons are the shears due to
the end couples.

(b) The total shears in the members at 4, B, C and D.

At A, the shear must be equal to the simple beam shear of
6 tons acting from right to left plus the end couple shear of
2-478 tons also acting from right to left, to give a total of
3478 tons acting from right to left. At B, the shear must be
equal to the simple beam shear of 6 tons acting from right to
left together with the end couple shear of 2-478 tons acting from
left to right, giving a resultant of 3:522 tons acting from right
to left.

The total end shears of 8-478 tons and 3-522 tons are equal
to 12 tons and act from right to left, thereby balancing the
external force of 12 tons which acts from left to right.

At € and D, as there is no external force on CD, the end
shears are simply those due to the end couples, i.e. 352 tons
acting left to right at D, and 3-52 tons acting left to right at C.

Nore. The sum of the actual shears at B and € must equal
zero; and it can be seen that this is so.

The sum of the actual shears at A and D are equal to 12 tons
acting from right to left and thus balancing the external force
of 12 tons. The bending moment, shearing force (column), and
displacement diagrams are given in Fig. 235.

Illustrative Problem 49. (See Example 2, pp. 217 and 220, and

Fig. 236.)

Referring to Fig. 236,

Kup: Kpo': Ken

AT - OBLR - BiE
Jr-." O Lo - I"-.'

— 15 : 1:0 (nearly) : 10
E — unity (say) for all members.
This is a sway problem : Let the frame sway to the right so
that B and € both move horizontally to the right by an
amount A.
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Let Oyy = Oyc =05 and Oy = '9;:1:- =l
n $ap=4¢ and ¢po = ¢,

A=8)=1%, . =44
pe-deflection equations for M, = 0 and M,

*r

From the slo
it can be shown that
M BA = ‘E':M'n + 3551

H.l.ld Hiﬂ]ﬂa!‘l}" MED = {3&(} + %]
My = 2(205 + 0c) + 45 and Moy = (20, + 0,) — 45

8 %r ot
; | O R T :
(€ Sf——sft—n
(] ]
Bft ok — |
[ : 4 1
|lJ'.‘_-—-—'I 375in _-“"""g. '.r
e I
A ;
(]
[
I
L
A 3
D
Fia, 236
Joint equations give My, + My, =0 . . (i)
Mep + Mo, =0 . ¢ . (i)
Shear equation : S T R B S B

or bent equation : Mg+ §Mop=0
Substituting in, and solving, equations (i), (i) and (iii),
g =— 966 o=+ 783; = 45395 (nearly)
Myo=— My, = + 2208 tons-in. — -+ 1-84 tons.ft.
Moy = — Mgy, = — 3312 tons-in. — — 9.78 tons-ft.

Hat A = — 1-84/8 = — 0-23 tons and acts from left to right.
H at B = 276/12 = 0-23 tons and acts from right to left.
Moment-Distribution Method : A Sway Problem Introducing
Step (6). Effective K, and K, as the columns are hinged

at 4 and D,

are i x15and § % 10
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. for this method, and no fixing couples at 4 and D,

] ¢ 4-5 3
KAB:'&HI‘_‘:B'ED="'4—':I:E:‘J:B:ﬁ
Member. | AB BA | BC OB ] oD
K 9 | 8 I' [
o .
C.O.F. A b i it 0
Rel. K* 9 h 1
4 1 15 1 36
A 3% § L 3 %
Rel, K* o7 0 8
EBM. | 0 0| + 4500 —4500 |0 0
Bal, M. | 0 9885 | — 2115 4+ 2475 | 4+ 2025 0
co.|o ol f1wes =108 |0 0
Bal. 8. | 0 4+ 800 | 0 0| + 333 0
Bal. M. | 0 1080 [ ~ 060 -+ 414 | + 311 0
R o| +207 —480|0 0
Bal. 8, | 0 L6720 0| + 208 0
Bal. M. | 0 T e6s| —413 4104 + 078 0
c.o.| 0 o| +082 —207|0 0
Bal. §. | 0 +312 | 0 0 | + 144 0
Bal M. | 0 Ti03| —1m  +038| 4027 0
co.|o o| +018 —088]0 0
Bal §. | 0 4136 | 0 0| + 060 0
Bal. M. | 0 T o8l | —078 4+ 015 4011 0
co. |0 0| 4 0-08 — 037 | 0 i
Bal. 8. | 0 4+ 058 | 0 0| + 024 0
Bal. M. | 0 T 034 | — 080 4 007 | + 008 0
co. | o ol +to0a —o015|0 0
Bal 8, | 0 024 | 0 0| + 010 0
Bal. M. | 0 T o015 | —013  +003| + o002 0
co.|o o| +008 —007|0 0
Bal. 8. | 0 +015 | 0 0l o 0
Bal. M, | 0 T o008 | —007 4004 | + 003 0
EM (tons-in.} | O _ 99.47 | 4 22-47 — 3332 | 4 3332 0
(tons-t.) | 0 et | 181 —277| +277 0
(Mpy) (Mep)

Bent equation: My, + §(Mcp) =10
* — 1-87 4 1-85 = 0 (very nearly).
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After 1st balance,
Myp + $(Mop) = — 2385 + 135 — — 10-35
M yp + §(M'op) = + 10-35
My =23M g,
220 M op = + 10:35

Mo =+ 354
M’ yp = + 800

and so onwards; or work from shear equations and shearing

forces and couples.

Moment-Distribution Introducing the Alternative Step (6).
(a) Distribution restraining frame against sway.

Momber | AB BA | BO CR ‘ oD Do
Rel. K H] 8 i
Bal. | - ¥ | 1% ¥ 2 7
C.0.F. 0 3 0
FEM. [0 0| 44500 — 4500 | 0 0
Bal. M. | 0 — 2385 | — 21-15 4 2475 | 4 20-25 0
0. | o 0| +12:38 — 10468 | 0 0
Bal. M. | O — 664 | — 5-54 + 604 | + 4-54 0
C.o. |0 0 (4802 —292|0 0
Bal. M. ' 0 — 180 | — 142 + 1-88 | + 1-24 0
Co. | o 0| + 084 —0:72 | 0 0
Bal. M. | 0 — 045 | — 039 + 0400 | + 0-32 0
co. | o 0| -02 —_o20|o0 0
Bal. M. | 0 — 011 | — 009 + 012 | 4+ 0,08 0
co. | o o o008 — 0-05 | 0 0
Bal. M. | 0 — 003 | — 003 4 003 | + 002 o
oM | 0 — 32-58 | + 2645 0

(b) Keeping joints B and € fixed and BC unloaded. Let the
frame sway; then the moments induced at the top of the
columns AB and CD will be in the ratios of their K’ values.

- 375 375

r

ARS8 X 8 IrOD S Yavs
K an Kgp =% 14 =295:1=190:4



THE SLOPE-DEFLECTION, ETC., METHODS 443

Therefore, assuming a value of K'syp as + 90 tons-in.; then
Kgop = + 40 tons-in.  Plus sign, because sway assumed from
left to right (positively).

These moments are now distributed in the usual way.

Member | AB BA | BO oB | ep D
oK [ X 9 : 57 we 7| 6
: 2 | & ' 0
C.O.F. 0 A § e 0
sm M. |0 + 90-00 | 0 0| + 4000 0
M. |0 T 4230 | — 4770 — 22:29 | — 17-10 0
co.|o 0| —1145 —2385|0 0
Bal. M. | O 4874 | + 473 + 1364 | + 1021 0
0. |0 ol + 682 4 283|0 0
Bal. M. | O _360 | — 320 —180|—122 0
co. 0 ol— o080 —160|0 0
Bal. M. | 0 +045 | + 035 4092 | + 068 0
Co. |0 i 0| + 044 +018)0 0
Bal. M. | O —025 | — 019 —010 | — 008 0
M + 5104 | | + 3240
. M M
Shear equation : —;—* -4 1—;” =0

or bent equation: 3Mgy + 2Mop =0
In the first distribution (no sway)
SMB& -l— wcn = — 91'74 + 52'9'} = — 44-84 utﬁtﬂ.
-, to allow for sway, a moment of 4+ 44-84 units must be
impressed on the columns so that 3My, + 2Mop = 0.

Now from the Second Distribution of the Sway Moments
(4 90 and + 40 units), 3Mps + 2Mcp = + 15312 34-08
— -+ 918-10 units, i.e. + 218:10 units due to sway will produce
at the tops of the columns, after distribution, a moment
-+ 51-04 units at 4 and + 32-49 units at C.

. + 44-84 units will produce after distribution :

4 5704 X 44-84 . )
- -2 -48
31810 units at 4 = + 10-48 units

4 32:49 x 44-84 . b : :
and — 31810 units at ¢ = + 6-68 units
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Therefore, allowing for side sway,

My, = — 32:58 + 10-48 — — 22-10 tons-in.
= — 1-84 tons-ft.
Mop = + 26:45 + 6-68 = + 33-13 tons-in.
= - 2-76 tons-ft,
Check: 3My, + 2Mop = — 66:30 -+ 66-26 = — 0-04 lb.-in.

(nearly equal to zero.)

1-84 2-76
H!L =— Hn = tHY 0-23 tons ((‘-hﬂl}k: q0 ﬂ"23+)

The displacement and moment diagrams are given in Fig. 237.

B4 Fr tons Haﬁ
=18 v C
{b)
—A i H=023"
Displacement Diag. Moment Diag,
et Hgy0-23T+—LD-
Fio. 237

Illustrative Problem 50

% Pr;l;laa}m {c), page 21 worked by the moment distribution method (see
1z

Let E for all members be equal to unity.
w Iy = I = 100 ft. units.
s b =1=10f,
»w P = 1000 1b., then Pk = 10,000 Ib_ft.

Bent equation: My, + M.}, = — Ph = — 10,000 . b fi)
In this problem, due to sway, as 4B and DC are identical, then
Mgy =M cD

2M y = — 10,000 units or M, — — 5000 units.

When distributing these moments, let 1000 units be the
moment unit and we shall then djstnhut.u the multiples.
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There are no end-fixing couples due to transverse loading.

Bal. M (step 4) indicates the balancing of the moments at
a joint.

Note (step 6), 1st Operation. From the bent equation it was

found that My, = Mep = — 5 X 1000 units. So we place
5 % 1000 units at the upper column ends. This is indicated
by Bal. S.

Now the joints B and C are out of balance. It is therefore
necessary to distribute at B the unbalanced couple of
+ # % 5 % 1000 units to BA when joint B is now rotated,
and 4+ ¢ % 5 x 1000 units goes to BC.

Then joint B is balanced : for — 5000 = + 2100 4 2000.

Similarly for joint C.

When B is rotated and C'kept B C
fixed, then } of the new moment ] I [

{—

P

at BC must be transferred to
end O of BC, i.e. -+ 1450 units
are carried-over to €. Similarly Ll ]
the effect at B for the rotation : L
of €. There is no carry-over
of BA from B to A4 as 4 is
hinged. Due to balancing of
the moments at B and C, we
have introduced new couples
equal to 4 2-1 x 1000 units at Fro. 238

the tops of the columns B4 and

CD. As we have already balanced for sway, we must multiply
these additions by equal and opposite corresponding sway
moments or couples. Therefore we must, in this particular
problem, add — 2:1 x 1000 units to BA and BC (2nd step 6)
and (2nd Bal. S).

The joints B and C are again thrown out of balance and
these new additions of — 2-10 X 1000 units together with
+ 1-45 % 1000 units at B in BC due to carry-over must be
re-balanced.

(— 210 + 1-45)1000 = — 0:65(1000)

— 0-65 has been distributed as + 0-28 to BA and 4+ 0-37 to BC.
A line has been drawn under these figures to show that the
joint has again been balanced, All the stages are repeated and
the work completed after balancing the joints for the fourth
time.

[z
=
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In this method of sway analysis, one should always complete
the work after a balance of the joint moments (Bal. M) or
after a (Bal. 8).

Member | AR BA | BO OB | 0D be
K § % App e 1 x g
Rel. K 3 4 3
Bal. 2l {1 i
Equivalent K’ ¥ x 188 ] > 18
Rel. K* 1 ] 1
C.0.F, 0 } 0
F.EBM. | 0 oo 0lo' 0
Bal. 8. | 0 — 500 | 0 0| — 500 0
Bal. M. | 0 + 210 | 4+ 290 4 200 | 4 210 0
co. | o 0| +146 +1450 0
Bal. 8. | 0 —210| 0 0 — 210 0
Bal. M. | O 4+ 028 | + 0-837 4+ 0-37 I* + 0-28 ]
co. | o 0| +019 +o19|0 0
Bal. 8. | 0 —028 | 0 0| — 028 0
Bal. M. | O + 004 | 4 0-05 + 005 | + 004 0
co.|o o| +003 +o003]o0 0
Bal. B. | 0 — 004 | O 0| — 004 0
Bal. M. | 0 0| +001 40010 0
=M |0 — 6500 | + 500 4+ 500 | — 500 0
(Mp,) (M gg)

The couples at the joints are all therefore in magnitude

10,000
W

which confirms the values for the solutions given by the slope-

deflection method that M, , — Pg.

= 5000 units =

Tlustrative Problem 51.

Reotangular Bent ABC (Fig. 239). It is direotion-fixed at 4 and € and
jointed at B. There are no transvorse loads on the members, but the bent is
subjected to a change of temperature.

Let E for AB, BC = 30 x 10° Ib. per sq. in.
For simplicity, let I, = Iy, = 200 in.4, and let
lag= lpc = 100 in.

Kup = Ky = 200/100 = 2,
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Let the coefficient of thermal expansion be 0-000006 per
degree Fahrenheit, and let there be a rise in temperature from
58° F. to 88° F.
AB and BC will both expand by an amount
100 » 0-000006 % 30 = 0-0018 in,

Due to this expansion AB will sway to the left and BC

AL D ”F:‘N\‘
B gle0 K Mea*

Moment
Diag.

8,0 it

Fra. 239

Mag—-

upwards, i.e. 48 in a counter-clockwise movement, and BC
in a clockwise movement.

0-0018 e ;
L=t =—"T00 and will be negative.
Sodpo=¢p="T 0—';?1;—3 and will be positive.

The small increases in the lengths of the members are neglected.
Let

by = Ono=On
Slope-deflection Solution.

MAB ) ZEH':HR '{" %1}

Mna = EEK{‘“IQB At 3‘#'_1}
Myo = 2EK(205 + 3¢u)
ML‘B e EEH{‘.]B "1" :}‘#B}

Joint equation B: My, + Mge=0

SOy =10
oMy =—2X30Xx10°X2X3X L%ﬁ = — 6480 lb.-in.
My, = M,p=—Mpc — — 6480 lb.-in.
Mc5=-MaB

— -+ 6480 lb.-in.
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Moment-Distribution Method. Keeping the ends direction-fixed,
the induced moments due to the displacement A are,
My = M'yy = — 6EIA[I? = — 6480 Ib.-in.| = sway
M'yo = M'cy = + GEIA[P = + 6480 1b.-in. | F.BM.

Member AB BA | BC CR
Sway F.BM. | — 6480 — 8480 | + 8480 + 6480
Bal. M. | 0 0|0 0

=M | — e480 — B480 | 4 G480 + G480

Nore. In these examples, the frame members sway only due
to the change in temperature: once this has occurred there
is no further sway, i.e. in the moment-distribution method,
the joint will simply rotate and the frame is fixed against
translation.

Exercises. (a) For the frame in illustrative problem 51,

]et 3AB — IHE = 100 i.“.

I I*n == Eﬂﬂ i.l].‘; IBC = ].Dﬂ i.n.'l

¥ E_&_ﬂ = EEC = -3'} o Iﬂ‘ ]b- Pel‘ sq. i“-
TIIEH K.&B = 2: KHG — 1.

0-0018 0-0018
ban = dp = —Tu'b*ﬂndﬁnc‘—_if*az +""'I'a'ﬂ""
=4 18 x 108

Slope-deflection equations :

0-0018

Mﬁn—ﬂxﬂxﬂ(ﬂu-iax mﬂ)
0-0018

= 92 . — S
My, =2XE x ﬂ(mn 8200 )
5 00018
Moo=2%wEx ](Eﬂﬂ-[—ﬁ}('—"iﬁ'ﬂ—)

0-0018
100 )

JHCB:E:‘{EXI(HH-'—E}C_“
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Joint equation B: My, + Myo=10 .. 605 =+ 3 X ﬂ':}gﬁts

iy = -+ 0-000009

=4 0x 10
Muy =2 % 30 x 10% x 2(0 x 10*— 540 x 1079) = — 5400 Ib.-in.
My, =2 % 30 x 108 x 2(180 x 10— 540 x 107} =-— 4320 Ib.-in.

Mgy =2 3 30 % 10* x 1(180 x 107* + 540 ¥ 10-%) = + 4320 lb.-in.
Mep =2 % 30 x 108 % 1(9 x 107 + 540 % 10-%) = - 3780 Ib.-in.

Moment-Distribution Method.
Member AR BA | BC OB
K 2 To a

Bal, | 0 (14 0

C.0.F. i b
Bway F.B.M. | — 6480 — 6480 | 4 3240 -+ 3240
Bal. M. | O + 2160 | + 1080 0
C.0. | 4 1080 0|0 + 540
Bal. M. | 0 0|0 0
M | — 5400 — 4320 | 4 4320 4+ 37RO

These values for the moments agree with those obtained by the
slope-deflection method.

The sway F.B.M.
I
.MJ]],A e M'LB = — ﬁET =
I -
Myo=Mcp= 6ET.

— — 6480 and is negative.

~ =l

= -} 3240 and is positive.

Exencise (b). Sketch the bending moment and distortion diagrams for
ﬂmmunmﬂuhnntm.ifitiuhingadatdmdﬂ.
— 100in.; I,p=200in.4:
lpeg =60in.; Igo= 180 in.4:
E.g=Epc=30 X 10° Ib. per sq. in.: and
the rise in temperature is from 58° F. to 88° I.
B, = 0-0000137; $ap = — 0-0000108; ¢pg = -+ 0-00003
My, =— 44251b-in.; Mpo= + 4425 Ib.-in.

lan
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Hllustrative Problem 52,
Rectangular bent ABC (Fig. 240), direction fixed at 4 and O.
Letl,y =13: = 100in.

w dap = Igo = 200in.4

w Bap=Ezc=30 % 1081b. per sq. in.
Let 4 be displaced vertically to 4’ by an amount of 0-05 in.
Then ¢y = ¢ = 0-05/100 radians, and is negative.

B o M ST s

3%
B,r-aug:----—- ] ved [
: Moment
: Diag,
A Z
Lo e

Fia. 240

There will be no sway of AB, and neglecting any shortening
of BC,

Oan = Ocp = 0; ﬂna'—‘-'ﬁac:‘ﬁn
KAB=KJLG=?EF}=2
Mypg=2x%x E x 2(65); MCB=2><E’><2{EB><3¢};
Myy=2X E X 2(205); Mpo—=2x E % 2(205 + 34)
Joint equation B: My, + Myc=10
. 80+ 805 4 124 = 0

: 3 — 005
..ﬂﬂ-——-ﬂ'?ﬁ‘ﬁ ——-'ZK(—I-D-E—-)
= + 0-15/400
¢ = 500 x 109 = 3756 x 10-%
Mg =4 x 30 x 108 % 375 % 10-4 = -+ 45,000 Ib..in.
Myy = 8 x 30 % 108 % 375 % 10~ = 4 00,000 lb.-in.

Mpg =4 x 30 % 100 % 10-¢ (7560 — 1500) = — 90,000 Ib.-in.
Mo =4 % 30 x 108 x 10-* (375 — 1500) = — 135,000 Ib.-in.
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Moment-Distribution Solution. Sway BC, but keep B fixed
against rotation. Then the sway-fixing couples
Mepo= Mpop =— BEIA[R; A2 = 0-05/1000 = 5 x 10-%
S BEIAR =—8 % 30 X 108 X 200 X 5 x 10-%

= — 180,000 lb.-in,
There will be no further sway, therefore the table is as follows.
Member | AB BA [BC B0
Bl 2 2
Bal. | 0 |4 0
C.0F. i i
Sway F.BM. | 0 0 —18x 100 —18x 108
Bal. M. | 0 + 00 x 108 | 4+ 08 x 108 ]
C.0. | + 045 x 10° oo + 045 % 10°
Bal. M. | O a0 [
EM (Ibin.) | + 45,000 + 90,000 | — 90,000 — 135,000
(M yp) (My,) | (Mpc) (Mcp)

If the support 4 was displaced horizontally to the left, say,

/ e Moy M-

- B

F [ree T el T -I Hﬂcl%

I ]

‘F
: Moment
' 6+ Diag.
i

oz +

A Mugy
Fra. 241

by the same amount A = 0-005 in., then it can easily be shown
that for this case
M, = + 135,000 Ib.-in.
My, =+ 90,000 Ib.-in.
M, = — 90,000 Ib.-in.

on = — 45,000 Ib.-in.
Ilustrative Problem 53

Rectangular Bent ABC (see Fig. 241). The dimensions and properties of
the members i as given in the previous problem.

Let the end 4 of AB be rotated through an angle of + 45
— + §, — + 0-05/100 radians = 500 X 10~* radians.
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There will only oceur a rotation of joint B,
Kyp=Kpe=K=2; Opga =Opo=104; E=30x 10° Ib.
per sq. in.
Myp = 2EK(20, + 6p); Moy = 2EK(0y);
My = 2EK(0, + 205); Myo = 2EK(205)
Myy + Mg =100, + 40, = 0

/]
Jo0p=— T‘* = — 125 10~¢ radians

My = 4 3¢ 30 x 105 3 10-4 (1000 — 125) = -+ 105,000 Ib.-in.

My, = 4 x 30 x 10% X 10~ (500 — 250) — + 30,000 Ib.-in.
Myo = 4 % 30,3 10% % 10-5 (—250) = — 30,000 Ib.-in.
Moy = 4 % 30 x 108 % 10-% (— 125 = — 15,000 Ib.-in,

The Solution by the Moment-Distribution Method. Keeping B
fixed against rotation initially, then F.B.M.s in 4 B will be:

Myap =+ 4EKO, = + 4 % 30 X 10F X 2 % 500 % 10-¢
= -+ 120,000 Ib.-in.

JHFII_&. T + ZEHﬂ_i - + ﬁﬂ,ﬂ{m ]b-'in-
Member AR BA J Bo OB
A = ¥ 2_ et = :
Bal. | 0 4 -
C.0.F. Y i
FBM. | +12x 100 406 x 10° | ¢ 0
Bal. M. | 0 — 03 x 10* | —0:3 % 108 ]
CO. | — 015 x 100 0|0 — (15 = 108
Bal. M. | 0 0|0 0
EM (Ibi-in.) | + 105,000 + 30,000 | — 30,000 — 15,000

If A4 was displaced vertically downwards and horizontally
by the amounts given in the problems, and rotated through
the given angle 6,, all simultaneously, then the moments at
the supports and the joints would be the sum of those found
by considering the deformations singly.

For exercises the student is recommended to vary the lengths
and I's, and the types of supports, and deform similarly as
given in the worked problems,
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Hlustrative Problem 54.
bent ABC (Fig. 242), with hinges st A amd € and rigidly

Rectangular
jointed at B. The lengths of the members, their £'s and I's are the same

a8 in the two preceding problems.
Now rotate the end 4 of the member AB through an angle

i, = 0-05/100 radians.
= 500> 10°%

This, in effect, makes the hinged end 4, a fixed end, because
in order to induce this rotation of 4 0,, an effective couple

B o *Maax i
. e T+
i ki ok "| HE’:-%,/
II i
..ﬁﬁ"' Moment
: Diag,
+
A Mag
Fro. 242

must be applied to the member = M. The hinge U will, of
course, remain a hinge and there will be no moment at C.

. My = 2BK(20, + 0n)

MR_& _ EEK{ﬂ_a. + Eﬂn]

My = 2EK(205 + 0¢)
b

Mop = 2EK (05 + 200) =0 .. 0 = —
My, + Mgo=10 ..0x+ 405+ O =

S0y =—10,

.L__I

=

sy =—1H0y
S Myp =4 % 30 X 10° X 107%(1000 — 1000/7)
— + 102,857 lb.-in,

My, — 4 % 30 X 10° X 10-5(500 — 2000/7) ¢
= 4 25,714 Ib.-in.

Myo =4 X 30 X 10° X 107%(— 1500/7) _
=— 25714 lb.-in.

My =0
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Moment-Distribution Solution : No Sway.

Member AR B4 | BC CB
K 2 1-5 (pinnaed ot )
Bal. | 0 i [0}

C.0.F. 4 i 0
F.B.M. (Ib.-in.) + 12 10P 406 x 105 | O ]
Bal. M. — 0343 » 108 | — 0257 x 108 0
CO. | —0172 x 105 0[O 0
Bal. M. | O 0|0 0
0

EM (lb.-in.) [ + 102,800 4+ 25,700 | — 25,700

MAB = + Iﬂﬂ,ﬁl]{l' ]h-]n 4 MH,& = 25,7"]1} ]b.-iﬂ.:
- My = — 25,700 Ib.-in.
Hilustrative Problem 55.

Consider a simpls portal ABCD {F:g 243), with direction-fixed bases A
and I, and rigidly jointed at B and

jal
i

g ik

: A

~Oust [ i
pﬁ"l%f !
Bl
AB=BC=CD=I00in.

Fra. 243

Letlyg =lgg =1lgp = 100 1in.

w Lay =1Tyo=Iop = 200in.e

s & for all members = 30 »% 108 b, per sq. in.
K’s for all members — 2,

Let the fixed base 4 be displaced vertically downwards and
to the left by amounts A — 0-05in., and let the base 4 be
rotated positively through an angle 6, , — 0y = + 0-05/100
= 500 % 10-* radians. .
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Due to these deformations, C' will move to the left to €
through an amount A, and B to B’ to the left through a
horizontal movement of A,. Vertical displacement of B will
be 005 in. = the vertical displacement of A.

Horizontally B’ will be relative to A by an amount of
(0-05 — A,) in., assuming A,< 0-05in., the horizontal dis-
placement of A.

The sway angle of DC will be dpc=dp=— 4,/100
— — 10,000A % 10-° radians. The sway angle of AB will be
+4(0-05 — A,;)/100, and will be positive, i.e. 4 'B' with respect
to the vertical through 4.

Let it be ¢, — —+ (500 — 10,0004,) X 107%

BC rotates to position B'C’ through a sway angle

ot = $o = — 0:05/100
— — (500 x 10-%) and is negative.

fp=0; 0, =+ 500 X 10-* radians.
Miﬂ = EEK{EBA + ﬂ[! + %L}
My, = 2EK(0, + 2095 + 3da)
MHG — EEK{EE}B ‘|" Bu _lj_ %G)
Mop = 2EK(0p -+ We + dpc)
Moy = 2EK(20c + 3¢n)
Mye= 2EK(0¢ + 3d1n)

Joint equation B: My, + Myc="0

Joint equation C: Myc + Myy=0
Bent equation: M,y + My + Mep+ Mpe = 0 (no external
horizontal forces acting).

Solving the above equations,

8, = -+ 500 X 10-%; 65 =+ 1300 X 10-%;
B = + 7980 X 10°%; A =+ 10-0607 % 10-%,
and then the values of the moments are found to be—
M,y =+ 120 X 809 =+ 97,080 Ib.-in.

My, =+ 120 X 430 = + 52,680 Ib.-in.
Mpo=—120 X 448 — — 53,760 Ib.-in.
Moy = + 120 x 226 =+ 27,120 Ib.-in.
Mop=— 120 X 22350 = — 27,000 1b.-in.

My, = — 120 X (—1028) = + 122,760 Ib.n.
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The Moment-Distribution Solution. Imagine the portal
ABCD as in Fig. 244 (a) and (d).

4 is displaced vertically only by A = 005, Fig. 244 (b), and
the joints B and C fixed against rotation. As in Fig. 244 (c),
move 4 to A" through a horizontal distance, left to right,

B C B C
(@) (b
Al 0 A _Ip
Haoes .
A
FFJ,B’ cps s B C
B |
I |
! |
} © ! @
l |
| ' ?ﬂ'ﬁ.’}#
A A D |~ _E
]..&:Fm ] A
Fio. 244

= 0-05in. Then B moves to B" an amount 0-05/2, and € to ¢
an amount 0-05/2. There is no rotation of the joints B and C.
Next, as in Fig. 244 (d), rotate 4 positively through an angle
0-05/100 radians, keeping B and C fixed and with mno
translation.
Case (b), Fig. 244 (b);
Mype = Myoy = — 6EIA/2 = — 180,000 Ib.-in. (A=0-05)
Case (c), Fig. 244 (c):

Mysn = Myppy = + 90,000 Ib.-in. (A = 0-05/2)
Mecy = Mype = — 90,000 lb.-in.
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Case (d), Fig. 244 (d);
Myup = + 120,000 lb.-in. (see problem 53).
Myp, = + 60,000 1b.-in. (see problem 53).
Case (¢) and Total My,p = + 210,000 lb.-in.
case (d) together| ,, Myna = + 150,000 Ib.-in.
Bent equation: Mg + Mg, + Mop+ Mpc=0.
. For balancing sway couples,
4M', = + X; where - X is the sum of the couples on
the ends of the columns after
a balancing and a ecarry-over.
M’y will be the distributed Bal. 8. couple for each end 4, B,
Cand D, as K’y = K'cp-
Moments in Multiples of 10 Ib.-in.

Momber | AB BA ] BC OB | €D Do
K 2 2 2
Bal. | O R 'R i
C.0.F, ¥ i i
K’ 1 ] 1
FBM.| +210 +150|—180 — 1804 080 — 090
BalM. | 0 + 015 | + 015 4+ 1-35 | 4 1-35 ]
C.0. | 4 0-08 0| + 068 4+ 008 | O + 088
Bal B | — 102 —102 ol —102 =102
Bal. M. | © T 007 | + 017 4047 | + 047 0
C.0. | + 0-09 ol +024 +008|0 + 024
Bal. 8, | — 024 —024]0 _ 024 —024
Bal. M. | © 0|0 + 0-08 | 4+ 0-D8 0
co. |0 0| + 004 oo 4 004
Bal. 8. | — 003 —003|0 0| — 003 —003
EM (lb.-in.) | 98,000 453,000 _52,000 427,000 | —20,000 123,000
(M ym) (M) (Mcp) (Myc)
ExXERCISE.

Consider the same portal ABCD as in the previous problem 55. Find the
momants ot 4, B, ¢, and D due to uniform rise in temporature of 30° F.

Coefficient. of thermal expansion = 0-000006 per “F. j
'All the members have the sume properties and E as befors. Bee Fig. 245

{p. 458) for hints.
Ans: Mg =— Mpo=— 31800 Ibin.: Mysy=— Mcn
= — 10,800 Ib.-in,
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By
(a) (b)
Distorted Frame
Slope-Deflection
Al J_D Al ution

off] By

(©)

Basic Distorted
Frame for the
Moment-Distribution|

lution

Frc. 245

Exercise.

Referring to the frame in Fig. 233, Tllustrative Problem 48, determine the
moments at 4, B, 0, and D due to a uniform rise in tomperature of 30° F.
of the whole frame. o = 0-000006 per “F.: E = 30 » 1081, per sq. in.
This is a sway problem.

AB will extend vertically upwards by twice the amount of
DC : therefore there will be a positive rotation of BC. BC will
also expand and therefore subject the whole frame to hending.

Using the slope-deflection method, let B move to the left
by an amount d so that there is a negative rotation of AB:
then as d will be less than the thermal expansion A of BC,
C will move to the right by an amount A — d, and there will
be a positive rotation of CD. There will be two joint equations
and one bent (or shear) equation to be developed and solved
for the joint rotations and d. The end moments can then be
calculated from the appropriate slope-deflection equation.

Solution by the Moment-distribution Method. Imagine that
AB is restrained against rotation, so that BO will extend to the
right by the thermal expansion A. BC will rotate positively.
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BC will sway positively as indicated in the previous paragraph.
Imagine joints B and € have been restrained against rotation,
whilst the members have extended. Caleulate the end-fixing
couples Mppo = Mypcp, and Myep = Mype, nsing the formula
6EIA . . : e
My = s giving E and ;i their correct values, Asindicated
in the examples, balance these moments at their respective
joints, carry over Bal. 8, and continue as in the illustrated
examples. The moments are found to be, approximately,
M,y = — 28,000 Ib.-in.; My, = — 24,000 Ib.-in.;
Mop =+ 4,0001b-in.; Mye= + 22,000 Ib.-in.
These values satisfy the shear equation,
Myn+ Mys , Mop+ Mpo _
120 60 7
This method of analysis can be applied also to investigate
the effect that the elongations of the members of a frame due to
axial forces may have on the bending of a frame. The analyses
used have been based on the assumption that axial deformations
of structural members can be neglected. If we wish to take
these into account, we treat the previous results as an approxi-
mation, and apply them to calculate the axial forces and axial
deformations in all members of the structure. The cross-
sectional areas of the members must be known. The changes
in length obtained in this way can be used in exactly the same
manner as we have just used the thermal changes in length,
and we ean ealculate the additional moments at the joints due
to axial deformations. These moments are usually negligible
in frame structures.

Hlustrative Problem 56. (See Figs. 246 and 247.)

The analysis of a two-storied, single bay frame ABCDEF, supported at the
fixod bases A and F. Horizontal loads of 1000 Ib., noting from loft to right
are applied at the joints B and €.

Let the lengths of all the members be 100 in., and their [s
equal to 100 in.* -
All Ks = 1; Let E for all members = 1.
Kipn:Kge: Kpc: Kgp=1: A el 1
The frame will swing or sway in a clockwise direction,
Then ¢pp = $re = + ¢4
$uc = $rp =+ P

0
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There will be no sway of the horizontal members,
0y =0, =0
flga = Opg = Ope = O
ﬁ(vﬂ - ﬂt‘ﬂ —_ ﬂ{:
As all the members have the same lengths and properties, then,
C D 'HE:ﬂ[;; H»CI‘I'E]. 'E;.I:y:ac; Rl'l{l MI"E
1000/b—> = M sp; A = Myp; Myy =

Mgy and similarly for the top
storey.

Solution by the Slope-Deflection
B E Method.

Myy = 2(0n + 3d,4)
My, = 2(205 + 34,)

— Myp = 2(30p)
Mye = 2(205 + B+ 3dy)
'W% WJ/';Y Moy = 26y + 206+ 345)

Fro, 246 = Mopn = 2(30)

1000/b—s

Joint equation (B): M,, + Mg+ Mg=0
Joint equation (C'): M, + M. = {)
Bent equation, lower storey :
| 2AMap+ Mp,) = + 2000 % 100 Ib.-in.
Bent equation, upper storey :
AMep + Myo) = + 1000 x 100 Ib.-in.

We thus have 4 equations for solving 4 unknowns, Og; 0¢;
s and ¢y

Solving Oy = — 19,900
e = — 5000
$a = -+ 26,633
$p = + 11,650
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c =]

Displacement
Diag,

i

Fra. 247

Substitution of these values in the necessary equations gives,
M, = + 60,100 Ib.-in.
MB_J‘ =5 + 4“}, l'l:"]

=g EMs at joint B = + 500
fiton s DT e Ib.-in. (nearly equal to
AHI": - '+‘ E[L]m Y mm].

My =+ 30,000,
MC!} = = 30{"}'} (1]

Bent equation, lower storey, gives 2(100,200)
— 200,400 [b.-in. == 200,000 1b.-in. reqd.
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Bent equation, upper storey, gives 2(50,100)
= 100,200 Ib.-in. == 100,000 1b.-in. reqd.

Solution by
" K forall

Moment-Distribution Methad.
members = 1,

K’ for all vertical members proportional to 1,

The sway fixing moments :
M'AB + M;H.ﬂ. _]" M'EF + M’FE = Euﬂ,ﬂm Ihq‘iﬂ-

Now if these lower members 4B and
any rotation of the joints B and E,

are all equal, and equal to - 200,000/4 = -+
Similarly, swaying the members B( and DE, without rotating

the joints B, €, D and E, the 4 end
will be equal to M, =
Moments in multiples

EF are swayed without
then the above moments

50,000 Ib.-in.

column moments induced
+ 100,000/4 = + 25,000 Ib.-in.
of 104 = 10,000 Ib.-in.

It is the multiple which will be balanced, ete.

Member | AR BA | BE EB | EF FE
K I ] 1 1
{with(}C §) {(with{ED §)
Bal. | 0 § ] } K
C.0.F. % i i
K’ 1 | i

Sway F.BM. | + 500 4 500 | ¢ | + 500 4+ 500
Bal. M. | 0 — 2:50 | — 2:50 — 250 | — 250 0
CO. | — 125 0! — 125 2 I RN 1-25
Bal. 8. [ +188 41880 0| 4+ 1'BE  + 188
Bal. M. | 0 — 008 | — 0-0@ — 086 | — D98 0
0. | — 048 0| — 048 — 48 | O - — (-48
Bal. 8. | 4 ¢-72 + 072 [ O 4+ 072 + 072
Bal. M. | 0 — 036 | — 038 — 038 | = o (1]
CO. | — 018 01— 018 — 018 | 0 — 018
Bal 8. | 4+ 027 4+ p27) 0 0| 4027 + 087
Bal. M. —0l4 | — 014 -0 | — 014 o
C.0. | — po7 0'—007 —o007]0 — 007
Bal 8. | + 0-10 + 0:10 | O 0| + 0-10 + 0-10
Bal. M. | 0 =005 — 005 — 005 — 003 0
EM (Ib.-in.) | +59,900 - 39,800 | —59,000 —50,000 | 38,600 -+ 50,000
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Bent equation, lower storey, + 59,900 + 39,600 -+ 39,600
+ 59,900 = 199,000 == 200,000 Ib.-in,

Member I. BO o8 | cp DO | DE ED

K 1 1 1

with with

Bal | i(panane) ¥4 bt (gpund gr)}

0.F. | i i i

e LU | 0 1
Sway FBM. | 4 250  + 250 [0 0| 4+ 2680 4+ 250
Bal M. | — 250 —195|—125 —125|— 12 — 250
Bc,(), !| o u-gg _ 195 | —oes — 0 ! — 185 — 063
Al 5. | + 2 + 288 0| +288 4+ 288
Bal. M. | — 088 —005|—050 —050)— 050 — 096
Co. | —o0925 —048| -025 —025|— 048 — 025
Bal. B. | +1:10 + 1-10 0| #1110 #1110
BalLM. | — 036 —01%|—019 —0190|— 018 —038
co.|l —010 —oI8|—010 —010]|— 018 — 01D
Bal. 8. | 4+ 042 4 0-42 | O 0| 4 042 + 0-42
Bal. M. | — 0-14 — 007 k — 007 — 007 | — 007 —(-14
Cco.| — 004 — 007 | — 04 — 004 | — 007 — 0-04
Bal 8. | + 016+ 0-16 |! 0 0| + 018 4 D18
Bal. M. | — 0-05 —003|—003 —003|—003 —005

=M {:msm 130,400 F — 30,600 —30,600 | 430,400 420,300

Bent equation, upper storey :

2(20,300 + 30,400) = 101,400 Ib.-in. == 100,000 Ib.-in.,
Joint equation (B): + 39,600 4 20,300 — 59,900 =0
Joint equation (') : -+ 30,400 — 30,600 = — 2000 = 0

The moment, shearing force, and displacement diagrams are
given in Fig. 247.

Shearing Forces in the Members.

(@) AB and EF. At A and F, both = 1000 Ib. acting right
to left, and their sum balances the external forces of 1000 1b.
and 1000 Ib. acting left to right.

At B and E, the shearing forces must be 1000 1b. in each
member acting from left to right: i.e. their sum is equal to the
2 external loads and of the same sign.

(b) BC and ED. At B and E the shearing forces are both
— 500 Ib. acting right to left and they balance the 1000 Ib.
load acting at C from left to right.
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At ' and D, hoth shearing forces are equal to 500 Ib. each
acting from left to right, and equal to the external force of
1000 Ib. at €' and of the same sign.

|
20001k

A |r : 12 b per in A 121k per in, e
._‘__“--_ ) __.-'-_‘___..
’ _-“B‘._ \
" :
1 100in.
] i
"/ :
F D
22001b. Ik

W00 n————
Fia. 249

From the actual calculated moments the above shearing
force values are very nearly equal to those given above.

fllustrative Problem 57. (Figs. 248, 249, 250, 251.)

A framed bridge span or o webbed girder, consisting of two
frames simply-supported at the ends. Let the frame be ABCDEF, consisting
of the 2 continuous beams ABC and DEF and the 3 vertical members Fd,
EB und DC. The whole structure is monolithio. It is supported at F and D.
All the members have the same length of 100 in., and the same E and [I.

So let 2EK = 1 for all members in the slope-deflection squations. The
ﬂpﬂrmbom AB, BC are loaded with s uniform load of 12 1b, per in.,
there is n point load of 2000 1b. at the joint B,
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40260 i

Ab—_ B _’_,./_' E-DCIZW
= 5= =

34800

Moment | Diagram
Units | indb

]
Fall )

13501k
A. B C
3;5 Ihlli'_bnthir] ‘
asok s +350lb.
F E D
| Shearing Force Diagrams |
for ABBC and FE ED Members
Fig. 260
2000
1350
40,260 54,300!: 150 |snj 34800
1350 1700
oA
40260
Joint A Joint B

36!
23 -
s N ot B S PO

2200 850
Joint F Joint E

in LB, units
Couples in IN-LB units.

Fia. 251
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The reactions at F and D will both be 2200 Ib., as the beam
is symmetrical about the vertical member BE, and, as it is
symmetrically loaded about this member, then under the
loading there will be no moments My or M ;. ; the beam will
deform as shown; members AB and BC swaying to AB',
CB', and the members FE and DE to FE' and DE'.

There will be no sway of the members AF and CD.

After distortion, and due to symmetry and symmetry of
loading,

Ops = Opc=0; and Ogp = Opp =0

The frame ABEF sways to the position AB'E'F (Fig. 248),
where the angles at B’ or £’ are zero. Therefore imagine that
the frame rotates positively about E’B’. There is no change
in the lengths AF and BE, therefore

Pap = Ppia = + ¢u; by = dpp = + da, 52y + ¢
Let Oyp =04 = 04; Opy = Opp = O.

Slope-Deflection Solution.
Myp =20, + 3¢+ 10,000; My, =0, + 34— 10,000
Myp = 20, + Oy; Myy = 205+ 0,
MFEZEBP'i'M: M;ﬁ:pzﬂp“i"s‘?“‘

Joint equation (4): M, u + M, . =0

Joint equation (F): My, + M.p = 0

Bent equation: Mg, + M., + M. + Mgy
= (+ 2200 x 100) + (— 1200 x 50)
= ~+ 160,000 Ib.-in.

Solving the resulting 3 simultaneous equations for ¢, f, and
Op, we find ¢ = 19,778; 6, = — 14,534 and O = — 11,200
The moments are then :

M,y =+ 40,260 b.-in. My, = <+ 34,800 Ib.-in.
M,y = — 40,260 Ib.-in. My, — + 48,134 Ib.-in.
. My, = —369341b-in. M, — -+ 36,034 Ib.-in.

Nore. The joint equations are satisfied.
The bent equation : + 40,260 + 34,800 - + 36,034 4 48,134
= 160,128 == 160,000 Ib.-in.
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Member | FE EF | EB BE | ED DE
K 1 | 1 1
(with!Ecr§)  (with § BC, BA)|(with § EF, EB]
Bal. | § (with F4) ¥l il {with DC) §
C.0.F. i i i
K or K” 1 1] ¢ 1
FBM. |0 00 0|0 0
Bal M. | 0 0]o 0|0 0
C.o. |0 0|0 0|0 0
Bal. 8. | +41,8756 +41,875 | 0 0| —41,875 —41,870
Bal. M. | — 19,188 0|0 0|0 419,188
C.o. |0 — 0504 | 0 0 | + 9504 0
Bal. 8. | +15,047 415,047 | 0 0 | —15,047 —15,047
Bal. M. | — 2780 0|0 0o +4 2780
COo. |0 — 1395 | O 0| + 1395 0
Bal. 8. | + 20860 -+ 2060 | 0 0| — 2060 — 2060
Bal. M. | — 353 0|0 0|0 + 353
C.o. |0 —177 | 0 0| +177 0
Bal. 8. | + 259 + 250 | 0 0| — 250 — 258
Bal. M. | — 45 0.0 T + 45
C.0. |0 —23 |0 0| 428 0
Bal. 8. | + 33 +33|0 0|— 33 — 33
Bal. M. | — 6 0|0 0o + 8
EM lb.-in. | 36,002 48,004 ; 0 0 | —48,004 —36,902

Bent ﬂquﬂtli.l}n: MB.& —|— .Mﬂ-“_ + MFK+ MIF‘
= - 40,2356 4+ 34,760 4 36,002 4 48,004
— 159,091 = 160,000 Ib.-in.

After the 1st balance and carry-over, the sum of the moments
at the ends 4B and FE

= — 7500 + EMs from the bent equation, = -+ 160,000

. In the 1st balance S (Bal. 8), 4M',;, = + 167,500 Ib.-in.
and M',; = + 41,875 lb.-in.

.. joints A, B, F, E are kept fixed and AB, FE swayed
equally; then the moments induced at the ends 4, B, F and
Ew'.i.ﬂ ﬂ].l. hﬂequﬂl mMran.
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After the ?nd balance and carry-over, additional moments at
the ends of the horizontal members AB and FE are—

for AR, — 20,938 and — 10,469
and for FE, — 19,188 and — 9,547

The total of these moments = — 60,189
. AM', = + 60,189
© M’y n =+ 15,047 Ib.-in.

The Shearing Forces in the Members AB and FE.
Shear equation: to find the shears for the end couples

M . Mye
Man + Mys x5 My + Moy should be equal to the sum of
lyn Iy

1200
2200 Ib. acting vertically upwards at F and ~— = 600 1b.
acting vertically downwards at A. =
The sum is 1600 Ib, acting vertically upwards.

M
‘-w-z+—H“"" — 750-6 Ib. acting upwards at the cut end of the

AR
member AB at A ; because both couples are counter-clockwise
ones.

MF-E-?_!_—MEF — 850-6 Ib. acting upwards at the cut end of the

EF

member FE at E, because both couples are counter-clockwise
ones. Their sum is 1601-2 Ib. acting vertically upwards and
thus the shear equation is satisfied.

Total Shearing Force at the Cut Ends ABFE of the Members
AB and FE.

AB. The total shearing force at A will be 750-6 Ib. (upwards)
plus 3; wl = 12';—“ _ §00 Ib., the simple beam shear also acting
upwards. The total is therefore 1350-6 1b. (upwards).

The total shearing force at B is 750-6 Ib. acting downwards
due to the end couples plus the simple beam shear of 600 Ib.
acting upwards. The sum is 150-6 1b. acting downwards.

FE. There are no transverse forces acting on FE, therefore
the shear at F will be 850-6 lb. acting upwards, and at E is
850-6 1b. acting downwards, both due to the end couples.

Now 150-6 Ib. downwards at B plus 850-6 Ib. downwards at
E — 1001-2 Ib. acting downwards. This balances the external

16—{T.5430) 40 PP-
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forces acting on the panel ABEF, which are 2200 1b. upward
at F and 1200 Ib. downwards on AB, giving a resultant of
1000 Ib. acting upward.

The sum of the total shear at 4 and F must obviously be
equal to and of the same sense as the reaction at F.

At A, the shear is 1350-6 Ib. upwards, and at F the shear is
850-61b. upwards. Their sum is equal to 2201-21b. acting

: Z
—lllT
P a
i = Bi’ -Fd
£
- C
Fic. 252 Fic. 253

upwards and equal in magnitude and sense of action to the
reaction of 2200 Ib., at F,

It can be shown that the direct force in 4 F and CD is 1350 Ib.
(compression) and in BE it is 2000 1b. — 2 % 150 Ib, = 1700 Ib.
(compression).

The diagrams of the forces acting on the joints 4 (and (),
F (and D), B and E are given in Fig. 251

Ilustrative Problem 58,

A vertical column AC, direction-fixed at A and €, with an eceentrio load P

applied ut an arm d from B, such that 48 — a; BC =b, Caleulate the
moments at A, B, and € |Fig, 252),

Referring to Fig. 252, let B sway to the left

then ‘ﬁ_‘" = Eﬁ'..l and is -
and '#'l'H = Qﬁ;; and is —
ﬁiﬂil a-é_iz_b.én
1]
'?Su e i j; '*ién
ﬂi = ﬂu =10

Moment at B due to P is Pc}. and is negative,
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Slope-Defléction Equations.
M_{H == EKAWH + 3‘555.’: My, = EJ'-'I"I‘.J'I-'[:”"':i'\ll- h 31'3‘.,‘]'

a -
Myo = 2K, 20— 354. )5 Moo = 2Ka{ 00— 3544
Joint equation (B): My, + Myo+ (— Pd) =0
L Bg(4K, + 4Ky) + .;a_‘(u ! ﬁb )+ (—Pd) =0 . (i)

There is no horizontal force at B.
M AB =k M BA X

:.]—JE'-t" e ==
i
and Myct Moy _ x
[/
- -_ﬂf.{n_ - -‘lflh\ j & J:]f'rl*.t: + i‘_fc'h Ay
a = B =
K Ky !\ it g
55“(_0;.'2 = ) {;,;5*( b“ 5 )_= 0 . (i)
= % — % — 0, then ¢, = 0, and there is no sway ;
. Ky @ Iy a
e f“ " E * !I!l‘ ¥ ﬁ!

With no sway, dﬂ,,K“(E 4L, ]) — + Pd

i . ( b
; “_I‘;HI!. rl't.'l{i

o Pd [/ Pd &

ThB[l ﬂf13=—'3ﬁuﬁ,gﬂzn+h—_"‘?"—+—b
i

Mg =+Pd'a:fa

Pd b [/
Mﬂf:‘iﬁn'ﬂ{ﬂ‘&-&-—& =+Pdl‘;—i:-ﬁ

Pd h
M =TT

For other cases take specific values of a, b, d, P, Iy, Ty and
solve the two equations (i) and (ii).
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Taking the general case, where swaying occurs, find what
horizontal force F, applied at B, would prevent sway.
If swaying is prevented, B will come directly under 4 and

directly over C.
Then Mdﬂ = %ﬂf}_‘g_‘l, and "HL'II = %J"’Iﬂﬂ.
Joint equation: My, + My, + (— Pd) = 0.
) M - ]
Shear equation: 28 = Mua ‘I{E“f—j Mes _ p
"HH_L=2K.{‘2DEI: J'H“(-—..-HH ]ﬂu
MK, Ky =+ Pd

pyiaad Y5l
PT Y R+ Ky)
g i By . i s 5T
'Mn1_+PfI'[ﬁ'*+}g_‘_id= MAH—'+“2_-
K . "M.“'-.'
J"Hf—‘i'ﬁi{&_l_ﬁ} .ﬂf{:H—‘.'"i
1Pl'l' K,\ 3 Pd ff“

20 (K ,FKy) 276 (K, + Kp)
Knowing the direction of sway, the direction of F will be known.
_ 3 Pd(bK, — aKy)
2" ab {Hq..'f'ﬁu]

Ky,

b
i !{“Kn = “'Kn]
3.7 (K, + bK n)

which confirms the result previously obtained that sway does
not occur when K, /K, = a/b.

1f K,

then F = =)

I 1
No suay. Let 122 _ J an _ J___
o sway e % oG
ie. 0= ME
b g
Then Myy=+Pd. gl 4 PU.

J‘"HU = + PI'I‘ e T W P{f
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Hiustrative Problem 59. (See Fig. 254.)
A rectangular portal CABD is hinged at the supports O and D,
OA = DA = (columns)
AB = I (beam)
The columns have a moment of inertin Iy, and the beam that of f. €A and

D8 are loaded with a uniformly varying load from g per unit length at € and
D, to zero at A and B. F is the same for all member and assume = 1.

B i Ibias8]+ -[Tasainlb
e Wk V4
= 100 1A, L
Load Diag Moment
— IF[ rﬂ" g FI ﬂtag
412 o [\
SR — "
Ry H=318-741b B % c 0
=iolh .§a
A _— B A y___ B
I\ Displacement Shearing
| %P Diag. Pl Force Diag
| 'FETCA.DB-
|
|
|
c D C D
Fic. 254

ﬁ!.

The fixed bending moments at ' and 4 are equal to 4 ‘f_j_ﬁ
t -
and — % respectively. As the portal is symmetrically loaded,
we should consider only the moments at €' and A4, with the
Pm?iﬂﬂ‘ thﬂ-t ﬂ'nd = ﬂ]:'l. = — ﬂ;‘n —— !'.}I_J‘.- Lﬂt BL‘A; —= BL"
There will be no sway due to symmetry of loading.
Koy = Ko=Iifh; Kyp=Ky=1]I

It can be shown that

e e gh* 1 ¢t

M.ﬁ.[-‘ = z.ﬁ‘_‘{li}ﬂkl'ﬁ' Eﬁ o '2_‘ 20
M — 9K (200 0) + T
(o i o200 4/ 7T ag
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Joint 4 equation: M,, + M,. =0
7 1
) 3 . — S T 2
Solving for 6, ; 0, = 130 - (EH“ T 3K:*]) . qh
, = = TG 34
Then M, g =—M,.= + 60(2m + 3 where m = Ky/K .
?.’%“( 8K + 3Ky )
120 \ K, 2Ky + 3K,
Solution by Moment-Distribution Method.
Let h=100in., I,.=1I,; = 100in.4, ! = 100in. and

IAH e l’iﬂ i“.i "Hl".ﬂ.(-' {f“r f-‘ hi“gﬂd on L“A}

qh? 1 ght 7 = :

= (— —:ﬁ) ‘]‘ ('-- 2— _.3'1]) — m % qﬁ' = = 3}333 ]b.-lﬂ.,

when g = 10 |b. per in.

It can also be shown that 0, = —

My =— M, = + 1458 Ib.-in. (Slope-deflection Method).
Member | €A AC | AB BA | BD DB
K| i = 108 ﬂ % 183
Rel. K 3 | 2 R
Bal. | 0 HE: A 0
.0, 0 i i i) 0
FRM. | 0 e TaRa L0 0 | + 5833 0
Bal. M. |0 + 3499 | L2334 0 — 9334 | — 3400 0
00| o 0 | — 1167 -+ 1167 | 0 SN
Bal. M. | © 4+ T00 | + 487 = 4ET 4 700 i
C.0. | 0 0|— 236 4 2340 T
Bal. M. | 0 + M0 4+ S - = 140 o
i I Aok 2 } ke
C.o. | o 0l — 47 + 47 la a
Bal. M. | 0 + 2|4+ W - |4+ 28 0
Co. | o V= m. ¥ 00 0
Bal. M. | 0 E i | A e &= it 1]
0.0 |0 0| - -] -.| LT = o 0
Bal. M. | O 3 N S T T I 1 0
=M |0 — 1450 | 4 1450 — 1459 | + 1450 0
(Ib.-in.) | (ML) | (M)

Bent equation: — 1459 + 1459 — 0.

It can be shown that the horizontal reaction at the hinge €

is 318:74Ib. (acting right to left), and at D it is 318-74 Ib.
(acting left to right),.
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The shearing force at the top of column CA is 181-26 Ib.,
acting right to left, and at B, top of column DB it is also

h
181-26 Ib., acting left to right. For f”A q = 500 (—) = 31874
+ 18126 — 500 Ib. (<).
The total shear at the cut end €' of the member €A is equal
1459

%0 100 Ib. acting from left to right due to the end couple,

2

plus - 33 simple beam shear acting from right to left.

. Total shear at €' is 14-59 1b. (=) + 333.33 Ib. (<)
= 318:74 Ib. acting right to left. This is also the reaction
at the hinge C.
The reaction at the hinge [ must be also 318-741b., but
acting left to right.
The shear at the top 4 of the member ('4 is = 14-59 |b.

1 qgh
acting from right to left plus the simple beam shear ,]E

acting from right to left. The total shear here is therefore
181-26 |b, acting from right to left. The total shear at B for
member B} must be 151-26 b, but acting from left to right.

The diagrams of moment, shearing force, and displacement
are given in Fig. 254

[ltustrative Problem 60. (See Fig. 235, page 476.)
L - ] qh®* 1 ght®
My sc (€ hinged) = — 5833 Ib.-in. = — o — 5 55
Bent equation :
h A qh?
T SN 9_'_3. X 5=1
From the joint equations for 4 and & and the bent equation,
and using the slope-deflection equations for M, ., M, 5, My,
and My, it can be shown that

= -+ 16,667 Ib.-in.

By =—3507; 0, =— 2049; and ¢, the sway angle for
CA and DB = + 6528.
Therefore,
M,y =— 76051b.-in.; M, = + 7605 lb.-in.;
My, = — 9063 1b.-in.; Mg, = -+ 9063 Ib-in..

M, .+ My, = 16,668 1b.-in. = 16,667 Ib.-in.
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The horizontal reaction at € due to the couple of —7600 Ib.-in.
at A is 76 1b. acting from right to left: the reaction at D due to
the couple of — 9060 Ib.-in. at & iz 90-60 Ib. acting from right
to left. The corresponding shears acting at the tops of the
columns act in the direction left to right and their sum is equal
to 166-61b. The proportionate shear due to the load on CA

A B 7605 inlb hﬁﬂ]ﬂlh
A -
{7,
- 1= s0in
® d -&-mu-.‘
=100in, T=100in
soalb e
<ol
':,'hc <a0omb -aeei D c D

Fra. 255

and acting at the tops of the columns is 166-66 Ib. acting in
the direction right to left. Thus the total shearing force acting
in the top of the column €'4 at A is 166-66 Ib. acting from right
to left plus 76:0 Ib. acting from left to right. The resultant is
90-6 1b. acting from right to left and this balances the 90-6 Ib.
acting on the top of the column DB at B in the left to right
direction. The total horizontal reaction at ¢ is 333-33 Ib.
acting from right to left plus 76 Ib. acting from right to left,
giving a total of 409-33 Ib. acting in the right to left direction.

Thus the sum of the horizontal reactions at (' and D is equal
to 500 Ib. acting from right to left, and this sum balances the
dead load of 500 Ib. on C'A which acts from left to right.

_The moment, column shearing force, and displacement
diagrams are given in Fig. 255,
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Moment-Distribution M Memad
Member | 04 AC | 4B BA | BD DB
Rel. K | | 2 | 3
Bal. 0 g2 il 0
iy iR g
e .
Rel, K*) 0 | L
FBM. | 0 — 5833 | 0 T 0
Bal. M. + 3400 | + 2334 olo 0
co.lo oo + 1167 | 0 0
Bal. 8. | 0 4+ 9500 | 0 0| + 9500 0
Bal. M. | 0 — 5700 | — 3800 — 4267 | — 6400 0
co. 0 0| — 2134 —1000 | 0 0
Bal. 8. | 0 + 6050 | O 0| + 6050 0
Bal M, | 0 _ — 9350 | — 1566 — 1660 | — 2490 0
co. o ol — 830 — 7830 T
Bal. 8. | 0 4 2420 | D 4+ 2420 0
Bal. M. | 0 954 [ — 636 — 055 | — 982 0
co.lo “_[ — 338 — 310 0
Bal. 8. 4 988 | 0 0| 4 D88 0
Bal. M. | 0 ~ asa|— o568 — 260 | — 300 0
co. |0 YT |= 130 — 1280 0
Bal. 8. | 0 + 387 |0 0| 4 387 0
Bal. M. | O - us-ll — 108 — 14| — 158 0
co. | o P [ AT T S 0
Bal. 8. | 0 £ 155 | 0 0| + 154 i
Bal. M. | 0 62|~ 41 — 41(— 6 0
C.o. | o Y e T T ) 0
Bal. S. | 0 + 620 o + 62 0
Bal. M. | 0 1SN [ Y | el T 1 it
e T T T e 0
Bal. 8. | 0 + 2400 0l + = 0
Bal. M. | 0 LRSS | PN SRR ) 0
co. | o Pl (I I TR W 0
Bal. 8. | 0 £ o]0 0|+ 0 0
Bal. M. | 0 gi ot e Vs o) Y e i 0
co. | o " T e I 0
Bal. 8. | 0 +glo [ R 0
Bal. M. | 0 BT [T G Rt 18 ffe=, 0
bR 1§ ﬂ‘h.-in,} 0 + 7602 | — 7602 — 9060 | -+ 0060 0
ﬂﬂ’fm} L’Jnnl

Bent equation: + 7602 4 9060 = -i- 16,662 = 16,667,
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The examples given have been in connection with simple
continuous frames having horizontal and wvertical prismatic
members, For the cases in which sway occurred, the relative
movement of the panel points could be determined by geometry,
and where there were only one or two degrees of sway freedom.
For more complex frames, frames with non-prismatic members,
with sloping members, and with a number of degrees of sway
freedom, the student is referred to other works, a few of which
are listed in the references given on page 420.

The Calculation of the Axial Forces in Members of a Frame.
In the determination of the axial forces in the members of a
frame, the shearing forces acting at the ends of the members
must be considered. These can be determined by the method
given in para. 52, page 935, and summarized in equation (26),
page 95. It will be noticed that the shearing force will consist
in part of that due to the lateral loading and in part that due to
the end couples. The forces equal and opposite to these shearing
forces represent the shear action of the bent members of a
frame on its joints. Considering these actions as -external
forces applied at the joints, we can calculate the axial forces in
all members, and, if a frame has been restrained against lateral
movement, the forces restraining this movement.

In a structure such as that given in Problem 9, Fig. 264,
page 481, a force will act on the joint at 4 due to the member
AD: this will act in the members C'4 and AE, €'4 being ex-
tended and AE compressed. This is a statically indeterminate
problem. The magnitudes of the forces depend on the cross-
sectional areas of the members and their lengths. In the prob-
lem, the bars are of the same length, and if we assume the cross
sections are equal, we conclude that the load at the joint A
is equally divided between the two bars. We shall have a
tensile force in C'4 of the same magnitude as the compressive
force in AK. The horizontal bars B4 and AD can be treated
similarly.

The axial forces in the bars can be calculated without any
difficulty, provided that the end moments are known. It has
been left as an exercise for the student to determine the axial
forces in the members of the frames, which have been analysed
in the Illustrative Problems.
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EXAMPLES

I to 12. Construct the shear and moment dingrams for each of the structures
shown in Figs. 256 to 267 for the loads and end conditions given, In problems
5 and 6 (Figs. 260 and 261), the fromes are made of slabs making up culvert
sections and a 1 ft. strip of the culvert is considersd.

13. (Bee Fig. 260.) The culvert is just filled with water weighing 62-5 Ih,
per cubic foot. Again, considering a strip of 1 ft., caleulate the moments at
the ends of the slabs due to the water load only.

14. (See Fig. 265.)

{a) Remove the horizontal load, and re-analyse the frame when BC is
loaded uniformly at the rate of 10 b, per in.

{b) Be.analyse the structure when a load P of 2400 Ib. acts from left to
right st the mid-span of AB. There are no other loads on the structure.

{e) If E = 30 x 10%Ib. per sq. in., find the horizontal movement of B
in Problems 10 and 14 (&),

15. Re-analyse the structure in Fig. 266, if D is displaced horizontally to
the right by 1-0 in., no rotation of the support taking place. £ = 30 x 10# b,
per 8q. . ! : - "

16. Re-analyse the structure in Fig. 2566 (b) if only BC is loaded uniformly
at the rate of 100 1b, per in.

A B0 c A B LEE
'ij—-—ﬁ -m”"'}’?
B

U
A tinse R e T e
T-(—-—-—Sc}—*—lﬁ'f; 30 1P
g F e A

A L R ¥ B IC
e——ux, ] —— 30, —4e-10)
4 © z[ﬂ If:ﬁ 21*#'
Loading for all beams is ITon/ft. aver the whole beam length.
E- é’msrant. Mo displacement of supports or hinges.

Fie. 256

Pailon P=1Ton
e H‘F“—_;mfﬁ'“
P;l'l':;-n (g} (c)

P=iTon
B + A B Ciaoift
I-iﬂ-‘t——?ﬁ;——#-——-m'—’f Ff*—-m'—ﬁ}—‘ﬁ‘ﬁ‘!& =2
All Members ET=Const. = 40000(Ft)’ton units

Mo displacement of suﬁuds or hin
sl in ), (k). andic) i

Fie, 257



450 THEORY OF STRUCTURES

B c :
.1' 200 —m—200" mﬁm

()

I - All Horizontal members 200 in.units
I - Mzmbers AB,DE. — 100 in.units

I - Members CF  —200inunits
E Constant
Fia. 268
iooolb. 1501b/ft.
B c B C—T_
}esu‘—H— 00—
120"
100"
150|b/Ft L
A D A’J f////f/fffirrrrrJLn
e ‘FEW/L. 20—
El - Constant E.I -Constant
All Members Members
Fra. 260 Fuz, 260
s000lb
— 1 1o -
1 B
1 - 1000 in. units~ T
L—1 = Bo0in units —__| o

~1 = 1000In units

o =X c
acolb Jslil ;Lr[rl ‘EQE'I
per sq ft s ) | persqft

20
Fia. 281




THE SLOPE-DEFLECTION, ETC., METHODS 481

1000/k. :
c 504y
looolh, 100

]

A
. 1og”
Elconstant all

LT*

100
3!

members

Fig. 262

T

. 120"

Pes
B A% D 1

E

e |20 —— | m'—):[ T

120

I-AB ADAE, = 120in units

I- AC =80in. units
Fi1a. _Eﬂ-i.

€ ﬁ.

1ol per in.

k- :
‘1——|{:|0‘—
[ -verticals =100in. units
I-beam = 150in units

Fia. 263

1-AB,CD, =200in.-units
[ -BC=100in-units
Fic. 2656

I 4 2Tons
«40010n
L R
T be— 50"+ T
100" —»r— 100—
I =200ir"| 100"

Fio. 266

EX - Constant
All Members
Fia. 267



CHAPTER XVI

Tae RectrrocAlL THEOREM AND THE MECHANICAL
SOLUTION OF STATICALLY INDETERMINATE STRUCTURES
Basgp ox THis THEOREM

219. The Reciprocal Theorem. This theorem comprises two
different states of stress of an elastic system. Suppose any
weightless elastic body either solid or a framework—statically
determinate or statically indeterminate—is supported in such
a way that the reactive forces do no work when applied to the
body. This will oceur () when the points of support are fixed
in space, for then no movement of the points will oceur, and
() when the body is supported on frictionless bearings for here,
supposing a rigid support, any movement is at right angles to
the reactive forces brought into play. For an elastic body, the
relation between load and displacement is linear.

In the first state of stress imagine a single force P, applied
at a point @ on the body, and in the second state a single force
£, applied at a point b on the body. The displacements of the
points of application in the directions of the applied forces are
P, .9, and P, .9, in the first state, and P, . §,, and P, . d,, in
the second state, where

d,, = displacement at @ due to unit load at a in the direction of P,

o= voles e b a il G s s
Dy = o o b o o b 4 A P,
d-IW = L Lh a 22 ¥ b L " PI

The reciprocal theorem states: the work done by the forces
in the first state on the corresponding displacements of the
second state is equal to the work done by the forces of the
second state on the corresponding displacements of the first
state. This means for the simple case taken :

P (B ey =P, . (P 0y L i)

To prove this theorem, let us consider the strain energy of
the body when the forces P, and P, are acting together, and
use the fact that the amount of strain energy does not depend

upon the order in which the forces are applied but only upon
the final values of the forces,

482
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In the first manner of loading, assume that the foree P, is
applied first and later the force P,. The strain energy stored
during the application of P, is {P, . (P, .d,,).

Apply now the force P, at b keeping the force P, on at a.
The work done by P, is 1P, . (P, . dy). It will be noted that
during the application of P,, the point of application of the
previously applied load P, has been displaced by an amount
P,.d,,. Then P, does work equal to P,.(P,.4d,). This is
not divided by 2 because the force P, remains constant during
the time in which the point of application ‘a’ undergoes the
displacement P, . (3,,). Hence the total strain energy stored
in the body due to the two operations in the first manner of
loading is

U=1P,.(P..du) + Ps. (Py.00) + Po. (Py-b0) ()

In the second manner of loading, apply first the force P, and
later the force P,. Then, repeating the same reasoning as for
the first manner of loading, we obtain

Uy = 4Py . (P, . 0y) + 1P, Py 8s)+ Py (Paba) (8)
U must be equal to I/, therefore equating equations (2) and (3).

5Py (Py.8,) = Py . (Pa- )
i.e. by = 0y . . ) RN Y

or, the deflection of ‘@’ in the direction of P, when unit load
acts at b in the direction of P, is the same as the deflection at
‘b’ when unit load is applied at ‘a’ in the direction of P,
This is Maxwell’s Law (1564).

If P, =P, =P, then P*.0,,= P*.4,
or (8.) = (a) - . . . (5)

and a verification of this conclusion for a particular case is
given in the lllustrative Problem 9, page 63.

Equation (1) is a simple form of Betti's Law (1872) which
extends Maxwell's Law. This theorem can be proved for any
number of forces, and also for couples, and for forces and
conples,

As an example, consider the bending of a simply-supported
prismatic beam of length I. In the first state, it is bent by a
load P, applied at the middle ‘c’, and in the second state by a
bending couple M, applied at one end ‘d’. Unit load in the
direction of P, produces the slope 0, = P/1BEI at ‘d,’ and a
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unit couple applied at ‘d’ in the direction of M, produces the
deflection I*/16ET at ‘¢’ Equation (1) gives

o f) 7 e S ( pr 6
¥4 Tgg7) = Ma usm) ()
or P (deflection at ¢ due to M) = M 4(slope at d due to P,)

This example shows that a reciprocal relationship exists between

a rotation and a deflection: such a relationship may exist

between rotations, but care must be taken in selecting the

correct relationship. (A rotation must be accompanied by a

moment.) The application of Betti's Equation will help.
Considering equation (1),

let Py s Bp = Yap and PO Yo
Then Betti’s equation will read
Po(fap) = Pa{;{fau} . . - (7)

Again, considering equation (6),
: 2

let i T6ET = Ph, =i,
ll'!

and My 6EI = M,.b0= 9.4

Then equation (6) will read

Fofany o | (P T s ; . (8)

If, in equation (7), P, = P, — P.
then ¥or = Yua
and if, in equation (8), P, is of the same magnitude as M,
then Yoq = 14, In magnitude,

These are particular cases of the reciprocal theorem when
considering the total displacements or rotations, for equal
values of the forces and couples greater than unity.

Now, let P, and M, be a force and a couple in the first state
applied at @ and d, and let P, and M. be a force and a couple
in the second state applied at b and ¢. Let Ysiaqy and i, 4 be
the total displacement at b in the direction of P, and the total
rotation at ¢ due to P, and M, acting together in the first
state. Let y,,, and iy, be the displacement at a and the
rotation at d in the direction of P, and M « due to the load P,
and the couple M, acting together in the second state.
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Then it can be shown that
Py Yotva) T M,;. 1500 = Py Ystan + M. .iqn . (9

Thus, continuing, if a number of forces and couples represented
by P, and M, act together at representative points a in the
first state, and a number of forees and couples represented by
P, and M, act at representative points b in the second state,
then the general form of Betti's equation is

EP, .Yy + ZM, .ty = EPy . Yoo + EMy . e - . (10)

where y,, and i,, are the displacements and rotations at the
points @ in the first state due to the forces and couples in the
second state, and y,, and i,, are the displacements and rotations
at the points b in the second state. The displacements and
rotations are in the directions of the respective forces and
couples,

Exercises. -

{1} Show that the slope of o beam st 4 cansed by a moment applied at B
is oqual to the slope at B when the same moment is applied at A,

(2) Show that the slope of a benm at A caused by o load at B is not equal
to the slope at B when the same load is applied at A.

(3) Show that the defiection of o beam at A caused by a moment at B is
not equal to the deflection at B when the moment is applied ot A.

lustrative Problem 61.

A beam ab of uniform section is built-in ot o and it is supported on a rigid
prop at b, b is at the same elovation as at a. This system is once statically
indeterminate. Let R, be the oxternal redundant. Draw the influence line
for the prop reaction K,, when a load P crosses the span of length I. Negleot
displacements due to shear. (See Fig. 268.)

In Fig. 268 (a) is given the actual state of loading; in
Fig. 268 (b) is given a second state of loading (imaginary),
P having been taken off and R, replaced by unit load. No work
is done by the reactions at the support a. Considering the
second stage of stress, it can be shown that the equation of the

deflected cantilever is
nP /3
.1’( - ﬂrb == —B'-m ; -_— .‘

P
Oy = Ymaz = IRl

neglecting any displacement due to shear.
Therefore the work done by the forces of the first state of

via=—{T.5430)
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stress on the displacements of the second state of stress is
P.d,—Ry. 0y

ni (3 [

The work done by the forces of the second state of stress on the

(I‘_n f_:’: & Ist. Stage
E‘ £ "}R
ab ik
{a) =
ine
irflyence 2 2nd.Stage
E g ., o el nit  (Imaginary)
[is) ?orr: for Ry
1 ine Ind. St
= ' AR :h}agiﬁiﬁi
:.;;I.. 10, B (@ o Mg
Fic. 268

displacement of the first state of stress is zero. Thus, using
Betti’s equation

Y=1
.".3‘
.'.RL=P‘_.—,{3——N-} g . . “]J

and this is the equation of the influence line of E,, and the
deflected beam line in Fig. 268 (b) is the influence line of R,.

Hllustrative Problem 62. (See Fig. 268 (c).)

Considering the provious problem, let M,, be the external redundant,
construet the influence line of the fixing couple M,, at o (seo Fig. 268 (c) ).
Nidbio st b |4 a8 shown, imagining o

The equation of the displaced beam line can be shown to be

nlt
e = §EI
[}
SEI

y=2=a (2—3n + n?)

and 0, =
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Using the reciproeal theorem and reasoning as before,

! nl*
Mo sgr—Famt®— ) =0

n ,
M,=P.l.52—3n+n%. : o {12)
in both cases due regard being paid to the sense of the reactions,

* The deflected beam line in Fig. 268 (e) is the influenee line
of M. The examples considered have been for the determina-
tion of external redundants, Considering the first part of the
problem :

! > 1 q 1 — i »
let 'I‘I‘——] then .lrfb— ! '.-E}{-t(i_ 2) Hi!.
o Pl 3
Then M, = ]—ﬁPF— = Tﬁﬂ

1
From the equation of M, for n = 5.

-

1 3 1 3
Mo =Pl. 553 (‘3*& + 1) pas 7o
Hlustrative Problem 63. (See Fig. 268 (a) and (b).)

Draw the influonce line for the prop reaction R, when a load P crosses the
span of longth L. Allow for displacement due to shear as well as that doe to
bending. ET is constant. A4 is constant.

Considering Fig. 268 (b) for the second state of stress for
Ry, let d,,, and &,,, be the displacements due to ghear at b and r
respectively. It was shown in Chapter V, pages 126-128, that
the approximate deflection due to shear at a section in a canti-
m
Al
between the origin (support) and the section, where m is the
shear coefficient of the section, A is the cross-sectional area,
and @ is the elastic modulus of the material in shear.

Thus for the case of loading considered, a cantilever with
unit load at the free end,

lever is equal to - times the area of the shearing foree diagram

m

m
Dypy = G ¥ 1 % nd and dy, = 16 w1 se]
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Then the total deflection at » due to shear and bending is

ﬂ’l’(ﬁ ])+m.nf

6ET\n— AG
RPN L
ﬂndatﬁlf-lﬂm"rﬁ

Therefore, by the reciproeal theorem,

[ ml n’P /3 m ., nl
R(zﬁ £ za) - P30 (:r ') + 57

2
Let X —=m . - % where I is the centroidal radius of gyration ;

then it ean be shown that

R, _n*3—n)+ 6Xn (13)
SRR (§ L) Rt
From this relation, it can further be shown that
My _a(n—1)(n—2)
Pl 30+ 35X)

Notg. It can be shown for a prismatic beam AR, direction-
fixed at both ends, if allowance is made for displacement due
to shear, that the end-fixing moments M pan and Mg, when
a load P is at a distance of al from the support 4, are

Myan = Plypin(l —n) (1—n + 6X))/(1 + 12X) . (15)
Mypa = Plyp{n(l —n) (n + 6X)}/(1 + 12X) . (18)

E 2
W]:IEI'EX'—_-M._Y.;:_A_.?

(14)

Paw’

It can however be shown, for rectangular sections, if I/d
is > 20, where [ is the length of a fixed-ended beam and d is
the depth of the section, that the effect of the shearing foree
strain on the end-fixing couples s negligible compared with
that due to flexure.

The effect of shearing forces on the angles of rotation at the
ends of beams is discussed by Timoshenko and Young,* and
their effects on the fixed-end moments by Professor Misé, and
A. Amirikian in his book Analysis of Rigid Frames.

* Timoshenko and Young: Theory of Structures, (MeGraw-Hill Book Co.)
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Ilustrative Problem 64. (Fig. 269.)

A continuous beam ACE iz simply-uusﬂarted ot A and B and continuous
over an intermediate rigid support at C. supports are st the same elevation.
A load P can travel over the span OB (see Fig. 260 (a) ). EI is constant.
Neglect displacements due to shear,

This strocture is onee statically indeterminate. Construct the influence
lines (@) of the reactions R, and R, of the supports ¢ and B, and (4) the
bending moment M, at €. See Figs. 269 (b), (¢), and {d).

Influence Line of R, (see Fig. 269 (a) and (b)). Remove {5

and replace the support ' by unit force acting upwards carrying
. ._F—nf.-rrgdn,f;—e;f first State

E 4 ’@ R~ Stress

w%-r‘ﬂr\% Second State
ol ) u:%.__.. B {Imﬁacarg}

() load
b Second Stake
A _ 5 C e b _yB (Imaginary)
e it
i urit " for Rp
g,
L e e Second State
AT R 2B (Imaginary
unliE:ﬂ‘-lplﬂ for Mc
(d
Fio. 269

a displacement 4., at C and 4,, at . Then by the reasoning of
the previous problem
R,.0—P.b,=0

Be
R=P.3=

5 7
Hence the displaced beam line in the Fig. 269 (b) is the influence

line of Rg. .
Influence Line of R, (see Fig. 269 (a) and (c) ). By previous

reasoning,

R,.6“=P.ﬂ'“
, dr
.Ra=P-ﬁ;

. the displaced beam line in Fig. (¢) is the influence line of Ry.
Note the sense of action of Ry changes sign when the load P
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leaves the span AC and enters the span C'B. In this part of
the problem, Ry, and R have been external redundants,

Influence Line of M,. An example of the determination of an
internal redundant. (See Fig. 269 (a) and (d).) The first state
of stress is the actual state. There is a bending moment M
at the support ' acting in both spans 4C and GB. For the
second state of stress remove the load P and cut the beam to
the left and right of C, and replace 3, by two equal and opposite
unit couples, one acting on the span A€ and the other on the
span C'B. This case is now statically determinate and we have
two beams displaced similarly as in the illustrative problem 62
p- 486. The deflected beam lines are as indicated in F i
269 (d), and they are the influence lines for M.

In the first state of stress M, does no external work as there
is no eut and there is no displacement of (.

Using the reciprocal theorem and Betti's equation,

J‘!"'fa;“ + ﬂ'ﬂ'} e -"-u - ﬂ'rr =1}

ST R

e -1{.- e arrr‘i‘ﬂﬂrr

; - ( + L)

t ﬂrr+ﬂrr=_ -I_“'"i
Bu 1 SET
P.33,,

S M, = - —=,
1ol + 1)

EI

.. M, is proportional to 4,, and the deflected beam lines in
the mqului state [F_‘l'g. 269 (d) ) are the influence line for M e
Taking €' as origin, if P when on span AC is distant n,l,

myly® ’
from C, 4, = aR(2— dny 4 ngd)

Taking €' as origin. if P when on span OB is distant n,

T
from €, 4, = n,!"’{?' — 3ny + ng?)

EXERCISE ON THE CONTINUOUS BEAM PROBLEM (Fig. 269).

Ifly = = 100 ft. and P is 4 tons, (a) ealoulate the value nnd sense of
aotion of K, when I_us it the middle of the first apon, and (b) ealeulate the
value of M, when P is at the middle of th first Bpan,

Ana. (a) 3R ton; (b) 275 tons-ft,
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PROBLEMS
1. A bonmn AR is direction-fixed st both ends: show by the reciprocal
theorem that M,y = Fi . n(l — n)?, where F is a transverse load at o distance
ul from 4. EI is a constant. Sketch the influence line of M4,
2, Referring to Fig. 117, Hlustrative Problem 28, page 183, show by tho
reciprocal theorem that if a load of 50 tons is applied at the joint A,, then the
defloction at A is the sume as that at 4, when the 50 tons was applied at A

Use the formula y = Zf-:l T%

3. A beam €8 is continuous over a rigid support € and simply-supported at
Aand B, AC = CB = 2. EI ia constant. Show by the reciprocal theorem
that when o load P iz ot o distant { from 4 the reaction R, at € is equal to
11/16P, Sketeh the influence line of K.

220. An example showing the use of the reciprocal theorem

for the analysis of a structure in which there are two (external)
redundants to be found.

c ui b D
F s

s, % [

—_—
-

i Bba
B diag,

Fra. 271

Consider a beam ('abl) simply-supported at the ends " and D,
and continuous over two intermediate rigid supports at a and b
(Fig. 270).

Let a load P be at any position r; this system is twice
statically indeterminate. Let the two redundant quantities be
the support reactions X, and X, acting at @ and b respectively.

The principal statically determinate system is the simply-
supported beam OD. Remove the load P and the two unknowns
X, and X,.

(1) Apply at ‘a’ a load X, = unity to the simply-supported
heam €D and we get the displacement diagram given in

Fig. 271.
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The displacements are—
at a, 8,, = displacement at a due to unit load at a:
at r, d,, = displacement at r due to unit load at a;
at b, d,, = displacement at & due to unit load at a.

By Maxwell's reciprocal theorem—
8., = 8,, = displacement at @ due to unit load at r:
9,y = 0, = displacement at b due to unit load at r;
Oy, = 0, = displacement at a due to unit load at b.

IB I
d a . % rb p
W—EP/[
8pdiag
Fio. 272

(2) Similarly consider the simply-supported beam €D with
X, = unity acting at 4, and we get the displacement diagram
Fig. 272,

The displacements are—
at b, d,, = displacement at b due to unit load at b:
at r, 9, = displacement at r due to unit load at b:
at a, d,, = displacement at a due to unit load at b.
AIHU drh = ahr ﬂ.nd ﬂnb = d&u'

Fia. 273

To solve for X, and X,, consider the simply-supported beam
C'D with the load P acting on it at r.

Then the displacement at a will be P . 84, which, by Maxwell’s
reciprocal theorem, is equal to P . Orar

Now place on the beam at a’, the displacement position of
a, the reaction X, (vertically upwards). Now the total dis-
placement upwards due to X, will be X8,
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Now place on the beam at b the reaction X, acting vertically
upwards; then the displacement at a due to X, will be
X, .d,, or X, .0, If there is no displacement of the support
at a, then

Po,,=X,.0,.+ X;.00,
or Pha= X404+ Xy . Oyq . « (17)
Similarly we find

i ahr - ‘Tu r‘&m AE 1":& . '&u
oF P-ﬂ'rb=xu~anu+ Xran . . /(18)

Considering the equations (17) and (18) and solving for X,
and X,
Prn:xu+ﬂaa+ xn-'ﬁau

P,,IXd.ﬂna-l-X,.ﬂH

Noting that dep = Opas
'ﬁbu
- r ({5?4 = a“ ; dﬂ:) 5‘r:l
wehnd}tuz——-———-{i——.f’= e P L )
(—oaig)
dan
(ﬂr& =t dru J auu) f "llb :
and X, = — = . P= SR R 20)
dIIE J‘hlﬂ
fhyy — dbu . t.'l ‘;

Interprelations of Equation (19). Considering the denominator
of equation (19).

Il
d,, is reduced by d,, * a—”. ;
11}
i.e. the displacement at a due to unit load at b (= 4,,) multiplied
by the ratio

8y, displacement at b due to unit load at a

3. = displacement at b due to unit load at b

Considering the numerator of equation (19), :
8., the displacement at r due to unit load at a s reduced by

tljrb = 'th-:.-:
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i.e. the displacement at r due to unit load at b multiplied by
displacement at b due to unit load at a
displacement at b due to unit load at b

If the load P is at r = b, then

dhu a
By 7
also 4,, becomes = §,,
and the numerator of equation (19) is equal to zero.
Therefore, if all the ordinates of the displacement diagram

Unit load

ey

Oy X
ré 'riblr ba

:

CFGHD is the 8qdiag CJGKD is the S diag reduced
by 8ba/Bhh

Fro. 274

for the principal system (the simply-supported beam (/D) with
unit load at b are reduced in the ratio of g—h-'-'- and the new

b
diagram superimposed on the displacement diagram for the
simply-supported beam CD with unit load at a, then we get
the above displacement diagram, Fig. 274, which is the
diagram for the beam CabD with only the support a and there-
fore the unknown Xa removed from the system,

Equation (20) is interpreted similarly.

The lous Discussion by the Reciprocal Theorem Method.
Fig. 270 shows the actual load conditions of the beam: con-
sider it as the first state of stress. A second, and imaginary
second, state of stress is shown in Fig. 274. The external load
and one redundant X, have been removed. The support at b
has been kept on: the reaction here does no work. A unit load
is applied at a, causing a displacement of A,, at a, and a
displacement A,, at r. Then by previous reasoning and using
Betti's equation,

X, . ﬁw"‘P~ Ap=0
rop s

A
Similarly for X,
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The second, or imaginary, state of stress is for the condition
of unit load applied at b after removing the support at & and
the load P and retaining the support at . A displacement of
Ay, at b oceurs and A, at b. Then

Ka.ﬁ“—P. .ﬁﬂ,——-ﬂ
Ay

X‘:P.&bb

The influence lines for X, and X, are therefore the respective
displaced beam lines: for X, when the support at a is removed
and that at b retained, and for X, when the support at b is
removed and the support at a retained.

In the mechanical solution to be discussed later, it is the
shaded diagram which is obtained. There is no displacement
at b for unit load at r, that is the support at b remains on the
structure and the only one removed is that at a. Here a known
displacement A, is caused at a, and the corresponding dis-
placements A,, are measured at points r.

A,

Then X,=P. e

(21)
Similarly for X,. There is no displacement of the heam at a,
that is, the support remains on the structure. At b, a known
displacement A,, placed on the beam and the corresponding
displacements at points r equal to A, are measured.

; A,
Then X, = P. Ib:

In Fig. 274 the ordinates of the shaded diagram are those of
the influence line of X, to scale. In practice they would be
plotted on a horizontal base.

If there was a third redundant X, then X, would be obtained
from the equation

&rr
X, =P X 7.0 . : : . (23)

If X, is a couple, then A, represents an angular movement
in radian measure: see later discussion on p. 497.

This is the mechanical solution; the method of attack is as
follows: keep all the redundants on the structure, except the
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unknown which is required. Release this one, and at the place
at which it acts canse a known displacement of, say, A,,, then
by some means measure the displacement A,, at the point of
application of the load P at the position r. Then the unknown

required (say) X, = P. -ﬁ-f‘—‘,

e

Vary the position », then A, will vary and then we are able

to plot the corresponding value of X, against the position r, &0

that we are able to obtain an

B q—nf{ e influence line for X .

221. Before proceeding to a

I discussion of the mechanical

[ttt solution of statically indetermi-

nate structures based on the

reciprocal theorem, consider the

it Il % solution of a simple portal
|
J

A

ABCD (Fig. 275) fixed at the
bases 4 and D. Let the lengths of

the columns be h and the length

i A D y of the beam I: let the moment
TE 7 Hy — of inertia of the two columns
Ma be I and that of the beam I,
Va Let a load P be applied at r
Fra, 275 distant nl from B. The frame is

three times statically indetermi-
nate: let the three redundants be the components of reaction
at the base 4. These are the vertical force V,, the horizontal
force H ,, and the couple M.
The student should prove the following relations by the
slope-deflection method. Assuming that E for all members is
the same and neglecting axial and shearing force effects:

..'Hi.! S o) I' - :
== ) - e
N LA 4
P = n“ ]l:’ﬁ{f—--ﬂ'i} L‘!J}
L L= '
= -+ (05 o) =

where g = h/l and i = 1,1,
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Ifg=1andi=1,

M ok K

Pt =—n(l— -::,]IE T —’3] R o T
-'HP':=H{[—HJ,£ : : - ; .. [28)
11;& i n}[l i 1__;_2_;; }I (29)

If the members have different values of E, say E for the
columns and K, for the beam, and letting E,/E = e, then the
equations become

M,

1— 2n

1
fppe e A ’”[i_+ Slgi  2(1 + Geqi) (%)
H q .
7 ==l o
Vi n(l — 2n)
— Pt i ——— .12
EXERCISE.
Davelop expressions for the sway angle & of the columns, the rotations
By snd B of the joints B and C tively in the problem, and draw the

influence lines of @, Gg, Oy M,/Pl, H,/P, and VP for the case when g = 1
andi=1,andé = .

Let M, correspond to X, H, to Xy, and V to X,

By the reciprocal theorem, we have

Xo_ A Xv_Bu,

RSP S
and these displacement ratios can replace the force ratios in the
corresponding previously developed equations (31) and (32).

X
Let X . correspond to M 5, then 5 = e+ Where 0% = angular
(=4

-ﬂu A re! .
displacement in radians at O : let 6%, = ===~ 'i— (see Fig. 276)
where A, is the displacement of ¢ at unit distance from
the centre of rotation, and A, is that at distance [ from the
centre of rotation at C.

X, Aw X A

Then B =A% Px1 A,
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The displacement ratio j = or jﬁ can replace the moment
ratio in equation (30), assuming again that shear and axia!
force displacements are negligible.

Conclusion. We have now seen that a force or moment rati
is equal to a displacement ratio which is equal to a dimensionles:
expression incorporating the
position of the load, the proper
ties of the material, the lengths
and moments of inertia of the
members.

222. The Mechanical Solution
of Statically Indeterminate
Structures Based on the Recip-
rocal Theorem. It has been

Fio. 276 shown that the deflection curve

for any continuous structure

due to a unit load or couple replacing any redundant is to some

scale the influence line of the redundant. This fact makes pos-

sible the mechanical analysis of redundant structures by the use

of models. Methods of analysis based on this principle have been

developed. Various methods range from crude paper models

or timber splines to others which make use of precise instruments

to create and measure deflections of accurately constructed
models of celluloid or other uniform material.

When a mathematical theory is used, ideal conditions are
assumed. Loads are assumed to act at points: materials are
assumed to be perfectly elastic: centre line dimensions are used
neglecting the thickness of members : the effects of brackets,
fillets, gusset plates, ete.., are neglected. With a model, one
deals with a fabricated structure: loads not point loads: no
material is perfectly elastic, all members have thickness: and
dimensions are subject to human errors. The accuracy of the
results obtained from the use of a model will entirely depend on
how accurately the model represents its full scale structure or
prototype. The same is true of mathematical theories. The
object of any mathematical analysis is to learn as much as
possible about the probable distribution of stresses in an
imperfect fabricated structure,

It hfm also been shown that considering two points on the
deflection curve of a continuous structure for unit load applied
at one point, that the ratio of displacements of these points is
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equal to a force ratio at these points and that this force ratio
by means of a mathematical analysis is equal to a dimensionless
expression or quantity incorporating the position of the load,
the properties of the material, the lengths and properties
(moments of inertia, radius of gyration) of the members. In
fact, there have been developed a number of dimensionless
equations, which are derived equations of similitude. Thus we
can have any number of systems, having the same displacement
ratio, the same force ratio for the same dimensionless structural
quantity: i.e. having the same geometrical form of displacement
curve.

Let us consider the dimensionless equations for the simple
portal with the column bases fixed. Considering the cases
where E is the same for all members and neglecting axial and
shearing force effects, it will be seen that the force and moment
ratios depend upon =, and the ratios g and i, where g = A/l
and i = I,/I; h and [ represent the centre line lengths of their
respective members. This is a case of designing a model to
check the analytical analysis and to design the model with
respect to assumptions made in the theoretical analysis. Now
for the two systems: we shall have the same force or moment
ratio when n is the same in the two systems, ¢ is the same and
i is the same. Thus when we make a reduced scale model of
the prototype, the corresponding g ratios will all be the same:
i o. all centre line dimensions will be set out to the same scale.
To fix the i ratios: as shear does not play a part, we can build
the model with all members having rectangular sections—
although in the prototype the sections of the corresponding
members will usually be of other sections, I, channel, angle, etc.,
and these sections can all be of the same breadth b. Thus when
considering * planar”’ structures we Cag fabricate our model
out of a sheet of uniform material and of uniform thickness.
Then if 1, and I are the moments of inertia of the two members
in the prototype and I,,, and 1. are the corresponding moments
of inertia in the model. then

La 0 bdf.12_ d'w

| e S B
where d,,, and d are the depths of the rectangles equal to
the model: or

| B

m _3/h
=N 1
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The model is therefore a distorted structure when compared
with the prototype.

We can now briefly describe Professor Beggs" method of the
mechanical analysis of statically indeterminate structures. The
line diagram of the model is geometrically similar to that of the
prototype, and the depths of the rectangular sections of the
model are proportional to the cube root of the moments of
inertia. The breadths of the sections in the model are constant.
Celluloid is chiefly used in the construction of the model, and.
as celluloid which has been kept in stock for some months is
less subject to shrinking than new celluloid, it is recommended
that celluloid be seasoned. The model is cut out of the sheet of
celluloid. Professor Beggs' apparatus consists of a number of
gauges which, in the case of an external redundant, are fixed
one part to a drawing board and one part to the model at the
section at which it is required to determine the redundant.
The gauge consists of two parallel steel bars, with pairs of
opposing V-notches, held together by springs to allow a small
relative motion between the bars, Very precise gauge plugs of
accurately specified sizes (tolerance plus or minus 0-0002 in.)
are provided for introduction between the bars, for the purpose
of determining amounts of thrust, shear, and rotative displace-
ments. The thrust and shear displacements employed in
practice equal about 0-050in. It is necessary to use small
deflections with the aid of elastic models because the ratio of
deflection is theoreticall v and practically correct only when the
model is deformed a small microscopically measurable distance
from its geometric shape. In an external redundant determina-
tion, the so-called “fixed” bar of the gauge is secured to a
drawing board. By means of a clamping plate, the model is
attached to the movable bar of the gauge if the support is
assumed fixed, or by a needle point if the support is assumed
hinged. The model is supported at intervals on one-eighth-inch
steel balljs. In thnIa unstrained position of the model. two
“normal” gauge plugs remain in the two pairs of o in
V-notches of the gauge. A filar micrometor Pr:lierc}smpgﬂgssﬂf
up over the corresponding’assumed position of the load in the
prototype, and the scale of the microscope is set in the direction
of the applied load. The different sets of plugs are calibrated in
units of the micrometer head. Suppose the vertical thrust (or
Pu“}r component of an external reaction at the support is
required. The normal plugs are removed from the gauge and a
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pair of smaller *“thrust” plugs inserted, so causing a vertical
displacement of the support. The moving cross-wire of the
micrometer is now brought tangential to a reference mark on
the model at the assumed load point and an initial reading of
the micrometer taken. The small thrust plugs are now removed
and larger thrust plugs are inserted in the gauge. The reference
mark will move across the field of view. and again the moving
cross-hair is brought tangential to the reference mark. A
second reading is taken. The difference between the two
micrometer readings represents the displacement in the direction
of the applied load. The required component of the reaction
now equals the applied load multiplied by the ratio of two
known displacements, namely, the measured one A, at point r

and the gauge displacement A,,. Then X Rl i"‘. (Notk

There has been no rotation or horizontal displacement of the
support.) To find the horizontal component of the reaction, the
movable bar is caused to move parallel to the fixed bar by a
pair of “shear™ plugs, the displacements of the point of the
applied being measured as before. Let A,, be the gauge move-
*1:#
A

In this case no vertical or rotative movement of the support
has been allowed. To determine the rotative, or moment,
component of the reaction, the support is rotated through a
very small angle determined by the rotative movement of the
movable bar with reference to the fixed bar, The movable bar
is caused to rotate by a pair of ‘moment’ plugs: one plug is
slightly larger than the other. These are inserted in the V-
notches and a reading of the micrometer at the load point
taken. The plugs are reversed and another micrometer reading
taken. The gauges are so arranged then, that the centre of
rotation remains fixed and there is no *vertical’ or * horizontal’
movement of the bars. The gauges and plugs have been cali-
brated so that the movement at unit distance abe(A,,) along
the bar from the centre of rotation is known. Now let one
inch of the model correspond to N feet of the prototype.
Let A, be the displacement of the reference point in the
direction of the applied load P b, (of the prototype).

Let X, be the moment component of the I‘Edl.l;.]dﬂ.nt. reaction
for the prototype in Ib,-ft. units; then it can be shown that

ment and A, be the tangent movement. Then Xy=P,



THE RECIPROCAL THEOREM, ETC. 503

A ; ek
X = Pby. T, Tinch [mﬁt_l_él_} . N (ft.), where A/l inch
corresponds to 0, radians. and 1 inch of model corresponds
to N feet of the prototype.

It is only in connection with moment determinations that
the scale ratio of the model and prototype is taken account of.
This has been noted in the theoretical analysis, for a moment
ratio contains a length dimension of the structure.

Thus the operations can be repeated for a number of points
corresponding to different n values and thus the influence line
for the unknown can be obtained.

Qrexs. The microscopes employed in measuring deflections
are optically inverting, so that the image in the microscope
moves in an opposite direction from the observed load point.
Accordingly, the following general rule for determining the
sense of any reaction or stress is formulated. If the image of
the load point in the microscope moves in the direction of the
assumed load. the reaction component acts in the same direction
as the corresponding gauge displacement of the support : if the
load point appears to move in the opposite direction to the
assumed load, the reaction component acts in the opposite
direction as’ the corresponding gauge displacement of the
support. When carrying out experiments, notes are made of
the sense and direction of these displacements.

(Care must be taken in operating the gauges and in the
positioning of the microscope scale. Temperature may affect
the readings and if a large number of microscopes are used, then
the temperature of the room in which the experiment takes
place should remain constant. Using only a single microscope
and performing the gange operations for every target point, the
author has found that temperature changes are not of serious
consequence.

For internal redundant determinations, a member is. cut in
two: the cut ends are fixed to the gauge bars and these are
mounted on a frictionless bearing consisting of two glass plates
in between which are steel balls. The operations are carried out
as described for external redundants.

A detail drawing of the deformeter apparatus is shown in
Fig. 277, p. 501. For axial force and shearing force strain
effects on the moment distribution to be minimized as much as
possible, the ratio I./d,, should, say, be greater than 20 for any
member in the model. The effect of the size of the connections
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will then also be made as small as possible. Further work.
however, is required in the matter of the design of distorted
models for the probable time stress determination of their
prototypes. There is a second consideration in the design of
models, the design of a model to give the time stress analysis
of its prototype. This can be obtained by having a model whicl
is an exact replica of the prototype as regards material, sections,
connections, etc., but the further problem arises, is it feasible
to experiment on such a model? Further research work i
required in this connection.

Summary. To design a planar rigid frame model of uniform
thickness on the basis that the moment distribution will be
due to flexure only, the sections of the members can be rect-
angular, and the depths of pairs of members to have the ratio

o I
‘? =:/....' W]]El‘ﬂ I E.l’l.d -l'.'l are t.hc moments ﬂ.f inertiﬂ ﬂf the
1 1

corresponding members in the prototype. The ratio of the
length of a model member (centre line length) to the depth of it=
rectangular section should be greater than 20. If the prototype
members have the same value of E, then the model can be cut
out of a sheet of isotropic material, such as celluloid.

Ezperimental analysis of the portal Jor which the equations for
Vs, Hy and M, are given in paragraph 221, by means of Begys'
Deformeter Apparatus. The theoretical results have been
obtained from equations (27), (28), and (29): i.e. for members
having the same centre line dimensions and the same section,
and the ratio ¢ = 1,

The following table gives the experimental and theoretical
results for a plane celluloid frame (fixed base portal) having

—_—— —

n | ¥y (b , Hy (Ib.) | M, (Ib.in.)

! Expori- | Theore- | Expaeri. | Theors- Experi- Theoro-

mentally | tically | mentally | tically | mentally | tically
0 | 100 LIRS0 e F o |90
01 | 092 | oo 005 | 005 002 | 010
02 | 084 | 02 0-10 0-08 | el ,l 0-20
03 | 073 [ LETE T Y e | 027 0-20
04 | o082 | o081 | pi3g 012 033 0-37
0-5 | 051 0-50 0-131 | 013 | pay 0-42
0-6 042 | 030 | o130 012 0-38 0-43
071 030 | o029 ]2 011 0-35 041
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h—1— 10in.: sections 0-08 in. thick by 0-6 in. deep. The
beam length BC was divided into inches, so that values of n
varied from 0 by ¢-1 to 1-0. P assumed = 1 1b., ¥V, always
acts upwards: H, from left to right and M, in an anti-
clockwise direction. The model has been treated as a full-scale
structure.

The difference between the experimental and theoretical
values, especially for M, is probably mainly due to the fact
that in the celluloid frame the joints B and €' have size, whilst
in the theoretical analysis they are points at B and C. Shear
and axial force strains have, also, slightly affected the moment-
distribution for the 1/d ratios are equal to 10/0-6 = 16-66.

In the experimental frame the beam length between the
columns is 9-40 in.; the centre line length is 10-0in., thus we
introduce another linear ratio 9-40/10-0 = 0-94. The corres-
ponding ratio for the columns is 0-70/10-0 = 0-97. These ratios
are unity in the theoretical analysis and it will be left to
experiment to determine the precise effects of these ratios.

The results of V,, H, and M, can be plotted against n, to
give influence lines for these quantities.

A complete analysis of a multi-storey structure is given in
the Structural Engineer, October 1930, in a paper by the author
and Mr. H. V. Lawton (see References).

A second type of device is the Continostat-Gottschalk. A
model frame can be built up of steel-splines of about g§in. in
width and of variable thickness. On a straight edge are
mounted knife edge supports for the splines. These supports
can move along the straight edge about right angles to it. The
displacements are large and the displaced elastic lines of the
splines give the influence line required, The necessary displace-
ments can be scaled off. No microscopes are required and this
apparatus is therefore cheaper than the Beggs' Deformeter
apparatus. There are other methods of analysis of structures
by means of models, and a description and a large number of
references are given in T'he Fundamentals of I[ndeterminate
Structures, by F. L. Plammer (Pitman Publishing Corporation).

REFERENCES

(1) Stremgth of Materials, Parts 1 and 11, Timosheuko. (Macmillan.)
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{4) Mechanical Selution of Strosses in Frames, C. H. lobban. {Inst, of
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& Co.)

(7) The Experimental Study of Structures, A. J. 8. Pippard. (Arnold & Co.)
(8) The Fundamentals of Indeterminate Structures, F. L. Plummer. (Pitman

Publishing Corporation. )
(%) Other references, see Chapter IX, p. 219,
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ANSWERS TO EXAMPLES

CHAPTER 1
Max. 2625 ()
Shear force § 3™ 1575 (1),

Marnantes !m 271-9 ton-ft.

Reactions at supports, 3/ and 1}} tons.
Moments at supporta + 10 ton-it.
+ 6 ton-ft.

At central 2-ton load pt. + -6 ton-ft.

Support reaction 813 tons ; at pier + shear 11-87 tons.
Pier reaction 21-87 tons ; at pier — shear 10-00 tona
Moment 10” from left support = 3375 ton-ft.

12-5 ton-ft. ; *5 ton.ft.

Reaction—Loft support, 25 tons
Right support, 35 tons.

Moments at pier 4+ 50 ton-ft.
+ 112:5 ton-ft.
— 5O ton-ft. at 10 tons load point.

Max, : 42,800 Ib..ft. at 11-7 ft. below surface.

Produce 10 tons to N.A. and then resolve vertically and horizontally.
Moment at fixed point = vertical component % arm along N.A, to
fixed point.

Reaction at A, 33 tons ; max. moment at pier = 72 ton-ft.
Reaction st 12 ft. pt. 3-17 tons.

CHAFPTER 11
Load on &, €. % ton. Load on b, § ton.
3472 ton-in.  10-4 tons/sq. in.
375 8q. in,
f, = 4-05 tons/sq. in.; f; = 1-15 tons/sq. in.
10,300 1b. sq in. tension. 25,000 1b. sq. in. compression.
1000 ft. 144,000 Ib.-in.
75 tons/sq. in.
§ tons; § ton per foot run.

1200 Ih./sq. in. at right support due to max. positive moment ; 344 Ihb. [=q.
in. at left support due to max. negative moment.

440 in.*
fﬂuf-‘,:d= 51 in.
I, =+01206in.*
o in.
50T
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CHAPTER IIT
1. -316 im.
2, Max. moment = [.832 Ib..ft. Central deflection, 2 in.
3. b = 55 in.—{neglecting beam doflection).
= bl in.—{allowing beam deflection).
4. ~30in,
5. E = 12,000 tons/sq. in. (neatly).
T. fy = 1-25 tonsfsq, in. y = J in.
8y =0,
10, gy, = -39 in.; Y, = 396 in. at 13-2 ft. from right-hand support.
1l. M, = - 451 ton-ft. ot 10+8 ft. from 5 ewt. end.
ye = B3 in. Slope, -000058.
12. 07 tonsffoot run. y = 375 in.
13. E = 1,125,000 Ib./sq. in. f, = 3750 Ib./aq. in.
14. y = -062 in.
15. 7 tonsfsq. in.
16. (a) -152 tonsffoot; (b) <17 in.; (c) -19 tons/Toot ;
(d) py = +157 in. (e} gg = 115 in. (B = 13,000 tons/sg. in.)
17, g = <181 g gy = <127 fi.; gy = -176 f1.

CHAPTER IV
l. By = 60 tons; Ry = 200 tons; R, = 60 tons.
My = 400 ton-ft. ; f contre support 4-82 tans/sq. in.
- Ry = 90 tons; Ry = 20-3 tons; Ry = 20-25 tons; Ry = 1-45 tons.
3. Max. stress = 3-52 tonsfaq. in. - Moments, Ends 42,000 Ih.-in.
Centre 30,000

[3-]

e M
4. (o) My = M;= + T ()R E.;L

W s
Max. neg. = %T Max. neg, = s

/ 128’
0. J = 173in*
7. Ry (left support) = 11-85 tons: Ry = 2011 tons;
Ry = 2362 tona; Ry, = 31-32 tans.

8. 14:2 tons,

8. Tension in tie 532 tons. Resultant reaction ot 4 = §2 tons;
My = L 25 ton-fi.

CHAPTER V
1o 239

A ¥ = {368 in. (varying g method).

Max. ghear — -07 tonfsq. in. (nearly).
2. Mux. shear stress = -148 ton uq. in.

E = 6000 tonsfsq. in. N = 2500 ton sq, in.
o= 044 in. y, = 108 in,

[L' for ellipse = %l- as for vimln.]
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5, +129/-071 = 1-82 tons/sq. in.

6. y, (concentrated load) (c = 12) - oisin.

y, (uniform load) - = 0185 in.
7. LiD = 9.

CHAPTER VI
S i I, = 108int; E = 13,000 tons/

L. (n 00" f=21 t.om,nq‘m.) i o)

Rankine, 396 tons ; Euler, 1530 tons.

_ (et +dh

3 = ) Short column.
4 I, =80lint 28 tons.

5 Max. f, = 7-07 tons/sq. in. fy = 6-53 tons/sq. in,
6. 4-77 tons sq. in.

7. Max. compressive stress = -5 ton/sq. in.
Min. compressive stress = +12 ton|aq. in.

9. Factor of safety, 4. 888 tona

10. Factor of safety, 4. 12-0 tons.

11. Max. stress, 3-18 tons/sq. in. Min, zero.

o T;To 3 =10,500 bond{eq. 1n. :L;um.?unl::l:;utumi safoty = 4)

13. R.8.J., 2154 tona Cast.iron, 250-1 tons.

14, Euler, 20 f¢. ; -434 ton. (5) 36 in. by Rankine ; 12-6 tons.
- -:‘lsﬁ"u‘ E w 13,000 tonssq. in.
.= 21 tons/eq. in.

15. External dinmeter = 4:54in. = 454 in.

18. fpge = 06-78 tona/sq. in. (y, = 4 in. )

17. 48-3 tona.

18. 271 tons (Rankine: f, = 21/4 tonsfsq, in.; a = 1/7500).

19. 37 in. by Rankine; 2:55 in. approx. by Euler (obtained from formulae
by trial and error method).

20. 5-5 tons.
1

21. Rankine, a = z=q, y, = 4 in. ; 115 tons.
Fel*

Eulsr. B = 13,000 tonsfeq. in. 471-0 tons | Yee = aﬁ)
92 Hingedends; o= ﬁ Rankine, 26+4 tons.
Euler, 36-58 tons.

17—(T.5430)
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CHAFPTER VII
2. 2-57 tons (compression) in EP.
3. 81 ton- (comp.) in EP ; 115 tons in FQ (comp. ).
4. af = 67-5 tons (tensile) ; ce = 250 tons (compression).
be = T4-0 tons (comprosa,) ; ef = 16-25 tons (tensle),
5. DJ, EL, 10 tons compression ; KA, 6 tons tension,
6. 1-02 tons, DJ compression ; *11 ton, K A compression.

7. Load in FL, 3 tons compression ;  Load in NM, -05 ton COmpréssion.
8 Wind load only, 1-125 tons in FL {compression)
-176 tons in NM (tension).

L COF— 20 tons (comp. ).
EC— 65tons [ ,, )
DE—3%5 tons{ . )

10. 2-89 tons comp. in OF.
1L Member, Member. Member,

12 |10ton (C)f 7 [1-5tonsic)] 710 [10ten ()
23 | o 45 (05ton (C.)| 108 |07 tom (T.)

14 | 2tons(C.)|| &6 |[0-5ton (T.)| 811 [0-7ton (.)
42 (0-Tton (T.)| 59 |0-Tton (C.J| 911 |1-0ton (C.)
2.8 [0-7ton {c.;il 57 [0-Tton (T.)| 11-10 |05 ton (T.)
36 0 69 (05 ton (C.)
45 [0-5ton (C.))| 7.8 |0-5ton (C.)
56 |0-5ton {T.}Il 89 [0-5ton '[T‘}:

CHAPTER VIII
286 .
2. T in.

3. y = 405 W in. (W is in tons).

6. y st 6T, load point = 1-41 in.
y at 10T. load point = 78§ in.

6. Centre joint, : — in. approx -
l.wl:\vwmr.*;-;nin.h:m;II e 5 = -ga *;+ :ppm:, mﬁ = ﬁ:llimmt

T.y= 171in.

B. ‘BB in. under load ; 695" — 8’ from loft support.

9. 212in.; g, = :1%5in,

10. H.D. of B to right = 0-2554 in.; ot € to right = 0-138 in.
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CHAFPTER 1X
l. Fixing couples, beam and cﬂlumm.
wl? u:!'
4~ (antw) -5
ziu, N Tes
wit
Max. neg. for beam = — — My,
-]
. Fixing couples + ;3? tonfft. end of 8-it. column.
" Ry | R
Max. neg. moment beam, 76 = 2:34 = 516 ton/it.
H = 0-228 tons.
C@ 11-8 tons by Lt. Wk. (comp.) 11-5 tons by super-position,
HID 11-8 tons a (tens.)  11-8 tons ,,Po PD:
. (Same frame as in No, 1.)
Col. bass fixing couples = e EI“;E iaid e
wP
Boam couplos + -5~ (zu + u,)
(Frame of No. 2.)
Fixing couples; col. bases. Short, — 1-5 tonfft. ; beam, 3-0 ton/ft.
= - o Long, —2-25 ,, RS T
ﬂ'-‘i by Lt. Wk. - 3:11 tons (compression). 4 by supn.- 3-55 tona
e e '3 ‘l e : e ’ CE o ey’ "
BF " = + &0 (tension) BF w == - 3-55tona.
FD 5 - 4230 . ) FD . m A GEE o
+ 27-75 ton/ft. My
. My, + 21-84 tonit. Mg = 1970 ton/it. (+).
. M, = Wni(l-n). My = Wn®l{1-n).
CHAPTER X
3rp Bay. 4T Bay.
Tona Tons.
Top member, , 1454 (Comp.) 1554 (C.)
Bottom member. 114+5 (Tension) 1454 (T.)
Lt. vertical . . 454(C.) 28-0 (C.)
Right vertical . 260 (C.) 12:5 (C.)
Disgonal . . 642(T.) 37-65 (T.)
4tH awp STH Bavys (counterbrace).
. lst Bay . : . 121 tons
hd- T . s ® a5 B
id L 2 . B85, [Wo counterbracings]
dth i . SRR | I
Gth ,, 5 . T
. Height frame = 20 ft. (1) 160 tons (2) Comp. G5-65 tons.

Tensile 80-5 ,,
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Tons. Tons,
. 40 ft. vertical . . 808 (C.) Top member . . 180 (C.)
Bofe " o . . 279(C.)] Diagenal . . . 65(C.)
78 (T.) Bottom member . 144 (T.)
Tons. Tons.
. Top mamber . . 92-5(C.) Diagonal . . 30-0 (Tensile).
Bottom member. . 810 (T.) 7+7 (Compress. ).

Centre —+15 tons leading 4- 10-5, - 9-5 tona
156 ,, " + 85 =10-6

Ends —15 ,, w  Right support, + 15 tons; left, - 23 tons
15 ,, e " " +23 . ; w =18 o

5T1-5 ft.-tons. Ry 4 3917 tona ; R, - 42+1 tons.
Loads only — (10 tons at B) {14 tona at Ry)

Tona

Top membar . : 3 * . . 1142 (compression .
Dingonal . : ” . : . 621 (tenmls).
Bottorn membe : : . . « B804 (tensile).

AQ - 23-3 tons (compression ). AR - 18} tons (tensile).

CHAPTER XI

. (1) 15 tona (2) 25'8 tons and 17-5 tons.

(3) Max. neg. at ioad point = 240 ton-ft.
Max. pos., 75 ft. from left support = 135 ton-ft.

(@) Shear, 3-30 tons. Thrust, 3-07 tons.
{b) 75 ton-ft. (max neg.) 3-7 ton-ft. (max. + )
. (1) 12-5 tons,
(2) Max. B.M. 50 ft. from the abutment; - 110 ton-ft., load at section
point.
4+ 72 ton-ft., load at crown.
Load at Section Point. Load at Crown
Resultant thrust at left abut, 4/8-34% + 6.67% = 1085 tons ; 135 tonsa
" w right , 4/8-34T 4+ 333" = B w vIEN

- 36 tons ; 20 tons ; 2-1 tons; 1-83 tons; 2-1 tons; 2-0 tons; 56 tons

44 sq. in.
36-3 ton-ft. at 28-1 it. from each support ; 65 tona

Max. -+ and - shears each support. : - . . 6,0001b.
v {and §i . - . 5 . 2,250 .,
Centre 4 - « 44,600 ,,

Horizontal thrust, 50 toens
Max. BM. + 125 at 15t from left support.

+ 450 at 1566, ,, rght
- 160at 454t ,. left P

Max. B.M. at 28 ft. from left support = 228§ ton.it.
at B2 ft. " ' = 228 ton-ft.

H, = 26-15 tons.
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H,, max. 29-1 tons.

Max. positive moment = <4 141 ton-ft., 10 tons at centre,

Max. negative moment= — 150 ton-ft., 12 tons st 50 ft. section.
Resultant thrust, 12 tons at 50 ft. ; 31 tons,

Max. negative moment at 45 ft. = 400 ton-ft.

Max. positive moment at 30 ft. from right support = 520 ton-ft.

Normal thrust at 30 ft. from right support = 128 tona.

Max. stress in rib, 7-7 tons =q. in. (compress.) ; 4-27 tons (comp.) (Min. ).

Max, negative moment, 20-4 ton-ft. at section 25° and 05° jtwo loads on
emaller part

Max. positive moment 142 - 30" and 00°) of beam

Max. shear negative and positive 1-85 tons, when both loads on the beam

and one is at the enda.

T ez = 300 tons ; Vertical pressure = 312 tons.
H = 1-80 Ib, when unit load at €; 53,800 Ib.
CHAPTER XII
. 57 tons/sq. in. (tension). 19° 207,
Pn = 4'78 tons/sq. in. = 2-76 tonafaq. in.
I 36-2 tons/sq. in. tensile

7 [ ta .
An.gra 31° 43" and 121° 43' with 3 tons plane,

See Para. 166, equations 37, 40,
Pn = 261 tons/sq. in. Py = 0-87 tons/sq. in.
See Question 4.
R, e = -+ 6 tonsfsq. in. (tens.). R n = = 6-0 tons/sq. in. (comp.).
a = 13° 15’ and 103* 15’ to vertical.
. {a) 2-5 tons at I8° to normal. Pz = 382 tons or -T8 tons
Py= 78 , or3B2

CHAPTER XIII

: 66 ft. [ .. 4.2001b./sq. ft. (Rankine).

&5 ,, maz 4,200 ™ (wedge) or (friction).
3-8 it, from back of wall.
Baso 6 {t.
Se: toxt,
b =10-0 it
Normal stress at dry fnce. Water fnce.
10,000 1b. feq. ft. ; (C.) 8,300 1b. sq, ft.
Shear (dry face), 5,000 Ib. fsq. ft. {water fnce) zero.

Resultant thrust = 52-5 tons,
Normal stress (dry face), 3-7 tons/sq. ft.  water face, zero,

4,800 1b.

32 Ib. feq. ft.

Depth, 3-12 ft. breadth, 4-8 t.
5 ft.

Rankine, 5,000 b, Frie., 5,080 1b.
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Dry face, 1-5 tons/sq. ft. water face, zoro.

Normal stress, vertical surfaces,

Dry face, nil ; Water face, 1-17 tons/sq. it.
{m) 1} tons/sq. ft. (const.). {e) 355 tons/sqg. {t. (comp.) to
{b) 2§ tons/sq. ft. to zero -89 ton/sq. ft. (tension).

{d) 4 tons/sq. ft. to zero at 6 ft. from
dry faee. -
CHAPTER X1V

Width, 78 in. Effective depth, 234 in. (overall, say, 25-0 in. ).

Area steel (tension only), 1 sg. in. say, 5, § in. bars.
{ in. dia. stirrups ; 6-in. pitch near abutments.
{a) 1-2 % 10~*in. per inch length. {b) 2-7 in. Ib. per inch length.
Effective dopth steel, 17 in. (steel in tension 3, }.in. bars, or 5, §-in. bars).
Area steel, -56 8q. in. (¢ = 600 lb./sq. in.; ¢ = 16,000 Ib./sq. in.; m = 15},
Band @ ft. 1-43 sq. in. (area of bar = 715 sq. in.).
fand 1066 180 ,, ( o =795 ),
Weight of cubie feot concrete, 150 1b. W = 1800 Ib.

= -§ ton.

. 188 Ib. fsq. ft. per foot run
. 455 in.* (m = -36d). 805 in.* if m = 15.
. 8 = 7700 1b /sq. in. ¢ = 520 Ib.fsq. in. (neglecting weight of beam).

(m = 15, d = Tin.).

. 4181b /ft. run; f = 5-95 tons/sq. in,

Bhort column, 107-5 tons,
o fd; M = 08-6bd?; A, = 0-007hd.
(a) 2= 12in.; (b) 1,872,000 Ib.-in.

f.=7501b. per sq. in.; f, = 18,000 Ib, i b 35w 10 in
Lot ol e B pae 0. . 30 i

14. f, = 10,000 Ib. per sq. in.

16.
17.
18,

22

- fo = 13,500 Ib. per sq. in.; f, = 4751b. per sq. in.; f,, — 4740 Ib. per

&, in.

Load = 19,875 Ib,

20in. % 20 in. overall,

fi max = 4401b. per sq. in.; £, ,. = 801b.

e T e e e ;'f,r. i P08 o P B

4 = 68-51b. per sq. in.; f, = 18,000 Ib. per sq. in.; [ = 40-8in.

Flange only taking tension load; N.A. depth — 4in.; f, = 13,200 Ib.

8. in. ; M = 902,500 Ib..in. ; Sti i L in. ¢
r:d T Irrups—stress = 10,000 1b. per sq

(a) 323,0001b.in.; A, = 112 sq, in.
(b) A, = 1-228q. in.; A, = 1-49 sq. in. (tension),

CHAPTER XV

« o) Mg = +2Mtaunaﬂ..=ﬂ:rﬂ=o,

(b)) My, = — &7-5 ton-ft.
(e} My, = — 88-5 tan-ft.
(d) My, = — 63-3 ton-ft.
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(e) My, = — 636 ton-ft.
M, = + 8088 ton-fi.
{(f) Myp = + 70-76 ton-ft.; My, = 8553 ton-ft.;
M = + 19-27 ton-ft.
{z) My = — 26 ton-ft.; My, = — 125 ton-ft.
(5) Hu = — 25 ton-ft. ; MH.I; = + 6-25 ton-ft. ; Mu w0,
(e) Myp = — 25 ton-ft.; My, = — T-14 ton-ft.; Moy = 4 3-57ton-ft.
(d) M,y = — 256 ton-ft.; My, = — 716 ton-ft.; Mo = < 357 ton-ft.

i (a) Myg = — 8339 1b.in.;. My, = — 16,867 Ib.-in.; My, = -+ 16,687

Ib.-in.

(b} My = — 5560 Ib..in. ; My, = — 11,120 Ib.-in. ;

Moy = — 44, 480 Ib.-in.; Mey = My, =10,
(6) Mgp = M,y =— 10-5 x 10%/30 Ib.-in.

Mpg = My, = — 9 x 10439 lb.-in.

Myp = Moy = + 0 x 10/38 Ib..in.

Mep = — 18 x 10730 Ib.-in.

MIH.‘ = Mgy = + 8 x 104306 Ib.-in.

My = — 21 x 10439 lb.-in,

. My = + 4760 Ib.-in.; Mp, = + 20,230 Ib.-in.

Myo = + 29,760 Ib.-in.; Moy = + 13,000 1b.-in.
Myp = — 13,000 Ib.-in.; Mpo = — 11,900 Ib.-in.

» Mpp = 4+ 135,000 Ib.-in.; My = — 135,000 lb.-in.

My, = — 135,000 lb.-in.; Mgp = + 135,000 Ib.-in.
Mip = + 104,760 Ib.-in.; Mp, = — 64,700 Ib.-in.
My = — 1788 Ib.-in.; My, = — 3572 Ib.-in.

M,z = + 10,714 Ib.-in.; Myy = — 7144 Ib.-in.
Mgy = — 8030 lb.-in.; Mgy = + 8930 Ib.-in.

My, = — 2778 1b.-in.; Mpg = — 2778 lb..in.

Myy = + 55556 Ib.-in.
M,y = + 5946 ton-in.; M,y = — 25:72 ton-in. ;
My — — 1920 ton-in.; Mo = — 14-47 ton-in. ;

My, = — 12-88 ton-in.
M‘,a = 4 lﬂﬂ,ﬂm Ih.*iﬂ.-: ﬂfm = 4 G0, DN “J.vin.;
My, = — 80,000 Ib.-in.; Mpe = — 180,000 Ib.-in. ;

Spe = 1/3in.
My = — 010 ton-in.; My, = — 18-20 ton-in. ;
My = + 11:36 ton-in.; Mpo = + 568 ton-in.

+ 108-7 ton-in.; Mp, = — 1157 ton-in. ;

Moy = + 150-5 tan-in.; Mpg = 0.

M,y = — 4888 Ib.-ft.; My, = + 520 lb.-ft.

{a) M,y = — 16,000 Ib.-in.; My, = — 32,000 lb.-in.;
'H'I'."D = + 32‘% l,ﬂ--iﬂ.; Mm = + 15.000 I.b.vi.ﬂ.

{b) My = + 143,5721b.-in.; My, = -+ 2144 Ib.in.;
Mgy = — 27,856 Ib.in.; My, = — 66,428 |b.-in.

(e} Agg = 0-12in.

=
E
I
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Mip = — 50,000 Ib.-in.; My, = — 100,000 Ib.-in. ;
Mkﬂ = el ]]ﬂ.'m u.h"i-n-: M‘-'ﬂ = 4 EM,MD Ih.-i.n-;
Mpy = — 281,000 Ib.-in.

$an = $yo = dgp = 0 (by analysis);

M,p = — 70,000 Ib.-in.; My, = — 140,000 Ib.-in. ;
Moy = — 308,600 Ib.-in. ; Mop = + 140,000 Ib.-in. ;
My = 4 188,800 Ib.-in, ; Mpy = 4 83,300 Ib.-in. ;
Mpy = — 23,000 Ib.-in. ; Myp = — 14,000 Ib.-in.



SUMMARY OF FORMULAE

I. Bending Moments and Shearing Forces—
Moment = Couple = M = Fx . 7 -

Shearing foree at o section due to irregular loads :

~8, =R+ W, 4+ W+ ...o0r + 8, =R, - W,-W,

Cantilover, load at end :
M, =Wzx; M,.= W,
S, =-W . -, | . 5 . :

Cantilever, uniformly distributed load along whole length :

2
M:’='E= ‘"ﬂuzg

2
Seg=—-wz; 8 .. =—wl

Simple beam, centeal load W :

M, _-lz_" -gﬂ-x}: Mm,---?
8= + ? : . ; , . . .

Simple beam, uniformly distributed load along whaols length
M,=-E+“’:.M -‘l”r' AN e
e R e R

Relation between loads, shearing forces, and moments for beams :

H!-l--—".s f‘h‘."dz:ﬂ J'"ﬂfltldl'

II. Bimple Bending and Moments of Inertia—
r - - - -
i L
By = y
Umymmat.rieal sections about N A

M
Ji= v Jy= h . . -

By '-':ll?q

*

y
o
]

zl---. M= fZ ’ £ . =
~ I
517
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Momenta of inertia : -
Ty tin RN b TR RS G S g
T T G AR LT o e
Tyw = Ixy + Am? . . : - . a 28
Ig = Toe 4 Ity . : ek 1 i a an B
I + Toq = Iyx(max.) + Igy(min.) . - : T ¥
Ip = Ingycostfa + Iyysin®a. . . . . . =
Iyq = Iyy sin®a 4+ Iyy cosa . " - h - v
I, rectangle about ¥ A, = % - ' 1 ry v 28
s
I, square about N.A,. = = ¥ : £ - ]
I circle about diameter (N.A.) = Erir : g : .30
I (Routh's Rula). i % t F . i el 181
IN. Deflaction of Simple Beams—
dy M ] al
da= EI = R : i 3 H X E: 5

5.—1: = tan § = i radians H . . 42
W. H. Macaulay’s Method of Finding Deflections, see . - A42-53

i Wi

B be al H Bt | s
imple beam, central load: y___ 177 S g 5 y
Simple beam, uniformly distributed load i 46

Ymaz ™ 353ET
Simple beam, 2 symmetrical loads : y,,._ — (“_EL" i _'fé'!f Et_j" AT

Relative doflection portion of beam bending to arc of a circle y = J::,‘I 45
Wi

Cantilover, load at end: y___ = 'E.TI P A .

Cantilever, load not at end . Ymaz = I].E! {'.'H =L . . . . ©ba

Cantilever, uniformly distributed load, wholo length : g .., = % . b8
Relations between load, shear, moment, slope, and deflection

8. iy
w == E = EJI E" i = T ~ H e a 58
M dy

8= T
d:ﬂurE#. 58

- . » . - -
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PAGE
Mnsfi_": . 58
i %,-ff : LA O 58
y-f:’.d.r ! o foh
dyr Ty 1 '
(,_E_y)ﬂnmﬁ L e LPh i
5 1 =
2y~ Yay = Fin, + Ve, = gy [ Mr.dr (Eqn.24) . 53
1
ko
EI{:‘.,—;‘,J=-[A,_]; o AR B
i
Interprotation of Eqns. (20)and (24) . . . . 58
1
mm,ucmfm-.a; bl i e S e b iy
M dM M.m. dz
y:n fﬁq.(ﬁ).d:,:fﬂ—ﬁr— B . . ?2
For a plate girder having moments of inertia [ and I,
(]
meE:zf‘@‘g;.i.gf'M._"‘dz. 2 L L
I I I:

IV. Built-in and Continuous Beams—
Built-in Beams, symmetrical loading :
Area of simple moment dingram = Area of fixed moment diagram . 81
Central load W :

Fixing couples = + %; Central moment — ]—;-l ‘ : . . B2

Load P, nl from left support (origin)
M,=Pl.n[l —n)*; My = Pl.n%1—mn) . . s .- B5

Uniformly distributed load.

L
Fixing couples = + T?F; Central moment — % i £ 2, e
Built-in Beams, any loading :

Aren of simple moment disgram = Area of fixed moment diagram « 82

Moment of ares of simple moment = Momaent of area of fixed moment
diagram about the origin diagram about the origin ., 84
Reactions R, = Bg 1+ By; Ry=Ry TRy . ' erel O

My—-M, My - M
=R"'i("n_i__! ; :I:lH':F( .i: ') R
Deflection, built-in beam:
wn

Central load Yeentre = jgagT 2 ' . . . . B8
i 80

Uniformly distributed load Yeanira = m . = . -
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Continuwous Beams e

Theorem of three moments |

LY by ﬂ.-l
45 S M OMy(, 4 1) + M, + BET (: "") -0 5
1
Reactions {mmpfuJL
Ry =Ry, i I"-i-R +”‘='Ml, S SRR T
2
Daflections 1 . . . 5 3 - - « « B8
Propped Beams . . - " . s 2 . - « 118
V. Distribution of Shear Stress—
P shear stress &
Moduolus of rigidity == & = e——— = £ 4 g w1
8 ¥y 8 2
ql-h y:r.l'yt:E:.Al - . . « 120
For rectangle g, = % . : . ¢ ; 3 121
g 165
For circle g,,,2 = i . 5 5 . ; 123
For built-up section ;
o
Flange g, = o7 (D" - d") L) s A T s L SR T

5.5
Web  gpn =B—I,F{nl-m;;\!.'eb.q_“=%-’b£m'-ﬂ+d" 124

2
Shear resilionce =-;% . per unit of volume . - L : vt 16

Deflection due to shearing foree :

5 o
For varying q:—y, = -ﬁfﬂ.dx ; ; ; : . R &)
1 i
For constant '?:_'?*'=A_Ef""d¥ : 5 ; : . 127
1-5
where O for rectangle = e 1 : : 127
Clrdle - i | 127
34 3 ! ; ;
Simple beam, uniformly distributed load :
wi'C . wt
Ys eantre = g [lor varying q) = 3 (for constant q) . . 128
Simple beam with central load :
il-'TC
Yacentre = g (VATYing q) = —— (constant q) . C=A R . 128

4.rh‘3'
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A
Bimilarly for cantilever : i
wi? wid(}
{11 f.":"'"—g'mﬁ . . . - . . . . 129
(2) y, = —ﬁnl _H_iE-' - . . L . ‘ - « 120
VI. Columns—
Euler. Axial loads :
On'El
P = - = - . . . 138
U = 1 for pin enda
ws 4 for fixed ends
= } for | fixed and 1 free end
Rankine. Axial loads :
P“‘—Ahi_'t' 2 . 140
l-{—u(f)
Johnson's Parabolic Equation :
P iy .
I“f""(f) e S T S NG e
American straight line :
P 1
zq_rg-g(i) S AL e o, T
Struts, cecentrically-loaded :
P P FPey,
Shm'-’*m:“j +Jrsﬂ-=i+ _I_r . - . . 45
Euler Form. Pin jointa :
cﬂwvnhmanhﬂle. RN e T L
sr,,.,nu.}(m.,f )IE b sl ST
Pel® P 1
=R . H . . « 148
oFr = oo if i iuumn]l
/ O e [
.fmﬂf"f“'( Bl 3)+
m-:.pg%.(sm.;-l)-]-d— v o i AN

Rankine Form :

" @)
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Combined end and transverss loads, Pin ends :

Case I. Transverse load W at centre,

W ETI i P Wi
Vaos = 358/ (3 0/07) - 18 -

W JEI i P A
f'ﬂ"“i"k/;“‘”(?a"’\’ﬁ 7t

Case II. Uniformly-distributed transverse load,

e [romd )] -2
.-’.m==.wm[ (I[ 1)}1"*‘"

Case I. P < P,=na'EIlB,

rF WI Wb P L e
r"'"‘"':zz"'dw "B P
Case II. § wht P
Jo= +sz+ns4 EI'Z'P.—P
VII. Framed Struclures. Dead Loads—
Wind pressures :
P, = Pegin f (Goodman) : : .
2 gin A
P"=PT.E[DMhammj ; e

P, Puin g W Ho00-0) 0 ion)

VIO. Deflection of Perfect Frames—

Huﬂmufmmnbgn=l_.FE

2 AE 1 ¢

I
y= EEI_'V {Castigliano's theorem ) 2 .

Foroe in a member ", / Total force in a membar
due to unit load I:Iun to external loads

-

y=2x
or y = EFdi.L
AE ' ‘
1
For beams, y = E-jf!nf. g—?)d: EI constant

1
Forbumn.grnﬁ f..h‘ m. d= EI conatant .

FAGE

151

153

163

154

175

175

175

178

178

182

182
183

188
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IX. Biresses in Redundant Frames— i
d (U - Total work done on the membaors,
'™ including the redundant member )
dT
_4u "'(z L o
ar T 7 5 '
For one redundant bar,
I
TR (kW) . o ;
T‘__—’{ L IR S B, P
M L
AE
W ==
R-_E_E_K“ }JE AP N A o e K 10
. i ZEWJAE
For two redundant bars se¢ pages 195 and 180,
Yy=0=p"4+Tw,, + Ty - . . . « 199
Y= 0=y 4+ Ty, + Ty - . : . . 199
e PR e M S ol o6 |
=y
5 Mtdx
B‘-andmg, U = 'E'ET . ® - 5 o & ) 2 202
Twm D
L
f Mpm, . dz/EI
2 TN S =i_"_ 53 e TR
fm,’,#IEI -
y. =0 =y + By¥py s . . s . - 208
g =0 =3y + Rpttux + Bettap - - A . 200
=0=y,"+ Bp¥oa + BV - % g % . 209
_., 5 Ina I (AT SORAES L e
Portal Frame: Central load P in beam, base hinges
PP
Bl T T =11
Hi=—a% M and 215
3 LYY,

Portal Frame: Sidnhmimnh]hldfﬂhbﬂhpﬂ[lﬂﬂlmhuﬂhingﬁd.

£ T e e e e O e
i et and 217

EEK, U= (M, — (M, — F) (M,—Fy) + (M, —Fg*'+C . 213
Ky =1lln
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Mechanical solution,
x‘.nﬂ.w——&-ﬁ . . - .
d.7.]
X. Beams and Frames with Live Loads—

My =W, + Wy, + .
My poe when tan @ ZWz 4 tan §XWh is a max.

= o3e- 2]+ [0-205 +2]]

Equivalent uniformly-distributed load for moment

ET'I' = MAX. moment = - = .
Shear at a section = TWy, - T,y . . :
Equivalent uniformly-distributed load for shear :

2

Wy =8y mart f=zp g *
a4
or w, = +S‘““-=—‘. . . .

XI. Arches and Suspension Bridges—
Arches. General equations :
(@) Peos@-Ssinf-H,=0 .

* - .

0y
(b) P sin§ + S cos +(Z W, ,..)_V,...a :
o

fe) M,~M-V .+ Hy +(2C' Wiz o ) =0,
&

Three-hinged arch, M = M, + H.y

For single dead H Wnl W
lead on ) "

Single concentrated moving load on, H = & .
[ ]

Radial shear at a scotion dus to unit load :
Sy = F,cmﬂ,vt- H,sin 8, .
or Sy = - V,cosfl_ -+ H,sin 6,

Normal thrust at a section dus to unit load :

Ty=H,co80,- VysinG, . . .
or Ty = H,co80, + V,sinf, .

+ Wby + Whyd + ..

*

236

238

230

258

267

2567

268
268

260
260
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Hanging eablo : Continuously loaded,
P,=T=Hmed . - ; .

He=wrcos'l; T=wreoa®d . . : - -
(At vertex) T'=H =w,r, . - . . : . .
Hanging cable : Uniform horizontal load,
u-"’..‘!. : TR PN
4
S
Diput‘uhl&.y—-f{l-xh - i . ; Z 4

Lengf.hurume,z-a_hi(l+?§':-’) PR A e )
Anchorages :
Pressures on (fixed pulley) H, = Tcosag-Tcosa . : b
P,=Tgna+ T'sn f . . .
* Pressures on (movable saddles) H; =0
Teosa=T,cosfi .

P,=Teinag+ Tisinf . .
Thres-hinged stiffening truss :
&
3+'IF°=-H.T!:5 . . - . 3 ' . .
S e e S ) T RS
Ye

Single concentrated moving load on the stiffening girder:
Horizontal tension in cable,

H—me' Wil-n)

2y, 2y,
Wi
!I“" h!z;; & - #
Shear at a section,
S.:: i:stsﬂ-fftlﬂﬂt - . - - . .

I-2r
L S RN R

oW(l -n){l-2=
or 3-8, + A= =20 ?H ) . . A
XII. Principal Siresses— )
(Normal stress) p, = p cos® 8 ; (tangential stress) p, = p sin (. cos §
Combination of a normal and a tangential stress :

Pmup:l-trmﬂ—-(l:l:,‘fl+ ) £ Ln

525

TAGE

271
272
273

273

273

273

274

294
274

274
2474

297

78

278

278

279
279

279

280

208
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PAOR
tan 2g = E . - 4 . . 5 - o 203
P
3
Mlx.almnr.qmu"fp?+g" . . . F . . 293
Two like perpeadicular forces (combination) of :
Fn=pgsin®l L p cos?f . - : . 3 . 204
?g-[Pa"P'}Siﬂﬂ.chﬁ . - - . . . 20
Pr = fp*lmlﬁ.f_}.,'u cos! § 2 " i 4 . 704
Angle between resultant and normal -
pgtan'fl 4+ p,
== _____" Tw . . . . 3 265
= F {Fz"'P.j tan E
e e AP 0 BRI ) Lo A
Pl uiay =Bl L 00 E L S S e
Pmar =25 P (unlikeforces). . . . . 293
Plane for which resultant stress is most inclined to the normal :
Bs _ iﬂ_ﬂj . . . . : » « 207
Py l-sng .
. Pz— Py .
orging=-~-—=_<%¥ - : . 3 = " . 207
# Pzt Py
Ellipsa of stress . : ; . ; . . 208
Conjugate stresses |, . . . . . 302
—
P, _ 0088 & Vioost i —eowt § s e T

PY oosdF Voos* § — cos'g

Combination of two normal stresses at right angle and a tangontial stross,

Prinuipnlﬂrmﬂbg:-;—miqfﬁ;—mf+q' 5 : . . 307

=m0
q_“..,‘/‘-_*’_*?’l_’..l_,: R s

XIIT.—Retaining Walls and Dams
Earth level, back of wall vertical (Ranking ),
0 1-sing wA? 7 1 —sin
5 ”"'(m)""ﬁ“g(m =S
Earth level, sloping back of wall (Rankine),

Pr =/ w, %int g 4 A ( ]I ;l:n'i )i cos®d |

4 . 315
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ttP,n%ﬂ_ﬁ.“ftan'ﬂ+ tm'(ds—é) Rl

o &
(1-sind)cotf _ (45 T®

el ey tan®

Vertical sarth face retaining wall with positive surcharges

u.r,h umﬂ—\’ﬁ'ﬁ-—m'#

Pr=Tg o0 st yowro—sod
Wedge Theories
P, = jwht . sint {p— ¢

win (0 + ¢)sin (3 — 0)

im'p.lm{p—i—ﬁ![l + il

Hn{ﬂ+ﬂ]m¢p*ﬁ1

Distribution of normal stress in a horizontal section of a masonry wall,

0 s e,
S

Foundations: uniform pressure,
W /1 — gin $\*
B \Yemag)

or qu,h.dkii:%% i L (g

Varying pressure uniformly,
1 4 gin &% ®
mg(lim*

whats swh‘(l"'ﬂﬂ‘ : H

Analysis of Gravity Dam . : . . .

XIV. Reinforced Beams—
Fliteh Beam. H=%?“l}
fl“'””r""jt

E
mmE! . .

*

527
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320
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322

324

324

425

326

40
340
340



528 THEORY OF STRUCTURES

PATE
Reinforced Concrete Beama.
Reinforeed tension side only. Rectangular section,
= ﬂ-ﬂpﬂl N.A.
‘—-m("*—.“)tﬂ:"—” I e L T T
© " "y
For ¢ = 16,000 Ib./sq. in., ¢ = 600 Ib./sq. in., m =15 . 3 + M5
(a) n, = Bﬁarn=--35u'. . . . . . « M5
() External moment = B = 95bd® . . kLN
(e) Area tensile rumlnrcemmt. = A = -UOB-EH 4 . b
n=VmirL Smr—mr . % = - " . 46
mA(d — n) = n?f2 : 3 : = ; . 347
..__.:I:,.If’""' imAad REET L VRSN T
o i
n=df S e 360
3 + =
Tee-Beam. (Reinforced tension side enly); N.A. within the slab,
e n
— 3 . 4 E i i . 361
] mid =n)
n=nd; d, =sd;
Zrm 4 8t 2
", = Srm B, = ;. ” 4 . . &b
Arm of internal moment of resistance,
o g Jot & dmea® — 12mre, + |2!I'I.'l"- 352
a d B ‘.2 =; 'l} - & -
Internal moment of registance,
R, = :M,(?%‘i-)u SRS e i R Y A
Distribution of Shear Siress, (Rectangular beam],
G AR = 2 1 R R TR e e g
# = Spacing of stirrups st a section.
For rods at 45°,
teA, = 0-T0Tq bs = 0-1078,8fa . 1 A ! . 358
For vertical stirrups,
t. A, = gbs= Sala . L ; - i : . 368
Bond stress and anchorage,
-%}.-Dw-dhnhhbmdm. el S e Y
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Considering rate of transfer of stress from conerete to tension steel,
u = g.bh./Xo . . . . . . . .

R.C. columns. Axial londs,
Bhort columns, with lateral ties or hoops,
Effective area of concrete == dg, = 4 4 (m=1) 4, -

W"'-"{"‘"l""{':m']”' . L .
Bhort eolumns with spiral reinforcement
W= G.Ai- = ﬂ"A' + 20,4, - - - . .

For rectangular beams (reinforced on tension side only),
Effective moment of inertia on a concreto basis about N.A. .

b"‘(d--—)

Equivalent compression modulus = I—. -— (-i- ) - -

Hnmmtufrm.chR,:E:(ﬁ-—) . . . i .
XV. Slope-deflection and Moment-distribution Methods—

Sign Convention . . . . . . . . .

of Moment-stifiness, li.hrr}—umr, ‘iun} -moment stifiness and

Shear stiffness fnctors . = . - . .

Fundumental Slope-deflection Equations,
2EK(20py + Oun + 34) = My,

EEKE-‘M.\B + Ogy + 34) = Myy
General Slope-deflection Equations,
Total moments at the ends A and B of a loaded memberd B,

My = (4 )Myyy + 2EK(20,y + Ops + 34) .
My, = (+)Myny + 2EE(Oyp + 205 + 34) -
Joint Equations,
2 members BA and BC rigidly mnncem:l at B—
My, + Mye =0 . .
3 members OF and 0D rigidly mn.nmmd at O—
Moy + Mep =0 : : : : ;

For o number of members mecting in & ngul joint—
EM, = 0, whero n stands for near moment, i.0. moment
in & member at the joint end - 8 : :

Bent Equation for n given portal (Fig. 2185}—
[+'lf"| ES Mnl = hh{ﬂ' b Mwi = Pa {I‘.l'ﬁ'l"l'r-lm'liﬂg momint)
H
Shear Equation for the same portal—

(May -+ Mpa) | (M, + Mop) _ p 2
hy : hy By

ia
His+ Hoo= Py
1

520
PAGE

383

a67
367

87

371

363
303

307

07

307

402

402
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General Shear Equation— PAGE
Column End Moments _ ZP a_ M+ My,) 04
Column Lengths TR Ly

For the portal shown in Fig, 222—

¥‘;ﬁﬂﬁ+ﬂ%lﬂh+{f_r_:: e P.%+P..£+p,.£. 404
Recapitulation of the Method of Slope Deflection . : . 408-10
Moment-distribution Method ST a1 i : & - . 410
Definitions:  fixed beam moments, moment-stiffness factor, shear

stiffness factor, earry-over factor . s I : I 410-12
Positive and Negative End Moments . g . ‘ . 412
Method of Moment-distribution . z 4 . ; 413-20
Nlustrative Examples: Both Methods | : . : : 420-78
Axial Forces in Members of a Frame . A . 478

XVI. Reciprocal Thearem, ete,
Maoxwell's Law, 1864; 4, =4, . . . 483
Betti's Law, 1872; .

Simple Form, equation (1) P, . (Py.dy) = P, . (P, . 4,) ; L482-1
General Form, equation (10}

ZP,.ya+ EM, .1y = EF, .y, +.2M, .14, . : 485-90
Hustrative Problems,

L=P.%:: .‘t’nnp.%; x,=1u.% AT 1T

Mechanical Solution . 3 1 " .405-8

Professor Begge® Mothod . . y " : 3 3 " .
Professor Beggs' Method, Summary | : % : i - 504
Professor Beggs" Method, Example 504
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Axarysis of a dam, 326

—— — —, triangular section, 335

Anchorage, R. C. Beams, 362

Anchorages, cables, 274

Andrews, E., 245

Angle of friction, 311

—— of repoas, 311

—— section, momental ellipse of, 30

American straight-line column for-
muls, 144

—_—— A:ﬁ;mn Bridge Co.'s,

—— ——, American Railway Associ-

ation, 145

Arch, axis of, 254
——, linear, 254, 260, 270
Arches—

Two-hinged,

Area, effective, R.C. columns, 367
— — — moment of, slopa
and deflection, 55-67
—— of moment diagram and slope,

58

—— of slope diagram and deflection,
H6-8

—— transformed conerete, 347
Assumptions, theory of simple bond-
ing, 22
——, —— of reinforced concrete
beams, 343
Axea of inertin—
Principal, 27
Aotars
Noutral, 22
Reinforced concrete beam, 341,
344, 347

g:lrmg i mmm
i pressure, o-
taining wall, 324
iy oo Iv. V, X, XIV
C-hl"u I.. II.. IlI. @ Wy dlg
Simple, cantilever, and o -
ing, Chap. I

Beams—{Contd. |
Bnilt-in and continuous, Chap, IV,
205, 2090
Deflection of, Chaps. III, IV, V
VIII
Moving loads on, Chap. X
Pro . 110
Rein , flitch and concrete,
Chap. XIV
Resilionce of, Chap. IX, 71-72
——, shear, 124
Stresses in: bending, Chap. IT;
shear, Chap. V
Varying section, 68-71
Bogps' Apparatus, 500
Beanding—

MomEnta. Chap. I (simple beams)
——, Chap. IV (fixed and contin-
uous beams and propped)
, dofined, 1
—, dingrams, 4
—, signa, 3
i re]nt.innmta ghearing foroe,
—— —— to slope, deflaction, 68~
87
Simple theory of, 21
_.p assumptions in theory, 22
Bent equations, 401
Betti’s Law, 483, 435
Bond stress, 362
Bows notation, 163

Bridges,

Buckling, columns, 133

Built-in beams, 1, Chap. IV

—_ —, moments for, 8085

— —— renctions, 85-87 ’

Built-up beam section, distribution
shear streas, 123

— — ——, mamental ellipse, 29

CaBLE ing, 270

S T mgnm 274
Caloulation, reactions, Chap. I ,
— ——, built-in beam, 85-587
—— ——, continuous beam, 85
Cantilever beam, 1, 4
.._._I_—-, deflection of, 52, 54
— e e O ghtar; 188
Capito, 163

Carsigliano, theorem of, 178

531



532

Cast-iron, 20, 21, 130
Circular beam section, distribution
shear stress, 121

Coefficients of elasticity, 20, 21, 117,
339, 342

— ——, tabla of, 21

—_—nf &iﬂtiﬂﬂi 311

Columns, strutes, Chap. VI, 133-160

=, moinforced concrete, 365 -

Combined bending and direct stresa,

145, 277

—— end and transverse loads,
columns, 1560-154
Combination of  perpendicular

strosses, 258260

Common roof truss, 161

Compression, 19, 20

—— equivalent modulus, R.C. beam,
371

Concrete, 341

—, moinforeed, 341

Conjugate streases, 302

Constants, columns, struts, Rankine

{practical), 140
e — ——, —— "[theory), 140
——————, Jolinson’s parabolic
(practice), 142
——————, (theore-
tical), 142

——————, Straight-line, 144-145
Constraints, Redundant, 78
Continuous frames, 213
Continuous Beams—
Chap. IV, and pp. 205, 200
Deflection, 08
Fixing moments, 92
Reactions, 85
Theorem of three moments, 02
Counter braces, 162
Crushing strength, tablo of, 21
Curvature of beams, 23, 41, 48
—, —— of rodius, 41, 238
Curved flanges, frames with, moving
loads, 246
Curves, stross-strain, 20
—— column formulae, 141, 144

Dass—

Gravity, Chap. XIII, 325
nnal}'nt::u of, 328
of trinngular section, 325
— line of thrust, 326, 327

¥

——

—— normal stress, horizontal
plane, 328
—, notes on, 325
——, shear, stress, horizontal
plane, 328

INDEX

Dams—(Contd. )
Gravity, normal stress, wvertical
plans, 330
——, theory of stress, 331
—— ellipao of stress, 332
Dead loads on arches and s ion
bridges, Chap. %
—— —— on beama, Chaps. I-V
—— —— on frames, Chaps. VII.IX
Dnmtim of beams— :
tigliano's theorem, 178
Chaps. ITI, IV
General method, Macaulay, 42
Built-in, 87
Cantilever, 52-54, 65
Continuous, 96
Overhanging, 49
Due to falling weight, 74
Due to shearing foree, 125-120
For which E, I, variable, 68-7]
From resilience, 72, 74
Graphical methods, 68
Moment deflection method, 208
Deflection of cantilovers due to shear.
ing fores, 128
—— and moment of area of moment
diagram, 58-67
—— columns, Chap. VI
— frames, m_p‘ VIIL IX
—— ——, Castigliano’s  theorem,
178
——, reciprocal, 64
— relation between moment, slope,
G658
Diagonal tension R.C. beams, 356
Diu-gmm.al, analysis of dam, Plates T,
I

+ bending moment, Chap. I

—, framea, 161

——, influence, Chap. X

——, polar, nnrm.u.lm and tangential
2

stresses,
——, shearing force, Chap. I
— stress or foree, Chap. VII, 163
—— typical moving loads, 223
Dimensions, moment of inertia, 25
——, modulus of section, 26
Distribution of shear stress, beams,

Chap. V

—_— e ——, damas, 328
—— —— —, minforced oconorete

Duchemin, wind pressure on  roofl
formula, 175

Eawra pressure, Chap. XTIT, 311
—— ——, rotaining walls, 311-325



INDEX

Eeccentrie loads, eolumns, short,
145

— — . — . long, Euler, 146

—_— e, —, ——, Rankine, 140

Economical percentage steel, R.C.
beam, 346

Effective area, R.C. column, 367
— moment of inertia, flitch beam,
340
Effective (or equivalent) area—
Conecrete columns, 367
Moment of inertia, concrete beams,
371

— ——, flitch beam, 340
Elastie constants, 19, 20, 117
—_ , for concrete, 208
—— ——, tabls of, 21
—— limit, 21
—— mtrain energy, rosilience, 71,

124, 160 :

Elasticity, modulus of, steel, cast-

irom,
—_— e, concrete, 343
— —_ table of, 21,
Ellipss, momental (of inertia), 27
—— of streas, 203
—— — (dam), 332
Embedment, 362
Encastré beams Chap. IV, 1
Energy, strain, 71, 124, 160
Equations for arches, 256
—— for hanging cable, 272-274
— for umie-hmFa:l arch, 257

, for—

uations, GTh

E%oﬂwﬁulm beams, 43, 53, 58, 87,

o6
—— of frames, Chaps. VIII, IX
Stresses in redundant frames, 197-
199

Equation, theorem of three moments,

0z

uivalont eompression modulus,
= R.C. beam, 371
—— moment of inertia, R.C. beam

a7l
—— uniformly  distributed  load
{moment), 231

_— — — (shear), 238
Euler, theory of long columns, 133
—_—— —— —— pocontrically

loaded, 146
Facrons, moment-distribution, 410-

387,

s 385,
88, 391
Factory roof truss, 181, 162

Failure, columns, 133

—, buckling, 133

Ferro-concrete, 341

Figure, modulus, 32, 37, 38

——, reciproeal or polygon, defined,
164

Fixing couples, or moments, built.in
beams, 85
Fixing couples, n;-immuoul baams,

— ——, =, arches, 254
—— ——, ——, simpla portal, 2086,
210
Flitch beam, 339
——, notation for, 339
Force-stress di Chap. VII
Foundations, retaining wall, 324
Frame, simple portal, moments on,
208, 210, 213
Frames, pin-jointed—
Chaps. VII, IX, X
Deflection of, dead loads, Chap.
VIII

—— of, Castigliano, 178
Kind of stress in members, 168
Kinds and diagrams of, 161
Methods of obtaining forces in
members, 183170
Moving loads on, Chap. X, 222
Number of members in a perfoct,
162
Roof trusses, wind loads on, 173-
176
French roof truss, 161
Friction, angle of, 311
—, coofficient of, 311
Funicular polygon—
Moment from (arches), 260
Suspension bridges, 270

Girpens, plate, deflection of, 73
Girders (s¢e¢ Frames, Chap. VII)
, hog-backed, 161
— N, 181
. threa-hinged stiffening, 243
Goldberg, 212
Goodman, J., 175
Graphieal determination of—
— ——, varying E and I, 73
Modulus 33
Moment of inertia, 31
Graphical solution—
Earth , retaining  walls,
i14, 316
Forces in frame members, t.‘-h;g:
VII, 153, 157, l63-164, 1
174
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hical solution—{Conid. )
mfmu]r-mt streas, ellipse of stress,
stirrups, B.C. beam, 358

'Im hinged arch rib, 258, m
Gravity dama, Chap. ‘HI 325
—— ——, analysis of, 326, 335
Gyration, radius of, 26, 139, 367

Haxerxe cable and chains, 270
Eﬂm 212
P., 330
-back girder, 161
Hool, Kinne, 142,
Hoops, 366
Horizontal pressure, cable anchor-
ages, 274
— tension, cablea, 271
—— thrust, arches, 254
— ——, ——, thres-pinned, 256
—_—— y =, influence line
for, 286
Howe truss, 161
Hunter, A., 233
:Euuh-.m:] H‘.uhy. 233
Hutton, wind-pressure formula, 175

Iﬂrnrwlrx’oi-wmdmimt fracmes
Inclinsd rods, 358

Indeterminate structures, statically
Chaps. IV, IX
Inertin, moment of, 25, 26
—, =, tircle, 30
— —, ellipee, 27
——; —, graphical determination
of, 31

—_— » of rectangle, 28
_— p:im:ipnl axes of, 27
—— =, Routh's rule, 31
— —— R.8.1., 20
Inertia, moment of,

. equivalent—

Beams, fitch, 340
w RO 871 2
Inflexion, points of, Fig. 61, Fig.

82, 83 po ¢ g. 82,
Influence lines—

Chap. X

Beam, moment, 222

——, shear, 234

Frames, 239
i arch, horizontal.
thrust, 265
— ——, momont, 264
» normal thrust, Eﬁn
—— ——, rudial shear, 268

*

INDEX

| Influence lines—{Contd. )

Theee-hinged  stiffening  truss,
moment, 379

—— —— ——, ghear, 28D
Intensity of stress, 19
—— of wind pressurs, 175
Iron, cast, 20, 21, 23

Jomssow, J. B, parabolic formula
for columna, 142
Joint equations, 305

Ko of stress in frame member, 186

| Larrice girders (see Frames), 161

effective or

Lea, F. C., on equivalent uniform
loads, 233

—— maXimum moment, 236

Imf. wm-k, principle of—

ﬂad to bending, 202
—— to frames, 194
—— to simple portals, 208, 210
L:mll, of progonmuduty, 21
alastie,
L:nu, mﬂuﬂnu&—

—— stiffening y 219
Lines of throst— e
Retaining walls, 323
Dams, 326, 327
Arches, 254
Linear arch, 254, 260-270
Live, or moving loads, Chap. X -
—— —— —— fypical types (Fig.
120), 223 o

Im dead, on arches, Chap. XI
—— on beams, Chaps. I-IV
— —. on frames, Chaps. VII-IX
—, live, n:ui_l arches and - iom
rid Chap.
e ey O mﬁ'—"- and
Chap. X
Long eolumns—
ATE Iﬂl-:ls,, 133 3
Bu . ¥, 133
mF lnung,

Rmnful'md mnmta. 367
Lunville or N girder, 161

Macavray, W. H., method of boam

defloctions, 42
examples momentsa of inertin.
28-30

Masonry dams, 325

frames,



INDEX

Maximum moment, beam due to
moving loads, 226

—_— —, frame, Warren and N
g!i‘rgmmnﬁnglnn&u. 239,

—— ——in throe-hinged stiffening
trusa, moving loads, 270
—— shoar in & bay, 244
—— ghear in three-hinged stiffening
truss, moving loads, 282
Maximum moment and shear in
three-hinged arch, mov-
ing londs, 288
—— — and shear in baams, dead
loads, Chaps. I, IV
Maxwell, theorem, 64
Maxwell's Law, 483
Mechanical sdlution of structures—
statically determinate, 218
statically indeterminate, 482, 498,
S04

Metal arches, 254
Method of resolution,
frames, 160
——, moment deflection, 208
—— of sections, forees in frames, 167
— of su ition, 194
Middle third rule, 323, 325
Mild steel, 20, 21
Modular ratio, 339, 343
Modulus of elasticity, 20, 21, 117
— —, concrote, 342, 343
—— of rigidity, 20, 117
—— figures, 34, 38
—— of saction, 25
—— ——; equivalent,
R.C. beam, 371
Moment-distribution Method, 410
—— —, carry-over factor, 412
, dofinitions, 410412
—— ——, examples, 420478
—_— — factors, 410-412
» procedure, 419
——— ———, §ign convention, 374
Moment of inertin, coffective (see
Inertia), 340, 371
~—— ——, angls, 30
—— ——, cirels, 30
—— —— ecllipss, 27 )
—— ——, graphical determination,
31

forces in

COMProssion

, notes on, 25, 26
——, principal axes of, 27
258

—re R B
—— ——, Routh’s rule, 31
— of resistance, 22

Momental ellipse, 27

Moments, bending, Chap. I

—, fixing, built-in beams, 85

——, continuous beamns, 92

—— from funicular polygon arch,
280

live loads, Chap. X

Moving loads, Chaps, X, XT

—, dingram of, 223

N amener, 181, 239

—, defloction of (see Chap. VII)

——, influence lines for, 230

Neutral axis, 22

— —  R.C. beams, 341, 344,
347

Kicholson, J. 8. (columns and struts),
133

Normal intensity, wind.pressure for-
mulas, 175 v

Normal stresses, distribution—
Horizontal planes (dams), 328
—— = [walls), 321
Vertical plancs (dams), 330

Normal throst, thm-hinzgaii mhu,

ﬁ -,

—_——, —— — influence line,

268
stress, 280
—— ——, polar diagram for, 280
Notation, Flitch boam, 330
—— R.C. beam, 342
Notes on Plates [, 11 (dam analysis},
b

—— on wind.pressure formulas, 175
Number of members in a perfect
frame, 162

OnL1gUE stresses, 289

Paraporio arch rib, 261

—— aquations, struts, Johnson, 142

—— hanging eable, equationsfor, 273

Perfoct frames, Chap. VIT, 162

—— ——, forees in deflection of,
Chap. VIII

Perpendionlar m_m

Pippard, A. J., and Pritchard, F. L.,
1458

Planes, principal, 200

Plate girder, 7

Points of inflexion, 82, 83, Figs. 61, 62

Polar disgrams, normal, tangential
streases, 200

Polygon funicular, 260, 270

——, rociprocal, 164

Portal, simple, moments on, 184-188
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Pratt Truss or N girder, 161, 239
Fresaurs, ing, 324

Principle of least work—

Chap. IX, 184

Applied to frames, 194

— to bending, 202

—— to simple portals, 208, 210
Principle of work, Castiglinno's

theorem, Chap. VIIT, 178
Proportionality, limit of, 21
FPropped beams, 110

Raprar shear, for arch, 255, 264
—_——, i.nﬂue:;ua line, threa.
hinged arch, 26
Radius of curvature, 41, 272
—— of gyration, 26, 139
—_— —— ——, R.C. columns, 367
Rankine—
Formula for columns, 139
» constants, 140
———— » ecoentric loading, 149
Theory of earth pressures, 311, $12
Ratio, modular, 330, 343
Reactions, ealculation of—
Built-in beams, 85-87
Continuous beams, 95
Rﬁimph b?m o ok VII
iprocal Figures, Chap. VII, 164
deflections, 64 .
—— Theorem, 482, 483
Rectangular beam section, momontal
ellipse for, 28
—— —— ——, distribution ghéar
stress, 120
Redundant frames, stresses in, Chap.
IX, 182, 194
Redundant constraints, 78
Reinforcement, apiral, 367
Reinforced beams, Chap. XTIV
— — flitch, 339
—— columns concrote, 365
—— oconecrete, 341
Relation between load, shear, mo.
ment, slope, deflection, 18, 56-8
Repose, angle of, 311
 Raesilience, d.ih!-n': forces, 178
ST Md-mﬂr |
——, shear, 124
Resistance, moment of, 22, 349
Resolution, method of, 160
Retaining walls, 311

INDEX

Rods, inclined, 358
Hn;cl.}ng londs (see Moving), Chaps. X,

Roof trusses, 161, 172-175 Fig. 93
—— ——, notes on wind preasures,
175
—— —, wind load foree diagrams,
173, 174
Routh's Rule, moment of inertia, 31

| Rules, for breadth, R.C. T beams,
350

Sarmon, 163-154
nd moment of areas (moment of
inertia), 25, 28
Sections, method of, 167
——, angle, momental sllipse for, 30

| ——, built-up or R.5.J., momental

ellipsa for, 20

—— —— ——, distribution shear

streas, 123
Sections, circular, distribution shear

stress, 12]
———, rectangular, distribution shear
stress, 28

— —— momeantal ellipss for, 28
———, triangular dam, 290
Shear equations, 402, 404
Shearing force—

Definition, 3

Deflection dus to, 125-120

Diagrams, Chaps. I, IV

Hinged arch, 255

In arches, 255

Influence lines beams, 230
—, frames, 242
Maximum in a bay, 244, 245
Radial, 3, 255, 264, 268
, hinged arch, influence lines

of, 268
Signs, 4
Three-hinged  stiffening  girder,
influence lines of, 279
Shearing resilience, 124
Shear strain, 20, 117
strgas-—

Shear
Distribution in seotions, 117-124
— in R.C. :
In gravity dams, distribution of, 328
Maximum, Chap. XIT, 117-124,

289, 295, 307
——, planes of, 230, 206, 307
Or tangentinl stress, 280
———, polar diagram for, 200

State of simple shear, 118

Sign convention, ‘Moment-distribu-
tion and Slope deflection, 374
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Slope, Chaps. ILI, IV
—— and area of moment dingram,

5658
—_— ﬁﬁm; aroa of and deflection,
] lim 41
Slope-deflection Method, 301
—, bent equations, 401
——, examples, 420478
——, fundamental equations,
303
, goneral equations, 363
- f:mt- equations, 305
—, momint stiffness factor,
356, 411
—, recapitulation, 400
——, shoar aqnntium:, 402, 44
» shear-gtiffness factor, 388,
412
——, sign convention, 374
——, summary, factors, 391
. Bway-moment stiffness
fuctor, 387, 411
Balid arch, 254
Bpacing, D.T. reinforeement, 358, 361
Spandril arch, 265
“Bpiral reinforcement, 361
State of simple shoear, 115
Statically indeterminate structures,
Chapa. IV, IX
Steel, mild, 20, 21 ,
Stiffening truss, three-hinged, 277 |
Stirrups, in R.C. beams, 356, 357 |
——, spacing, 358
E-hl'ln.'i@;t-lhq column formulas, 144-
45
Strain, 18
—— energy, 71, 124, 160
—— shear, 20, 117
Strength, table of, 21
Stress, 19
—— bond, 362
——, ellipse of, 208, 332
——, kind of, in & member, 166
—— or force dingrams, 2':’lﬂ:!
—, strain diagrams, |
—, theory of dams, 331
Stresses, conjugate, 302
——, in diagonal members of frames,
242, 245
— in redundant frames, Chap. IX
——, normal, 289 e seq.
—, abligque, 289
——, perpendicular, 203 e scq.
——, principal, Chap. XII, 200 |
— —, in dams, 332
—, tangential (see Shear stress), 280 |

AR AN AR
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Structures, statically indeterminate,
C-‘h.ups, 1'1': Ix

Struts (gee Columns), 133

——, combined end and transverse
loads, 150

. socontrically-loaded, 145

Superposition, method of, 194

Suspension bridges, 270

—— —— stiffened, 278

—— ——, three-hinged stiffoning
truss, 277

Tanre of strength, 21

Tea-beam, R.C., 350

—— — rules for breadth of, 350
Tension, 19, 20, 21

——, disgonnl, R.C. beams, 356
——, horizontal, in cables, 270
—, maximum in cables, 270

——, resilience due to, 160

| Theorem of thres moments, 92

——; Maxwell's, 64

—— of Castiglisno, 178

Theory of earth pil'ulure, Rankine,
311, 312

— —— ——, Wedge, 311, 318

| —— of simple bending, 21

Theory of stress (dams), 331
—— of minforeed concrete beams,
341

—— R.C. columns, 365

Three-hinged arch, 254, 256

——, —— sgtiffening truss, 277

Thrust, horizontal, arches, 254

—_ , three.pinned arch, influ-

ence line of, 2& i

—, normal, thres-hi , in-
fluence line of, 260

—— —, three-hinged arch, 265

——, line of, m{ning walls, 323

—— ——, dams, 326, 327

Ties, 361

Timoshenko, 131

Truss, Howe, 161

—, Pratt, or N girder, 161, 239, 2456

—, roof, 161, 172-175

———, three-hinged stiffening, 243

Truss, Warren, 161, 180, 230

Trusses, Chaps. VII, X

Two-hinged arch, 254

| Usrorm equivalent loads, moment,
231

—— ——— —, shear, 238

VenTicAL stirrups, 357
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Warss, retaining, Chap, XII, 311 | Wind load, stress diagrams, roof

— ——, foundations, 324 | trusses, 173, 174

Warren girder, 161 Work (see Resilience), 71, 124,

— — deflection of, 180 | 178 -

—— ——, influence lines for, 238 | ——, least, principle of, Chap. IX,
194

Wedge, theory of earth pressure, 311,
319 ——, principle of, Castigliano’s theo-
Wind load, pressure formula, 175 rem, 178
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