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PREFACE

IN this Second Volume on Arithmetic an account is given
of the doctrines of Powers, Roots, and Logarithms, so
far as that can he well done without the aid of general
symbols. The Treatise is intended not merely as a Text-
Book on these subjects, but also as an introduction to
Algebra @ indeed, if we adopt the original meaning of the
Arab words ‘_Q \ (Lc (ylim ul jibr, the science of powers),
the present work forms the first, and not the least impor-
tant chapter of that science.

To those who have only considered the subjects of
direct, inverse, and fractional powers, and the cognate
subject of Logarithms, in the light which the modern
notation throws upon them, it may scem vain to attempt
to explain these matters with no aid beyond that of our
ordinary numeral notation; but an c¢xamination of the
following pages may serve to show that the mind does
not require the aid of artificial symbols to detect and
appreciate even recondite properties of numbers; and the
Author flatters himself that he has brought the leading
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properties of Logarithms completely within the bounds of
arithmetic.

This has been accomplished by the help of a new
method for extracting all roots, of which the previously
well-known processes for extracting the square aund cube
roots are the two simplest cases.  Thix method was given,
by implication, in a small treatise “ On the Solution of
Algebraic Equations of all Orders, Edinburgh, 1829 1~
it is here simplificd and adapted to ordinavy avithmetie.
By its means we obtain the voot, and all the inferior powers
of the root, with great rapidity ; the simplicity of the
arrangement being the better seen, the higher the order
of the root which we extract.

In the actual construction of the first Decimal Logar-
ithmic Tables, Briggs used the repeated extraction of the
square root, until the results exceeded unit by fractions
so small as to render the excesses sensibly proportional to
the exponents.  Had he known the method of extracting
fifth roots, his labour would have been greatly lessened.
The principle used by Briges is, in essenee, identic with
that adopted by Dodson in the construction of his Anti-
Logarithmic Canon, and with that which is followed at
page 119; the only difference is, that the ability to
extract fifth roots has given us a much greater command
of the subject than either Dodson or Briggs possessed.

The direct computation of the logarithm of a number,
that is, in the language of modern algebra, the dircet
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solution of the equation @,=n, has not heretofore been
obtained ; for although the well-known formula

_(a=D-tn-1)2+f (13—} (n—-1)t + ete.
ST (@-1)-%@-12+}(a-1)3 -} (a~-1)5+ etc.

be a symbolical solution, it is only susceptible of direct
application when @ and » differ from unit by small frac-
tions. In common logarithms ¢ —1 has the value 9, and
z has to be computed indirectly through the intervention
of other numbers.

The student of the Higher Algebra will, therefore, be
somewhat swrprised to find an exccedingly simple and
rapid solution, obtained by a train of reasoning which
requires only a clear pereeption of the nature of powers,
and which is altogether independent of notation.

This is another to be added to the rapidly accumulating
testimonies of the usefulness of Lord Brouncker’s con-
tinued fractions; for although the algorithm and defini-
tion of these fractions have not been employed, the essen-
tial idea has been freely used.

These two new processes, viz. the extraction of all
roots, and the direct solution of the exponential equa-
tion, have enabled the Author to place the whole subject
in a clear light, and to complete the Theory of Practical
Arithmetic without calling in the dangerous aids of inde-
finite symbols and arbitrary notation.
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In order to prepare the student for following the
reasoning to be afterwards used in algebraic investigations,
and also for the purpose of fortifying his knowledge of
what has already been gone over, a short notice has been
added of various Numeration scales. The study of this part
of the work may serve to free the mind from those pre-
Jjudices which are apt to attend the use of a single system,
and may lead it to form just and comprehensive views of
arithmetic in general.

EpIiNpurcH, March 185



THE HIGHER ARITHMETIC.

IN the former volume I have considered at length the ordinary
operations of arithmetic. The attentive student cannot have
failed to observe that these operations, however simple they
may appear to be, really involve important, and, as yet, unin-
vestigated principles.  Those applications which we have made
of these principles are easily understood, and the results which
we have already obtained lead us to anticipate great advantages
from a closer examination of their characters.

The whole system of decimal arithmetic is founded on the
use of repeated multiplications by few ; one hundred is ten times
ten; one thousand is ten times one hundred ; and so on. These
cardinal numbers are called the powers of ten; one hundred is
the second power, one thousand the third power, ete. If, then,
a slight knowledge of the properties of the powers of ten have
given us such enormous facilities in calenlation, what may we
not expect from an acquaintance with the properties of the
powers of numbers in general ?

D. When a number is multiplied by itself, the product again
by the original number, and so on, the successive products are
called the powers of that number ; thus, if we multiply 7 by 7,
the product 49 again by 7, the new product 343 again by 7,
and so on, the resulting numbers 49, 343, 2401, 16 807, ete.,
are called the powers of seven; just as the numbers 100, 1000,

A
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10 000, etc., are called the pow;vers of ten. I am not sure for
what reason this name power is given to such products, and it is
not very easy to trace any connection hetween the ordinary mean-
ing of the word power and the idea which is here attached to it.

The product obtained by multiply-
ing a number by itself is called the
square of that number, because, when
we arrange the product in rows, the
counters used fill up the figure called
a square. '

The product obtained by multiply-
ing the square by the original number

¥R X X X X *
*OK K X X * ¥
L I S R
* K K X X X K
*OX F X K X K
¥ X XK X X X K
¥R K ¥ X K ¥

is called the cube, because, if we were

to place as wany of these squares, one above another, they
would fill wp the form to which the name cube ix given. This
word enbe comes to us from the French cube, the Tatin cubus,
or the Greek zvBog @ its origin, however, is Arabic. The word
ki’ab _xf means anything in the form of a block, and has its
plural ‘_, kow'oub, or kiu'oub.

The product of the cube by the oviginal number is called the
biguadrate or seeond square, because it is also the square of the
square.

Further than this, we scarcely use distinetive names, prefer-
ring the general term power with its ordinal prefix. The
number itself is called the first power; the square is ealled the
sccond power; the cube is called the third power. Then we
have the fourth power, the fifth power, and so on, of the original
number.

In this volume 1 propose to treat of the calculation and pro-
perties of such powers, and also of some other subjects closely
connected with them,



CHAPTER XVII.

ON SQUARE NUMBERS.

D. Tue product obtained on multiplying a number by itself
is called the square of that number ; thus 25 iy the square of 5,
289 the square of 17. Tt is a very easy matler to compute
the square of a proposed number.

For the square of a number, for example, of 7, we may write
seven ttmes seoen, with the sign of multiplieation, thus 7 x 7 or
7.7, but it is wore usual to write a small ¥ above and to the
right hand of the number which is to be squared, so that 7 x 7
and 7% are different ways of writing 49, the square of 7 ; the
latter form is often read the second power of 7, or 7 (ralsed) to
the second power. The propriety of the notation 72 may be best
understood when we come to deal with higher powers.

ExaAMpris.
32 _ ; 792 = ; 842 = ;
1004 - H 490% = H 9732 = H
2795 = . h684% = ;o TO08E = ;
80012 = ;96212 = ;) 143272 =

As square numbers are very much used, particularly in calcu-
lations connected with geometry and mechanies, it is worth
while to compute and to print tables of them, so that we may
be spared the labour of computing each one as we need it, and,
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in the course of time, of computipg the same square over and
over again.

In arranging a table of this kind, we prepare a column to
receive the numbers, and an adjoining column to receive their
squares. Now, if the table were cBkinued to any great length,
it would be enormously laborious to calculate each square by
multiplication.  We do not feel the toil much at the be-
ginning ; but, as we come to large numbers, we find the work
very toilsome, and, secking to lessen the labour, we naturally
inquire whether the square last found may not be of some
use to us in getting the next. For instance, we may have
caleulated the square of 3573, and found it to be 12 766 329 ;
may not this help us to compute the square of the next num-
ber 35741

Let us examine the matter with smaller numbers,  In order
to obtain the square of 7 we place

7 rows having seven counters in

* ok ok ok Kk k%
each row, and, having reckomed % % % * * * *
them up, we find the square of 710 % % % % % * * 0
be 49, In order to get the square % % * % % * *
of the next numnber 8, we need not. % % % % % % % 0
destroy our previous work ; rather ¥ ook ok ok * %k *k O
let the counters remain, and place % % % % * % % 0
7 new counters down the side and 0 o o 0o 0o o o o

8 new counters along the bottom:
we shall then have the square of &5 that is to say, by adding 15,
the sum of 7 and 8, to the square of 7, we obtain the square of 8.
Similarly, if we had laid out 3573 rows with 3573 counters
in each row, we should have had 12 766 329 counters in all. To
pass from this to the square of 3574, we must place 3573
counters along the side, and 3574 counters along the bottom ;
that is to say, we must add 3573+ 3574 or 7147 to the
square of 3573 in order to obtain the square of 3574 ; and it
is quite clear that the same thing holds good of the squares
of any other pair of coutiguous numbers. A knowledge of
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this truth (or law, us we call if.), enables us to construct a
table of squares with great rapidity. Thus,—

3573 12 766 329 3577 12794 929
7 147, 7155

3574 12773476 3578 12 802 084
7149 7157

3575 12780 625 3579 12809 241
7151 7159

3576 12787776 3580 12 816 400
7153

the hieavy multiplications being superseded by easy additions.

An expert computer saves room by placing the differences in
a colnmn alongside of the columm of squares, and by adding
them as they stand.  Almost all extensive tables are computed
by help of differences, and therefore the student should aceustom
himsclf to add in this way. The caleulation would be continued
thus,—

Numb. Square. nff.
3580 12 816 400 7161
35681 12 823 561 7163
3582 12 830 724 7 165
3583 12 837 889 7167
3584 12 845 056

&e. &e. &e.

If the student possess a printed table of squares, he can
hardly do better than prolong it by a few hundred terms. If
he have no table, he may coustruct one as far as the square of
1000 for himself.

It iy clear that the square of a nuwher ending in zero
must end in two zeroes, and that, therefore, each tenth square
may be checked by comparison with the preceding part of
the table; thus the square of 3580 must agree with that of

358, In this way auy error in the work is almost sure to
be detected.
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It is also seen at once that the differences increase by 2 at a
time, and that they are all odd ; hence the truth of the proposi-
tion, “ The sums of the series of odd numbers form the series of
square numbers.”

‘We have learned how to pass from the square of one number
to the square of the next number: let ug try to overleap several,
and to pass from the square of a number to the square of
another number somewhat removed, as from the square of 7 to
the square of 10.

Having arranged counters to represent the square of scven, let
us place three rows of seven

each along the side of the * % % * * % % 0 0 0
square and we shallhave sceen % % % % * * * v 0 o
times ten counters, Inmorder % % % % * % A& 0 0 0
to complete the squarc of ten, % % % % % % * 0o 0 ©
or ten times ten, we must now * %k Kk ok %k % *k O O O
place three rows of ten each % % % * % % * 0 0 o
along the hottom. Sothatto % % * * % * % o 0 o
the square of 7wemust add 0o 0o 0o 0 0o 0o 0o 0o 0 0
three times seven and three o o 0 0o 0o o o 0o
times ten, or in all three O 0 0 0 0 0 00 00

times seventeen, in order to

obtain the square of ten. Now 3 is the difference between the
two numbers 7 and 10, while 17 is their sum, so that the
difference between the squares of the two numbers 7 and 10
is the produet of their sum 17 by their difference 3.

In the same way we can easily satisfy ourselves that the differ-
ence between the squares of any two numbers is the product of the
sum of those two numbers by their difference.

Attention to this circumstance enables us to pass from the
square of one number to the square of another. For example,
the square of 2817 is 7935 489, and we wish thence to obtain
the square of 2822.

If we had bad the counters laid out for the square of 2817,
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and wished to complete the square of 2822, we must have placed
5 rows of 2817 counters each, along one side of the square, and
then 5 rows of 2822 euch along the side of the rectangle ; that
is to say, we must add 5 times 5639. The computation may
be arranged thus :—

2817 28172 = 7 935 489

2822 5x5639 = 28195

Sum, . . 5639 28222 = 7 963 684
Ditference, . 5

We have, not unfrequently, to compute the difference between
the squares of two numbers without needing to know what cither
of the squares may be: and this we can readily do. Thus if
the difference between the squares of 5873 and 6491 be re-
quired, we obtlain it by multiplying the sum of the two numbers
by their difference, thus :— .

5873
6491
Sum, . . . . 12364
Difference, . . . 618

74184
229552

64912 — 58732 = 7640952

ExampLEs.

The student may verify his results hy computing the squares
and subtracting.

82452 - 81712 = s 9360 92572= ;
99992 — 9137%= s 265312 263042 = ;
29 0642 - 28 4132 ;358682 209822 = :

57 2642 - 571602 = ; 1930072 —190627% =
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The same matter may be viewed in another light. The larger

number 10 is the sum
of 7 and 3, and if we place
counters to represent its
square, we may divide these

in the margin; one repre-
senting the square of 7, an-
other the square of 3, and
each of the others the pro- 0o o o
duct of 7by 3; anditis o o o
quite clear that the same o o o o o o

* ok
* K
* ok
into four groups, as shown  * *
* ok
* ok
* ok

SRR R S O

=]
=

thing may be done for the

O

o 0 o
o o o
Y 0 (4]
0o o o
[0} (] O
0 O O
0 [} 0
® kK
*
* ok ok

square of the sum of any other two numbers. Hence we have this

general law, that the square of the sum of two wumbers (s made up
of the squares of the two aumbers together with twice their product.

An ordinary example in numbers affords a clear

llustration of this principle : thas the square of 307 307
(the sum of 300 and 7) is made up of the square of 307
300, the square of 7, and two products of 300 by 7, 2149
as may be seen on inspecting the details of the mul- 9 21

tiplication. 9 4249

E. From this we have an expeditious method of squaring

mentally any number consisting of two figures,
For example, the square of 76 is made up of the
square of 70, which is 4900, the square of G,
which is 36 (together 4936), and twice 6 times 70,
which make 840 : the entire square then is 5776.
If the two figures be separated by a zero, as in the
example 709, the operation is rather easier, since
there can never be more than unit carried to the
square of the higher digit ; while if the figures be
separated by more than one zero, the square may
be written down at once : thus the square of
9 008 is 81 144 064.

4936
84

5776

490081
126
502681

81000064
144

81144064
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ExAMPLES.

Square mentally the following numbers :—

15 38 79 203 407 1007
19 41 83 208 803 2008
23 49 99 305 909 3009

29 56 1ol 309 1002 7008
35 67 107 402 1005

D. This statement that “the square of the sum of two num-
bers is made up of the sum of their squares and twice their pro-
duet,” does not differ, except in the mere form of words, from
the previous statement that “ the difference between the squares
of two numbers is the product of the sum of those numbers by
their ditference,” as the student may perceive on comparing the
one with the other. It is important that we distinguish the
essceuce of a proposition from the appearance of it verbal enun-
ciation.

E. The same proposition may be extended to the square of
the sum of several numbers, which may be shown to be made
up of the sqnares of the several numbers and twice the product
of cach pair of them.

Thus 5734 is the swn of 5+, 74+, 3¢ and 4, where, for the

sake of distinctuess, the Arab .
BeveZ —0f5 eee eee

nokta (+) i used to indicate Tewt _ 4Qe v
the rank of the terms, and its Jeu = Qoo
square iy made up of the squares 42 — 16
of the several parts (which may — 2.5¢s¢ x7ee= 7000 o0e
at once be written 25490 916, 2.5+ x 3= 30¢ ¢0
since the figures can never inter- gr’::: : ‘;ﬁ :_ :115(2) :::
fere with cach other) and of twice ; ,;_' . ! 4 - 56es
5000 timex 700, twice 5000 times o e x 4= 240

3.0, twice 5()(?() times 4', twice 700 éz'mjﬁ;‘ﬁ
timey 30, twice 700 times 4, and
twice 30 times 4, as shown in the accompanying work, and as
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may be seen on attentively considering the process of squaring
by multiplication : in that process any product, such as 5000
by 700, oceurs twice, viz. once when multiplying by the 7, and
once when multiplying by the 5, while the square 5000 times
5000 only occurs once,

D. The square of the sum of two numbers may he symmnietri-
cally divided into five parts, viz. four
products of the two numbers at the
four corners, and the square of the dif-
ference of the two numbers in the

0000000 000
0000000 000
0 o0 Ui() 000 000
oooloooolooo
centre. Thus 10 is the sum of Tand ¢ o 0lo 0 0 0]o 0 0
3, while 4 is their difference, and the o 0 oo 0 0 0|0 0 o
000

square of 10 ix seen to be made up of 0 0 ©

four products of 7 by 3, together with © 0 0 0 0 0 010 00
000 0000000

O 0 00

the square of 4. This leads us to per-

. O 0 0 g 0o 00 00
ceive the general truth that the square '

of the sum of two nwnbers exceeds the square of their difference by
Jour times their product.

This truth guides us to a beauntiful and expeditious method
of performing multiplication by means of anailiary tables. The
statement may be put in this form —

The QUARTER SQUARE of the sum of two numbers cuceeds the
QUARTER SQUARE of thelr difference by their ProDUCT.

If then we have a table of guarter-squares we may readily
obtain the product of two numbers. Thus
if we desive to multiply 4673 by 3957, 4873
we take their sum and their difterence ; 3957

then having sought out the quarter- 8830 19492225
916 209 764

squares of these from the talle, we sub-

tract the quarter-square of the difference 19 282 461
from the quarter-square of the sum : the
remainder is the product of the two original numbers.

It often occurs in business that we have to multiply large
numbers, and a computer, therefore, seeks by every means to
reduce the labour of this operation. The most obvious method
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is to prepare a table in which all the products may be entered ;
but though we only go as far as to 1000 times 1000, such a mul-
tiplication table would fill five hundred quarto pages ; while if
we were to go on to 10 000 times 10 000, we should require
fifty thousand folio pages. This method then is not practicable.

The advantage of using quarter-squares consists in this, that
a very small volume may suftice.  Thus M. Antoine Voisin pub-
lished in 1817 a table of the quarter-squares of all numbers up
to 20 000, which though forming only a thin duodecimo, enables
us without much trouble to find the product of any two numbers
up to 10000, Mr Laundy has lately published a table of
quarter-squares up to 100 000, This work ought to be in the
handx of every professional ealeulator.,

In the Appendix I have given a specimen table of quarter-
squares up to 2000,

E. In these tables no fractions are shown ; now the square
of an odd number is odd, and therefore the quarter of that
square must contain a fraction.  May not the omission lead
us into error ?

Every odd number is the sum of the even number imme-
diately below it and unit ; wherefore the square of every odd
number is made up of the square of an even number, twice that
even number and unit.  Now the sqnare of every even number
is divisible by 4, and so is the double of an even number, and
therefore when the square of an odd number is divided by 4,
there must he undt over, and thus each alternate quarter-square
must contain the fraction }.

If the two numbers to he multiplied he hoth even, their sum
and their difference are even also, and the quarter-squares of
these have no fraction, as in this example —

876
518

1394 485 809
358 32 041

453 768
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If the two numbers be both odd, their sum and their differ-
ence are both even, and again there are no fractions ; thus—

961
823

1784 795 664
138 4761

790 H03
Lastly, if one of the numbers be even and the other odd,
their sum and their difference must be both odd, and therefore

each of the quarter-squares must contain the fraction f, as in
this example.

438
761

1199 359400 256
323 26082 25

333318
In this case the fraction 25 disappears on subtraction, and
thus it seems that in no possible case can the negleet of the
fractional parts of the quarter-squares lead to error.

ExamrLus.

D. Find the products of the following numbers by the method
of quarter-squares :—

157 x 194 236 % 218 285 x 249
374 x 288 4090 x 567 539 x 723
6H2 x 934 1005~ 947 1099 x 828
1731 x 2569 996 x 982 1176 x 734

D. In many business caleulations we have to compute the
sum of several products, without needing to care about them
individually.,  For example, a banker wishes to ascertain the
interest due on an account-current containing many entries in
the course of the year. In the ordinary way he has to multiply
each sum of money by the number of the days during which it
has been at interest, and to add all these products together.
By help of a table of quarter-squares, the work may be carried
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on neatly and rapidly, as may be seen from the subjoined
example.
£ Days. Sum. Diff. Q. 8. Sum. Q. 8. Diff.
528 321 849 207 18 0200 10712
6567 307 964 350 23 2324 3 0625
475 263 738 212 13 6161 11236

212 241 453 29 51302 210
419 179 H98 240 8 9401 1 4400
584 117 701 467 12 2850 H 4522
237 93 330 144 27225 5184
684 69 753 615 14 1752_ 94556
98 1215 22 1445

22 1445

Sum of Producty, = 759770

By this operation we obtain the sum of all the products at
once ; and it is no small recommendation to the process that
every figure of the work is put upon record, so that an error
may be traced to its source.

Examrre.

A merchant’s deposit-account with a bank was as under :—

18564.
Jan. 2. By balance from 1853, . . £973

5 12, To cash withdrawn, . . . 159
Feb. 17. To cash withdrawn, . . . 465
Mar. 10. By cash deposited, . . . 368
April 7. By cash deposited, . . . 183
Muay 23. To cash withdrawn, . . . 762
June 9. By cash deposited, . . . 497
July 24. By cash deposited, . . . 217
Aug. 10, To cash withdrawn, . . 678
Sept. 29. To cash withdrawn, . . 187
QOct. 4. By cash deposited, . . . 373
Nov. 14. By cash deposited, . . 198
Dec. 29. To cash withdrawn, . 210

Required the state of the account as on J anuary 1, 1855, the
interest allowed being at the rate of 3 per cent per annum.
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D. Hitherto I have considered the squares of whole numbers,
and now proceed to treat of the squares of fractions.

In order to find the product of two fractions we multiply the
numerators together and the denominators together ; so that, in
order to square a fraction, we must square the numerator and
square the denominator. In this way we find that the square
of one-half is one-quarter.

Many a heginner ig startled at such a statement. Now, it is
essential to his further progress that he thoroughly understand
this matter, and therefore I shall enter somewhat minutely into
the consideration of it.

The multiplication, ax we call it, of one fractional number by
another ocenrs in a variety of business caleulations, and it is
only in reference to such caleulations that the operation has any
intelligible meaning.  Thus, if we wish to compute the surface
of a rectangular board, we multiply the number of the linear
units in the length by that of the lincar units in the breadth,
in order to obtain the number of square units contained in the
surface ; and when the length and breadth are represented by
fractional numbers, we multiply the one of those fractional num-
hers by the other.  If, then, we have to compute the surface
of a syuare board, we have to wmwltiply that number which
represents the side of the hoard
by itsclf. B - I%

Thus, a square of which the
side is 4 inches, contains 16
square inches ; while the square
on the fourth part of an inch
containg only the 16th part of
a square inech. If we suppose P
that AB, in the adjoining fig-
ure, is 1 inch, AC is then 4
inches, and the square ACDE ,—j ¢
containg the square inch ABFG
four times four, that is sixteen times. But if we suppose AC
to be 1 inch, then AB must be one quarter of an inch, and its
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square the sixteenth part of a square inch. Hence the state-
ment that the square on 4 inches contains 16 square inches, is
just the same as this other statement, that the square of } of an
inch is 5 of a square inch.

It is also very easy to see that the square on three-quarters
of an inch contains nine-sixteenths of the square inch.

The subject may also be viewed in this light.  Five yards of
cloth, at five shillings the yard, cost twenty-five shillings. Three
yards of cloth, at three shillings the yard, cost nine shillings.
One yard, at one shilling per yard, costs one shilling ; and half
a yard of cloth, at half a shilling per yard, costs one quarter of
a shilling.

E. Fractions occur when we come to apply arithmetic to
business or to other departments of science ; they belong to
applicate rather than to pure arithmetic, and henee it is that
we can only understand the nature of the operations into which
they enter by studying those practical questions which give rise
to them.  We cannot explain the subject without having re-
course to illustrations borrowed from other sciences. 1 have
given, above, one illustration borrowed from geometry, and
another taken from mercantile affuirs, and shall now offer, to the
somewhat advanced student, yet another illustration from the
scienee of motion.

When a heavy body is allowed to fall, it moves more and
more rapidly as it descends.  The law according to which it
moves has heen carefully examined, and it has been found that
in the first second of time a stone falls rather more than 16
English feet ; in the next second it falls /Zre¢ times as far ; in
the third second five times ; in the fourth sccond seven times as
fur, and so on ; so that in two seconds a stone falls four times ;
in three sceonds, nine times ; in four seconds, sixteen times as
far as in oue second, and so on, the distances heing propor-
tional to the squares of the numbers of seconds during which it
has fallen.

This being the law of motion of a falliug body, it follows
that in one-half of a second the distance is vne-fourth part of
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16 feet ; in one-third of a second the distance is one-ninth part
of 16 feet ; and in one fourth part of a second the distance is
one-sixtecenth part of the 16 feet which a body falls in one
second.

If, then, we wish to calculate how far a stone falls in a period
of time indicated by fractions of a second, we must square the
fraction in the manner which has been expliined. Thus, if we
desire to know how far a stone falls in 2} seconds of time, we
consider that this is seven third-parts of a second. Now, in one-
third of a second the stone falls one-ninth part of 16 feet, and
in seven-thirds it falls forty-nine times as far as in one-third of
a second ; wherefore in 2} seconds the stone falls 40 of 16
feet.

D. EXAMULES.

Square the following fractions:—
§

2 D 24 (B Sl
] 13 T 10T 173
: 5 17 09 743
“5‘ 19 },Zs .1':1'. Vo
5 b2
1 1% 41 106y

D. When we have to square a mixed number, as 43, we may
convert it into the single fraction 12 ; squaring this we find
169, which may be put under the form 187,

Otherwise we may observe that the square of the sum of two
numbers is made up of the squares of those numbers and twice
their product, whether the numbers be fractional or integer.
Thus the square of 43 is made up of the square of 4, viz. 16 ;
the square of 3, viz. 3 ; and twice the product of 4 by 3, viz.

& or 23 ; that iy, in all, 16 + & + 2%, or 18],

ExAMPLES.

Square the following mixed numbers by both of the above
processes :—
3% 164.3; 143 203 35914
8% 10% 159138 755% 2583%
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When we have to square a decimal fraction we proceed
exactly as when multiplying one decimal fraction by another.

ExamprEs.
Square the following fractions :—

H501 30053 1000962 87,079 0387
9735 0002016 357803 100572  3,00628

It is worthy of remark that the square of the product of two
numbers is the product of the squares of those numbers ; thus,
15 is the product of 3 x 5, and 152 is the product of 9 by 25.



CHAPTER XVIII.

ON CUBE NUMBERS.

D. TrE product of the square of a number by the number
itself is called the cube of that number. Thus if 25, the square
of 5, be multiplied by 5, the produet, 125, is called the cube
of 5.

As the square of a number is indicated by a small exponent 2,
so the cube is indicated by a small 9 ; thus
5% means the cube, otherwise called the
third power of 5, the 3 meaning that there
are three equal factors; so that 125, 53
and 5 x 5 x 5 arce different ways of writ-
ing the same thing. If, haviug arranged
counters to represent the square of 5, as
in the margin, we were to pile above it, at equal distances,
other four such squares, we should
have 5 times the square of 5 ar-
ranged in the form of a cube.
Such an arvangement may be
best shown on paper, by mak-
ing each counter of the form of a
cube or die.

1t is then no difficult matter
to compute the cube of any num-
ber ; and if we posscss a table of
squares much of the work is saved to us.

* % X ¥ ¥
* ¥ % ¥ *
* X X ¥ %
L I
* Ok X % *
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ExXAMPLES,

(‘ube the following numbers :—

3 78 695 2816

7 100 828 3907
15 137 901 5483
26 199 1573 9983
55 271 1794

Cube numbers do not occur in business nearly so often as
square numbers, vet they oceur so frequently that it is desirable
to have tables of them prepared, the more so that the labour of
cubing a large number is greal. The earlier part of a table of
cubes may be computed by actual multiplication ; hut it would
be altogether out of the question to go on far in this way. Now
by examining the difference between one square number and the
next, we discovered a very easy method of computing a table of
squares ¢ let ug try whether we cannot pass from the cube of one
number to the cube of the next.

Having laid together as many dies as make up the cube of 5,
we may, in order to pass to the
cube of 6, place on cach of the
three faces of the cube a square
of 5, as shown in the figure: and
then it is clear that we must fill
up the hollows left along the three
edges by three rows of 5 each ;
this would still leave room for a
single die at the corner.  ence
it appears that the cube of G is
made up of the eube of 5, 3 squares of 5. 3 times 5, and unit,
Tu the same way the cube of 7 exceeds the cube of 6 by 3 squares
of 6, 3 times 6, and unit, or, as it may be written—

78 =63 +3.6*+3.6+1
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product of the square of 5 by 2, three times the product of the
square of 2 by 5, and the cube of 2 ; or as we may write it—
78 =153 +3.5%.2 4+ 3.5.22 + 28,
and a similar statement may be made for any other numbers ;
for example, 17 is the sum of 12 and 5, and the cube of 17 is
made up thus—
173 =123 4+ 3.122.5 + 3.12.52 + 53,

and this statement may be put in words thus—

The cube of the sum of two numbers is made wp of the cubes of
those wawmbers and three times the products of cach number by the
square of the other.

E. The truth of this statement may be illustrated withont

any appeal to the geomdtrical arrangement of the 3
. -

cube,  Let it he propoxed to enbe a number of two 73
-

73

digits, such as 73.  This number ix the snm of two

parts, 7+ and 3. Now on effecting al once the con- 343:‘ ¢
tinued multiplication of the three factors 73 x 73 x 73 ii;::
in the manner explained in Chap, TV., p. 88, we have 147+«
first the cube of 7+, then we have the square of 7 (3
multiplied by 3 vrepeated thrice, next the square of 63
3 multiplicd by 70 vepeated thrice, and lastly the 63+
cube of 3 ; so that— 27

389017

733 - TO3 4+ 37023+ 3.70.32 + 33,

D, This composition of the cube of the sum of two num-
bers may be otherwise considered.
Thus on one face of the cube of 5
let us lay a block 7 long, 5 broad,
and two thick. When this block
is laid up to one cdge, as shown
in the figure, its other edge pro-
jects 2 Dbeyond the line’ of the
cube, and if on each of the two
adjoining faces another such block
were placed, these would build up the cube of 7, wanting the
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cube of 2 at the corner. Hence the cube of 7 is made up of the
cubes of 5 and of 2, and of three times the continued product
of 7. &, and 2, or—
73=5543.7.5.24 25 ;
and similarly, 17 being the sum of 12 and 5—
178 . 123 4 3.17.12.5 + 53,

There is still o third way in which the difference hetween
two cubes may be divided.  Foi ex-
ample, the ditlerence between  the
cube of 5 and the cube of 7 may be
obtaived thus: on the top of the
cube of 5 et us lay two squares of 5,
and at the one side let us set up two
squares of 7, ax shown in the figure,
then do we need, inorder to make
up the cube of 7, two products of 5

by 7. And thus we wsee that the
difference between the cube of 5 and the cube of 7 is mude np
of twice the squarve of 5, twice the square of 7, and twice the
product of 5 by 7, or is the product of the sum of the gquares
of the two numbers and their product by the difference of the

two numbers ; or—
73563 (72452 +7.5)

In the very same way—

178 - 128 =2 (172 + 122 +17.12) 5.

2.

ExaMPLES.
Compute by each of the three methods the following differ-

ences of cubes —

193 - 139 = so27B T = ;
HR3 420 - H 633 — 23 ;
785 - 228 s B1B 7T ;
855 — T8 — 5 998 —915 .

The cube of a fraction has for its numcrater the cube of the
numerator, and for ity denominator the cube of the denominator
of the fraction. Thus—

@2 =3 xdx =1
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In the same way we find that the cube of one-half is one-
eighth, and the cube of one-third is one twenty-seventh. It is
easy to satisfy ourselves that this ought to be the case, for since
one yard is three feet, one cubic yard must contain twenty-seven
cubic feet ; and therefore, since one foot is the third part of a
yard, one cubic foot must be the twenty-seventh part of a cubic
yard ; and thus, the statement that the cube of three is twenty-
seven is identic with the statement that the cube of one-third is
one twenty-seventh,

ExampLys.

Cube the following fractions :—

1 1% 34 vl
3 1t g 163
1 % T 48
by 31 1 ry

When we have to cube a mixed number, the most convenient
process is to convert it into a single fraction, and to re-convert
the cube of that into a mixed number. Thuy, in order to find
the cube of 23, we change it into §, of which the cube is 939,
or 1134,

But the cube may also be found by regarding 21 as the sum
of 2 and }, whence

(21)% - 25 +3.250 43,2 (1)2 + (1)
=8 +3 + 3 + 4
= 1135
ExampLES,

Cube the following fractional numbers :—

1k 9} 385 543 32811

2

33 157 997 20738  8671%

When we lave to cube a decimal fraction, we proceed exactly
as in the multiplication of decimals,



CUBE NUMBERS, 25
ExaMriLes.

Cube the following decimals ~—

35 999
4.7 995
19.31 &9 207
L, lo 130578
1.03 500019
1001 H00975
1,005 200377

The properties of square and cube numbers derive great im-
portance from their relation {o matters of ordinary husiness, and
purticularly from their analogy to the surfaces and masses of
bodies,

If iwo maps of the same country be made on different scules,
the extents of their surfaces are not proportional to the magni-
tudes of the scales, but to the squares of those magnitudes ;
thus, to double the seale of & map is to enlarge the surface four-
fold ; and to magnify the scale 10 times is 1o spread the map
over 100 times as much paper.

The volumes of hodies of the same shape are proportional to
the eubes of their dimensions : thus, if two models of the same
group of statnary have their heights in the ratio of 2 to 3, their
surfaces are in the ratio of 4 to 9, but their bulks are in the
still higher ratio of 8 to 27. Again, if one ball have its
dimeter five times that of another, its surface is 25 times the
surface, and its mass 125 times the mass of that other. For
example, the diameter of the sun ix alout 110 times the
diameter of the earth ; its swface is tivn 12 104 times the
surface, and its bhulk is 1 331 000 times the bulk of the carth.

A clear perception of these truths is of the utmost importance
to the ensinecr.



CHAPTER XIX.

ON THE IIGILER POWERS OF NUMBERS.

D. Tur product of the cube or third power of a number by
the number itself is called its Fourth power, ov biquadrate,
which is, therefore, the continued product of four equal factors.
The fourth power of 7 is 2401, the continued product of 7.7.7.7 ;
it is, then, appropriately denoted by the expression 74 where
the exponent 4 shows the number of the factors.

ExaMpLes.

Find the fourth powers of the following numbers :—

3 18 94 997
5 27 101 1001
R 51 159 5711
10 68 760 8946
13 87 808 59498
% 6 3 P13
Iy 1944 i ™ 18
43 r o 8
1.3 152 251568 000569
3,05 17 64 1,001 390 99785
7941 0175 99 004 584,1928

Instead of obtaining the fourth power by the coutinued mul-
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tiplication of the four factors, we may obtain it by squar-
ing the square; thus 2401, the fourth power of 7, is the
square of 49.

Fourth powers are not needed so often as to make it worth
while to compute and print tables of them ; yet they occur
often enough to vender an aequaintance with their gencral
properties desirable.

If we compute the fourih powers of a few numbers in order,
and take their differences, the differences of these differences,
and so ou, we tind that the differences of the fourth class are
all alike ; just as we found that the third differences of enbe
numbers are all alike. This ix seen in the following example :—

Num. 4th Power.  1st Inff. 24 Diff. 3d Diff.  4th Diff,
] 1 15 H0 GO 24
2 16 65 110 84 24
3 81 175 194 108 24
4 256 369 302 132 24
b 625 671 434 156 24
G 1296 1105 590 180 24
7 2401 1695 770 204
&8 4096 2465 974
9 6561 3439

10 10000

And thus a table of fourth powers may be written out without
enormous labour,

ExAMPLE.

Make a table of the fourth powers of all numbers up to 40.

E. We have learned how to pass from the square of one
number to the square of the next number, and from one cube
to the next cube ; let us now try to pass from one biguadrate
to another. Here the aid which we obtained from geometrical
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arrangement ceases, and we must look out for some other help.
We might employ, in this matter, the notation of modern
slgebra ; but I judge it better that we should trust to our
own mental exertions rather than that

we should depend for our knowledge ggg
of principles on the manipulation of ,
symbols, 9 '(; : :
‘When we proceed to square mentally 6 oo
such a number as 302, or to multiply it 4
by itself as in the margin, we readily see T 91204

that the product is made up of the
square of 300, two products of 300 by 2, and the square
of 2.

Again, when we multiply at once the three numbers, 302,
302, 302, so as to get the cube of 302,

we find the result composed of the 802
302

cube of 300, three products of the 302
square of 300 by 2, three products 97 ee ve s
of 300 by the square of 2, and the 18 ¢ o0
cube of 2. 18 oo o
This may be clearly seen on studying 18 0 oo
the continued multiplication of three 12 ¢
such numbers as 207, 103, 405, per- 12
formed according to the method explained 12 'é
in Chapter IV., p. 82, and by suppos- ST 543608

ing that these numbers become all equal
to each other. In this way we see that the cube of the
sum of two numbers is made up of the cubes of those
numbers, and of three times the product of each number
by the square of the other, as we have already found.

The same method of examination may

be applied to biquadrates. ?g;
If we have to take the continued 405
product of four factors, each consist- ‘608

ing of two parts, as in the margin, in
which each factor is composed of kundreds and of wnits; we
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take first the continued product of all the hundreds, then the

continued product of each three
of the hundreds by the units of
the remaining number, there be-
.ing four of these products ; then
the products of each pair of hun-
dreds by the pair of units in the
other numbers, there being siz
of these products ; then the pro-
ducts of each one of the hundreds
by the units of the other three
numbers, there being four of
these ; and lastly, the continued
product of the four units,

Let us now suppose that the
four factors are all alike, each of
them being, say, 302; then in
computing the fourth power of
302 we shall have, in the first
place, the fourth power of 300 ;
in the second place, four pro-
ducts of the third power of 300
by 2; in the third place, six
products of the square of 300
by the square of 2 ; fourthly, 4
products of 300 by the cube of
2; and lastly, the fourth power
of 2: and thus :—

48 ¢o 00 00 00
64 ¢o 00 o0
60 ¢¢ 00 o0

144 ¢v 06 o0
T 68 ¢¢ o0 00
80 ¢¢ o0
192 ¢¢ ¢
180 ¢¢ ve
294 ¢+ o0
D210 ¢+ oo
504 ¢0 oo

240 ¢+

280 ¢+

672 00

630 ¢
8 40

52 50 08 30 40

302

302

302

302

8L o0 40 00 o0
54 20 ¢4 00
54 oo 00 o0
54 00 00 00
D54 oo 00 00
36 +¢ o0
36 ¢¢ oo
36 ¢+ ¢
36 ¢+ oo
36 ¢ o0
36 v oo
24 o0

24 ¢+
24 + o

24 o+

16

8318 16 96 16

3024 = 3004 + 4.3002.2 + 6.3002.22 + 4.300.23 + 24,
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It is quite obvious that, although we have made use of the
decimal notation to keep the two parts of the number distinct
from each other, the same kind of reasoning might be applied
to show that the fourth power of any two numbers is made up of
the fourth powers of those numbers, four times the product of the
cube of each number by the other, and six times the product of the
square of the one by the square of the other number.

F. For example, in order to trace the composition of the
fourth power of thirteen con-
sidered as the sum of nine and 1
four, we may regard the abacus 1

1
1

as arranged according to the
powers of nine, instead of, as
usual, according to the powers of
ten ; and then the number thir- *
teen would be represented as in :
the margin, where the Indian .
numerals are used to avoid the .
tedious repetition of counters. 16|

L

e o o o o

NG NG N NN

The multiplication of the four 16
equal factors, as it would be per-

formed on the nonary abacus, is ig
also shown, and exactly as before 161 +

the fourth power of thirteen is 64
seen to be composed of the fourth 64
powers of nine and four, of 64
four times the product of the 64
cube of mnine by four, of four
times the product of nine by the
cube of four, and of six times the product of the square of nine
by the square of four; or, as it may be written symbolically,
that,— 134 =94 +4.93.4 + 6.92.42 + 4.9.4% + 44,

® &6 o o o o o o e e e o+ e+ o+ o

256

D. If then we have to pass from the fourth power of one
number to the fourth power of the next number, we must add
four times the cube of the first number, six times its square,
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four times the number and unit ; thus to pass from the fourth
power of 13 to that of 14, we observe that
144 =134 4+4.13%1+6.132.12 +4.13.13 4+ 1¢
=134 +4.13% +6.132 +4.13 +1

whence the calculation,—
134 = 28561
4138 = 8788
6.132 - 1014
413 = g (9870
1 = 1
144 = 38416
4143 = 10976
6.142 = 1176
414 = 56 (12209
1 - 1
15¢ = 50625
4153 = 13500
6.15 - 1350
415 = 60 (14911
1 = 1
164 = 65536
4169 = 16384
6.162 = 1536
416 = 64 (17980
1 = 1
17¢ = 82521

Now, although this be a very tedious calculation, so tedious
that no one would think of using it, it is most instructive, for
it enables us to perceive clearly the nature of the more con-
venient process by means of successive differences.

The difference between the fourth power of 13 and the fourth
power of 14is 9855 ; the difference between the fourth power of
14 and that of 15 is 12209, and so on, as shown at the side. Let
us endeavour to trace the manner in which these differences grow.

The first of them is made up of 4 times the cube of 13, 6

times its square, 4 times 13 itself, and unit.

The next of them is made up of 4 times the cube of 14, 6

times its square, 4 times 14 itself, and unit.

And 50 on.
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Therefore the difference between the first and second of these
differences must be 4 times the difference between the cube of
13 and the cube of 14, 6 times the difference between the
squares of the same numbers and 4 times unit (the difference
between 13 and 14).

Now, according to what has been shown in the preceding
chapters, the difference between the cube of 13 and the cube of
14 is composed of 3 times the square of 13, 3 times 13 and
unit ; while the difference between the square of 13 and that
of 14 is twice 13 and unit : wherefore the difference between
the first and second of our differences must be made up thus,—

4{3132 +3.13+1} +6 {213 +1} +4;
or thus, 12.132 +24.13 +14.

This difference of the differences is the first of what we call
the second-differences : and the next of these second-differences
would clearly be derived from the number 14 just as this one
is from 13, it would be

12.147 + 24.14 + 14,
and the next of the second-differences would be
12.152 + 24.15+ 14 ;
and so on.

It is easy to see that the difference between the first and

second of these second-differences must be
. 25.13 + 24,
which is the first of the third-differences. The second of the
third-differences must be
24.14 + 24,
and therefore the first of the fourth-differences must be 24.

Hence if we form a table of fourth powers by the method of
successive differences, we must, when we have arrived at the
number 13, find the line of differences as under.

Biquadrate, 134 = 28561
1st Difference, 4.13% +6.132 +4.13+ 1= 9855
2d Difference, 12.132 +24.13+14 = 2354
3d Difference, 24.13+ 36 = 348

4th Difference, 24 = 24
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So that the construction of a table of bi(iuadra.be, beginning
from 13, may be carried on by successive additions, as under.

Num. 4th Power. 1st Diff. 24 Diff. 3d Diff. 4th Diff,
13 28561 9855 2354 348 24
14 38416 12209 2702 372 24
15 50625 14911 3074 336 24
&e. &e. &e. &e. &e. &e.

E<AMPLE.

Construct a table of fourth powers, beginning at 100.

E. From this investigation it appears that the fourth-differ-
ence of the fourth powers must be four times the third-difference
of the third powers: now that was seen to be thrice the second-
difference of the second powers, which again is twice unit: there-
fore the fourth-difference of the biquadrates of the series of
natural numbers must be the continued product of 1, 2, 3, and
4,0or 1 x2x3x4. And we shall see that the same law con-
tinues among powers still higher.

D. On raising any of the numbers 11, 1+1, 1++1, 1¢¢+1, etc.,
to the second, third, and fourth powers, we obtain types of the
manner in which the power of a sum is composed : thus—

112 =121, 1-12=1.2+1, &,
are obvious exemplifications of the manner in which the square
of the sum of two numbers is composed ;
113=1331; 1+18=1+3+3+1, &e,
exemplify the composition of the cube of the sum of two num-
bers ; and
114 =14641; lelé=144¢6:4+1, &e.,
exhibit the composition of the fourth power.

But if we continue the same process for higher powers, until
the digits in any one rank interfere with those of the next
rank, the analogy is destroyed. Hence it is convenient to use
the numbers 101, or 1001, for the higher powers; 11 fails us

at the fifth power.
c
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D. The fifth power of a number is got by multiplying the
fourth power by the number itself ; thus on multiplying 81,
which is the fourth power of 3, by 3, we obtain 243, the fifth
power of 3. This is usually written 35, the exponent 5 indi-
cating that the fifth power is the product of five equal factors :
thus,—

243=3.3.3.3.3
ExAMPLES.
Compute the fifth powers of the following numbers :—
4 11 A 1,72 231
7 173 123 1,004 0897
33 3 9w 2734 00217

‘When we make a table of the fifth powers of the successive
numbers, take their differences, the differences of these, and so
on, we find that the differences of the fifth order are all alike,
each being 120; and it is to be remarked that this number 120
is five times the fourth difference of the fourth powers, or the
continued product of the factors 1, 2, 3, 4, 5. This circum-
stance enables us readily to continue the table.

EXERCISE.

Construct a table of the fifth powers of all numbers from 40
to 70 by the method of differences.

In order to discover the difference between the fifth powers
of two numbers, or what comes to the same thing, to dis-
cover how the fifth power of the sum of two numbers is made
up, we may study the continued product of five numbers,
such as 2+7, 1+3, 4+5, 6+8, and 3+7, and then consider what
would result from supposing all these numbers to become alike :
or we may rest contented with computing the fifth power of
some number, such as 11, 1++1; &e. The fifth power of 1+1
i8 1 +51010 ¢5 <1, that of 1001 is 1 ¢¢5 +10 ¢10 ¢+5 ++1.
Grouping the first of these in 2’s, and the second in 3’s, we con-
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clude that the fifth power of the sum of two mumbers is com-
posed of once the fifth power of each number, five times the product
of the fourth power of each into the other number, and ten times the
product of the cube of each into the square of the other. This may
be still more clearly seen by examining the fifth power of 1++2,
which is
1+10 *40 <80 +80 32,
and is composed of 1 e¢¢ ¢ov ¢ee e0e voe the fifth power of
1000, 10 ¢++ oo ove oo five times the fourth power of 1000
multiplied by 2, 40 ¢+« e¢+ «v¢ ten times the third power of
1000 multiplied by the square of 2, 80 ¢+ ¢+ ten times the
square of 1000 multiplied by the cube of 2, 80 «++, five times
1000 multiplied by the fourth power of 2, and of 32, the fifth
power of 2 : thus
10025 = 10008 + 5.10004.2 + 10.10003.22
+10.10002.23 + 5.1000.24 + 28,
In the same way 19 being the sum of 12 and 7, we have—
195 =12845.124.7+10.123.72 410,122,734+ 56,12.74 478,
If then we desire to pass from the fifth power of one number
to the fifth power of the next number, as from the fifth power
of 12 to that of 13, we have only to observe that 13 is the sum
of 12 and of 1, and that all the powers of unit are unit, Hence
135=125+5,12¢ +10.12% +10.122 + 5,12+ 1,
The difference between the fifth power of 12 and that of 13
is thus
5.124 +10.123 +10.122 +5.12+ 1,
and the next difference would be
5,13¢4+10.13%3 +10.132 + 6.13 + 1,
and so on ; wherefore the first of the second-differences, being
the difference between these, must be thus composed :—
5{4.125 +6.122 + 4,12+ 1}
10{3.122 +3.12+ 1}
10{2.12+ 1}

6{1}
making in all b
20.193 + 60,122 + 70.12+ 30 .
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The next of the second-differences would necessarily be
20.13% + 60.132 + 70.13 +30;
wherefore the first of the third differences must be
20{3.122 + 3.12 + 1}
60{2.12+1}
70{1}
making in all
60.122 +180.12 + 150.
Of course the next of the third-differences would be
60.132 + 180.13 + 150,
80 that the first of the fourth-differences must be
60{2.13 +1}
180{1} or—
120.12 + 240 ;
and the next of the fourth-differences .
120.13 + 240 ;
whence it is clear that the difference of the fifth order must be
120.

While computing a table of fifth powers by the method of
successive differences, the numbers in the line opposite 12 must
be—

Fifth power =128
1st Difference =056.124+10.123 +10.122 + 512+ 1

2d Difference = 20.123 +60.122 + 70,12+ 30
3d Difference = 60.122 +180.12 + 150
4th Difference = 120.12 + 240
5th Difference = 120
that is—

Fifth power = 248 832

1st Difference = 122461

2d Difference = 44 070

3d Difference = 10 950

4th Difference = 1 680

6th Difference = 120

E. It would be endless to go on examining the sixth, seventh,
and subsequent powers in this way. The student who desires
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to make himself thoroughly master of the subject, may pursue
the same line of investigation one or two steps farther, and may
satisfy himself that the sixth-difference of the sixth powers of
the natural numbers is the product 1.2.3.4.5.6 ; and analogously
of the seventh power.

D. Having now studied sufficiently for our present “yupose
the relations of the same powers of different numbers, we may
proceed to inquire into the relations of different powers of the
same number.

In order to form a list of the successive powers of a given
number, we have only to multiply repeatedly by that number ;
thus—

3 =3 27 =33 243 =135
9 =3° 81 =34 &e. &e.
ExAmpLE.

Form a table of the ten first powers of the ten first numbers.

When we need to compute a high power of a given number
we may abridge the labour by a little management. We have
seen that to multiply successively by several numbers gives the
same result as to multiply at once by the continued product of
those numbers ; that, for example, to multiply first by 3, then
by 6, and then by 7, in succession, gives the same result as to
multiply at once by 105 the product of 3 x 5 x 7. Hence to
multiply twice in succession by any number is the same as to
multiply by the square of that number ; and to multiply by its
fifth power is equivalent to five successive multiplicatious by the
number.

Suppose then that we seek the thirteenth power of the number
3. Having obtained its square, 9, we multiply that square by
itself to obtain 81, the fourth power of three ; multiplying 81
by itself we obtain 6561, the eighth power of 3 ; multiplying
this again by 81, we get 531 441, the twelfth power of three,
and this multiplied by 3 gives 1 594 323, the thirteenth power.
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ExampLEs,
Find the values of
514 1216 ; (4310 @®7; ‘100710,
3111 0239 ; 00418 ; 10,1317,

In this way we come to recognise a truth which is, perhaps,
the most important in the whole science of calculation, and to
which the student will do well to give his most earnest atten-
tion : it is this, That the product of two powers of the same num-
ber 8 another power of that number having for its index the swm
of the indices of the two factors. 'Thus the product of 75, viz.
16 807 by 78, that is by 343, gives 5 764 801, which is the
eighth power of 7 ; that is to say

78 x 73 =178,

‘We must be careful to ohserve, that although the multiplica~
tion seem to be performed by addition, there is nothing of the
nature of addition in the process. Many thoughtless persons
imagine that the product of 75 by 73 should be 715 ; or that
the sum of 75 and 73 should be 78 ; those who make such mis-
takes had better resume the study of the subject at the begin-
ning.

ExAmrLEs.

Perform the following multiplications symbolically :
63 x G4 (23)° x (23)21 733 x 7311 135 % 13
174 x 175 x 177 55 x 511 x 57,

Since the product of 75 by 78 is 78, it follows that the quo-
tient obtained on dividing the eighth power of 7 by the third
power of 7, is the fifth power of the same number ; or that

78273 =175,
and similarly of other numbers and other powers ; or in general
that The quotient obtained on dividing one power of & number by
another power of the same number, is a power of that number,
the index of which is the difference between the indices of the
dividend and divisor,
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ExAMPLES,
Perform the following divisions symbolically :—
31735, 71673, (1o =17 ;
13107135, 4320 434 97 196,

Sometimes we have to take the power of a number which is
already the power of another number: thus we may have to
compute the fifth power of 81, which itself is the fourth power
of 3 ; and we may need to know what power of 3 the result
may be. Now each multiplication by 81 is equivalent to four
multiplications by 3, and therefore the fifth power of 81 must
be the twentieth power of 3. Thus,

815 =(34)5 =34 x 34 x 34 x 34 x 34 == 320 ;
that is to say, When a power of some number is raised to some

other powers, the result @s « power of the original number, having
Sor its index the product of the two indices.

Examries.

Exhibit symbolically the following complex powers:—
(@085 (50 aror; (237
(237)5 ; {(132)3' 55 {(207)5)8.

‘When we have to multiply together powers of different num-
bers, no such facilities occur. Thus the 5th power of 3 multi-
plied by the 7th power of 11 cannot be obtained by adding the
exponents or by multiplying the roots. But when the powers
have the same index their product is that power of the product
of the roots. Thus,

57 x 117 =557,
and the product of 3% by 117 may be put in the form
335x112, for 117 may be regarded as the product of 118 by
112, and 35%117 as the product of the three factors 35, 118,
and 112 ; now the product of 35 by 115 is 335, so that
36x117=35x115x11%=3386%x112,
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Such transformations are often of great use in simplifying cal-
culations,
ExawPpLES.
837X711x]]18=
910 X 57 X 8=
85 X 513 x 132=
128 x 42 x 154= ;

. wr e

Sometimes, also, the division of one power of one number
by some power of another number may be simplified. If,
for instance, the 7th power of 12 be to be divided by the 3d
power of 18, we may observe that 12 is the product of
22 by 3, while 18 is the product of 2 by 32 ; wherefore
127 +-188=214x37 =23 + 36=211%x3, Or again, if we have
205 = 307, we may put these under the forms 219x55 and
27X 37x57, whence the quotient is 28, 377, 5~2, or 205 <+ 307

28 .
=3'i—x 52
ExAMPLES.

354 = 213= ;

3602 - 223= ;

184 - 272= ;

1356~  752= 3

1754 = 2454¢= 5

1056 - 3856= :

10015 - 15472=



CHAPTER XX.

ON COMPOUND INTEREST.

D. Ir the interest on & sum of money have not been drawn
when due, but have been left as an additional loan, also to
receive interest, the resulting interest is said to be compound,
because it is composed of the interest on the original capital
and of the interext of that interest.

Thus,” if three years ago a person had lent £10 000 to a
sdank at 3 per cent per annum, he was entitled, two years since,
to have demanded £10 300 from the bank ; but if he left the
whole money still in the banker's hands, he had a claim one
year ago for £10 609 ; and to-day, if he have drawn nothing
from the bank, he is entitled to this sum of £10 609, to-
gether with one year's interest thereon—that iy, altogether, to
£10 927 27. He thus receives £927 27 by way of interest
for the use of his money during three years, whereas the mere
interest of the principal sum of £10 000, or the simple interest,
a8 it is called, amounts only to £900. The interest on the
interest, then, has heen £27 27.

In all bargains for long periods of time compound interest is
used ; thus, when a person, having a sum of :nouney in Land for
which he only expects to have use after several years, lends it
to a company for that time certain, without intending to draw
the interest annually, he naturally stipulates that each year's
interest be added to the capital lent to receive interest also.
The same principle is involved in transactions connected with
life assurance ; for when we purchase a deferred annuity, an
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assurance, or such like, the money which we pay is virtually
laid out to accumulate at compound interest until the occurrence
of a specified event.

In order to compute the amount of a given sum of money
which has been lent for several years at compound interest, we
may proceed in the manner just indicated ; that is, we may
compute the amount at each successive year.

ExAMPLES.

Required the amount of £7317, at 4 per cent per annum, in
7 years.

To what does £3207 amount in 6 years, at 3 per cent com-
pound interest ?

‘What is the amount of £78223 in 5 years, at 5 per cent ?

But the calculation may be much more conveniently a.rra,nged;x
If interest be at 3 per cent, £100 must, after one year, amount
to £103 ; and therefore any other sum of money lent at that
rate of interest must be augmented in the ratio of 103 :100;
that is to say, the number which represents the sum of money
must be multiplied by the fraction 183, or, what is the same
thing, by 1,03. This ratio 103 : 100 is called the annual rate
of improvement of money.

Now, if interest continue at the same rate for another year,
the product of this multiplication must be again multiplied by
1,08 to give the amount at the end of the second year. Thus
in the second of the above examples, the amount at the end of
one year must be £3207 x 1,03, and the amount at the end of
the second year £3207 x 1,03 x 1,03 ; also the amount at the
end of the third year must be—

3207 x 1,03 x 1,03 x 1,03,

and so on. Now, to multiply three times in succession by
1 03 gives the same result as to multiply at once by the third
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power of 1,03, so that the amount at the end of 3 years may
be expresded by
3207 x 1,039,
and the amount at the end of 6 years by
, 3207 x 1,03¢.

Hence it appears that in order to compute the amount of a
sum of money in so many years, we must multiply the prineipal
by that power of the rate of in"provement which is indicated by
the numbey of years.

For the computation of ecomprund interest, then, it is con-
venient to have tables of the powers of the various rates of
improvement. The construction of such tables is very simple;
thus, to raise 1,04 (the rate of improvement when interest is at
4 per cent), to its successive powers, we proceed as under :—

1,041 =104
416
1,042 10816
432 64
1,048 =1 1248 64
449 94 56
1044 =1.1698 58 56
467 94 34 24
1045 =1 2166 52 90 24
486 66 11 61
1,040 =1,2653 1901 85
506 12 76 07
1047 =13159317792
&e. &e.

Here the work has been carried to the teuth decimal place.
So soon as we begin to cut off figures, the results become in-
accurate, so that the last figures cannot he depended upon;
hence it becomes necessary to carry our computations to several
places beyond what we intend to record in our tables.

From this computation we find that £1 lent at 4 per cent
compound interest for 7 years amounts to £1,315693, and we
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therefore conclude that £7317 lent at the same rate must
amount to :
£7317 x 1 31593=2£9628 673

in the same time.
EXERCISES.

Form tables of the amounts of £1 at the rates of 3, 33, 4,
4}, and 5 per cent for each year up to 20 years, carrying the
results to 8 places of decimals.

By help of these tables, solve the following questions:—

‘What is the amount of £260 in 17 years at 3 per cent ?

‘What is the amount of £5270 in 13 years at 34 per cent ?

‘What will £1329 amount to 11 years hence at 4 per cent ?

Required the amount of £2700 in 20 years at 4% per cent ?

Required the amount of £97354 6 in 19 years at 5 per cent?

E. A more comprehensive view of the doctrine of compound
interest may be obtained in this way :(—

Suppose that a sum of money has been lent to some concern,
with an agreement that it, with its accumulated interest, is to
be repaid after a certain number of years ; but that the interest
is to fluctuate according to the actual market rate of interest in
each year ; and that, at the end of the time, we have to compute
the amount.

In the first year we shall say that interest was at 3 per cent,
in the second it had risen to 4, and had continued so during
the third year, but that in the fourth year it had fallen to 33,
and so on; and we shall take £1000 as the original sum.
Then the amount, after one year, must have been £1000 x 1,03 ;
after two years, £1000 x 1 03 x 1 04, etc.; so that, after four
years, it was—

£1000 x 1,03 x 1,04 x 1,04 x 1,035.
Here we have the rates of improvement during the various

years as continued multipliers. If the rates had been all alike—
that is, if interest had continued at the same rate during the
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whole time, the multiplier would have been the fourth power of
the corresponding rate of improvement.

I have here to caution the student against a mistake which
one is very apt to commit, viz. that of supposing that the average
rate of interest during the four years may be substituted for the
actual rates. He may readily satisfy himself that this is ut
the case by observing that the average rate of interest, in the
above example, is 3%, and that the fourth power of 1,03%20 is
not equal to the continued product 1,03 x 1,04 x 1,04 x 1 035.

The subject of compound interest is thus seen to be very
intimately connected with the doctrine of powers.

Money lent at 5 per cent compound iuterest becomes almost
doubled in 14 years, and more than doubled in 15 years, as is
seen from the table of the powers of 1,05: it will then be again
doubled in another 14 years, and so on ; so that in about 42
years money accumulates to 8 times the original sum ; in rather
more than 56 years to 16 times; and in 71 years to 32 times
the sum lent.

At 4 per cent the increase is, of course, less rapid. Nearly
18 years must elapse before the money be doubled ; and at 3
per cent, 23} yeurs are needed.

In some cases the interest is payable half-yearly or quarterly,
and in the East even monthly ; but this does not change the
character of the calculations. Thus, in Constantinople interest
is given at the enormous rate of 1} per cent per month ; in
order to fiud the amount at this rate in one year, we must raise
1,015 to the twelfth power.



CHAPTER XXI.

ON INVERSE POWERS.

D. THE successive powers of a number or of a ratio form a
series of terms in continued proportion, increasing if the ratio
be greater than that of equality, and decreasing if it be less.
We have had examples, in the preceding chapter, of series of
quantities increasing in continued proportion ; and we may
easily find, in business, examples of decreasing series. I shall
cite an illustration connected with pneumatics.

The air-pump is an instrument for extracting the air from
any vessel. Air possesses the remarkable property of expanding
to fill any space that may be left free to it, and no limit has, as
yet, been found to this expansibility. In the construction of
the air-pump advantage is taken of this quality. A cylinder,
close at one end and fitted with a piston, is connected with the
vessel from which the air has to be withdrawn : this vessel must
be well closed, to prevent the ingress of the surrounding air.
The piston having been pushed to the bottom of the cylinder,
is drawn up, and this operation would leave the cylinder empty,
were it not that the air contained in the vessel expands to fill
the cylinder also. If, to take an example, the capacity of the
vessel were nine pints, and that of the cylinder one pint, the air
which at first filled nine pints has now expanded to fill ten, so
that nine-tenths of the original quantity of air remain in the
vessel. A stop-cock or valve at the bottom of the cylinder is
now shut, to prevent the return of the air into the vessel, and
the piston is thrust down to the bottom; an aperture being
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opened to allow the escape of the air which was contained in the
cylinder. This aperture having been shut, and the communi-
cation between the cylinder and the vessel having been again
opened, the piston is once more drawn up. The air left in the
vessel again expands to fill both the vessel and the cylinder, so
that of whatever quantity of air which was in the vessel at the
beginning of the stroke, only nine-tenths remain at the end of
it ; at the second stroke of the pisten there will be left only
nine-tenths of nine-tenths, that is, eighty-one-hundredths of the
quantity of air originally in it. The quantities of air in the
vessel at the ends of the successive strokes are thus :

s oo Tdoe s N &
or, a8 we may write symbolically :
G G (%) ()t 5 &

This is an example of a series of decreasing coutinued pro-
portionals.

When the ratio is expressed by an integer number, the powers
go on increasing with great rapidity ; when the ratio does not
differ much from a ratio of equality, the progression is much
more slow. In all cases, if we know the ratio and have one
term of the progression, we can readily compute the succeeding
term : nor is it more difficult, if one of the advanced terms be
known, to compute the preceding one.

Thus, by repeatedly squaring, we find that the sixteenth
power of 3 is 43 046 721, and we may thence obtain the
fifteenth power by dividing this number by 3 ; from that again
we can nbtain the fourteenth, and so on : thus—

43046721 = 316 1594323 - 318
14 348 907 = 315 531441 - 312
4782969 = 314 &e. &e.;

and it is quite clear that, if we continue this division sufficiently,
we shall return to 3 itself, and thence to unit : thus,

81 = 34 3 = 3
27 = 33 1 = 1
9 = 3%
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From this example we see that 3 may, with propriety, be
called the first power of 3 ; and we are led to propose the ques-
tion, What power of 3 i8 unit to be called ?

Now if we wish to define the fifth power of 3, we cannot say
that it is the product obtained on multiplying 3 five times by
itself, since there are only four multiplications ; but we may
define the fifth power of 3 to be the product obtained on mul-
tiplying wnit five times by 3. Hence wnit being unit not
multiplied by 3, or, so to speak, no times multiplied by 3, may
be called the no power, or, as we say, the zero power of 3, and
thus the last terms of our progression may be written :

9 = 32 3 = 31 1 = 39,

The series of numbers 1, 3, 9, 27, &c., may be continued
without limit by multiplication, and similarly the inverse series,
27, 9, 3, 1, may be continued indefinitely by division, the suc-
ceeding terms being §, 3, b, &c.  These fractions, then, form
a continuation, backwards, of the series of powers, and all to-
gether form one continuous progression, each member of which
is three times the term on the one side, and the third part of the
term on the other side,

ete. 27, 9, 3, 1, & % J ete
the double series being interminable either way.

The relation of the one branch of this series to the other
exactly tallies with the relation of decimal fractions to decimal
integers; the values of the figure 1, when written in the various
places of the scale, being

etc. 1000, 100, 10, 1, &, +dw Tovor etC

The fractions %, 3, ete. form a continuation of the series of
the powers of 3, and we give to them the name nverse powers;
thus } is called the first inverse power of 3, & the second inverse
power, and so on. Similarly 0001 is the fourth inverse power
of 10, and 457 the tenth inverse power of 2.

Inverse powers are denoted by writing a minus (—) before
the index of the power ; thus 374 stands for the fourth inverse
power of 3, that is, for g, and may be taken to mean the result
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obtained on dividing unit four times in succession by 3. Some-
times, for the sake of contrast, we write 3*¢ for the fourth
direct power of 3, as it may be called.

EXAMPLES.

Express in the common fractional form, and also in decimals,
the values of the following inverse powers :

g3 378yt Bt (467)73
4-s ¢ @hr DT (87)72
2720 107¢ @2 Q322 (017)74

Among the examples above given, there are fractions, the in-
verse powers of which are required. It is most probable that
the student has found no difticulty in dealing with them ; but
lest any one should have been unable to satisfy himself on the
subject, it may be well for me to make a few remarks on the
inverse powers of ratios which are represented by fractions.

As an example, let us consider the ratio represented by the
fraction }, that is, the ratio 1:3.

The second power of } has been seen to be 3, its third power
7, and so on. Beginning, then, from say the tifth power, which
i8 5}, let us come backwards (or downwards, as we usually
express it), through the series of powers, we have

e =% =0 A =0
=02 =@ 1 =(3)°:
and here we cannot fail to observe, that since, in proceeding for-
wards, each power is the third part of that which preceded it, so,
in coming backwards, each is three times the¢ preceding ; the
series then must go on in the same way, so that the continuation
of it must be
F=Qrs =00 1= (3)e;
3=(h)1; 9= 27 ()
&e. &e. &e.
The inverse powers of the fraction } are just the direct powers

of the number 3 ; and contrariwise the inverse powers of the
n
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number 3 are just the direct powers of the fraction } ; and that
this must be so, follows from the very obvious truth that if B be
three times A, A must be the third part of B.

Similarly the direct powers of the fraction £ are the inverse
powers of §, and for this simple reason, that if C be three-fifths
of D, D must be five-thirds of C.

We have seen that the product of one power of a number by
another power of the same number, is a third power of that
number, having for its index the sum of the indices of the two
factors ; and thence we concluded, though perhaps rather hastily,
that the quotient of one power by another power of the same
number, is a power having for its index the excess of the index
of the dividend above the index of the divisor ; but it is clear
that the argument whereby this is established can only hold
good when there is an excess, that is, when the index of the
dividend is greater than the index of the divisor. Let us now
examine the case when the index of the dividend is not greater
than that of the divisor.

If the index of the divisor be just equal to that of the divi-
dend, as in this example, 53 = 53, it is clear that the quotient
must be unit ; at the same time it may be written 52-3, or 59;
and here we have a confirmation of the propriety of calling
unit the zero power of 5, or of any other number.

But if the divisor be a higher power than the dividend, as in
this example 53 + 57, we cannot subtract the index 7 from the
index 3. From 3 the utmost that we can subtract is 3 itself :
having done that, we have still 4 subtractive, as it were, and
therefore we write the quotient of 53 by 57, 574¢. To divide
by the 7th power of 5 gives the same result as to divide seven
times in succession by 5; now, on dividing 58 seven times
successively by 5 we obtain the quotients

25, 5, 1, + 2% o sk
or
62, 51, 50, 571, 572, 573, 54,

And here we see the propriety of indicating inverse powers by
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prefixing the sign — to the index. The same operation may be

put thus:
58 5.6.5 1

e e R 5“.
57 5.6.6.6.6.6.5 5.5.56.6

Hence, when one power of » number has to be divided Ly a

higher power of the same number, we have to subtract the

index of the dividend from that of the divisor in order te obtain

the index of the inverse power which represents the quotient.

Exawmrues.
Perform the following divisions :—
3435 52 = 54 1310 - 1314 287 + 2813 ;
41354119, 103-1017; B+ @)@

E. Many writers on algebra, deceived by this and other ana-
logous cases, have supposed that in the solution 53 + 57 =54
we really have subtracted 7 from 3, and found the remainder
—4; and out of this misapprehension has arisen an extensive
branch of analysis, the objects of which are quantitics less than
nothing.

The student may, however, easily detect the fallacionsness of
such a statement as that we can take the grewter from the less,
by observing that the index 4 was in reality got by taking the
3 from the 7, and that the sign — prefixed to it was obtained
by considering the nature of the question.

It is convenient, for the sake of generalising our language,
to call this operation the subtraction of 7 from 3, and to say
that the remainder, on subtracting 7 from 3, is —4; just as it
is convenient to speak of multiplying by one-hulf while the real
operation is dividing by 2. A conventional misuse (or gene-
ralisation, as we call it) of language cannot change the nature
of the things spoken of.

D. If we have to multiply a direct by an inverse power of
the same number, we have only to regard the one as indicating
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so many multiplications and the other so many divisions by
that number, and to give the sign of the preponderance to the
difference of the two indices. Thus 75 x 78 =7%2, and
911 x 9~17 =98,
ExaMpLEs.
34 x 372 45 x471; 87 x 875, 176 x 1779
3711 x 37712, 2376 x 2316 41719 =413 ;

To preserve the same fictitious uniformity of language, we
are said, in performing the operation 75 x 773 to be adding
— 3 to 5, whereas in reality we take 3 from 5.

If we have to multiply one inverse power of a number by
another inverse power of the same number, we must consider
that both indicate division ; so that 574 x 573 = 5~7, for these
factors may more properly be written

1 1 1
Priary and the product 57
ExawmrLes.

TTEXTTS Bt x B ORI CON
But if we were to divide an inverse power by a direct power,
the number of divisions is augmented ; thus the division of 7-8
by 74 is in reality the division of the fraction %[3 by 74, and

1
the quotient must necessarily be —, or 7-7.

77’ ‘
ExAMPLES.
572+ 52; 7-5:7t8; 13-7 +13°,

Lastly, when we have to divide by an inverse power, we
multiply by the corresponding direct power : for the expression

to divide by 5-¢, that is, by %:, is only a conventional mode

of saying to multiply by 64 : hence we conclude that
58 - 5-4¢=5"7,
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In performing this operation we say that we subtract — 4
from 3, whereas in reality we add 4 to 3.

The utility of, nay, even the necessity for, the use of these
conventional modes of speaking will become apparent when we
proceed to study universal arithmetic, commonly called alget ra,
in which numbers and ratios are represented by indefiuite
characters, so that we canunot know, until we come te apply
ourselves to a particular case, which of two quantities may be
the greater.

ExaMrLES,

42 - 471 38+373, 68 678 ; 1174 +11°7;
2375 +2372; 767276728 ()8 +(8)".

When the power of any number is to be squared, cubed, or
raised to any power, the index of the resulting power is the
product of the two indices; and the truth of this is obvious
when the powers are direct. Let us examine the case of inverse
powers.

First let us take the example, “to find the second inverse
power of the fifth power of three : that is (35)~2.

To raise any number to its second inverse power is to divide
unit twice by that number ; wherefore

(36)2=1+36+36=3"10,

And thus we see that the inverse power of a direct power is an
inverse power of which the index is the product of the two
indices.

Next let us tuke the example, “to find the second power of
the fifth inverse power of 3 : that is (375)2."

Here (375)% =375 x 375 = 3710, and we conclude, in general,
that the direct power of an inverse power is un inverse power
having ite index the product of the two indices.

Lastly, let us take the example, “to find the second inverse
power of the fifth inverse power of 3 : that is (375)732.”

Here (375)"2=1+3"5+3"0=1x35%x35=310; whence
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it appears that the inverse power of an inverse power is a direct
power, having for its index the product of the two indices.
The four cases of composite powers deserve the student’s
close attention. They are exemplified thus:—
(3+s)+s =3t10

(3+5)—2 =3~10

(3-5)t2 =3-10

(375)~2 =3+10
ExaMpLES.

(43)-1 5 (65)-8 H (9"7)5 ; (114)8 ; (13'8)‘7 5 (21—4)‘9.



CHAPTER XXII. -

ON THE COMPUTATION OF ANTICIPATED PAYMENTS (COMMONLY
CALLED DISCOUNT).

D, Wiuexs a person who is entitled to receive a certain sum
of money at some future time transfers or sells his right to
another person, he does not receive the whole sumn due, since no
man would give one thousand pounds down for the right to
draw one thousand pounds ten years hence. Of this we have
had examples in the discounting of bills and promissory notes.

In the case of bills, the deduction is put as a discount off the
sum mentioned in the bill, and the rate of discount is known ;
but we have often to compute the present value of a future
payment, allowing interest at so much per cent ; and it has
already been shown that 5 per cent discount is a higher remu-
neration for the use of money than 5 per ceut interest is.

Thus we may be asked, *“ What ds the present wvalue of
£10 000 due one year hence, when interest 's at 4 per cent §”
In this case we are not to take 4 per cent discount off the
£10 000, but we are to allow 4 pér cent inter~st on the present
value. The question, in fact, becomes this:  What sum of
money, luid out at 4 per cent, will amount to L10 000 1” Now
£100 invested just now will amount to £104 «ne year hence :
wherefore we have this proportion, as 104 ix to 100, so is
£10 000 to the sum which, laid out now at interest, will
amount to £10 000 at the end of the year. That in to say, in
order to obtain the present value we must divide £10 000 by
the ratio 1,04, or, in other words, multiply £10 000 by the
first inverse power of 1 ,04.
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Similarly, if we seek the present value of a sum of money
due two years hence, we must again divide by 104 ; that is to
say, we must multiply the principal sum due by the second
inverse power of 1,04.

And, in general, the present value of a sum of money, due
several years hence, is to be obtained by multiplying by the
proper inverse power of the rate of improvement of money.
Thus the present value of £10 000, due 13 years hence, interest
being supposed at 4 per cent, is represented by the expression,

£10000x1 04713,

For the purpose of facilitating calculations of this kind,
tables of the inverse powers of the various rates of improvement
of money are prepared. The numbers given in these tables
may also be called the present values of £1 due at a stated
future time.

Thus for 4 per cent we make a table of the inverse powers of
104 : thus—

1,04 {1,000 0000 0000 = 1,04 ©
46 6088 4660
615 4846 1548
1,04| 9615 3846 1538
57 7842 3118
245 5621 3 16

9245 5521 3016 = 10472

10471

and so on.

Extensive tables of this kind are printed, but the student
would do well to compute them for himself, as far, say, as to 20
years, just as he has done for the positive powers.

By help of such tables we can readily calculate the present
value of any future payment: we have only to multiply the
sum proposed by the proper inverse power of the rate of im-
provement of money.

ExaMpLES.

Required the present value of £6852 payable 2 yea.rs hence,
interest being at 3 per cent. .
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Required the present value of £1562 .4 due 7 years hence,
interest at 3} per cent.

Required the present value of £3519,7 payable 13 years
hence, interest being at 4 per cent.

What is the present value of £18 000 payable 17 years hence,
interest being at 4} per cent ?

‘What is the present value of £28 700 due 19 years heuce,
allowing interest at 5 per cent ¢



CHAPTER XXIII. ’

ON ROOTS AND FRACTIONAL POWERS.

D. WueNn we know a number, it is very easy to find its
square ; we have only to multiply the number by itself ; but it
is not quite 8o easy to see how, knowing the square, we can dis-
cover the number of which that is the square.

If we wish to find that number of which 841 is the square,
we may proceed to make trials, and after a few trials, we find
that it is 29, since the square of 29 is just 841 ; 29 is called
the square root, the sccond root, or often simply the root of 841,

Now although by guessing, and squaring, and guessing again,
we may get to know the square root of any number which has
one, this would be a very tedious and clumsy way of going to
work, particularly if the number were large. Yet, after all,
there is no other method known for obtaining a square root ;
we can only, by carefully arranging our trials, render the work
rapid and certain.

One very obvious method of obtaining the square root of a
number, is to resolve the number into its prime factors. Thus
441 is the continued product of 3 x 3 x 7 x 7 ; and these factors
oceur in pairs, so that the root must be the product of one of
each pair of factors; in this case 3 x 7, or 21 ; and this plan
may be used when we have a table of divisors; but from its
very nature it can only be applied to numbers which have their
factors in pairs: to such a number as 437, which is the product
of 19 and 23, this method will not apply. Nay more, no num-
ber which has not its factors arranged in pairs, can possibly
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have a square root ; for we know that the products of no two
sets of prime numbers can ever be alike.
The student may apply this method to the following

ExAMPLES,

Required the square roots of
36 169 529 2401 11025
64 225 900 9801 8281

Since the method of guessing and correcting our guess is the
only practicable method of proceeding, our great business is to
obtain some guide as to the first guess, and then some convenient.
way of estimating the corrections.

The decimal arrangement of numbers affords great facility for
making the first guess. Since the square of 10 is 100, we
readily see that, if a number have not more than two places of
integers, its root can have only one place ; as also, that since
the square of 100 is 10 000, numbers of three and four places
can be the squares only of numbers of two places; and in
general, that for every two additional figures in the square, there
must be one figure additional in the root.

If, then, we were required to find out the root of such &
number as 27 447 121, we should count the number of its digits;
if that number be even, the half of it is the number of integer
places in the root ; but if that number be odd, we add one to it
before halving. Or more conveniently, we group the figures in
pairs, beginning at the units, thus, 27 44 71 21, then for each
group we must have one digit in the root.

In this example the root must have four yplaces, that is, its
highest figure must be in the place of thousands ; or, in other
words, the root must be between 1000 and 10 000. Now, on
looking to 27, the highest group, we notice that it is somewhat
above the square of 5 and considerably below the square of 6,
and therefore we conclude that the root of which we are in
search is between 5000 and 6000, being nearer the former ; the
highest figure of the root, then, is certainly 5.
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Taking our first guess at 5000, let us see the extent of the
error. On subtracting the square of 5000 from
the given number, as in the margin, we find the 27 44 71 21
defect to be 2 44 7121, and the question be- 25 00 00 00
comes, ¢ What addition are we to make to the 2 44 71 21
assumed root 5000, in order to make up this defect
in the square #” Now if we were to add 1000, that is, if we
were to pass to 6000, the square would become 36 000 000, or
11 000 000 more than before ; but we only want 2 447 121,
and therefore we say, if the difference, 11 000 000, have been
caused by an increase of 1000, what increase is needed to cause
a difference of 2 447 121 ?

Although the increment of the square be not proportional to
the increment of the root, we may, merely for the purpose of
guessing, make the proportion, 11 000 000 : 2 447 121 :: 1000,
the required correction ; this we find to be about 200 ; and
therefore we now try whether 5200 be nearly the root required.

On squaring this new number we find 27 040 000, so that
the error is now reduced to 40 71 21. Now we
have seen that the difference between the squares 27 44 71 21
of two contiguous numbers is the sum of those 27 04 00 00
numbers, and therefore the square of 53 exceeds 40 71 21
the square of 52 by 105 ; that is, the square of
53¢+ must exceed the square of 52¢¢ by 1 05¢ ++¢ ; so that
again we may roughly make the proportion—

1050000 : 407121 :: 100 : 38,
and so find that our next correction must be about 38 ; however,
let us be contented with one additional figure, and try 5230.

On squaring and subtracting we find that the error is only
94 221. But a change of 10 in the root would
cause a change of 104 700, that is (5230 + 5240) 27 44 71 21

x 10 in the square, and therefore we may make 27 35 29 00

the proportion 104770 : 94221 ::10 : 9, 942 21

very nearly; and on trying 5329 we find

that this is indeed the square root of the given number.
The student must be careful to observe that these proportions
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are not ¢rue, they are only taken as rough guides in guessing the
corrections to be applied to the assumed roots.

ExamrLEs.
Find in this way the roots of the following numbers :—
9 409 889 249 665 949 636
17 161 1 096 209 2306 130 774 025
21 609 35 295 481 94 346 418 454 621 641

292 681 182 169 009

1152601 315 553 885 796

The chief labour in such calculations is that which attends the

squaring of the roots succes-
sively assumed. This labour
may be much reduced by tak-
ing advantage of the fact, that
the difference between the
squares of two numbers is the
product of the sum by the dif-
ference of thosenumbers. Thus,
to return to the former ex-

Heeo2

Il

10200 x 2¢0 =

522
1043 x 3+
Tp23ez
10469 x 9
T5239%

Q5 00 o0 00

204 o0 o0

Q704 05 oo
3129+
273529 oo
9 42 21

27 44 71 21

ample, in order to obtain the square of 5200, we may add the
product of 10 200 by 200 to the square of 5000; and wo on, as
shown in the margin. These operations are much less laborious

than the actual squarings.

The steps of this calculation may be more compactly arranged
thus : Having written the first as-
sumed root 5000 twice, we multiply Hees
to obtain the square, 25000000, 5°°°

Adding the two 5000’s together, and 102+ + 25 00 00 00
including the next correction 200,  2°° 2040 .
we obtain 10 200, which, multiplied 1043- 2704 oo oo
by 200, gives 2 040 000 to be added 3 3129 ¢
to the square of 5000 in order to give 10469 273529 oo
that of 6300 ; and so on, as shown 9 94221
in the adjoining work. The forma- 27 44 71 21

tion of the successive terms may be
more clearly shown by omitting the zeros altogether, or by
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supplying their places with noktas, as in the margin, where it is
seen that, while the root descends by one step at a time, the
square descends two steps in the scale.

By this means we easily obtain the squares of the assumed
roots : a very slight modification of the

arrangement enables us to exhibit the 5 27447121
successive errors in the squares. 5 ' 25

Having pointed off the proposed 102 2447121
number in groups of two figures each, 2 l 204
we take the root of the square number 1043 4071 21
immediately less than the number occu- 3 3129
pying the highest group, in this case 5, 10469 94221
and write it to the left, and again be- 9 94221

low (omitting the zeros, though not for- 10478

getting their virtual presence). Multi-

plying we obtain the square, write it below the first group of
the proposed number, and subtract in order to find the error of
the square, in this example 2 447 121.

Adding the 5 to the 5 (truly 5000 to 5000), we obtain 10,
which, when augmented by the next unknown correction, has
to be multiplied by that correction, in order to give the correc-
tion of the square. It is only necessary, for the moment, to
attend to the first part of the remainder, or error, as it may with
propriety be called. Now it is our object to apply a correction
to our assumed root sufficient to destroy or exhaust this error;
the next figure must, then, be chosen so that when it is annexed
to the double of that part of the root which has already been
found, and the amount multiplied by it, the product should be
equal to the error.

In this case we readily guess that the next figure is 2, since
10 goes rather oftener than twice in 24. Annexing the 2, and
writing it also below, we multiply and obtain 204 (properly
2 040 000), the difference between the square of 50 and that of
52 ; and this subtracted from the preceding error, leaves now
only the error 40 71 21.

In order to obtain the next correction, we add 102 and 3,
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which make 104, just the double of 52, the assumed root ; we
estimate how often this 104 goes in the error, and readily find
the next figure 3 ; this we annex, and continue the operation,
until the error be completely exhausted.

It is usual to keep a memorandum of the figures of the root
as they are found : if such a memorandum be not kept, the root
may be got by halving the final sum at the left hand.

ExaMriEs,
Extract the square roots of the following numbers :—

15 625 82 519 056

34 225 700 728 039 025

47 089 120 866 780 281

1 876 900 494 428 360 336
6 671 889 1 258 369 202 250 000
39075 001 1 234 567 900 987 654 321
48 344 209 338 292 728 699 631 876

E. This method of obtaining the square root of a number is
so concise and so rapid, that many writers consider it to be a
direct process. Its truly tentative character may, however, be
exhibited by such an example as the following :—

Let the root of 321 735 969 be required.

Here the highest group contains only one figure, viz. 3, 8o
that the first figure of sthe root must
be 1. Squaring this and subtracting, 1 | 321735969 | 1
we find the remainder 221, and the l_wﬂl l
divisor 2, whence we obtain the quo- 2 ' 221
tient 11. But we cannot have 11 in
the next place ; the highest possible number that we can have
there is 9, since anything more
would convert the previous 1 1 , 321735969 | 19
into a 2. Let us then try 9; 1 1
the product of 29 by 9 is greater 29 l 221
than the error, so that 9 evenis 9 2 61
too much. Let us cancel the 9
and try 8 ; 8 times 28 are 224, which also is more than the
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error, so that 8 is too much ; we must cancel it and try 7.

Thus we see that, although with ,

this arrangement the trials be 1 I 321735969 | 18

very easily made, the process is 1 1

virtually one of trial and error. 28 l 221
It is quite clear that, since _8 224

the utmost limit of the subse-

quent figures is 9999, etc., the divisor 2 in this example, with

the addition of the mnext correction, can never come up to

3, and therefore the correction of the root can never be less

than 221735969 <+ 30000, while it can never be greater than

221735969 = 20000. Thus we obtain two limits, 73911989

and 110867984, between which the correction must lie: but,

from the very nature of the case, the next figure cannot be above

9, wherefore it must be one of the three 9, 8, 7.

ExAMPLES.

Required the square roots of
310993225 ; 738534976 ; 27950824225,

In the above class of examples the first remainder is large :
let us now consider those cases in which the remainder is very
small ; as when we extract the root of 370702529,

3 [1370702529 | 37023
3 |9
67 | 470

7 | 469
7402 | 17025

2| 14804

74043 | 2221 29
3| 222129

There, after the second subtraction, the remainder is only 1,
and, on bringing down the next group, we have 170, which does
not contain the divisor 74 with another figure annexed : hence
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the next figure in the root must be zero; we therefore write 0,
and bring down another group.

D. In all the preceding examples the proposed numbers are
squares, and their roots have come out exactly in integers; we
have now to consider those very nwmerous cases in which th.
roots of unsquare numbers ave required.

‘When a board is made rectangular, we compute the nu':iber
of square inches in its surface by multiplying the number of the
linear inches in the length by that of the linear inches in the
breadth. If the length and breadth be alike, the number of
the square inches in the surface ix the second power of the
number of the linear inches in the side of the square : hence the
problem in arithmetic, “ 70 catract the square root of a given
number,” is almost identic with the geometrical problem, “ 7o
construct a square which may contarn a given quantity of surface.”

If the question were proposed, “what is the side of a square
which contains 29 square inches ?” we should endenvour to
obtain the answer by extracting the root of the number 29.
Now the square of 5 is 25, and that of G is 36, wherefore the
root of 29 must be intermediate between 5 and 6 ; that is to
say, the side of the required square must be more than 5 but
less than 6 inches; yet it cannot be represented by any frac-
tion, since the square of a fraction which is in its lowest terms,
cannot be simplified, and therefore never can be an integer
number. Although, however, we cannot represent the side of
this square accurately by a fraction, we may yet approximate
as closely as may be required for any specific purpose.

The roots of unsquare numbers are called Surds, and are
indicated by the sign 4/, which is a corruption of the initial
letter 7 of the Latin word radiz, a root. The root of 29 is
written /29.

In order to obtain an approximation to the root of an un-
square pumber we convert the remainder into hundredths of the
unit, the next remainder into ten-thousandths, and so on, by

®
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bringing down two zeroes at each step; and we continue this
until we have attained to the required degree of precision ; thus

the process for the root of 29 stands as under :

5
6

103

29
26

[ 4.0

30

53851648

0
9

10 68

9
8

100
544

10,766

55600
53825

10,7701

1

177500
107701

1077026

6

6979900
6462156

10770324

4

51774400
43081296

107703288

869310400

8 861626304

107703296

7684096

ExAMPLES.

Extract to six decimal places the square roots of the follow-

ing numbers :~—

10 93
39 114
48 176

257
391
426

458 955
693 1472
77 3001

95430
954300
1703162

E. When we extract a root in this way, to a considerable
number of places, we find that, towards the end of the work,
there has been a great deal of unnecessary labour: we may
avoid this by a mode of shortening analogous to that which we
employed for division in decimals.

Since, to return the root of 29, the last divisor, when aug-
mented by the subsequent corrections, can never be so much
as 10,7703297, and never less than 10,7703296, it follows
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that the subsequent correction must be contained between the
limits,
[00000007684096 00000007684096
107703297 ' 107703296
o 7684096 (7684096
107703297 " 107703296

Now the difference between two fractions having the samc
numerator, and of which the denomiuators differ by unit, 1 a
fraction having the same numeralor, and for its denominator
the product of the two denominators; wherefore the ervor of
either of these fractions cannot amount to so much as

(7684096
107703297 X 107703296"
Thus it appears that we may safely use 107703294 as a com-
mon divisor for a considerable number of figures.

From this it is clear that when we have obtained one-half
of the entire number of figures which we desire, we may cease
to annex decimal places to the remainder, and may go on for the
rest of the work as in shortened division. However, for the sake
of avoiding the accumulation of errors in the last place, it is ex-
pedient to bring down one figuremorehefore beginning to shorten.

The conclusion of the process for finding the root of 29 is as
under :—

107703296
4 0543170

76840960 lo7134504
75392307
1448653
1077033
371620
323110
48510
43081
5429
5385
T44
43
whence /29 =5 385164807134504.
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Exawmpres,
Extract to eight decimal places the roots of
36 134 1594 7358 29930
78 356 2618 39501 128880

Expert multipliers can shorten the labour of extracting roots
by observing, that after a few figures are found, it is quite safe
to take as many additional figures, less one ; and that therefore
we are not tied to the slow process of going on one figure at a
time. We may even begin with two groups, if we know the
squares of the two earlier numbers : thus the extraction of the
root of 29 may be done as follows :—

532900  |5385164
5.3|28,09
10,685 |91 0000
85 908225

10,7701 '82,17 7500 0000

1 6417 6630 6896
10,7703 28 [869 3104
And if we have an extensive table of squares, several groups may
be taken at first, and thus the labour may be greatly lessened.

D. When the root of a fractional number is required, as of
837215, we proceed exactly in the same way, taking care to

2 | 837215 2,893
2 |4
48 | 437
8384

569 | 5321

9 | 5121
5.783 | 20050

3| 17349, &e.

bring down two places at a time: this is obvious. But when
the ratio is entirely fractional, we must consider more minutely
the nature of the case, as in this matter beginners are very apt
to fall into error.

Let it be proposed to extract the root of the decimal 8.
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If we make a first estimate, as learners often do, of 2, be-
cause the square of 2 is 4 and that of 3 is 9, we go sadly wrong,
for the square of two-tenths is not four-tenths, but four-hun-
dredths ; and thus we see that it is the root of 80—that is, of
eighty hundredths—that must be taken, and this is 8, so tha*
the operation is carried on thus .(—

8 | R0 | 894

S 1 b4

1,69 | 1600
9 | 1521
78

1,“'4—[7900
4 7136, &e.

‘We must therefore point off a decimal fraction in groups of
two figures each, beginning from the decimal point; and for
this obvious reason that the square of tenths gives hundredths,
the square of hundredths ten-thousandths, and so on, It is
also to be observed, that the root of a fraction which is less
than unit is greater than the fraction ; thus the rcot of 36
is 6.

EXAMPLES.

Required the square roots of the following decimals :—
4572 81462 21563 3263158417 85473
3,904 2,74613 1,00034 000061538 9107685682

Jd3756 021563 99966 H87915203936

When the root of a common fraction is wanted, we take the
root of the numerator for a numerator, and the root of the de-
nominator for a denominator ; thus the root of four-ninths is
two-thirds.

ExAMPLES.
Required the roots of the following fractions :—
s s 1o 81 0529 ;
T e 2} 113} 1114 661§.

But this method is only convenient when the numerator and
denominator of the fraction reduced to its lowest terms, are
both square numbers. In other cases we may convert the
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fraction into an equivalent decimal, and then extract the root ;
or otherwise we may compute separately the root of the nu-
merator and that of the denominator, and then divide; but
this proceeding would be attended with great labour.

In general, the most convenient process is to convert the
fraction into an equivalent one having its denominator a square
number ; and then having extracted the root of the numerator,
to divide by that of the denominator. Thus if the root of the
fraction five-sevenths were required, we may divide the root of
5 by the root of 7 : thus

5 /5
Vi= T
or multiplying both numerator and denominator by 7, we may
convert the fraction § into 2§ ; whence

5_ 35 435
VitV = T
ExAmMPLES,

Find the square roots of the following fractions :—
SN SRS ¢ SRR« SRR S N v A y
I 285 4 35 s A%

It may be remarked that, although on using the denominator
of a fraction as the multiplier we must necessarily obtain a
fraction having a square denominator, it is not always necessary
to use o high a multiplier : thus in the example 1%, the mul-
tiplier 3 is quite sufficient. Whenever the denominator con-
tains a square factor, it is only necessary to use the remaining
factor : thus 12=2.2.3=4.3 ; g0, as 4 is already a square, we
only multiply by 3.

E. It is sometimes desirable to express the root of an un-
square number by means of a common fraction ; and although
it be impossible to accomplish this with absolute precision, the
attempt to do it leads to some useful knowledge.

Let us, for example, try to express the root of 11 by & com-
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mon fraction. This root is more than 3, but less than 4 ; it is
then 3 with some fraction. Let us try 33. The square of 3}
is 11}, so that 3} is rather much. Instead, however, of pro-
ceeding in this way, let us compute the root of 11 in decimals :
it is 3,316624488, etc.; and let us then, by the process of
Lord Brouncker (see Vol. T, p. 162), seek to couvert this decimat
into a common fraction. We find the quotients 3; 3, 6 ; 3, 6;
3, 6, etc.; and, what isx very remarkuble, the farther we con-
tinue the decimal the oftener is the group of quotients 3, 6,
repeated. Indeed, it can be shown that this circulation must
go on for ever.

By help of these quotients we can obtain the series of frac-
thons which approach continually to the true value of /11,
these fractions being alternately too small and too great ;
thus—

3 3 6 3 6 3

¢ F 2 ¥ 8 W WA RN ete;
and if we were quite certain that the period of quotients recurs
for ever, we could save ourselves a great deal of labour, because
when once the period is discovered, we might continue it with-
out farther calculation.

Yet, although it can be clearly shown that the quotients
obtained in seeking the square root of an unsquare number, or
of a fraction, do always recur in periods, and also that the last
quotient of each period is invariably double of the integer part
of the root, it would not do for us to presume, at present, on
the truth of these laws. The knowledge, however, of the fact
that such laws have been discovered may serve to stimulate us
in the prosecution of our studies.

ExAMPLES.
Express, by the method of continued fractions, the values of
the following surds :—
V55 V26 V3L W85 /B2,
V1435 V1455 Wi Vi VH
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On squaring the series of fractions obtained by this process,
it is found that the numerators of the errors in excess and in
defect, recur again and again, while the denominators rapidly
increase ; so that the actual errors decrease a8 we proceed along
the series.

As we have often to compute and use the square roots of
pumbers, extensive tables of them have been printed ; of these
Barlow’s is perhaps the best.

CUBE ROOTS.

D. As with squares, so with cubes ; we have often to find a
number from its cube. To compute the contents of an oblong
block we multiply together the three numbers which express its
length, its breadth, and its thickness ; the continued product is
the number of cubic units contained in the block. When the
three dimensions are all alike, the block is a cube, and its
volume is represented by the third power of that number which
represents its side. If, then, it were proposed to cut a cubic
block of stone, to contain some number (say 2000) of cubic
inches, it would be necessary to find that number of which the
third power is the proposed 2000 : this number is called the
cube root of 2000, and is denoted by the mark 472000, read the
cube root, or the third root of 2000.

The only process known for finding the cube root of a num-
ber is that of trial and error. We guess the root, cube the
assumed number, and by considering whether this exceed or
fall short of the proposed number, we judge of whether our
estimate be too high or too low. The calculations attending
this operation are necessarily longer, but the principles which
regulate it are exactly the same as for the square root.

Since the cube of 10 is 1000, that of 100, 1 000 000, and so
on, it follows that on grouping the figures of a number in threes
from the units’ place, we obtain a group for each figure of the
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cube root. Hence, in order to find the cube root of such a

number as
76009496256,

we part its digits in groups of three each, thus—
76 009 496 256,

the highest group, however, having one, two, or three figures,
as the case may be, and then conclude that for each group there
must be one figure in the cube root: the cube root of the above
number, then, has four places of figures.

Now the number 76 in the highest group is more than the
cube of 4 and less than the cube of 5, so that the cube root
which we are seeking must be between 4000 and 5000.

On trial we find that the cube of 4000 is too small by
1.2 009 496 256. Now an afldl- 76 009 496 256
tion of 1000 to the root brings 40003 = 64 000 000 000
the cube to be 125 000 000 000, defect = 12 009 496 256
and therefore causes a change of
61 000 000 000. Hence, as before, we may roughly state the
proportion (leaving off 6 figures)—

61 000 : 12009 :: 1000 : 200

to obtain an approximate correction. Adding this correction to
the assumed root, we obtain 4200 for a new trial.

Cubing this number and subtracting we find the defect to be
only 1921 496 256. Now we have
seen that to pass from the cube of 42005 = 74 088 000 000
one number to the cube of the next e ——
number we must add three times defect = 1921 496 256
its square, three times itself and unit. To the cube of 42, then,
we must add 5292, 126, and 1, in all 5419, in order to obtain
the cube of 43 ; therefore an addition of 100 to the supposed
root would éause an augmentation of 5419 000000 in the
cube; but we need only 1921 496 256 ; wherefore, in order

76 009 496 256
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to approximate to the next correction, we may state the
proportion—

5419 000000 : 1 921 496 256 :: 100 : 30,

and may assume 4230 as the basis of a third trial.

Again cubing and subtracting we find the error to be reduced
to 322 529 2566. Now an addition of
unit to 423 causes an augmentation
of 3 x 4232 + 3 x 423 + 1=538057
to its cube, and therefore an addi-
tion of 10 to our assumed root would augment its cube by
538057 000 ; but we only need an augmentation of 322 529 256 ;
therefore from the proportion

538 057 000 : 322 529 256 :: 10 : 6

we obtain, as the next correction, roughly, 6, and on trial we
find that the cube of 4236 is exactly the proposed number.

76 009 496 256
42303=75 686 967 000

defect= 322 529 256

EXAMPLES.

Compute in this way the cube roots of the following num-
bers —
35937 1367631 20570824 640503928
68921 3048625 198155287 741217625

The principle which guides us in this operation is simple: we
make a trial, ascertain the error in the cube, thence estimate a
correction, and try again ; but the labour is great, and becomes
excessive when the figures in the root are numerous. In order
to lessen this labour we endeavour to form the cube of the
newly assumed root from the cube of the preceding one. This
we can accomplish by attending to the composition of the cube
of the sum of two numbers.

The business is, having the cube of a number, such as 423,
to pass to the cube of another number formed by annexing a
lower figure, such as 4236 ; in reality, to pass from the cube of
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4230 to that of 4236 ; as well as to prepare for passing onwards
if need be.

Beginning at the first step, let us form the cube of 42 from
that of 4, or rather of 40. Using the Arab nokta for the sake
of clearness, we have

4¢3 = 64e0e
3x4+2x2 = 96
3 x4 x22 = 48+
23 = 8

428 = 74088

If we wish to proceed onwards we must have the square of
42, 8o that it is convenient to form it also as we go along. The
work then would stand—

442 =16+ 4.3 —G4deee
2x 4. x2 = 16¢ 3x 4¢2 x2 = 96
22 = 4 3x 4+ x22= 48
4242 =1764¢ 4243 ==74088¢ ¢
2x42+ x3 = 252 3x 4242 x3 — 15876+
32= 9 3x 42« x32= 1134
33= 27
42342 =178929¢ 423+3 =75686967+¢¢
2x 423+ x6 = 5076+ 3x423+2x6 = 3220722
62= 36 3x423* x62= 45684
63 = .2~16
42362=17943696 42363=76009496256

If, instead of computing the square of the assumed root, we
compute three times that square, so as to have it ready for
multiplication by the next correction, the work takes a more
symmetrical form, and may be arranged concisely as under.

Having prepared five columns, the first to receive the num-
ber 6, the second to receive 6 times the root, the third to
receive 3 times the square of the root, the fourth to receive the
cube of the root, and the fifth a memorandum of the root itself ;
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we write 6 times the first assumed figure of the root, in this case
24, at the top of the second column ; 3 times the square, in this
case 48, at the top of the third column ; the cube of it, 64, at
the top of the fourth column ; and make a memorandum of the
root itself at the top of the fifth column: we also write the
number 6, the product of 1 x 2 x 3, at the top of the first
column, in order to complete the line,

6 6 Root. 3 Root 2, Root 8, Root.
6| 24 48 64 4
12 48 96 2
12 48
8

6| 2562 52 92 74 088 42

18 756 15876 3

27 11 34
27

6 | 2538 536787 75 686 967 423

‘36 152 28 322072 2 6

108 4506 84
216

6 | 25416 | 53 831088 76 009 496 256 4 236

Having now determined on the next figure of the root, or the
correction, a8 we may call it, we write it below the root, and’
one step out to the right ; then, multiplying each number in the
first line, excepting that.in the fourth column, by this correc-
tion, we write each product in the column towards the right
hand : in this way we obtain the second line of numbers. We
next multiply the Zalf of each number in the second line, with
the same exception as before, by the correction, placing the
product again in the next columns: lastly, we multiply the
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third part of the number found in the third line by the correc-
tion, and place the product in the fourth column, as shown in
the work ; then summing up the numbers found in each column
we obtain the number 6 unaltered, 6 times the new root, 3
times the square of the new root, the cube of the new root, and
in the fifth column the new root itself, so that we are now ready
to proceed with the second correction. In the adjoining work
the zeroes are omitted for the sake of clearness: when the cor-
rection has one additional figure, as in the example given, the
numbers proceed one place out at each step ; but when the cor-
rection has two additional figures, the results go two steps out,
and so on,

Before proceeding to study the application of this pf'ocess to
the extraction of cube roots, the student may exercise himself
in computing by its help the cubes of a few numbers,

ExAMPLES.

Compute the cubes of the following numbers :—
1476;  3905;  6143;  76093;  207583.

Let it now be proposed, as before, to extract the cube root of
the number 76009496256.

‘We write the given number at the top of the fourth column,
grouping its digits in threes for the sake of convenience, and,
having obtained the first figure of the root, we subtract its cube
from the proposed number so as to obtain the error, and this
error takes the place occupied by the cube of the first figure in
the. preceding operations. Our business now is to apply such
corrections as may exhaust this error 12009496256. Now it is
clear that the greater part of the augmentation of the cube is
the product of thrice the square of the already assumed root by
the correction ; wherefore the correction may be roughly esti-
mated by dividing the error by the number in the third column ;
in our example by dividing 120, &c., by 48. We thus obtain
the next figure, 2.
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6 6 Root. 3Root 3, Error, Root.
76 009 496 256
64
6 24 48 12 009 4
12 48 96 2
12 48
8
6 25 2 5292 1 921 496 42
18 756 15876 3
27 11 34
27
6 26 38 53678 7 322 529 256 423
36 152 28 322072 2 6
108 456 84
216
6 25 416 53 831 088 0 4236

Proceeding as just explained, we find the augmentation of
the cube, and therefore the deduction from the error, to be
9600 + 480 + 48 ; and this subtracted from the previous error,

reduces the error in the cube to 1921, &ec.

Dividing now

19214, &c. by 5292, we get the next figure 3, and with it we
proceed just as before, continuing the operation until the error
be exhausted. In the actual work it is convenient to omit those
zeroes which are only needed to indicate the rank of the pro-
ducts ; and it is also better to bring down only one group at a
time than to write out the whole error.

ExAMPLES,

Find the cube roots of the following numbers :—
10 581 347 558 664
3 506 205 440 728 454 858 301
153 6921057
630 084 028 517 513 518 298 333 039

13 824
39 304
103 823
238 328

597 619

2 232 681 446
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If there be a remainder, that is to say, if the proposed num-
ber be not a cube, we must annex decimal places, and continue
the work until the required degree of precision be obtained.

E. When we have to extract a cube root true to a prescribed
number of places, we may shorten the work, by attending to the
limits within which the correction must necessarily lie.

In order fully to see the character of this shortening, let us
take as an example the extraction of the cube root of 17.

6 6 Root, 3 Root 2, Error. Root.
17,
8.
6|12, 12, 9,000 2,
3.0 6.0 6.0 o
75 1,60
J125
6150 18,75 1375000 | 2,5
42 1,050 13125 07
147 36 76
343
6 | 1542 19,814 7 025 407 | 2,57
72 18 504 23778 12
4 11
15 427 2 19 833 208 001 618 | 2,571 2
486 1250 1 607 81
15 427 686 | 19 834 458 000011 | 2,571 281

On trying the number 2 as a root, we find the error 9, and
the divisor 12, from which we obtain the approximate correction
.7 this correction, however, turns out to be too great; we then
cancel the work depending on this correction, and try 6 ; but
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this is also too great, so we try the correction 5, and find the re-

sults as given in the adjoining working. The error is now 1,375,
and the divisor 18,75, whence we obtain the approximate cor-
rection 07333, &c.; but it is quite obvious that we cannot use
the whole of this correction, since the multiplication of 1875
by it would alone exhaust the whole error, and the parts of the
augmentation brought up from the 150 and the 6 would be in
excess. The correction obtained by dividing the error by three
times the square of the assumed root must always be too great ;
of this we have already had an example. But it is not con-
venient to cancel our work, particularly when it has become
heavy, and we therefore look for some criterion, by which we
may judge whether the first figure 7 of the above correction be
or be not too great. Now we see that the correction

can not exceed 09999, &c., that is, that its utmost limit 1? tzg
is 1. In that extreme case the numbers in the third ‘03

column would stand as in the margin, so that the cor-
rection would be multiplied by the sum of 1875, the half of
1560, and the third part of 3, that is, by 19 51, and this being the
greatest possible multiplier of the correction, it follows
that the quotient obtained on using it as a divisor, is 18,75

the least possible value of the correction ; wherefore 78

the correction which we are seeking must lie between 1
1375 1375 19 51
—1-8—:;7—5— (07333 and 19(51 = (07047.

so that the next figure of the root is certainly 7.

On applying this correction, we find the error 025 407, and
the least divisor 19 8147, while the greatest divisor is 19 8147,
together with half of 1542 multiplied by 01 and

the square of (01, in all, 19 8919 ; wherefore the 19‘8;‘;:
next correction must be between the limits 1
025407 025407 —
$ = e . 19 8919
15 a147 = 001262, and J5aors = 001277 ; ¢

so that we are now certain that the two next figures of
the root are 12. We have thus obtained the root true to
four decimal places, and it is apparent that although the two
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last figures of the error had been rejected, this correction would
not have been affected. Hence it seems that, in this example,
“we need not carry the error out to more decimal places than we
wish in the root. Supposing that we limit ourselves to six
places of decimals, we need not continue the error to more places
than we have already.

The process after this is quite clear ; the only thing to be
observed is, that, as soon as we begin to leave off the decimnals,
the products shorten very rapidly ; at the last operation in our
example only the first line of products tells on the sixth decimal
place.

If we divide the number found at the bottom of the third
column by 3, we obtain the square of the cube root, in this
example 6 611 486.

D. When we seek the cube root of a decimal fraction without
integers, we must be careful to group its digits in threes from
the decimal point, because the cube of two tenths is eight
thousandths, and so on.

ExXAMPLES.

Compute to ten decimal places the cube roots and the squares
of the cube roots of the following numbers :

2; 3; 10; 1375 ; 73 6184692 ;
484 024390787221 ;  78564;  37;  0329651;
434294481903 ; 00736849 ; 10035 ;
0004962584398.

To compute the cube root of a common fraction, we may pro-
ceed, as in the case of square roots, to extract the cube roots of
the numerator and of the denominator separately, and then
divide the one root by the other ; thus:

, b N
~/ -7* = </-—7 .
But this process is laborious, except for those fractions of which
L
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the denominators are cubes. However, every fraction can be
converted into an equivalent fraction, having its denominator
a complete cube. For example, by taking 49 times the numer-
ator, and 49 times the denominator, the fraction § becomes $4§,
whence

., 8,245 V245
V=V ="7 '

and thus we have only to compute the cube root of 245, and
divide that cube root by 7.

If the denominator be a prime numbgr, or if it be a com-
posite number having none of its factors repeated, the only ex-
pedient is to multiply by the square of that demominator. If,
for example, /34 were proposed, we must use the multiplier
152 or 225. But if any of the factors of the denominator be
repeated, we may use a smaller multiplier : thus for the fraction
Yz We may use the multiplier 18 ; because 12 being the con-
tinued product 2.2.3, needs only the additional factors 2.3.3 to
have three factors of each kind.

ExaMpLES.

Prepare the following fractions for the extraction of their
cube roots :

£ 333 $ 1
1 # 1] 1114
1 123 2] #t

On converting the cube root of an un-cube number into com-
mon fractions by the method of Brouncker, we obtain a series of
quotients, but these never recur in groups, and thus we have
not that facility for extending the precision of our operations
which we had in the case of square roots.
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FOURTH ROOTS.

The fourth root of a number may be found by extracting
its square root, and then the square root of that again. It may
also be found directly by an extension of the process which we
have used for cube roots. Having separated the figures into
groups of four each, counting either way from the decimal point,
we seek that number, of which the fourth power is immediately
less than the number represented by the figures in the highest
group, and this is the highest or first figure of the root.

In order to be in a position to estimate what the second figure
should be, we must recur to the formation of the fourth power
of the sum of two numbers. That fourth power is made up of
the fourth power of the first number, 4 times the cube of the
first number multiplied by the second, 6 times the square of the
first multiplied by the square of the second, 4 times the first
multiplied by the cube of the second, and lastly, the fourth
power of the second number.

Suppose that the first figure of the root is 7, and that the
second figure is estimated at 3, we have to pass from the biquad-
rate of 7, viz. 2401, to the biquadrate of 73 (properly from 704
to 734). The first part of the difference is the product of four
times the cube of the assumed root 7 by the correction 3 ; wherefore
if we have to continue our work over many trials, we must pro-
vide the means of obtaining and recording four times the cube of
the root as that root is found. Now the process which we have
already followed enables us to compute the cube of the root, and
therefore we have only to quadruple all the numbers in the first
four columns of the scheme.

In preparing, then, to extract the fourth root, we arrange six
columns, the first to contain the number 24, the second to
contain 24 times the root, the third for 12 times the square
of the root, the fourth for 4 times its third power, the fifth for
the fourth power, and the sixth for a memorandum of the root

itself.
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Each number, in the first line, has to be multiplied by the
correction, the product being removed into the adjoining col-
umn to the right ; these products form the second line. The
half of each number in the second line has to be multiplied by
the correction, the product being again advanced into the
adjoining column ; the third part of each number in the third
line has to be treated in the same way ; and, lastly, the fourth
part of the solitary number in the fourth line, as shown in the
adjoining work, in which, for the sake of clearness, the zeroes
are omitted.

24 24 Root. | 12 Root2, 4 Root3. Root4, Root.
24 168 68 8 1372 24 01 7
72 504 176 4 4116 3
108 756 264 6
108 7 56
81
24 1752 | 63948 | 1556 068 | 28 398 241 73

The mode of applying this arrangement to the extraction of
fourth roots is quite analogous to that for the extraction of
cube roots : so much so that it is almost unnecessary to say a
single word in explanation. The subjoined example of the
extraction of the fourth root of 59 may suffice.

Here the first figure of the root being 2, we have the error
43, and the least value of the divisor 32, wherefore the cor-

rection must be less than ; z, or 134, etc.

E. By the very same reasoning as before we can show that
the greatest possible multiplier of the correction is made up of
the number in the 4th column, augmented by one-half of that
in the 3d, one-sixth of that in the 2d, and one twenty-fourth
of that in the 1st, multiplied respectively by the first, second,
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85

and third powers of unit in the place last found ; this multiplier
in the present instance is

1

1 1

32+ 5*48 + 6‘48 +oi 24 = 85,

wherefore the least possible value of the correction is

65

3, or 69, ete.

The correction thus lies between the limits 69 and ! 34 ;
however, we kuow that the correction is not so much as 1, and

' |
| 24 | 24 Root. 12 Root2, 4 Roots, Error. Root.
!
59
16 i
24 |48, 48, 32, 43, 2, !
16,8 33,6 336 22 4 7
5 &8 11,76 11,76
1372 2,744
2401
24 64 8 87 48 78 732 58559 |27
168 4536 61236 | 551124 | 07
588 15876 21433
137 370
3
24| 66 48 92 0748 | 8501573 12660 | 2,77
336 09307 | 12890 | 11902 | 0014
3 7 9
24 1665136 |92,16790 | 85.14470 N0T749 12,7714
211 585 811 00749 000088
24 16651571 |92,17375 | 8515281 | 00000 | 2,771488
768114 |21 28820 o

therefore that the next figure of the root must be one of the
four 6, 7, 8, 9.



8o ROOT8S AND FRACTIONAL POWERS.

On trying 7 we find the error to be 5.85569. The least
multiplier is 78,732, and the greatest is found thus :

78,732 =178,732
3 8748 x 1 = 4374
4 648 x  l12= 108
o 24 x 1% = 1
83215
wherefore the correction lies between the two limits
5 8559 ’
— = 074, &c.; and
78,732
5 .8559
280979 = 070, &c.
83,215

We therefore conclude that the next figure of the root must be
7, and proceed accordingly.

It is only at the beginning that we have to attend to these
limits ; they rapidly approach each other as the work proceeds.
‘When the required degree of precision has been obtained, we
can find the second and third powers of the fourth root by
dividing the numbers at the bottoms of the third and fourth
columns by 12 and by 4 respectively.

D. EXAMPLES.
Required the fourth roots of the following numbers, and also
the second and third powers of those roots.

76979 286,573  8,6938 729637 0187251
373 102437 269305 1827364 0032749

FIFTH ROOTS.

From these examples it is apparent that the processes for
extracting the second, third, and fourth roots are merely cases
of one general process applicable to all roots. This process I
first published in a small treatise On the Solution of Equations
of all Orders, Edinburgh 1829, but then only incidentally, and
without the full details which are now given. It may be
enough for me to proceed one step farther, and exemplify the
exrtraction of the fifth root.”
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‘When an addition is made to the root, its fifth power receives
an augmentation, of which the first part is the product of five
times the fourth power of the root by the inecrement of the
root ; wherefore, in preparing a scheme for computing and
recording the fifth powers of the successive values of the root,
we must compute and record the values of five times their
fourth powers; so that the numbers in the previous scheme
for fourth powers must be multiplied by 5, and the titles of the
columns must stand

120 120 root 60 root? 20 root® 5 roott  rootS.

These titles may be obtained most readily from the highest
power backwards : thus we have 5, 5 x4=20; 20 x 3=60;
60x2=120; 120x1=120.

After what has already been said, even an example is hardly
needed to render the process clear.

Let it be required to extract the 5th root of 271828,

120.| 120 Root. | 60 Root?. | 20 Roots. 5 Roott. Error. Root.

271828

1
120 | 120 60 20 5. 171828 |1,

240 24 0 12,0 4.0 1.0 <
240 240 1.20 40
160 160 080
80 80
32

120 | 1440 86,40 184560 (10.3680 | 22996 12

240 2880 17280 69120 | 20736 | (02
240 2880 1728 691
16 19 12

120|146 40 89 3040 | 3631696 |11,07667 | 01557 |1.22
1680 20496 12503 5054 | 01551 ( <0014
12 14 9 4

120 | 146 5680 |89 50908 |36 44213 | 1112760 | 00002 | 12214
24 29 18 7 2| 000002

120 | 14656824 | 89 50937 | 36 44281 [11,12767 | 00000 | 1221402
1.49182] 1.82212| 222558
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The law of the formation of these schemes is so clearly seen
from the last example that the student can experience no diffi-
culty in applying it to still higher roots, and in obtaining, not
only the root, but all its inferior powers.

ExXAMPLES,
) 2 841 N 002976
/2193 /302573 o 091764
A/876 17 V168497 V1025736

FRACTIONAL POWERS.

We have seen that when a power of any number is itself
to be raised to a power, the result is a power of the original
number, of which the index is the product of the two indices ;
for example, that the third power of the fifth power of 7 is the
fifteenth power of 7, or

(75)3 =718,

It is then clear that the third root of the fifteenth power of

7 is the fifth power of 7 ; or
Yre ),

and we might be tempted to state the general law that the root
of any power of a number is a power of that number, of which
the index is the quotient of the index of the power by the index
of the root. This law holds true of the above and of many other
examples ; but when the index of the power is not divisible by
the index of the root, there is some difficulty in seeing how the
law is to be applied.

If, for example, we have to extract the cube root of the six-
teenth power of 7, we should, according to this law, obtain that
power of 7 of which the index is 54.

Yey=1% - 7%,

Since we have had no instance of such fractional indices, we can
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only endeavour to interpret their meaning by studying the
nature of the operation which has given rise to them,

1
The symbol 7 36is but another way of writing the third root
of the sixteenth power of 7 ; it is simply equivalent to 4/

In the same way 13% would mean the fifth root of the second
power of 13, or 4/(132); so also the fourth root of 11,0r 4/11,

may be written 1 li.

Viewed in this light, these fractional indices presen. to our
minds only another notation of roots, more convenient in form
than the notation by help of the contracted »; but when ex-
amined more minutely, they unfold some of the most recondite
yet most practically useful properties of numbers.

Since the fourth power of 7 is 2401, the fourth root of 2401

is 7, or, as we write it,
7= 24014,

Four successive multiplications by 7 produce the same effect
as one multiplication by 2401 ; twelve multiplications by 7 the
same effect as three multiplications by 2401 ; and so on: so that
the multiplier 2401 may be said to be four times as powerful
as the multiplier 7, or the multiplier 7 may be said to have only
one-fourth part of the power of the multiplier 2401, and hence
the propriety of saying that 7 is the one-fourth power of 2401.

Again, the third power of 7 is 343 ; and on comparing the
cffect of multiplications by 343 and by 2401, we observe that
four successive multiplications by 343 prodnce the same effect
as three multiplications by 2401 ; so that the multiplier 343
may be said to have only three-quarters of the power of the
multiplier 2401, or

343 = 24011,

or otherwise, that the multiplier 2401 has four-thirds of the
power of the multiplier 343 ; that is

2401 = 343.&.
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From this consideration it follows that the third root of the
fourth power of a number is the same with the fourth power
of the third root of that number, so that we may write indiffer-

ently, 2401%;  Y(2401%);  (Y/2401)8.

It also follows that the third root of the fourth power is the
same with the sixth root of the eighth power, for eight multipli-
cations by 343 produce the same effect as six multiplications by
2401. Hence we may put, instead of the fractional index 3,
any other fraction which is equivalent to it ; thus,

Y (24013) = 2401% = 240188 _ @/ (2401300),

From this we obtain the method of multiplying together two
fractional powers of the same number. If we be required to

multiply 5‘} by 5i, we have only to change the indices into

equivalent fractions having a common denominator ; in this

way the factors become -‘ﬂpf and 5ﬁ; the one is thus the ninth
and the other the fourteenth power of the twenty-first root of 5,
80 that their product must be the twenty-third power of the
same root ; that is,

fﬁ ,(5?1‘:5‘29?,( 51}%—-5?[.}.

‘We also see that when the numerator of the index is greater
than the denominator, the power may be regarded as the product
of an integer by a fractional power ; thus,

5%‘%= 517‘-21_: 51 x 5{1__

The process which I have explained for finding the root of a
number gives at the same time all the inferior powers of the
root, so that by its help we are able to compute directly the
values of all fractional powers of which the index is less than
unit : by attending to the above remark we can compute the
values of all fractional powers whatever.
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ExAMpLES,
]
o, ot 193, b, g6t et
1
7e14t;  35027;  163067;  oarsf,
00620% 000517385 oo0e27ert.

All the observations which were made in regard to inverse
integer powers apply to inverse fractional powers ; thus,
At s SR B
so that the values of inverse fractional powers can also be com-
puted.

ExamMrres.
5'1; 11’5; 1377, 1!63742"‘%;
-1 -2 -4
01893274 ; 0007697 ; 89731575,

The multiplication, division, involution, and evolution of frac-
tional powers differ in no essential respect from the multiplica-
tion, division, involution, and evolution of integer powers.

ExAMPLES.
PEIVES R nted; et
68 6t ; ot 978 188 13%; atdd,
girxeth; 3}, 7 6
e hH % shi asThE; st

E. The most important property of numbers which the con-
sideration of fractional powers unveils, is this, that any one num-
ber may be regarded as a power of any other number,

Thus the second power of the number 7 is 49, and its third
power 343, so that, if we were to confine our attention to the
integer powers of numbers, we might say that no number between
49 and 343 can be a power of 7 ; but when we come to use
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fractional exponents, we see that as there is an infinity of frac-
tions intermediate in value between 2 and 3, so there is an in-
finity of powers of 7 between its second and its third power.

The number 200, then, may be considered as a power of the
number 7, having a fractional index between 2 and 3.

However, on attempting to realise this idea, we meet with a
difficulty. No root of the number 7 is rational ; that is, can be
expressed with absolute precision by any fraction ; and the same
thing is true of all powers of the roots of 7, except those which
come to be integer powers of 7 itself : this being the case, no
fractional power of 7 can ever be exactly 200. Yet we can
always find a fractional index, which may give the required
value to within any prescribed degree of exactitude, just as we
have already seen that although no fraction can accurately ex-
press the root of 13, we may yet find fractions to come as near
to it as we may require.

This consideration leads us to érrational indices.

If we attempt to form an idea of what may be meant by

7V %, we are obliged to regard the index /2 as represented

approximately by some fraction, as % ; 7% or &/(77) is then an
approximation to the value of 7V2  But Z is a very rude
approximation to A/2; we may use 1%, which is nearer, and
Ve

1
may put 715 for In this way, by pushing our fractional

exponent to a greater and greater degree of exactitude, we may
obtain the value of 7V % to any required degree of accuracy.

The labour attending these operations would be enormous, as
any one may perceive, on attempting to compute the numerical
value of the above, or of any similar expression.



CHAPTER XXIV.

ON THE NATURE AND COMPUTATION OF LOGARITHMS,

D. ArTER the invention of the decimal system, no discovery
in the science of numbers has proved so beneficial to the pro-
gress of knowledge as that of Logarithms. The memory of few
men should be more cherished than that of John Nepair, their
inventor.

In the preceding chapters I have endeavoured to lay before
the student the doctrine of powers, in such a way as to prepare
him for thoroughly comprehending the principles on which the
logarithmic calculus is founded.  The modern wuotation of
powers, and the many minor improvements which have been
made in the art of calculation, have rendered the task of ex-
plaining the nature and uses of logarithms comparatively an
easy one. But in the days of John Nepair these facilities had
no existence : it may be said, indeed, that they rather resulted
from the invention of logarithms, than that the discovery was
in any way facilitated by them. In order to form a true esti-
mate of the peculiar originality and the high merit of the dis-
covery, we must imagine ourselves deprived of all these modern
helps.

In the preceding chapter I have given a method of extract-
ing roots of all orders, which is, so to speak, new; since,
though published twenty-seven years ago, it has, so far as I
know, hardly been taught, except in my own class-room. Pre-
viously no method was known of extracting roots, the indices
of which contain higher prime factors than the number three ;
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this method removes the last trace of difficulty from the doc-
trine of logarithms, and enables me to lay it clearly and readily
before the student of ordinary arithmetic.

I would recommend the learner, before proceeding farther, to
satisfy himself that he has fully apprehended the doctrines
taught in the preceding chapters. Knowledge is built upon
knowledge, and it is vain to expect to ascend the ulterior steps
without having mounted the preparatory ones.

As already explained, we may regard any number, 200, as a
power of any other number, 7. It is true that 200 is not one
of the integer powers of 7, for these are 7, 49, 343, etc., but
it may be represented to any required degree of precision by
some fractional power ; and hence a new kind of inquiry, “ 7o
what power must 7 be raised in order to produce the number 2001”

It is clear that 200 is above the second and below the third
power of 7 : the index of the power then must be 2 and a frac-
tion. In order to find what this fraction is we may observe
that for a change of unit in the index we have a change of 294,
viz. from 49 to 343, in the power, and we may therefore, as a
very rude guide in estimating the fraction, state the proportion

294 :151 ::1: 4%
80 that we may try 2% as the index of the power. On making
the computation, we find

7% = 120 64, etc.,
which is considerably below 200. A change of 1 in the index
of the power, that is, from 2} to 3, causes a change of 210 in
the power, that is, from 130 (really 129 64) to 343 ; but we
only need an augmentation of 70, and may therefore again use
the proportion

210:70::%:3%, °
whence the next trial may be made with the index 2§. On com-
puting we find '4"E =179 36.

By proceeding in this way, toiling through the extractions of
the roots, we might obtain the required index.
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We may suppose, for the sake of illustration, that we have
found the index to be 2,7228, that is, that
2.7228
7 = 200,
or, in other words, that the 27228th power of the 10 000th
root of 7 is almost exactly 200.
Not only 200; any other number may be regarded as a power
of 7: thus
14560
=17;
and we may imagine a table showing to what power 7 must be
raised to give the series of numbers 2, 3, 4,....... 200, ete.
Now the index of the product of two powers is the sum of the
indices of those powers ; therefore, since 3400 is the product of
200 by 17, we must have
2-7228 1.4560 4.1788
7 x 7 =7 = 3400.
And thus, by help of such a table, we could obtain the product
of two numbers by adding the corresponding indices.

In such a table the number chosen as the root is called the
Basis of the system, and the index of the power to which that
basis must be raised in order to produce a given number is
called the Logarithm of that number. Thus, in the above
examples, 7 is the basis, 2,7228 is the logarithm of 200,
1 4560 the logarithm of 17, and 4,1788 the logarithm of 3400.

The word logarithm is compounded of the two Greek words
Aoyog, logos, and eapifuog, arithmos, both of them signifying
number, and the idea conveyed is that the logarithm of 4 num-
ber is the number of ratios which @t contairs; thus the ratio
2401 :1 is compounded of four ratios 7:1, and the logarithm
of 2401 is said to be 4 in reference to the hasis 7.

From the above example it appears that the sum of the log-
arithms of two numbers is the logarithm of the product of those
numbers ; and since logarithms are the indices of powers of the
same basis, the difference of the logarithms of two numbers is



96 NATURE AND COMPUTATION OF LOGARITHMS.

the logarithm of the quotient ; also the multiple of the logarithm
of a number is the logarithm of the power of that number, and
a fraction of the logarithm of a number is the logarithm of the
corresponding root. Hence a complete table of logarithms
would enable us to perform multiplication by addition, division
by subtraction, involution by multiplication, and evolution by
division.

Having assumed some number as the basis of the system, we
have to discover to what power this basis must be raised in
order to produce each one of the natural numbers, In order to
explain clearly how this may be accomplished, I shall assume

that
2.7228

7 = 200,
or, converting the decimal into a common fraction, that 7&523?
= 200, in other words, that 700 is the 226th power of the 83d
root of 7. Having extracted the 83d root of 7, 7 is necessarily
the 83d power, and 200 is the 226th power of that root.
If, then, I divide 200 by 7, I shall obtain the 143d power of

the root, that is to say 28,571428 = 700 13458 Dividing again

by 7, I obtain 4 081632 = 7!‘5%; but if I attempt now to divide
by 7, I obtain a quotient less than unit on the one hand,
and an inverse power on the other. From this it is seen that I
can divide 200 as often by 7 as there are units in the value of
the fraction 22¢, that is, as often as I can take 83 out of 226..

Now if 4 ,081632, etc., be the 60th power of the 83d root of
7, 7 must necessarily be the 83d power of the 60th root of
4081632, or

7= 4,081632%%.

I may therefore divide 7 by 4081632 as often as there are
units in the fraction 3, that is, as often as 60 goes in 83, the
division being only carried on until the quotient be less than
the divisor. If, then, I try how often 7 can be divided by
4 081632, I shall have ascertained how often the denominator
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60 shiould be contained in the numerator 83. On dividing once
we find the quotient 1,715, so that

1,715 =4 08163288
and consequently 4 081632 =1 ,715“.

Here, again, as often as 4 081632 can be divided by 1,715
without giving a quotient less than unit, so often ought the
denominator 23 to be contained in the numerator 60. Ou
dividing we find the quotient 2 379 961, which is greater than
the divisor ; on dividing this we obtain 1,387 732, wherefore
the denominator 23 ought to be contained twice in 60 ; it is so,
and therefore 14
1,387 732=1,7156%3,
or

1.715=1 387 73212,
Proceeding in the same course, we divide 1,715 by 1,387 732,
and obtain the quotient 1,235 829, which is less than the divi-
sor; we have here only one division, so that 14 ought to be
contained once in 23 with a remainder, and

1235 829 =1 387 73214,
or
14
1387732=1.235829°.
Similarly, on trial, we find one division giving the quotient
1,122 916, whence
1,122 916 =1 235 8297,

or
1,235829=1 122 916,

Again dividing, we have,

1,100 554=1,122 916‘}.
or 5
1122916 =1,00 5544,

‘Whence dividing
1020 319=1,100 554&,
or .
1,100 654 =1,020 319 .

(e}
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Throughout this illustration, I have supposed that the frac-
tion %&$ is truly the index of the power to which 7 must be
raised in order to give 200 ; and hitherto we have seen nothing
to contradict this assumption ; but now, on dividing 1,100 554
by 1,020 319, we find the successive quotients

1,078 637,
1,057 157,
1,036 104,
and 1,015 471.

But if our assumption had been correct, the last of these quo-
tients should have been unit.

Leaving this consideration for the moment, and looking back
upon the process, we perceive that the number of divisions in
each case necessarily coincides with the number of times that
the denominator of the index can be taken out of its numerator ;
the numbers of those divisions, therefore, are just the quotients
of the ordinary operation for finding the ratio of the numerator
to the denominator of the original index. Now the numbers of
these divisions, or divisibilities, as we may call them, can be
easily ascertained, wherefore we can, in all cases, find the quo-
tients whereby we may produce the Brounckerian series of frac-
tions which approximate to that index.

The work may be concisely arranged as under. The first
column contains the divisors, the second contains the dividends
and quotients :

7000000 000 200,000 000 000

28571 428 571

2 Divisions.

4,081 632 653

4081632653

7 000 000 000

1 Division. 1,715 000 000
1,715 000 000 4,081 632 653
2,379 960 731

2 Divisions. 1,387 732 204
1,387 732 204 1,715 000 000
1 Division. 1,235 829 214

1,235 829 214

1 Division.

1,387 732 204
1,122 915 843
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1,122 915 843 1,235 829 214
1 Division. 1,100 5563 7256
1,100 553 726 1122915 843
1 Division. 1,020 318 970
1,020 318 970 1,100 553 725
1,078 636 934

1,057 156 600

1,036 104 033

4 Divisions. 1,015 470714
1015470714 1,020 318970
1 Division. 1,004 774 392

1,004 774 392

3 D1v1slons.

1,015 470 714
1,010 645 496
1,005 843 206
1,001 063 735

1,001 063 735

4 Divisions.

1,004 774 392
1,003 706 715
1,002 640 171
1,001 574 761
1,000 510 483

1,000 510 483

2 Divisions.

1,001 063 735
1,000 552 969
1,000 042 465

1,000 042 465
&e.

1,000 510 483
&e.

The quotients obtained in the Brounckerian operation for
finding the ratio of the unknown index to unit are thus:
2,1,21,1,1, 1, 4,1, 3, 4, 2, etc., whence we have the con-
verging series of fractions

21211 1 1 4 1 3 4 2

$3 318 % Y AW Y 4B WY

so that, within a very great degree of precision, we have

713%’5 =200. That is to say, when 7 is assumed as the

basis of a system of logarithms 10009

3676° or in decimals,

2,7227965 is the logarithm of 200.
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ExAMPLES,

‘What is the logarithm of 19 to the basis 27 Of 100 to the
basis 11 ? Of 4381 to the basis 17?

Of the three, the root, the index, the power, we are now able
from any two to compute the third. Thus if the root and the
index be known, we find the power by involution ; if the power
and the-index be known, we are able to extract the root ; and
if the root and the power be known, we can compute the index
by the process just explained. Questions of the second class
have hitherto only been resolved for square and cube roots,
while questions of the third class have never been before at-
tempted by common arithmetic. Now, however, all three are
brought easily within our reach.

From this example it is obvious that the computation of a
table of logarithms must be very laborious. Hence it becomes
desirable to select, for the basis of operations, that number
which may give the most useful results. It is not easy to
adduce an argument in favour of one number rather than
another, unless it be this in favour of the number TEN, that it
is already universally adopted as the basis of the numeration
scale, and that logarithms computed to the basis ten have
peculiar advantages when expressed on the decimal scale. If
we had been in the habit of counting by dozens and grosses,
we should have found fwelve to be the best basis for our
logarithms,

Those views which led Nepair to the invention of logarithms,
guided him to a system altogether independent of any numera-
tion scale, and of which the basis is a particular ratio

271828 18284 59,

and it is singular that this system has since been found to
possess characteristics so peculiar as to entitle it to be regarded
a8 the natural system. But as soon as Nepair's logarithms
were printed, it occurred to Briggs that a table computed to the
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basis teh would be much more convenient in practice. On
conferring with Nepair, Briggs found that the same idea had
occurred to the inventor, and the adoption of the scheme re-
sulted. The common or decimal logarithms are therefore dis-
tinguished by the name of Briggs.
, Assuming Zen as the basis of our system, let us endeavour to
compute a table of logarithms,
The first number is 2, and we have to ascertain to what
fractional power 10 must be raised in order to give 2. .
Proceeding according to the method already described, and
omitting the first column as redundant, we have the following
calculation :

_2,00000 00000 00000

1000000 00000 00000
5,00000 00000 00000
2,50000 00000 00000
1,25000 00000 00000 3 Divisions.

2,00000 00000 00000
1,60000 00000 00000
1,28000 00000 00000
1 02400 00000 00000 3 Divisions.

1 25000 00000 00000
1,22070 31250 00000
1,19209 28955 07812
1,16415 32182 69348
1,13686 83772 16160
1,11022 30246 25157
1,08420 21724 85504
1,05879 1184067875
103397 57656 91285
1 0974 19586 82895 9 Divisions.

1 02400 00000 00000
1,01412 04801 82584
1 <00433 62776 61869 2 Divisions.

1,00974 19586 82895
1,00538 23416 92974
1,00104 15475 91550 2 Divisions.
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1.00433 62776 61869
1.00329 13020 22624
100224 74136 42806
1.00120 46113 91163
1,00016 28941 37616 4 Divisions.

1.00104 15475 91550
1.00087 85103 49749
1.00071 54996 61433
1,00055 25155 22278
1.00038 955679 27960
1,00022 66268 74155
1,00006 37223 56541 6 Divisions.

100016 28941 37616
1,00009 91654 62017
1,00003 54408 47102 2 Divisions.

1.00006 37223 66541
1.,00002 82805 07155 1 Division.

1,00003 54408 47102
1,00000 71601 37455 1 Division.

1,00002 82805 07155
1,00002 11202 18476
1.00001 39599 81066
1.00000 67997 94924 3 Divisions.

100000 71601 37455
1.00000 03603 40080 1 Division.

1,00000 67997 94924
1.00000 64394 52524
1,00000 60791 10253
100000 57187 68113
1,00000 53584 26102
1.,00000 49980 84221
100000 46377 42470
100000 42774 00848
1,00000 39170 59357
100000 35567 17995
1,00000 31963 76763
1 00000 28360 35661
1,00000 24756 94689
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1,00000 21153 53847
1,00000 17550 13135
100000 13946 72552
1,00000 10343 32099
1,00000 06739 91776
1,00000 03136 51583 18 Divisions.

100000 03603 40080

1,00000 00466 88482 1 Division.
1,00000 03136 51583

100000 02669 63089

1,00000 02202 74597

100000 01735 81607

1.00000 01268 97619

1,00000 00802 09133

1,00000 00335 20650 6 Divisions.

100000 00466 88482
1,00000 00131 67832 1 Division.

1.00000 00335 20650

As this work proceeds the quotients become nearly equal to
unit, exceeding it only by very small fractions ; and on dividing,
the new quotient is found to be wvery nearly unit augmented by
the difference between the dividend and the divisor. When
the number of zeroes preceding the fractional part is consider-
able, the figures of the quotient are found to agree with the
figures of the difference for as many places as there are zeroes ;
and hence the division may be continued by simple subtraction
whenever the first efficient figure of the divisor is at the middle
place. It is therefore not necessary, in the present instance, to
carry on the division farther. The number of divigions must
be just the number of times that 131 67832 cun be subtracted
from 335 20650 ; so that the operation may now be completed
by seeking the ratio of these two fractions. Hence the succeed-
ing numbers are 2, 1, 1, 4, 1, 42, 6, etc., from which it appears
that the ratio of unit to the logarithm of 2 is given by the
successive quotients 3, 3, 9, 2, 2,4,6,2,1,1, 3,1, 18, 1, 6,
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1, 2,1, 1, 4, 1, 42, 6, etc., whence the successively approxima-

tive ratios
1 0
1} 3 1
1 3 3
3 9 10
28 2 93
59 2 196
146 4 485
643 6 2136
4004 2 13301
8651 1 28738
12655 1 42039
21306 3 70777
76573 1 254370
97879 8 325147
1838395 1 6107016
1936274 6 6432163
13456039 1 44699994
15392313 2 51132157
44240665 1 146964308
59632978 1 198096465
103873643 4 345060773
475127560 1 15783395567
579001193 1923400330

These put in the decimal form give
Log. 2= 30102 99956 63981 19522,

which-errs only by unit in the twentieth place.

For almost every business purpose logarithms to seven
decimal places are sufficiently exact ; so that if we carry the
original calculations to ten places, and then shorten the results
by leaving off the three last figures, augmenting the seventh
figure when needed, we shall obtain all the precision that is
required in practice.

ExERcISES,

Compute by the above method the logarithms of 3, 7, 11,
and 13 true to ten places of decimals,
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It is not necessary to go through the labour of this calcula-
tion for every number : it is enough to compute the logarithms
of the primes since the logarithms of composite numbers can be
got by adding together the logarithms of their factors. Thus
from the logarithm of 2 we can readily obtain the logarithms
of 4, 8, 16, 32, etc., as under:

Iog. 2 = 030102 99957
Log. 4 = 06020599913
Tog. 8 = 090308 99870
Log. 16 = 120411 99827
Log. 32 = 1,50514 99783
Log. 64 = 180617 99740

&e. &e.

Also, since 10 is its own first power, the logarithm of 10 must
be unit ; since 100 is the second power of 10, the logarithm of
100 must be 2; that of 1000 3, and so on ; thus:

Iog. 10=1,00000 00000

Log. 100=2,00000 00000

Log. 1000 =3 00000 00000
&e. ’ &e.;

wherefore the logarithms of 20, being the sum of the logarithm
of 10 and the logarithm of 2, must be

Log. 20=13010299957

Log. 200=2,3010299957

Log. 2000 =3 30103 99957

&e. &e.
Again, since 5 is the quotient obtained on dividing 10 by 2,

its logarithm must be the logarithm of 10, less the logarithm of
2 ; whence

Tog. 5 = 089897 00043
Log. 25 = 139794 00086
Log. 125 = 209691 00129

&e. &e.

The next prime number is 3, and its logarithm, computed in

the same way, is
Log. 3 = 47712, &
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From this we can find the logarithms of all numbers into
which 2, 3, 5, enter as factors : those under 100 are,

4 12 20 30 45 64 80

6 15 24 32 48 72 81

9 16 25 36 50 75 90
10 18 27 40 60

ExXERCISE.

The student having computed the logarithms of 7, 11, and
13, may deduce those of the products of these primes with each
other, and with the preceding numbers, as if he were making a
table of the logarithms of all numbers under 100.

From the few examples which the student has worked out,
he may readily understand that, to compute a table of the loga-
rithms of all numbers up to say 100 000, is a task of enormous
labour. By applying particular artifices, and taking advantage
of our previous work, we may considerably reduce the labour.
The process which Nepair used, was, perhaps, as tedious as that
which I have given, and was much more circuitous in principle,
yet the labour did not discourage the inventor. Of the method
followed by Briggs I shall have occasion to treat shortly. But
all these methods are practically superseded by others resulting
from the doctrines of modern Algebra. So, satisfied that, in
case of absolute need, we know how to comstruct a table of
logarithms, I shall postpone the further consideration of this
part of the subject, and proceed to show the use of logarithmic
tables, as we find them already computed.

Neper, or, as he calls himself when writing in English, Nepair,
published his logarithmic tables in 1614, under the title,
¢ Merifici
Logarithmorum
Canonis Descriptio.
Authore et Inventore
JoaNNE NEPERO,
Barone Merchistonii
&e. Scoto.”
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This work is very rare : the logarithms therein given, besides
being arranged only to suit calculations in trigonometry, were
computed for that particular basis which I have mentioned ; it
is therefore very unlikely ever to be reprinted.

In the year 1624 Henry Briggs published a table of the
common or decimal logarithms for all numbers up to 20 000, and
for those between 90 000 and 100 000 computed to 14 decimal
places. The work is entitled ‘“ AriTHMETICA LOGARITHMICA.”
And in the very title-page the author pays this tribute to the
memory of the inventor :

‘“ Hos numeros primus invenit clarissimus vir Jobannes
Neperus, Baro Merchistonij : eos autem ex ejusdem sententia
mutavit, eorumque ortum et usum illustravit Henricus Briggius,
in celeberrima Academia Oxoniensi Geometriee professor Savi-
lianus.”

And in regard to the change of system, Briggs, while justly
claiming the originality of the idea in his own mind, details the
history of the change in the following words :

¢ Quod Logarithmi isti diversi sunt ab iis, quos Clarissimus
vir Baro Merchistonii in suo edidit Canone mirifico, non est
quod mireris. Ego enim cum meis auditoribus Londini, publice
in Collegio Greshamensi, horum doctrinam explicarem ; animad-
verti multo futurum commodius, si Logarithmus Sinus totius
servaretur 0 (ut in Canone mirifico) Logarithmus autem partis
decimse ejusdem sinus totius, nempe sinus 5 graduum, 44,m. 21, s.
esset 10 000 000 000. atque ea de re scripsi statim ad ipsum au-
thorem, et quamprimum per anni tempus, et vacationem a publico
docendi munere licuit, profectus sum Edinburgan ; ubi humanis-
sime ab eo acceptus hwsi per integrum mensem. Cum autem
internos de horum mutatione sermo haberetnr ; ille se idem
dudum sensisse, et cupivisse dicebat : veruntamen istos, quos jam
paraverat edendos curasse, donec alios si per negotia et valetu-
dinem liceret, magis commodos confecisset. Istam autem muta-
tionem ita faciendam censebat, ut O esset Logarithmus unitatis, et
10 000 000 000 sinus totius : quod ego longe commodissimum
esse non potui non agnoscere.
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“Coepi igitur ejus hortatu, rejectis illis quos anted par-
averam, de horum calculo serio cogitare: et sequenti estate
iterum profectus Edinburgum, horum quos hic exhibeo prae-
cipuos, illi ostendi, idem etiam tertia wstate libentissime
facturus, si DEUS illum nobis tamdiu superstitem esse volu-
isset.”

Here Briggs tells his readers that, having imagined an im-
provement (actually consisting in the change of the basis), he
communicated his idea to Nepair, and afterwards went to Edin-
burgh to confer with him. Nepair admitted the utility of the
change, stating that he had long desired to make the calculations,
if business and health had allowed, but that it would be better
to make the logarithm of unit 0, and that of 10 unit. The
advantage of this ulterior improvement, which at once freed the
logarithmic system from trigonometry, was admitted ; “so,”
says Briggs, “rejecting what I had prepared, I set to calculate
these.”

The table of Briggs, besides being incomplete, aspired to a
degree of precision very far beyond our utmost wants ; but it is
a noble monument of zeal and perseverance.

In the years 1627 and 1628, Adrian Vlacq published at
Gouda, the table of Briggs, completed for every number to
100 000 ; he judiciously restricted his logarithms to ten decimal
places. This may be regarded as the first complete table of
common logarithms. Vlacq modestly presents his work to the
public with the very title-page of Briggs, merely adding, as if
he were only editor, ‘“ Aucta per ADrR1ANUM VLACQ, Goudanum.”
And thus was completed, amidst the affectionate exchange of
sentiments and good offices, one of the greatest and most bene-
ficial inventions of modern times.

The arrangement of Vlacq's table is exceedingly simple, as
may be seen from the subjoined specimen.
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CaiLias 3.

Num. Logarithmi. Differ.
30101 4.47858 09237

30102 4.47859 53514 } ﬁg;g
30103 4.47860 97786 e
30104 4.47862 42053 et
30105 4.47863 86315 1 s
30106 4.47865 30573

&e. &e. &e.

It was soon found that even ten places of decimals far sur-
pass the precision of the most accurate astronomical observations,
and that seven-place tables would be amply sufficient for the
wants of computers.

In arranging the seven-place logarithms, an improvement was
introduced by John Newton, in his Trigonometrica Britannica,
London, 1758, which is now universally adopted.

Instead of placing the logarithms of the successive numbers
one below another, as in Briggs’ and Vlacq’s tables, John New-
ton placed them ten by ten in horizontal rows, so that the
logarithms of all those numbers which end in one digit fall into
one vertical column : also, instead of repeating the three first
figures of the logarithms, he printed these only at the beginning
of the line ; thus,

0 1 2 3 4
3010 4785665 5809 5954 6098 6242 &e.
11 7108 7252 7396 7540 7684 &e.
12 8560 8694 8838 8982 9126 &o.

By this arrangement the table is rendered more compact, and
at the same time is more readily referred to.

The omission of the three first figures of the logarithms may
occasion an error in the reading off, as may be seen on examin-
ing the subjoined extract :

0 1 2 3 4

2600 9733 9901 0068 0235 0402 &e.
01 4151404 1570 1737 1904 2071 &ec.
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The logarithm of 26001 is 4 149 901, and that of 26 002 is
4 150 068 ; but as both the 9901 and the 0068 are in one line,
we might be led to prefix 414 to the one as well as to the
other.

In order to remove the chance of error arising from this
ambiguity, Callet printed his Table Portatives with broken
lines ; and Hutton in his later editions introduced a mark, called
the change mark, above the first zero after the change. Many
errors in calculation are to be traced to the non-observance of
this change mark. In order to render it conspicuous, I intro-
duced into Shortrede’s tables a black zero (+) at the beginning
of the change, and as far along the line as the zero is repeated.

Every computor ought to possess a copy of one or other of the
seven-place logarithmic tables.

For purposes of less delicacy, Lalande published his five-place
tables. These have been reprinted in London, and are sufficient
for almost all business calculations, and for the purposes of ordi-
nary land-surveying and engineering.

The computer must select that table which, being sufficiently
accurate for the purpose in hand, contains the fewest extra
figures, as otherwise he has much unnecessary labour.

When the logarithm of any number as 2 has been found,
those of its multiples by the powers of 10 are very easily found ;
thus :

Log. 2 = 3010300
Log. 20 = 1301 0300
Log. 200 = 2301 0300
Log. 2000 = 3301 0300
or again,
Log. 16 = 1,204 1200
Log. 160 = 2,204 1200
Log. 1600 = 3,204 1200
Log. 16000 = 4,304 1200

And thus we see that the fractional part of the logarithm has,
80 to speak, to do with the figures of the number, while the
integer part of the logarithm seems to regulate the place which



NATURE AND COMPUTATION OF LOGARITHMS, 111

those figures occupy on the numeration scale. It isthis circum-
stance which renders logarithms computed to the basis 10 pre-
ferable, in actual calculation, to logarithms suited to any other
basis,
The logarithm of 30114 is 4 4787684, and from this we can
obtain that of 301140 of 30,114 etc.: thus,
Tog. 30114 =44787684
Log. 301140 =05478 7684
Log. 3011400 =6 478 7684
Log. 30114 =34787684
Log. 301 14=2478 7684
It is for this reason that the integer part of the logarithm is
not given in the later tables : the fractional part or mantissa, as
it is called, alone is printed. No inconvenience can arise from
this omission, since the integer part can always be found by
observing how many steps the highest figure of the number is
removed from the unit’s place.
The student should practise the seeking out of logarithms,

ExampLES.

Find, from any of the seven-place tables, the logarithms of
the following numbers :(—

861 296 8700 82228
4370 98162 9 8407
3106 74311 194 09

29761 509 38 9584 7

837 4 62435 7163 2

Let us now consider the logarithms of fractions less than unit.
‘We have seen that the inverse powers of numbers are less than
unit : thus 372 =%, 1071 =44 . The logarithms, then, of frac-
tions less than unit must have the sign — prefixed, or, as we
say, must be subtractive. In this way

Log. 1 = —1,0000000
Log. 01 = — 2,000 0000
Log. 0001 = — 4,00 0000
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‘When we divide a number by 10 we lessen the logarithm by
unit, since unit is the logarithm of 10. Hence, from the
logarithm of 387, which is 2,587 7110, we obtain

Log. 38,7 = 15877110
log. 387 = 05877110
Log. 387 = —04122890
Log. (0387 = —1412 2890
log. 00387 = — 24122890

Now the great convenience sought to be obtained by the
adoption of the basis 10 is this, that the same mantissa belongs
to all numbers consisting of the same figures : but this conve-
nience is lost when we have to do with the logarithms of fractions
less than unit : the mantissa then becomes the complement of
what it was before, and thus it would seem that two complete
logarithmic tables are needed.

However, we have seen that subtraction may be converted
into addition by help of the arithmetical complement ; and thus
we may write

Log. 387 =9,5877110

Log. 0387 =887 7110

Log. 00387 =17587 7110
provided we recollect that the result obtained by adding these is
10 integers too great. By this arrangement the mantissa is pre-
served unchanged, but a dubiety is introduced, since 7 587 7110
is truly the logarithm of 38700000, while here it is used as the
logarithm of 00387 ; so that if we have to determine the
number from its logarithm, we cannot distinguish which of
these two it may be. The immense disparity of these numbers,
however, prevents any practical uncertainty.

ExampLEs.
Seek out the logarithms of the following fractions :(—
3 00721 0998 000625
047 83743 0000568 00000439

The ordinary logarithmic tables give the logarithms of all
five-place numbers, that is, of all numbers having five effective
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figures : now we have often to work with numbers having more
than five places, and we must therefore learn how to obtain
their logarithms.

If we examine the differences between the logarithms of the
successive numbers, we find that these differences decrease as
the numbers increase: and it must necessarily be so. The
logarithms, for example, of the two numbers 387 and 388 arc
2,587 7110 and 2,688 8317, and the difference of these
logarithms is 11207 ; but if I double each of them, the
logarithms of these doubles, viz. of 774 and 776, must have
exactly the same difference, since they are obtained by adding
the logarithm of 2 to each of the above logarithms: the difference,
then, between the logarithms of 774 and 776 must also be
11207 ; now between these two numbers there is the number
775, so that this 1 1207 must be divided into two minor differ-
ences nearly equal to each other. In point of fagt,

Log. 774=2 888 7410

Log. 775=2 889 3017 gggz
Log. 776=2 889 8617 ;
11207

roughly speaking, we may say that the differences in the latter
case are halves of the difference in the former case.

To take another illustration : the mantissee of the logarithms
of 3870 and 3880 are exactly the same as those of the logarithms
of 387 and 388; wherefore the ten logarithmic differences be-
tween 3870 and 3880 must just make up the difference of the
logarithms of 387 and 388. From these two examples we see
that the difference between the logarithms of two adjoining
numbers decreases nearly in proportion as the numbers in-
crease.

But, not to take numbers so far apart, let us consider the
three consecutive numbers 387, 388, 389. A change from 388
to 389 is not relatively so great a change as that from 387 to
388 ; the ratio 389 :388 is not so high as the ratio 388 :387.
Now, the difference between the logarithms of two numbers
depends on their relative disparity; wherefore the difference

H
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between the logarithms of 388 and 389 must be less than the
difference between those of 387 and 388. Accordingly,
Log. 387 =287 7110
Log. 388 =2 588 8317
Log. 389 =2 ,589 9496

Hence we see that the differences between the logarithms of
numbers are not proportional to the differences between the
numbers themselves. However, if we examine the differences
of the logarithms given in page 109, we find that these differ
among themselves by only 5 or 4 units in the tenth decimal
place, and that, therefore, if the logarithms be cut short at the
seventh place, as in our ordinary tables, no perceptible change
takes place in their differences over a considerable range of
numbers. Therefore, although the differences of the logarithms
be not strictly proportional to the differences of the numbers, no
practical error can arise from supposing them to be proportional
from one five-place number to another.

‘We can thus deduce, with sufficient precision for all practical
purposes, the logarithm of a six, seven, or eight-place number
by a proportionate interpolation between the logarithms of the
two contiguous five-place numbers.

Suppose that we wish to find the logarithm of the number
3010537 to ten places. On consulting the small extract given
on page 109, and attending only to the mantissa or fractional
part of the logarithm, we find

Log. 3010500 = 47863 86315
Log. 3010600 = 47865 30573
100 144258
go that an increase of 100 in the number is accompanied by an
increase of 144258 in the logarithm, and the increase for 37 in
the number may be found by the proportion
100 : 37 :: 144258 : 53375 ;
whence the calcuiation—
Log. 3010500 = 47863 86315
Increase for 37 = 53375
Log. 30105637 = 47864 39690

11207
11179
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But since the differences vary alittle in the tenth decimal place,
we cannot regard the last figure of this result as safe.

If we be satisfied with the precision given by seven-place
tables, the calculation, conducted on exactly the same principles,

becomes
Log. 3010500 = 478 6386
Log. 3010§_0_0 = 478 6531

100 145

hence 100 : 37 :: 145 : 54 and
Log. 3010500 = 478 6386
Increase for 37 = 54

Log. 3010537 = 478 6440
But here the result may be regarded as true to the very last
place.

In order to facilitate such calculations, tables of proportional
parts usually accompany the logarithmic tables ; and these leave
nothing farther to be desired in regard to the facility of in-
spection. The above logarithm would be found from Hutton’s
or Babbage’s tables thus—

Log. 30105 = 478 6386
3 44
7 10

Log. 3010537 = 478 6440
After a little practice we are able to take out and add the cor-
rection mentally.

ExAMPLES.

Seek cut the logarithms of the following numbhers :

31415926 13762531 7 623699
43429448 490 7694 K1273538
365242217 38273 672 4276 5183
8360923 006631753 10739 489
57 81039 01863941 2186 4725

In the tables of proportional parts the results are given true
to the nearest figure in the seventh place of the logarithm : they
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are sometimes too great and sometimes too small : thus the pro-

portional parts for the difference 137 are given.
3N

1 14 (1 137
2 o7 2 274
3 41 3 414
‘51 gg ? whereas they should g gg ‘g
6 82 have been W 6 822
€
7 96 7 95 9
8 110 8 1096
9 123 J 9 1233

And it may happen that, when there are two or three additional
figures in the number, all the proportional parts may be too
great, or all may be too small: in these cases the last figure
cannot be correct. For example, if we take out the logarithm
of the number 316 84219 from Hutton's tables, we have

Log. 316 84 =2,500 8400
2 27

1 1

9 1

Log. 316 84219 =2 500 8429

But if we work out the proportion we find 1000 : 219 :: 137 : 30,
so that the logarithm is truly 2,500 8430 ; therefore, when we
wish the utmost degree of precision which the tables can give
us, we must reject the auxiliary tables.

In Shortrede’s Tables of Logarithms I caused the first eight
multiples of the differences to be printed for the purpose of
avoiding this source of minute error. The computation, by
help of these tables, stands thus :—

Log 31684 =2 500 8400
2 274
1 137
9 1233

Log. 316 84219=2 500 8430
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It is, however, only in reference to matters which require
the utmost degree of minuteness that such niceties need be at-
tended to.

By help of the seven-place logarithmic tables we can obtain
the logarithm of any number which occurs in ordinary practice.
Let us now endeavour, by help of the same tables, to find the
number corresponding to a given logarithm.

If the mantissa of the given logarithm agree with one in the
table, the figures of the required number are at once found,
and their position on the numeration scale is determined by the
integer part of the logarithm. For example, if we wish to obtain
the number of which 3575 8111 is the logarithm, we observe
that that number must be above the third power of 10, and
below its fourth power ; its highest figure, therefore, must be
in the place of thousands. On searching in the table we find
that the mantissa 575 8111 corresponds to the figures 37654,
and therefore we conclude that the required number is
3765 4.

ExAMPLES.

Find the numbers corresponding to the following log-
arithms :—

2 789 3409 0 238 8487 2,766 6508
3,846 0153 9321 1635 1856 0216
0,590 3513 7663 5407 8 943 0392

But if the given logarithm be not found in the table, we
examine the two logarithms nearest to it—the one above and
the other below—and interpolate by proportion. Thus if it be
required to find the number of which 2,168 5700 is the log-
arithm, we find

Log. 147 42=2 168 5564
Log. 147 43=2,168 5859.
The required number is, then, between 147 42 and 147 43.

The difference between these logarithms is 295, while the
defect of the first of them from the given logarithm is 136 ;
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wherefore if we desire to have two more decimal places we
state the proportion
295:136::100:46;
whence the number is 147 4246.
The tables of proportional parts enable us mentally to
ascertain the subsequent figures: thus in dif-

ference - table 295 we find that 118 belongs ifg .
to 4 as a next figure ; this 118 subtracted from =
the defect 136 leaves 18 ; annexing a zero to isg 6

this we have 180, and entering the table we
find that 177 corresponds to 6 ; whence 4 and 6 are the sub-

sequent figures.
ExAMPLES.

Find the numbers of which the following are the log-
arithms :(—

3,463 0127 2,216 4871
1,602 7497 58279173
8,581 0024 9 682 7342
7 063 4741 8,518 6372
0,323 7549 0,779 3625

ANTI-LOGARITHMS.

D. The tables of which I have hitherto been speaking give
the logarithms of numbers by direct inspection, and the num-
bers to logarithms indirectly. =~ In the year 1742, James
Dodson published his Anti-Logarithmic Canon, in which the
numbers are given corresponding to the successive logarithms.
This table is the converse of the ordinary tables, and serves the
same purposes with them. The manner of its formation is
simple ; and, what is worthy of remark, is in principle that
which was followed by Briggs in his actual computations.

In order to compute the number which belongs to a given
logarithm, we have to raise 10 to the power indicated by that
logarithm : thus if we wish to discover that number of which
379 is the logarithm, we must raise 10 to that power of which
the index is 379 ; that is to say, we must extract the thou-
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sandth root of 10, and raise that root to its 379th power.
And again, to compute that number which has 29763 for its
logarithm, we have to extract the hundred-thousandth root of
10, and raise that root to its 20763d power.

In point of fact, Dodson’s table contains all the powers of
the hundred-thousandth root of 10 up to its hundred-thousandth
power.

In order to obtain the hundred-thousandth root of 10,
Dodson extracted the tenth rout, then the tenth root of that,
and so on : but he gives no account of the process by which he
extracted the tenth root, and it is to be inferred from some
expressions in his description, that he had obtained the roots by
the method of trial (probably assisted by the logarithmic tables),
and had tested the accuracy by involving the assumed root to
its tenth power. At that time no method was known for ex-
tracting other than second and third roots. The method which
I have now given for the extraction of all roots, renders the
formation of the anti-logarithmic canon exceedingly simple.

By extracting the square root of 10, we find

108 =3,16227 76601 68379 33200,
and by extracting the fifth root of this, noting at the same
time the 2d, 3d, and 4th powers of the root, we obtain

101 =1,25892 54117 94167 21042
102 =1 58489 31924 61113 48520
10-8 =1 99526 23149 68879 60135
104 =2.51188 64315 09580 11109
105 =3,16227 76601 68379 33200
In extracting the fifth root to a great many decimal places, it
is convenient to use separate sheets of paper rather than col-
umns ruled on one sheet.
Multiplying 10 5 by 101, and continuing, we also find
10 6= 391807 17055 34972 50770
10 7= 501187 23362 72722 85002
10 ‘8= 630957 34448 01932 49434

10 9= 794328 23472 42815 02066
1010 =10 00000 00000 00000 00000
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and the agreement of the last affords a proof of the accuracy of
the work.
Extracting now the square root of 10'1 we obtain
1005 =1 12201 84543 01963 43559

and, taking the fifth root of this, noting the inferior powers,
we have
1001 =1,02329 29922 80754 13097
1002 =1 ,04712 85480 50899 53346
1003 =1 07151 93052 37606 41741
1004 =1,09647 81961 43185 01314
1005=1,12201 84543 01963 43559

By continued multiplication we raise this hundredth root of
10 to its hundredth power, and at each tenth power we have a
test of the accuracy of the work, since these powers ought to
agree with the powers of 101,

Proceeding in the same way we may obtain 10001, and the
student who wishes thoroughly to understand the subject can
hardly do better than compute the value of this to (say) 15
places. Afterwards we can compute the values of 100001 and
1000001, On rajsing this last root, step by step, to its hun-
dred-thousandth power, we obtain the Anti-Logarithmic Canon
of Dodson.

The extraction of the roots is as nothing compared with the
labour of so many long multiplications. By attending to the
progression of the differences, this labour may be very much
abridged ; but, with every appliance for lessening the labour,
the task of constructing such a table is an arduous one.

Like all the early computers, Dodson aimed at excessive
precision, and printed his results to eleven places, thus render-
ing his book far too cumbrous for common use. When Lieu-
tenant (now Captain) Shortrede confided to me the arrangement
of his Trigonometrical Tables, I resolved to include with them a
reprint of Dodson’s inverse table shortened to seven places. As
my name does not occur in the second issue of Shortrede’s tables,
and is barely mentioned in the preface to the first issue, which
was withdrawn from sale, I think it but justice to myself to
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claim the whole of whatever merit may belong to the designing
and arranging of the tables of logarithms and anti-logarithms,
and of the Trigonometrical canon in that work.

The mode of using the inverse table does not differ from
that of using the direct one. What is got from the one by
direct inspection is got from the other by the converse process ;
and it may be remarked that the practised computer finds it
fully more convenient to find a logarithm from Dodson’s and a
number from Hutton’s table, than the other way.

Having now explained the mode of computing, arranging, and
using logarithmic tables, I proceed to treat, in the next Chapter,
of the application of Logarithms to various branches of calcula-
tion.



CHAPTER XXV.

ON CALCULATION BY MEANS OF LOGARITHMS.

D. LocariTaMs were invented for the purpose of facilitating
the operations of multiplication and division, particularly when
the numbers are large. By far the greatest number of calcula-
tions in Trigonometry and Astronomy involve proportion ; and
as instruments came to be made more accurate, and astronomi-
cal knowledge to be more precise, the requisite multiplications
and divisions grew to be so tedious, that the mere labour of
computing threatened to put a stop to the farther progress of
astronomy. It was for the purpose of removing this obstacle
that John Nepair set himself to contrive some shorter process,
and the result has been the invention of a method which has
improved every branch of applicate arithmetic.

1.—ON MULTIPLICATION.

In order to multiply together two or more numbers by help
of logarithms, we seek out the logarithms of the numbers, add
them together, and having thus obtained the logarithm of the
product, we seek out the number corresponding to that logarithm.

Thus if we have to multiply together the numbers 32 486,
517,732, 1,83747, and 0397683, we proceed as under :

Log. 32486 = 10511 6962
Log. 517,732 = 27141050
Log. 183747 = 0264 2202

Log. 0397683
Log. 1229019
and obtain the product, 1229 ,019.

8,599 5371
3,089 5585
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One of these factors is less than unit, and therefore its
logarithm is subtractive, in reality — 1,400 4629 ; now instead
of subtracting 1 400 5629, we have added its arithmetical com-
plement ; therefore it has been necessary to reject 10 from the
amount.

Again, if we have to multiply together 3807641, 1836273,
0914386, and 00168973, we have the work thus :

Log. 3807641 = 15806560
Log. 1836273 = 02639372
Log. (0914386 = 89611296
Iog. 00168973 = 72278173

Log. 01080289

Il

8,033 5401

"In this case we ought to reject 20 from the amount; but we
have only 18; so that, rejecting 10, the remaining 8 is, so to
speak, 10 too much, and must therefore be the index of a num-
ber the highest figure of which occupies the place of hundredths;
the product is then 01080289.

The student may perform, by help of Logarithms, the exer-
cises given in pages 69, 144, 145, of Volume L, as well as the
following

ExaMPLEs.

Multiply together 27 64, 19 .73, 4,867, and 03171, using
five-place tables and also using seven-place tables.

An oblong block of stone is 37 56 inches long, 23 87 broad,
and 25,07 thick, and one cubic inch of the stone is found to
weigh 839 5 grains ; required the weight of the stone.

Find the product of 587241, 7 36819, 13 42376, 198743,
201684, 726891, and 0290307.

A spring was found to supply 18573 grains weight of water
per second ; how much does it supply in a year of 365242
days ? -

The inhabitants of a town, 5763 in number, require 3 25
gallons of water each per day ; what would need to be the con-
tents of a reservoir to hold three months’ supply ?

‘What is the weight of a block of white marble 173,375
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inches long, 107 625 broad, and 86,125 thick ? The specific
gravity of marble is 2 ,840.

‘What is the price of a wax-cloth 34 feet 2 inches long, and
23 feet 7 inches broad, at 2s. 11d. per square yard ?

The hull of a ship measures 2687 feet in length, 39 6 in
breadth, and 14 3 in depth ; and the displacement is reckoned
at 58 of the oblong ; required the tonnage of the vessel, allow-
ing 35 cubic feet to the ton.

What is the price of a sheet of plate-glass 8 feet 7 32 inches
long, 5 feet 6 13 inches broad, and 619 thick, at 7s. 34d. per
pound ; the weight of a cubic inch of water being 036036 Ib.,
and the specific gravity of plate-glass being 2 642.

Required the continued product of 2,0; 19; 18; 1.7
...... 1.

To what does £3213 amount in 12 years, interest being at 3
per cent for the first year, and thereafter rising a quarter per
cent every year ?

‘What is the value of £9073 in the three-per-cents, the market
rate being 913 ?

Required the value of £17635 of bank stock, at 183%.

2.—ON DIVISION.

As the logarithm of the product of two numbers is obtained
by adding the logarithm of the multiplier to that of the multi-
plicand, so the logarithm of a quotient must be got by subtract-
ing the logarithm of the divisor from that of the dividend.

If we have to divide the number 397256 by 483 972, we
proceed thus : '

Iog. 397256 = 35990704
Log. 483972 = 2,684 8202
Log. 820824 = 09142502

whence the quotient is 8 20824.

If the divisor be greater than the dividend, the logarithm of
the quotient is subtractive ; but we have no tables of subtractive
logarithms, and therefore we take the arithmetical complement ;
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that is to say, we subtract as usual, merely adding 10 mentally
to the logarithm of the dividend in order to render the subtrac-
tion possible. Thus to divide 7 862943 by 437 8244, we pro-
ceed as under :

Log.  7.862043 = 0,895 5852
log. 4378244 = 2,641 3000
Log. 01795912 = 8,254 2852

obtaining the quotient 01795912.

Again, if the divisor be less than unit, its logarithm is,
according to usage, written 10 too much, so that the logarithm
of the dividend must also be augmented by 10, unless the divi-
dend also be less than unit. For example, the division of
31,6925 by 0937843 is thus performed :

Log. 316925 = 15009565
Log. 0937843 = 8 972 1302

Log. 3379297 ?558 8263

Perform the divisions given in pages 92, 149, 151, of Volume
I, and the following

Il

ExAMPLES.

A piece of copper wire 437 3 inches long weighed 5739 .7
grains ; required the weight of one inch of the same wire ?

A sheet of tin of 370 2 square inches weighed 3059 3 grains;
what is the weight per square inch ?

The profits on a farm of 217 38 acres amounted to £473,17s.;
required the rate of profit per acre?

For £3763 what amount of stock can I purchase, the market
price being 83% per cent ?

In one year of 365242217 days, the sun appears to describe
the ecliptic ; what is its daily motion in ancient and in modern
degrees 1

A cargo of corn cost in all £2943, and measured 971} qua.r—
ters ; what was the cost per quarter ?

Instead of subtracting the logarithm of the divisor, it is in
general, though not always, preferable to add the arithmetical
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complement of the logarithm, or the cologarithm, as it is called
for shortness. Performed in this way, the preceding examples
would stand as under :

Log. 397256 = 35990704
Col. 483972 = 73151798
Log. 820824 = 09142502
Log. 7862943 = 08955852
Col. 437 8244 = 73587000
Log. 01795912 = 8254 2852
Log. 31,6925 = 1500 9565
Col. 0937843 = 1,027 8698
Log. 3379297 = 25288263

The student may apply this method to the former examples,
‘When multiplications and divisions are conjoined, as in simple
and compound proportion, the use of the cologarithm is pecu-

liarly advantageous.
Thus in order to compute the value of the fraction,

23 8693 x 4,72694 x 037685
497 618 x 0091734
we should, in the usual way, add together the logarithms of the
factors of the numerator, and also those of the factors of the
denominator, and then subtract the sum of the latter from the
sum of the former ; Ly using the cologarithms we avoid a con-
siderable quantity of labour : thus,

Log. 23,8693 = 1377 8397

Log. 4,72694 = 06745801

Log. 037685 = 85761685

Col. 497 618 = 73031039

Col. 0091734 = 2,037 4697

Log. 931455 = 9969 1619
ExXAMPLES.

Required the weight, in tons, of a block of granite 79 61
feet long, 17 97 thick, and 19 04 broad ; the specific gravity of
the stone being 2,737,
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A spring supplies 7385 cubic inches of water per second ;
how many gallons does this give per day to each one of a popu-
lation of 5739 persons ?

The fall of rain being 37 639 inches during the year, what
is the weight, in pounds, of the average daily fall upon an acre
of ground ?

To what depth would one ton of water cover a square mile ?

What is the thickness of sheet lead which weighs 7343 Ib.
per square yard ?

3.—PROPORTION.

The method of resolving a question in proportion is evident :
for example, in order to find the fourth proportional to 73 8657,
51 3872, and 173,646, we proceed thus :

Col. 738657 = ' 81315572
Log. 513872 = 1,710 8550
Log. 173646 = 22396648

Log. 1208028 2082 0770

A great convenience attending the use of the cologarithm in
proportion is this, that the order of the statement does not need
to be deranged.

The student may solve the exercises given in Volume L, pages
172, 173, 174, as well as the following

ExAMPLES.

Into a cask capable of holding 26 85 gallons, 17 43 gallons
of spirits were poured, and the rest filled with water. Out of
this another cask holding 1058 gallons was filled : what
quantity of pure spirit is in it ?

If the moon’s motion in three hours be 1° 25’ 27", what is its
motion in 2 53 27* 7

If the moon’s motion in three hours be 1° 23’ 28" ; in what
time does it move through 51’ 39" ?

Into a vessel containing 37 817 gallons of water, 253 grains
of alum were put ; having stood long enough to allow the alum
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to be dissolved, 971 grs. of the solution were taken out and dried
by evaporation. What weight of alum should have been found ?

In order to examine the purity of water supplied to a town,
2739 .7 grains of it were evaporated to dryness, when a residue
weighing 1,684 grains was found. How much impurity was
there in one gallon of the water ?

The work for distributive proportion is greatly shortened by
the use of a movable piece of paper. Simple mechanical con-
trivances of this kind often save us a great deal of writing.

Let us suppose that £39273 6 is to be distributed among the
partners A, B, C, D, E, F, and G, in shares proportional to the
numbers 38 927, 53 721, 86 943, 59 707, 20 692, 13 024, and
4876. 'We arrange the calculation as under :

A 38927 45902509 3.7404787 5501470
B 53721 47301441 38803719 7592276
C 86943 49392346 4,089 4624 12287 468
D 59707 47760253 39262531 8438 264
E 20692 43158025 34660303 2924356
F 13024 41147444 32649722 1840654
G 4876 36880637 28382916 689,115

277890 b 4438729 39273 602

£39273.6 4,594 1007

9,150 2278

Having arranged all the arguments in one column, and taken
their sum, we place their logarithm, as well as the logarithm of
their sum, in the next column. Then from the logarithm of the
quantity to be distributed we subtract that of the sum of the
arguments. The remainder, in this case 9,150 2278, having
been written on the edge of a slip of paper for the convenience
of juxtaposition, is then added to the logarithms of the separate
arguments, the sums being written in a third column ; these
sums are the logarithms of the shares belonging to the several
parties ; the shares themselves are thence found, and their sum
is taken, in order to guard against error. In the present in-
stance the sum of the shares exceeds the sum to be distributed
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by the minute quantity 002 ; this error is caused by the minute
and unavoidable errors in the last places of the logarithms ;
after all, it is only an error of two farthings among £39 000.

In addition to those given in Vol I. p. 183, the student may
solve the following .
ExAMPLES.

An assessment of £2769, 18s. 8d. is to be levied according
to the extent of the properties in a parish ; viz. belonging to
A, 47383 ; to B, 693.7; to C, 27089 ; to D, 30917 ; to
E, 532; to F, 1876; to G, 931,2; to H, 4176 ; to I,
1763 3; to K, 4,.7; toL,93; to M, 15,4; to N, 736 ; to
0,29; to P, 13; and to Q, 243.9. Required the amount to
be paid by each one.

A company having realised a profit of £40 723, 17s. 6d,,
resolves to divide it according to the sums contributed by the
partners: A’s capital was £7973 ; B's, £6285 ; C's, £4379 ;
D’s, £2371 ; E's, £592; F's, £1683; G's, £217; H’s, £3051;
Ts, £79; K’s, £823; L's, £9308 ; M’s, £7217; N’s, 1991 ;
O’s, £4109; P's, £2367; Q’s, £5684 ; R’s, £12395; S's, £765;
and T's, £7349. Required the share belonging to each.

4.—INVOLUTION.

In order to raise a number to any power, we have to multiply
the logarithm of the number by the index of the power.

For example, let it be proposed to raise 1379627 to its
fourth power.

‘We have Log. 1,379 627 1397617

X1

0
4
0,559 0468

il

Log. 3622820

‘Whence the fourth power is 3 622 820.
The principle of this operation has already been explained ;
but the student may observe that 1379627 is that power of 10

which has the index 0,139 7617, or that

«1897617
1379627 =10 ,

1
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and that therefore the fourth power of 1,379 627 must be that
power of 10 of which the index is 559 0468.

It is to be remarked of this operation, that the result has not
that degree of relative precision which belongs to the generality
of operations with seven-place' logarithms. The last figure 7 of
the logarithm may stand for anything between 6.5 and 7.5 ;
all that we learn from the table is, that the logarithm of
1379 627 is between 0,139 76165 and 0,139 76175 ; so that
the fourth multiple of this must lie between the limit 0 559 0466
and 0,559 0470. The fourth power, which we are seeking, may
then, as far as our ordinary logarithmic tables tell us, be any-
thing between the two limits

3622818
3622822

Of course the degree of uncertainty becomes the greater, the
greater the index of the power.

ExaMPLES,

Compute the following powers, and the limits of the error in
using seven-place tables,

5 7 ]
523851 ; 37,0694 ; 1,73629 .

‘When we have to compute the power of a quantity less than
unit, we find some trouble in managing the index ; a little
attention to the nature of the case may remove the difficulty.
Thus, if we seek the fifth power of (091732, and take its
logarithm in the usual way, we have,

Log. (091732 = 89625209
x &
Log. 000006495379 = 4,812 60456

Here the logarithm 8,962 5209 is regarded as 10 too high,
so that the product 44 812 6045 is 50 too high ; we have then
to reject 50 from the index, and only finding 40, we reject the
40, 80 as to leave the result 10 too much.
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The same result is obtained when we use the true logarithm ;
thus, )

Log. 091732 = 10374791
X 5,
- 5,187 3965
or 4812 6045
ExAMPLES,

Required the values of
3 4 5
86391 ; 71924 ; 016897 ;
6 3 4
99999 ; 0023759 ; 24738 .

5.—COMPOUND INTEREST.

Logarithms give great facility to the calculation of compound
interest. The mode of applying them is obvious.

Let the amount of £3879 35 in seventeen years at 4 per cent
compound interest be required.

Log. 104 = 00170333
x 17,

0,289 5661

Log. 387935 =  3,5887590

Log. 7556575 = 38783251

As calculations of this kind are of frequent occurrence in
business, and as the uncertainty in the last figures may cause
inconvenience, it is proper to take the logarithm of the rate of
improvement of money from more extended tables. Such tables
are given by Huiton and Callet. The more exact calculation
would stand thus :

Log. 1046 = 00170333393
x 17,
0,289 5667 681
Log. 387935 = 305887590

Log. 7556590 3878 3268
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In addition to those given in Chap. XX. the student may

solve the following
ExaMpLEs,

To what does £5739 amount in 7 years, at 53 per cent,
compound interest ?

Required the amount of £3769, at 12 per cent per annum,
in 13 years.

Required the amount of the same sum, at 6 per cent each
half year ; at 3 per cent payable quarterly ; and at 1 per cent
payable monthly ; all in 13 years.

To what sum would £1 amount in 1857 years, at 3 per cent
compound interest ?

Required the amounts of £100 in 14 years, at 3, 4, 5, and
6 per cent respectively.

6.—INVERSE POWERS.

Since the logarithm of an inverse power is just the logarithm
of the corresponding direct power, but made subtractive instead
of additive, we have only to take the arithmetical complement
of the logarithm of the direct power, and seek for the corre-
sponding number.

For example, if (7 364)3 be required, we have

Log. 7 364 =0,867 1138
x 3.

2 601 3414

Log. 00250414 =17 398 6586

Col. 7,364 =9.,132 8862
X 3.

Log. 00250414 =7 398 6586

ExaAwMpLES.
Required the values of
18,373"1 3.,0436°4 9634-1
4,29612 1,86273~5 217692
329178 1,00824~3 039874-3
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7.—~ANTICIPATED PAYMENTS.

The computation of the present value of a sum of money
payable at some future time, is only a modification of the above
process. Thus in order to compute the present value of
£8967 7, payable 13 years hence, interest being allowed at 4
per cent, we have the following operation :—

Col. 1,04 = 99829666 607
x 13,
9778 5666
Log. 89677 = 3952 6811
Log. 5385 77 = 3,731 2477

In addition to those given in Chap. XXII. the student may
solve the following

ExAMPLES.

What is the present value of £5907, payable 15 years hence,
allowing interest at 3, at 4, at 5, or at 6 per cent ?

‘What is the present value of the reversion of a property
worth £8960, let on lease for 999 years, of which 856 are to
run, at the nominal rent of one barley-corn ; interest being at
3 per cent ? and what, interest being at 4 per cent ?

8.—~ROOTS.

In order to find the logarithm of the root of a number, we
must divide the logarithm of the number by the index of
the rout.

Thus to compute the seventh root of 89,635, we proceed as
below.

Log. 89635 =195624776
=7
Log. 190075=0278 9254

When we have to extract the root of a fraction less than
unit, we must attend to the management of the index.

Thus if the 7th root of (0896356 be required, we observe
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that the logarithm, as usually written 8,952 4776, is comple-
mentary, and that it is truly — 1,047 5224 ; the work, then,
would stand thus :—
Log. (089 635 = —1,047 5224
=7,
— 0,149 6461
Log. (708 523= 9 850 3539
However, we can manage the calculation much more neatly
by rendering the logarithm of the fraction 70 too much, in
order that its 7th part may be 10 too much : now 8 952 4776
is already 10 too much ; hence
Log. (089 635 = 68,952 4776
+ 7,
Log. (708 523 = 9 850 3539

ExXAMPLES.
/2897 ; A/689.71; /102989 ;
A/ 48735 ; /314159 ; N 28639 ;
N 0086253 ; ~/ 0018973 ; A 000897 ;
V23 V3 V4 V5 V65
VAR N8 V9 V10.

The question, “ At what rate must interest be in order that
a certain sum of money may amount to so much in so many
years 7" is one belonging to this subject.

£4723 was embarked in a concern for 23 years, and at the
end of the time was found to have produced £16791 ; required
the average rate of interest.

Log. 4723 = 36742179
Log. 16791 = 4,225 0766
230,550 8587
[ 911
| a1

Log. 1,056697 = 0,023 9504
so that interest must have been at 56697, or about 53 per
cent.,
ExaMPLES.

A sum of money, £3720, invested 18 years ago in a concern,
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has been found to amount to £8965 ; required the average
annual rate of interest.

‘What must be the annual rate of interest in order that a sum
of money may be doubled in 20 years? '

9.—FRACTIONAL POWERS. S

The application of logarithms to the computation of fractional
powers is readily made. We have only to multiply the log-
arithm of the number by the fractional index. Thus to compute

the value of ‘37(862% we proceed as below.
Log. 37,862 = 15782036
x 3,
54,734 6108
Log. 8,849572= 0,946 9222
‘When the power of a fraction less than unit is required, we
must observe that the real logarithm is subtractive ; and if we
use the ordinary complementary logarithm we must be careful
in the management of the indices. Thus if the value of

(0089635* be required, we may proceed in either of the fol-
lowing ways :
Log. 0089635 = 7,052 4776
Or, —2,047 5224
x4,

7|—-8.190 0896

—1,170 0128
Log. 06760632 = 8,829 9872
Or,

Log. 0089635 = 79524776

x4, o

, 7161809 9104

Log. 06760632 = 8,829 9872
Here the first logarithm has been augmented by 10, where-
fore its product by 4, viz. 31 809 9104, is 40 too much ; but
we wish it to be too great by 70, in order to prepare for
division by 7; therefore we add 30 to it, thus making

61,809 9104, and then the quotient by 7 agrees with usage.
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EXAMPLES,
sat; 026978 ; 071635~ F;
1798 00027617T ; 019737 %,
113,672{L ; 49 ,635‘* ; (6791_‘3'.
5(6971% ; 5(1729‘§ ;
82738 916327 %,

10.—EXPONENTIAL PROBLEM.

Lastly, logarithmic tables may be employed to solve the
primary question, “To what power must one number be raised
in order to give another number 7"

Thus if it were asked, What power is 3897 of 7, we would
inquire by what number the logarithm of 7 must be multiplied
in order to give the logarithm of 3897 ; in other words, we
must divide the logarithm of 3897 by the logarithm of 7 ;
hence the work

Log.  7=08450980; Col. =0,073 0928
Log. 4,24889 =0 628 2755

Here we have taken the logarithms of the logarithms in pre-
ference to the operation by common division, which would have
been

3,590 7304

" 845 0980

and the result is, that
424889
7 = 3897.

= 424889,

ExAMPLES.

For how many years must £2700 remain at 3} per cent
compound interest, in order that it may amount to £6000 ?

In how many years is a sum of money doubled, at 3, 4, 5, 6,
and 7 per cent ?
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The number 4 24889 is the logarithm of 3887 in that system
of which the basis is 7 ; and hence we conclude that, in order
to convert logarithms suited to the basis 10 into logarithms
suited to the basis 7, we must divide them by 845 0980 ; and
thus it seems that the logarithms in one system are proportional
to the logarithms in another system.

11.—ON LOGARITHMIC LINES.

‘We have just seen that, in order to convert logarithms com-
puted to the basis ¢en into logarithms suited to the basis seven,
we must divide them all by 8450980, or, what comes to the
same thing, multiply them by the inverse of this, 1,183058 ;
and that therefore logarithms in one system are proportional to
logarithms in any other system, We may make our system
such that the logarithm of 10 may be unit, that the logarithm
of 7 may be unit, or that the logarithm of any other number
may be unit ; and the number which has unit for its logarithm
is called the basis of the system.

Instead of representing logarithms by numbers we may
represent them by lines, or by any other magnitudes. Let, for
example, the line AB be taken to represent the logarithm of 10 ;
then, if we make AB: AC ::log. 10 :log. 2, AC represents
the logarithm of 2, and in order to obtain AC we may use the
logarithm of Briggs or of Nepair indifferently ; or, if we have
them computed, the logarithm according to any other system.
Since we have the decimal logarithms ready computed, we shall
use them. Now, in our tables, the logarithm of 10 is unit, and
the logarithms of other numbers are given in decimal parts of
this unit ; therefore it is most convenient for us to divide AB
into 10, 100, 1000, etc., equal parts, and, having made a scale
of those parts, to lay off by its help the logarithm of 2, viz.
301-thousandths of AB. Or, if we have ready divided scales
of equal parts, it is as well to make AB 1000 from our scale,
and AC 301. If AD be made 477, AD represents the logarithm
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of 3, and so in this way we may represent geometrically the

A
1

c

D
3

B
-+

5 [ 7 & 8 20
T T 1 T LT L IITITI]

logarithms of all numbers, and may thus form what is called a
logarithmic scale or line.

Such scales enable us very readily to make computations in
proportion : they are manufactured in wood, brass, ivory, etc., and
are known by the name of sliding rules, because they are made
in pairs, the one to slide upon the other; and when carefully
constructed they are valuable aids to the computer.

The difference between the logarithm of 10 and that of 100
is just equal to the difference between the logarithm of 1 and
of 10; hence the numbers from 10 to 100 are crowded into
the same room as those from 1 to 10; so that if we put in the
logarithms of 1,1; 1,2; ....51;52;....99; inthe
first part of the scale its two halves exactly resemble each other.

Let, then, PQ and RS be two scales opposite to each other
and prepared in this way. If we slide RS along until the be-

P Q
1 2 s 4 5 678910 20 30 40 50 60708090100
IR | N
L LT 11]1 1 T T 1T [ [TT]]
1 2 3 4 5 6768910 20 30 %0 50 60708090100
R S

inning of it, viz. at 1, come opposite to the number 2 on the
cale PQ; 2 on RS must be opposite 4 on PQ; 3 on RS
pposite 6 on PQ ; that is, the numbers on PQ are the doubles

P Q
b 2 53 4 _5 6 78910 Z0___50 40_50 60 708090100
I [ I 11T ] CTTTTT

] [ 1 I]] | L1 1 T

3 P 3 4 5 678910 20 30 40 5060

R S

of those on RS. And this necessarily results from the nature
of the scale : we have added the logarithm of 2.

Again if we bring the number 3 on RS opposite to the num-
ber 6 on PQ, any other number on RS opposite a number on
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PQ is to that number in the ratio of 3 : 5 ; that is, 9 on RS
is opposite 15 on PQ, and so on.

Hence, in order to work a proportion by help of the sliding
rule, we bring the antecedent on the one scale, say PQ, opposite
to its comsequent on RS ; then the other antecedent on PQ is
opposite its consequent on RS. For example, if we have to find
a fourth proportional to 37, 52, and 49, we bring 37 on PQ

R s
1 2 3 4 5 678970 20 30 40 50 60 708090100
I I I T T TITTT 1 I T T 117

I I I T T TTTTI | 1 1T T

1 z 3 4 5 6780910 20 30 40 50 607080

P Q

opposite 52 on RS, then opposite to 49 on PQ we find 689,
which is the fourth proportional required.

A much more convenient form for the logarithmic scale is the
circular. Having prepared two rings to turn, the one within

!

suusng
: SO
.
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the other, we assume a whole turn as the logarithm of ten, and
lay off in the proper proportions the logarithm of 2.3, ... ete.
up to 10 ; after this the logarithms are again marked off, 11,
12, ... and the logurithm of 20 coincides with the logarithm of
2, that of 30 with that of 3, and so on; so that the mark 2
may be read 2, 20, 200, 2000, according to the number of
complete turns which are supposed to have been made. The
parts laid off on the circumference are thus, so to speak, the
mantissze or decimal parts of the logarithms ; the integer parts
have to be supplied by the computer.

The mode of using this instrument is the same as that of
using the sliding rule.

The circular logarithmic scale is of great use to the practical
computer in interpolating tabular differences, and most particu-
larly in systematic calculations is its advantage felt. If at all
well made it may be depended on to three figures.

The idea of representing logarithms by straight lines is due
to Edmund Gunter, and was made public in 1623. Scales,
with logarithmic lines engraven on them, pass therefore, very
properly, under the name of Gunter’s scales. In Gunter’s ar-
rangement compasses have to be used. Wingate, in 1627, used
separate rulers, sliding the one against the other ; and in the
same year Oughtred contrived the circular form.

The only materials which we can well use for circular
logarithmic scales are metallic, and the glitter of the metal
causes inconvenience in reading off. A durable material having
a dull surface is very much to be desired for this and similar

purposes.



CHAPTER XXVI

ON ARITHMETICAL SYSTEMS GENERALLY.

D. Havixve given, in the preceding chapters, a full account
of the Decimal System of Arithmetic, and shown the methods
of applying it to calculation, I now proceed to consider, shortly,
the characters and properties of such systems in the abstract.
Mouch useless discussion has arisen on the question ¢ How came
the number ten to be adopted as the basis ?” and perhaps the
answer that ten is the number of fingers on both hands is a
sufficient one. But another question remains behind, “Is ten
the best basis that could have been adopted ?” the answer to
which is not so easily obtained : it can only be obtained by an
attentive study of the facilities which other bases might have
afforded. It must not be forgotten that the sexagesimal and
duodecimal systems obtained considerable extension, and that
both remain in use to the present day. Of the one we have
examples in the division of hours and degrees into minutes,
seconds, thirds ; of the other, we have a familiar instance in
the division of the foot into inches and lines; while many
contend that the duodecimal is preferable to the decimal scale.

The first work in which the various possible numeration
scales were seriously treated was Leslie’'s I’kilosophy of Arith-
metic, a work which has been eminently useful in leading us
from the mere manipulation, which forms the staple of too many
treatises on arithmetic, to the consideration of the principles
which are involved.
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BINARY SCALE.

D. The mode of counting in twos had been very generally
adopted : we have it in the subdivision of the gallon, of the
inch as used by artisans ; of the yard as used by mercers. The
division of the pound avoirdupois into 16 ounces is another
example : and the diram of the East is divided by repeatec
halving into 1024 equal parts.

This scale of numeration is slow, and requires a perplexing
multitude of names, While three steps of the denary systemr
carry us to one thousand, no less than ten steps of the binary
system are needed to take us about as far; so that a binary
abacus must have a great many columns,

In order to adapt the abacus to the binary system of numera-
tion, we must suppose a counter in the second groove to stanc
for two, one in the third groove to stand for four, and so on, the
value of the counter being doubled at each remove.

Thus the number indicated by the subjoined marks on the
binary abacus is one, and four, and eight, and thirty-two, anc

BINARY.

sixty-four, and one hundred and twenty-eight, or in all, twc
hundred and thirty-seven.

The different arithmetical operations may be performed or
this abacus just as upon the decimal abacus; thus to add to-

BINARY.
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gother the two numbers represented below, we remove two
counters whenever found in one grove, and for them place a
single counter in the groove above, as shown in the example :
and we can hardly doubt that, if we had been accustomed to it,
the work would have been very easy, while simplifications would
have been detected.

Since there ought never to be more than one counter in a
groove, multiplication on the binary abacus requires only trans-

BINARY.
*
* ¢ |
* ¢ ¢ ¢
[} ¢ L) *
’ ’ ' N *

position. Thus the multiplication of fiftcen by elevern would be
performed on the binary abacus as shown in the annexed figure.

A greater number of grooves is needed on the binary abacus
than on any other, but on the other hand, a smaller number of
counters is required. Thus with nine counters we can mark on
the binary scale every number up to one thousand six hundred
and thirty-five, while with nine counters on the denary scale we
can only get to eighteen. It is this circumstance which has
mainly tended to keep the binary system so long in use, parti-
cularly for weights ; for by having our weights successively
doubled, we are enabled to weigh each unit up to the sum of
them all. This advantage, however, by no means compensates
for the slowness of the progression.

TERNARY SCALE.

It seems never to have been customary to count in threes ; only
in a very few instances are goods made up in parcels of three
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each. Were we to arrange an abacus on the ternary system,
each remove would augment the value of the counter threefold,
and no more than two counters would be needed in one groove.
In this way a counter in the second place would stand for hree,
a counter in the third groove for nine, one in the fourth for

TERNARY.

L ¢ ¢ ¢ L ¢
¢* ¢ ¢

twenty-seven, and so on, and thus the subjoined example would
represent twice 729, 243, 81, twice 9, twice 3, and 1 ; in all,
one thousand eight hundred and seven.

Addition is quite readily performed on the ternary abacus :
whenever we find three counters in one groove we remove them,
placing one counter in the higher groove ; thus if to the above
number we have to add this one,

¢ ¢ ¢ ¢ ¢ ¢
¢* ¢ ¢*

the amount is

¢ * ¢ ¢ ¢ ¢
¢ ¢ ¢

Moultiplication also is quite as easily performed ; we have
only to recollect that by removing all the counters of a number
one step to the left, the number represented by them is aug-
mented three fold.

The ternary is more rapid than the binary progression, and
requires fewer columns, though more counters. For weigh-
ing, however, it possesses a curious though not a very practical
advantage over the binary scale. If, in weighing, we be al-
lowed to place weights in the pan along with the goods to be
weighed, a set of weights in the progression 1, 3, 9, 27, 81, etc.
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enable us to weigh with the smallest possible number of them ;
thus with only seven weights in this progression we are able to
represent every number up to. 1093. To weigh two ounces, we
put the three ounce weight in one pan, and one ounce in the
other pan of the balance. Representing the subtractive weights
by rings (o) on the abacus, the subjoined may be taken as an ex-

ample ; the number represented by it is 2187 — 729 + 243 — 81
—27+9+3-1=1604. The student may amuse himself by
making up the representations of the successive numbers in this
way. It is clear that the trouble of reckoning the values does
away with any speculative advantage.

After these examples it is not worth while to enter into the
details of other systems, particularly as the principles are the
same throughout ; it may be more profitable that I should point
out the general features of the manipulations as applied to all.

Let it be proposed to represent the number of articles in a
given heap upon any numeration scale, making use of the abacus,
The number of grains in a quantity of rice is to be represented
on the Septenary scale.

Taking out the grains in sevens, let us lay aside a grain or
other counter for each seven, and continue this process until
there be not so many as seven grains left ; the number of coun-
ters laid aside is the number of sevens, and that of the grains
left, the number of units: say that there are ?iree grains left,
we put three counters in the units’ groove of the abacus.

Again taking out the counters in sevens, we lay aside a counter
for each group, and place the remaining counters in the second
groove : each of these stands for seven, and each counter of the
second class for forty-nine grains ; if there be one counter over,
Wwe put one counter in the second groove. Again taking out the
counters in sevens, we find (say) twenty-six groups (for which

K
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we put twenty-six counters), and one over ; this one we place
in the third groove. Lastly, counting out the twenty-six coun-
ters in sevens, we find three groups and five counters over, and
therefore place five counters in the fourth, and three counters
in the fifth groove, thus obtaining in all the subjoined repre-
sentation, showing that the number of the grains of rice is three

SEPTENARY.

L2 2K 2 A ) ¢ ¢ L
L

two-thousand four-hundred-and-ones, five three-hundred-and-forty
threes, one forty-nine, one seven, and three.

This process is exactly the same as that for taling on the
decimal abacus, and although the final statement of the result
appear tedious, that is only because our nomenclature, suited to
the denary scale, is not suited to the septenary one.

If the number be already expressed on the decimal scale, we
can transpose it to any other scale by following
the same plan. Thus, in order to mark the 9 | 8977
number 8977 upon the nonary scale, we take 9 | 997...4
the nines out of it, and find 997 nines, with 4 9]110...7
over ; 8o we put four counters in the units’ 9 !22
groove of the abacus. Again we tale out the 1...3
997 in nines, and find 110, with 7 over; placing
seven counters in the second groove, we proceed again in the
same way as shown in the margin, and obtain,

NONARY.

¢ GO O] & 0 [ 0000] 0000
(X2

This operation, though different in appearance, is identical in
principle with that of taling out the actual counters.
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ExXAMPLES,

Express the number one million on the binary, ternary . .
nonary scales.

The converse problem, to transpose a number from any other
to the denary scale would be performed in the very same way
if that other scale were familiar to us. Actually the transposi-
tion may be effected in either of two ways. Thus the foliow-
ing number, as marked on the Duodenary scale, may be reckoned

DUODENARY.

L2 2 I X 2K ) ¢ (XXX (XX 2]
(XXX ¢

upon the denary scale, by computing the successive powers of
the number 12, and taking the proper multiples of these; thus,
2 x 248832 =497664
3x 20736= 62208
1x 1728= 1728
8 x 144= 11562
5 x 1= 5

562757

or the reduction may be effected, step by step, in this way.
Two counters in the sixth groove are equivalent to 24 coun-
ters in the fifth, thus making, with the three already there, 27
counters in the fifth groove ; and so on, as under,
2...3...1...8...0...5
27
3256
3908
46896
5627567

These processes for conversion are the very same in principle
with those used for the reduction of compound quantities (Chap.
XYV.); they are more simple, inasmuch as the scale of pro-
gression is uniform.
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By continuing the decimal notation downwards below the
units’ place, we indicate fractions of which the denominators
are 10, 100, 1000, &. So by continuing the abacus below the
units’ place, we may represent fractions of which the denomina-
tors are the successive powers of the basis of the scale. Thus,
using a strong bar to separate the fractional from the integer
part of the abacus, the following notation on the Quaternary

QUATERNARY.

L ] ¢ L ) L] ¢ 0 (X L ]

scale would stand for,

- 316+ 1.4+ 24} + &+ & + 785 ;
that is, for 54319%.

In order to express a fraction upon any abacus, we must
proceed exactly as we did for decimal fractions. Thus to mark
the fraction 4%y on the Quinary scale, we observe that 7 units
make 35 fifths ; that is, 35 on the first fractional groove: the
13th part of this is 2 fifths, with 9 fifths over. These 9 fifths
are equivalent to 45 twenty-fifths ; that is, to 45 on the second
fractional groove, and the 13th part of this is 3, with 6 over.
Continuing this process we arrive at the following expression
on the Quinary abacus for the fraction 5. In this the terms

QUINARY.

¢t o] 00 ¢ L2 20 2K 2K 28 I 2 4
* *

recur in periods of four each, and are analagous to those of a
circulating decimal fraction.
ExampLEs.

Express the fractions %, 4, 4§, upon the binary, ternary,
.+ . . nonary abacus.
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The operations of addition, subtraction, multiplication, and
division are performed on any of the scales exactly as they are
performed on the denary scale ; but as we are accustomed to
the latter, and not to the others, we find the actual work to be
irksome, chiefly because we have to convert and re-convert the
numbers with which we are working from one scale to the
other, If we had been accustomed to any other scale, the
denary would then have appeared as troublesome as the others
now appear to us.

Ag it is tiresome to mark down the numbers of the counters
one by one, we may shorten the work by using figures, and
may write the above fraction.

QUINARY.

2 3 2 1 2 3 2

or omitting the bars, and using . as the mark for separating
the fractional from the integer part.

QUINARY.
0,232123212321, etc. ;

and by this means we obtain, on any scale, all the compactness
which has been reached on the usual denary scale. So long as
the basis of the scale is less than 10, the figures which we
already have are enough ; but for scales to a basis above 10 it
is necessary to adopt additional figures. Thus to write on the
duodenary scale we need figures for the numbers Zen and eleven.
However, as we do not mean to practise on any scale, but
merely to acquire more just and extensive ideas of numeration
in general, we shall, for all scales but the denary, retain the
bars which separate the different ranks. The above fraction
may then be written thus :

QUINARY.

oj2|3f{e|1]2|3|2]|1]|2|3]|2]|&.
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the strong bar serving to separate the fractional from the

integer part.

Let it be required to transpose 73 843, 29 617, and 82 074

to the septenary scale, and then to add them together.

The most convenient mode of changing the fractional parts
is to multiply them repeatedly by 7, transferring the integer

part of each product to the septenary scale ; thus

843
5901
6307
2,149
1,043
0,301
2,107
0,749
&e.

The representatives on the septenary scale are given on the
first three lines, and their sum on the fourth line of the accom-

817
4319
2,233
1,631
4417
2919
6433
3,031

&e.

074
0,518
3,626
4,382
2,674
4,718
5,026
0,182

&e.

panying figure.
SEPTENARY.
1 3 3 5 6 2 1 0 2 1 | &e.
4 1 4 2 1 4 2 6 3 | &e.
1 4 5 0 3 4 2 4 5 0 | &e.
3 5 3 3 5 1 1 0 6 4 | &e.
ExaMPpLES.

Express and add together the fractions , , 3, and 2348

on the senary, the septenary, and the nonary scales.

Express and collect 13 879 + 11 623 — 17 891 on the quinary

and senary scales.

Again, let it be proposed to multiply 71602194786 by

13,283950617 on the nonary scale.

The factors are represented on the first two lines of the
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accompanying figure, and the work is carried on exactly as in
our common system.

NONARY.
7 8 5 3 7
1 4 2 5
7 8 5 3 7
3 4 7 3 6 1
1 6 8 1 7 b
4 3 7 0 0 8
1 2 6 6 1 3 8 5 8
ExAMPLES.

On the senary scale multiply 51,2041 by 344105, and
express the result on the denary scale.

On the nonary scale multiply 76237 by 18065 and by
05814, and express the product in decimals.

As the duodecimal system is still in use for the measurement
of timber and stone, it may be worth while to examine it some-
what more closely.

If we have a board 5 feet 7 inches 11 lines long, by 2 feet
3 inches 7 lines broad, and wish to compute the number of
square feet in its surface, we multiply the number 5...7...11
by 2...3...7 on the duodecimal scale : the operation stands thus,

[ J P § |

¢

2B 7

11,..3...10
1eeedeee1l..9
3... 3...7...5
13...0... 1...4...5
The integer part of the result represents 13 square feet : the
number in the next place represents twelfths of square feet, that
is, rectangles one foot long and one inch broad ; of these there
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happens to be none in this example. The number in the second
fraction place represents one square inch ; then we have four-
twelfths of a square inch and five square lines ; and the whole
may be read, 13 square feet, 1 square inch, and 53 square lines.

If, again, we wish to compute the solidity of a block having
the above for its length and breadth, and of which the height
is 4 feet 9 inches 5 lines, we proceed to multiply the above pro-
duct by the number 4 ...9...5, as under.

13... Ouee luee 4uee B
400 900 b

52... O... b... b... 8
9eee 9uee Loee O 3. 9
5... 5... 0... 6...10... 1

620 2..011... B.ee 600 Tooo 1

which shows the result 62 cubic feet, 2 twelfths of a cubic foot
(that is, blocks one foot square and one inch thick), 11 one-
hundred-and-forty-fourths of a cubic foot (that is, rods one foot
long and one inch square), 6 cubic inches, and so on. It is to be
carefully noted that the third fractional place is that which re-
presents cubic inches, and the sixth that for cubic lines. The
result may be put under the form, 62 cubic feet, 426 cubic
inches, and 949 cubic lines.

It is much more convenient to calculate in this way, than to
reduce all to lines, multiply, and then reconvert into cubic feet.
Here we have a clear illustration of the advantage of following
a uniform system in the subdivision of measures.

‘When any of the dimensions exceed 12 feet, it is best to re-
present them on the duodecimal scale ; thus for 172 feet 3
inches 7 lines, we would substitute 1...2...4....3...7 when
manipulating.

ExERCISES.

Required the surface of a court 227 feet 11 inches 3 lines
long, by 172 feet 3 inches 7 lines broad.

Required the surface of a floor 32 feet 9 inches 8 lines long,
by 22 feet 7 inches 11 lines broad.
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What is the bulk of a block 83 feet 7 inches 10 lines long,
13 feet 11 inches 7 lines broad, and 8 feet 9 inches 4 lines
thick ?

Required the square on a line 7 feet 3 inches 9 lines long.

Required the solidity of a cube, of which the side is 11 feet
7 inches 2 lines.

‘When the surface and one side of a rectangle are known. we
obtain the other side by dividing the number which represents
the area by that which represents the known side.

Thus if we be asked, “ What must be the length of a board
1 foot 2 inches 5 lines broad, in order that its surface may con-
tain 28 square feet, 91 square inches, and 19 square lines ; we
represent the last named quantity on the duodecimal scale as

2eed 0700700010007,
and divide this number by 1....2...5 ; the operation being as
under,

Leon2e05 | 2ecdons TonTunlona7 | 1eei1l ea9u 11000110007
1.2 5

1oo2 e 20027
Lol 20007

1o 0...0...1
e210...9...9

1...2...4...7
11002007

1...2...0...0
1...1...2...7

9...6

whence the required length is 23 feet, 9 inches, 11 lines, 11
twelfths of a line, and 7 one-hundred-and-forty-fourths.

ExERCISES.

A board is 1 foot 5 inches three lines broad ; what length
must be cut off it to give a surface of 15 square feet, 117 square
inches, and 89 square lines ?
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A block of stone is 4 feet 6 inches 7 lines long, 2 feet 11
inches 7 lines broad ; what must be its thickness, in order that

it may contain 17 cubic feet, 179 cubic inches, and 1063 cubic
lines ?

The extraction of square roots may also be carried on in duo-
decimals, and though of no great practical value, now that the
decimal notation is so generally used, the practice of it may
serve to give maturity to the ideas of the student.

Let it be proposed, for example, to compute the side of a
square which may contain 523 square feet, 106 square inches,
and 97 square lines.

This on the duodecimal scale becomes 3...7...7....8...10...8
...1 square feet. The operation, exactly analogous to that in
decimal arithmetic, is,

1 3.7 7¢..8...10...8...1|1...10...10...7...5...11...4
1 1
2..10 | 2..7.. 7
10| 2.4... 4
3... 8...10 | 3... 3...8...10
10 (3., 1.4, 4
3. 9... 8.7 | 2..4... 6..8... 1
7| 2e.2... 8..0... 1
3... 9... 9..2... 5| 1...10...8... 0
5| 1. 7...0...10
3... 9... 9...2...10...11 | 3..7... 2
11 | 3...6... 0
... 2
1...3

from which the side of the square is found to be 22 feet, 10
inches, 7 lines, &c.
ExERCISES.
Required the side of a square which may contain 79 square
feet, 111 square inches, and 73 square lines.
Required the square root of 107 in duodecimals,
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It is unnecessary to exemplify the processes of subtraction,
division, etc., on other scales, since their principles and ar-
rangement are identic with those which we have already
studied on the denary scale. So, having now seen how to
represent numbers and fractions, and how to perform the
elementary operations upon any numeration scale, we may
proceed to consider the leading properties of the scales. Some
of these properties are general, that is, are common to all
scales; others are special, belonging to individual scales, or to
particular classes of them.

The first property of numeration scales, and one which has a
most intimate connection with the Theory of Equations, is this,
that

On every scale a counter placed in any groove 8 of more value
than all the counters required to fill up the inferior grooves.

This flows from the very nature of the notation. If we fill
up several grooves, beginning at the units’ place, with as many
counters as the scale allows of, and if we add unit to the number
thus represented, the number of the counters in the units’
place, being now equal to the basis of the scale, these counters
may be removed, and a single counter placed for them in the
second groove ; and this process may go on until we have a
single counter in the groove immediately above those which
were filled, so that this single counter represents a number
greater than that indicated by all the counters in the lower
grooves, Thus if to the number

NoNARY.
8888888
unit be added, the 9 in the units’ place becomes a zero, and 1
is carried to the next place; this makes 9 in the second place
or zero there, and unit in the next place. The result then is
Nonary.
10000000,
80 that unit in the 8th place is greater than the greatest pos-
sible number represented on seven places.
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This statement may be extended to the fractional part of the
seale, and we may say that a counter in any place is equivalent
to the counters which fill all the inferior places carried out
without end. Thus the repeating fraction

DENARY.
99999909, &,

is just equal to unit. For if we stop at the term 9, this wants
one-tenth of being unit; if we take two terms, 99 wants one-
hundredth of being unit, if we take three terms, 999 wants only
one-thousandth of being unit ; and thus the deficiency is reduced
ten times with every additional term, so that if the series were
carried out very far the defect from unit would be excessively
minute.
In the same way the repeating fraction

QUINARY.
44444444 &e,

when conceived to be carried to an unlimited length, is just equi-
valent to unit; for the defect of 4 is 1, or one-fifth; the defect
of 44is 01, or one twenty-fifth; that of 4444 is 0001, or
one six-hundred-and-twenty-fifth, and so on, the defect becom-
ing five times smaller with each additional term.
Hence it seems that unit may be regarded as the sum of any

of the interminate series ;

3+ 3+ 3+ P + F +&e

2+ % + F + K +is +&e

2+ + & + i +rorct&e

1+ + oAy 1 + &
and so on.

We found that when a number is divisible by 9, the sum of
the digits which express it on the denary scale is divisible by 9.
The same statement may be made in regard to any other scale.

If a number be divisible by the number immediately less than
the basis of the scale on which it is represented, the sum of its
digits is also divisible by that number,

Thus if a number be divisible by 8, the sum of the digits
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which represent it on the nonary scale is divisible by 8. The
demonstration of this is merely a paraphrase of that which has
been already given (Chap. VL) in regard to the denary scale.

If, on the nonary scale, we add 8 to any number, we may
augment the number of counters by 8 as when the units’ place
is empty; we may not alter the number of counters as when
there are already counters in the units’ place, and fewer than 8
counters in the second place, for it is enough to take a counter
from the units and place it among the nines; or we may
diminish the number of counters by 8, as when there are
already counters in the units’ groove, 8 counters in the nines’
groove, and fewer than 8 counters in the groove for eighty-
ones. Thus, generally, the addition of 8 to any number does
not change the divisibility of the number of the counters by
8; and the same may be said of subtraction. Hence if a num-
ber represented on the nonary abacus contain eights with a re-
mainder, the number of its counters must contain eights with
the same remainder.

Similar reasoning may be applied to any other numeration
scale, and thus we see that the well-known test for divisibility
by nine is a mere case of a general law.

On the denary scale the test for divisibility by nine also
answers for three ; that is to say, if the sum of the digits of a
number be divisible by three, the number itself is divisible by
three : and this is because 3 is a divisor of 9.

In the same way, on the nonary scale, if the sum of the digits
of a number be divisible by 8, by 4, or by 2, the number itself
is divisible ; and this beeause 4 and 2 are divisors of 8.

On the duodenary scale, eleven possesses this property ; now
eleven is a prime number, and therefore it is the only one for
which this test can be used.

It was shown (Chap. VL) that, of any number divisble by
eleven, the sum of the one set of alternate digits, on the denary
scale, is either equal to the sum of the other set, or differs from
it by & number of elevens. A similar property belongs to the
number immediately above the basis of any other scale. Thus
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on the duodenary abacus, the number thirteen possesses this
property.

Let us examine the matter closely. Thirteen is represented
on the duodenary abacus by two counters, one on each of the
two first grooves, or in writing by 1...1. Twice thirteen must
then be written 2...2; thrice thirteen 3...3, and so on, up to
eleven times thirteen, which is 11...11. Eleven times thirteen
then wants just unit of being twelve times twelve.

The same is true of any other scale, that is, the product of
the number immediately above by the number immediately
below the basis is less than the square of the basis by unit, and
this is in accordance with the law mentioned in p. 6.

It follows from this that if we take a counter from the units’
place and put it in the third place, or move a counter two steps
either to the right or left on the duodenary abacus, we do not
alter the divisibility of the number by thirteen. Hence if all
the counters in the first, third, fifth, etc., grooves, were collected
in the first groove, and all the counters in the second, fourth,
sixth, etc. grooves were collected in the second groove, the
divisibility by thirteen would not be altered. But by throwing
out simultaneously a counter from each of these two grooves,
we subtract thirteen ; and if we continue this until the counters
in one of the grooves be exhausted, those in the other must also
be exhausted, or there must remain a number divisible by thir-
teen, if the original number were so divisible.

The very same reasoning may be applied to any other scale.

The number eleven is prime, and thus it is the only number
for which this test of divisibility can be used on the denary
scale. But when we have to do with the nonary scale, ten and
its two divisors 5 and 2 possess this character ; that if the
difference between the sums of the sets of alternate digits be 0,
or be divisible by ten, five, or, two, the number itself is so
divisible.

The student may exercise himself in ascertaining to what
cases this criterion of divisibility may be applied when the
various scales are used.
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‘When we attempt to represent a fraction on any numeration
scale, we find that, unless the factors of the denominator be all
factors of the basis of the scale, the series is interminate, and
that the digits eventually circulate. If a fraction, supposed to
be in its lowest terms, be represented on any scale, the number
of the digits in the circulator can never be equal to the deno-
minator of the fraction. Thus if we represent the fraction 4 on
any scale, the circulator can never have more than 6 places;
for the residue at a division can only be one of the numbers
1, 2, 3, 4, 5, 6, and therefore at the seventh division one of the
preceding remainders must occur, and must be followed by the
other remainders in the same order : thus—

Binary, 4 = 001001001001, &
Ternary, = 01021201021 2,&e.
Quaternary, = 021021021021, &e
Quinary, = 032412032412 &
Senary, = 050505050050 5, &e.

&e. &e.

In all scales the fraction which has the number immediately
less than the basis of the scale for its denominator and unit for

its numerator is represented by unit repeated in the fractional
places of the scale: thus—

Binary,+ = 111111 1,é&e
Ternary, 4 = 111111 1,&e
Quaternary, 3 = 1111111, &e

and s0 on ; or, in our usual notation,

1=%+%+ 4% + 4% + &e
P =3+%+ &+ + &e
}=}+P+ F +zie+ e
1=3}+HK+dstads+ &
and this must be so since, on performing the division, there is
unit over at each step.
Hence the only divisors which can give single repeaters on
any scale are the number immediately below the basis of the
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scale and the divisors of that number. Thus on the denary
scale the only divisors which give simple repeaters are 9 and 3;
on the septenary scale, 6, 3, and 2 ; on the nonary scale, 8,4, 2;
while on the duodenary scale the only divisor which gives a
simple repetent is 11.

In the very same way it can be shown that fractions circulat-
ing in periods of two terms are produced by the divisor one
less than the square of the basis, or by the aliquot parts of
that divisor, among which the number immediately above the
basis is always to be found. - Thus, on the nonary scale, circu-
lators of two terms arise from divisions by 80, or by any of the
divisors of 80 ; so that, excluding those of which both terms
are alike, and which are simple repeaters, the divisors produc-
ing periods of two terms on the nonary scale are eighty, forty,
twenty, ten, and five.

The student may find it an agreeable exercise to investigate
the laws of circulation in three, four, etc. terms, for other scales,
a8 has been done for the denary scale in Chap. VL.

The mode of counting in tens has found favour among all
nations. Whatever may be the reason for this preference, it
seems clear that no consideration of the comparative advantages
of the decimal system had any influence in procuring its adop-
tion, since, at the time of its origin, nothing was known of the
peculiar properties of it or of any other system of numeration.

It has been argued, and with great plausibility, that it would
be much more convenient to count in dozens, grosses, and double-
grosses. 'The reason is assigned, that the number twelve has
more divisors than the number ten, and that, therefore, there
would be more convenience in the working of fractions. The
duodecimal system is actually in use, and artificers who measure
in feet, inches, and lines, naturally employ the duodenary scale
in their computations.

Now we are hardly in a position to decide impartially in the
matter, seeing that we have been used from infancy to count in
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tens. We must endeavour to get rid of the prejudice of habit,
and try to imagine what would have been the facilities of the
duodecimal scale if our language had been suitable, and if we
had been brought up to use it.

Addition and subtraction are performed on this just as on
any other scale, and are very slightly if at all affected by its
peculiarities. It is in multiplication and division that the effects
of these peculiarities are to be looked for.

Doubling is easy on the duodecimal scale ; whenever a term
is above 6 unit must be carried to the higher place of the
double : thus—

Q... 7o beee 1... 8... 3., 5

5... 2... 8¢ 3... 4... 6...10

10... 5... 4¢.. 6... 9... 1... 8

1... 8..10... 9w 1... 6... 3... 4
a.ndsoon,

from which it is apparent that multiplication by 2 is as easily
performed on this scale as on the decimal one.
Tripling is also quite easy, since 4 in any place sends up 1,
and 8 sends up 2 ; as may be seen in this example :
2...7... 4. 1...8...3...5
7...10... Op.. 5... 0...10... 3
1...11... 6... 1... 3... 2... 6... 9
5...10... 6... 3. 9... 7... 8... 3
Tripling, then, is fully easier on this scale than on the common
one ; and it is to be noted that all numbers which are divisible
by 3 end in 3, 6, 9, or 0.

‘When multiplied by 4, three sends up 1, siz sends up 2, and
nine sends up 3 : thus—
2. 7. 4..1...8..8.5
10... 6... 4,... 6... 9... 1... 8
3... 5... 9... 6,.. 3... 0... 6... 8
It is very evident from these examples that, if our language
had been made to suit the duodecimal system, multiplication by
L



162 ARITHMETICAL SYSTEMS GENERALLY.

3 and by 4, would have been easier than on the decimal system,
and that the multiples by 3, 4, 8, and 9, would have been
readily fixed in the memory ; just as the multiples of 5 are
easily recollected now.

The next multiplier 5 presents on the duodecimal scale char-
acters similar to those which 7 exhibits on the decimal scale.
The fractions 3, $, 3, and 4 are

2...4...9...7...2...4...9...7 &
4...9...7...2...4...9...7...2 &
7. 2...4...9...7...2...4...9 &c.
9...7...2...4...9...7...2...4 &

and these mark the limits at which 1, 2, 3, or 4 are sent up.
Multiplication by 5, then, is nearly as troublesome as that by
7 is on our present system.

Multiplication by 6 in duodecimals is quite analogous to that
by &6 in decimals.

The fractions having seven for their denominator become,

¢ 1. 8... 6...10... 3... 5... 1l... 8... 6...10... 3... 5 &
¢ 3ue 5uve Lue 8. 6...10... 3... 5..e l... 8... 6...10 &
¢ 6. L. Bu.. 6...10... 3... b... l... 8... 6...10... 3 &
¢ 6...10... 3... 6uee l... 8..o 6...10... 3... 5... l... 8 &e.
¢ 8uee 6...10... 3... B.oe Lewe Buee 6.0210... 3.u. buo. 1 &e.
J0... 3. 5eee looe 8.ee 6.0.10... Buee Buwe leww 8... 6 &

and thus multiplication by 7 becomes fully more troublesome on
this scale than on the common one.
The fractions having 8 for their denominators are represented
by duodecimal fractions of two places, viz.
t=1..6 $=4..6 §=/7..6 F=.10...6
£2=3..0 4$=¢6..0 §=9...0
so that multiplication by 8 is easy on this scale.
The same may be said of multiplication by 9 ; for,
3= 1...4 $=4..0 f=¢6..8 F= 9.4
$=2...8 =054 §=8...0 §=10...8

Fractions with the denominator 10 are interminate, the cir-
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culator being the same as that for 5, and the odd tenths having
one non-circulating figure ; thus,

= L.2..4...9..7..2..4..9...7 &
= ¢ 2..4..9...7...2...4...9...7..2  &o.
= (8..7..2..4..9...7...2...4...9 &o.
= 4..9..7.2.4...9..7.2..4 &
= ¢ 6...0...0...0...0...0...0...0...0

= ¢ 7..2..4...9...7...2...4...9...7 &
= ¢ 8..4...9...7...2..4...9...7...2  &e.
= ¢ 9..7..2...4...9...7...2...4...9 &o.
= 10...9...7...2...4...9...7...2..4 &c.

So that multiplication by 10 is nearly as difficult as that by 7

on the common scale.

Multiplication by 11 exactly resembles our ordinary multi-
plication by 9, the fractions elevenths being all simple repeaters.

It thus seems that the management of the duodecimal scale
would present a greater variety of cases, and be fully more
intricate, than the decimal system, and it is very much to be
questioned whether the having thirds instead of fiftks, expressible
in finite terms, would form any countervailing advantage.

If we look only to facility in manipulation, the preference
must be given to the senary scale, because the factors of all the
numbers below 6, excepting 5, are also factors of 6 ; so that all
the operations of multiplication are easily performed. The pro-
gression of the senary scale is slow, and on the whole, we may
admit that the choice of the denary scale has been most fortun-
ate, since, without needing the recollection of an unmanageable
set of products, and without involving any great intricacy in
work, it yet progresses with a rapidity sufficient to satisfy all
the requirements of business or of science.






APPENDIX.

TABLE OF QUARTER SQUARESR






OO N -O

210

225
240
256
272
289
306
324
342
361
380

400
420
441
462
484

508

552
6576
600

1024
1056
1089
1122
1156
1190

1225
1260
1296
1332
1369
1406
1444
1482
1521
1560

1600
1640
1681
1722
1764
1806
1849
1892
1936
1980

2025
2070
2116
2162
2209
2256
2804
2352
2401
2450

2500
2550
2601
2652
2704

2756

2862
2916
2970

3025
8080
3136
8192
3249

3806
3364
3422
3481
3540

8600
8660
8721
3782
3844

3906
3969
4032
4096
4160

4225
4290
4356
4422
4489

4556
4624
4692
4761
4830

4900
4970
5041
5112
5184
5256
5329
5402
5476
55650

167

5625
5700
5776

5929

6006
6084
6162
6241
6820

6400
6480
6561
6642
6724
6806
6889
6972
7056
7140

7225
7310
7396
7482
7569

7656
7744
7832
7921
8010

8100
8190
8281
8372
8464
8556
8649
8742
8836
8930

9025
9120
9216
9312
9409
9508
9604
9702
9801
9900



10000
10100
10201
10802
10404
10506
10609
10712
10816
10920

11025
11130
11236
11342
11449

11556
11664
11772
11881
11990

12100
12210
12321
12432
12544
12656
12769
12882
12996
13110

1 3226
13340
1 3466
13572
1 3689
13806
13924
14042
14161
14280

14400
14520
14641
14762
14884
15006
15129
15252
15376
15500

QUARTER SQUARES,

15625
15750
15876
16002
16129

16256
16884
16512
16641
16770

16900
17030
17161
17292
17424
17556
17689
17822
17956
18090

1 8225
1 8360
1 8496
18632
18769
18906
19044
19182
19321
19460

19600
19740
19881
2 0022
20164

20306
2 0449
2 0592
20736
20880

21025
21170
21316
21462
21609
21756
21904
220562
22201
22350

2 2500
2 2650
2 2801
22952
23104
2 3256
2 3409
2 3562
28716
2 3870

2 4025
2 4180
2 4336
2 4492
2 4649
2 4806
2 4964
2 5122
2 5281
2 5440

25600
2 5760
2 5921
2 6082
2 6244

2 6406
2 6569
26732
2 6896
27060

27225
27390
27556
27722
27889

2 8056
2 8224
2 8392
2 8561
28730

2 8900
2 9070
29241
29412
29584
2 9756
29929
80102
80276
8 0450

30625
30800
30076
81152
8 1329
31506
81684
31862
32041
82220

82400
32580
82761
8 2942
83124
3 3308
8 3489
33672
38856
3 4040

34225
84410
34596
34782
34969
3 5156
85844
35532
35721
3 5910

8 6100
36290
36481
36672
36864

87056
87249
37442
37636
87830

38025
3 8220
8 8416
38612
3 8809
39006
8 9204
38 9402
8 9601
8 9800



40000
40200
40401
40602
40804
41006
41209
41412
41616
41820

42025
42280
42436
42642
42849
4 3056
4 3264
4 3472
4 3681
4 3890

44100
44310
4 4521
44732
44944
4 5156
45369
4 5582
4 5796
46010

46225
46440
46656
46872
47089
47306
47524
47742
47961
48180

4 8400
4 8620
4 8841
49062
49284

49506
49729
4 9952
50176
50400

QUARTER SQUARES,

50625
50850
51076
51802
51529
51756
51984
52212
52441
52670

52900
538130
53361
53592
5 3824
54056
54289
b 4522
54756
54990

5 5225
b 5460
55696
5 6932
56169
56406
56644
5 6882
57121
57360

57600
57840
5 8081
58322
58564
58806
59049
5 9292
59536
59780

60025
60270
60516
60762
61009

6 1256
61504
61752
62001
6 2260

62500
62750
8 8001
6 3252
6 3504
6 3756
6 4009
6 4262
64516
64770

6 5025
6 5280
6 5536
6 5792
6 6049
6 6306
6 6564
6 6822
6 7081
67340

67600
67860
68121
6 8382
68644
6 8906
69169
6 9432
6 9696
6 9960

70225
70490
70756
71022
71289
71556
71824
72092
7 2361
72630

72900
7 8170
7 8441
78712
7 3984
7 42566
7 4529
7 4802
75076
7 5350

169

75625
7 5900-
76176
7 6452
76729
77006
77284
77562
77841
78120
7 3400
7 8680
78961
7 9242
79524
79806
8 0089
80372
8 0656
80940

81225
81510
81796
8 2082
8 2369
8 26566
8 2044
8 3232
8 3521
83810

84100
8 4390
8 4681
84972
8 5264
8 5666
85849
8 6142
8 6436
8 8730

87025
87320
87616
87912
8 8209
8 8506
8 8804
89102
8 9401
89700



9 0000
9 0300
90601
90902
91204
91506
9 1809
92112
92416
9 2720

9 8025
9 3330
9 3636
9 3942
94249
94556
9 4864
9 5172
9 5481
95790

9 6100
96410
9 6721
97032
97344
97656
97969
9 8282
9 8596
98910

99225

99540

99856
100172
10 0489
10 0806
10 1124
10 1442
10 1761
10 2080

10 2400
10 2720
10 8041
10 3362
10 3684
10 4006
10 4329
10 4652
10 4976
10 5300

QUARTER. S8QUARES,

10 5625
10 6950
10 6276
10 6602
10 6929
10 7256
10 7584
107912
10 8241
10 8570

10 8900
10 9230
10 9561
10 9892
11 0224

11 0556
11 0889
111222
11 1556
111890

11 2225
11 2560
11 2896
11 3232
11 35669
11 3906
11 4244
11 4582
11 4921
11 5260

11 5600
11 5940
11 6281
11 6622
11 6964

11 7306
11 7649
117992
11 8336
11 8680

11 9025
119370
119716
12 0062
12 0409
12 0756
121104
121452
121801
12 2150

12 2500
12 28560
12 8201
12 3552
12 8904

12 4256
12 4609
12 4962
12 5816
12 5670

12 6025
12 6380
12 6736
127092
127449
12 7806
12 8164
12 8522
12 8881
129240

12 9600
12 9960
13 0321
13 0682
131044
13 1406
131769
18 2182
13 2496
18 2860

13 3225
13 3590
13 3956
18 4322
13 4689

13 5056
13 5424
13 5792
13 6161
13 6530

18 6900
18 7270
18 7641
13 8012
13 8384
18 8756
13 9129
18 9502
18 9876
14 0260

14 0628
14 1000
141876
141752
14 2129
14 2506
14 2884
14 3262
14 3641
14 4020

14 4400
14 4780
14 5161
14 5542
14 5924

14 6306
14 6689
147072
14 7456
147840

14 8225
14 8610
14 8996
14 9382
14 9769
15 0156
15 0544
150932
151321
151710

15 2100
15 2490
15 2881
15 8272
15 3664
15 4056
15 4449
15 4842
15 5236
15 5630

15 6025
15 6420
15 6816
157212
157609
15 8006
15 8404
15 8802
15 9201
16 9600



16 0000
16 0400
16 0801
16 1202
16 1604
16 2006
16 2409
16 2812
16 3216
16 8620

16 4026
16 4430
16 4836
16 5242
16 5649
16 6056
16 6464
16 6872
16 7281
16 7690

16 8100
16 8510
16 8921
16 9332
16 9744
17 0156
17 0569
17 0982
17 1396
17 1810

17 2225
17 2640
17 3056
17 3472
17 3889
17 4306
17 4724
17 56142
17 6561
17 5980

17 6400
17 6820
177241
17 7662
17 8084
17 8506
17 8929
17 9352
179776
18 0200

QUARTER SQUARES,

18 0625
181050
18 1476
18 1902
18 23829
18 2756
18 3184
18 3612
18 4041
18 4470

18 4900
18 5830
18 5761
18 6192
18 6624

18 7056
18 7489
18 7922
18 8356
18 8790

18 9225
18 9660
19 0096
19 0532
19 0969
19 1406
191844
19 2282
19 2721
19 3160

19 3600
19 4040
19 4481
19 4922
19 5364
19 5806
19 6249
19 6692
197136
19 7580

19 8025
19 8470
19 8916
19 9362
199809

20 0256
20 0704
201162
20 1601
20 2050

20 2500
20 2950
20 3401
20 3852
20 4304
20 4756
20 5209
20 5662
20 6116
20 6570

20 7025
20 7480
207936
20 8392
20 8849

20 9306
20 9764
21 0222
21 0681
211140

211600
21 2060
21 2521
21 2982
21 3444
21 3906
21 4369
21 4832
21 5296
21 6760

21 6225
21 6690
217156
217622
21 8089
21 8556
219024
21 9492
21 9961
22 0430

22 0900
221370
221841
22 2312
22 2784

22 8256
22 3729
22 4202
22 4676
22 5160

m

22 5625
22 6100
22 6576
22 7052
22 7529
22 8006
22 8484
22 8962
22 9441
22 9920

23 0400
28 0880
23 1361
28 1842
23 2824
23 2806
23 3289
23 8772
23 4256
28 4740

28 5225
23 5710
23 6196
23 6682
237169
237666
23 8144
23 8632
239121
23 9610

24 0100
24 0590
24 1081
24 1572
24 2064
24 25566
24 3049
24 3542
24 4036
24 4530

24 5025
24 5520
24 6016
24 6512
247009

24 7506
24 8004
24 8502
24 9001
24 9500



25 0000
25 0500
25 100]
251502
26 2004
26 2506
25 3009
26 3512
25 4016
25 4520

25 5025
25 5530
25 6036
25 8542
26 7049
25 7556
25 8064
25 8572
25 9081
25 9590

26 0100
26 0610
26 1121
26 1632
26 2144
26 2656
26 3169
26 3682
26 4196
26 4710

26 5225
26 5740
26 6256
26 6772
26 7289
26 7806
26 8324
26 8842
26 9361
26 9880

27 0400
27 0920
27 1441
27 1962
27 2484
27 8006
27 3529
27 4052
27 4576
27 5100

QUARTER SQUARES.

27 5625
27 6150
27 6676
27 7202
277729
27 8256
27 8784
27 93812
27 9841
28 0870

28 0900
28 1430
28 1961
28 2492
28 3024
28 3556
28 4089
28 4622
28 5156
28 5690

28 6225
28 6760
28 7296
28 7832
28 8369
28 8906
28 9444
28 9982
29 0521
29 1060

29 1600
29 2140
29 2681
29 3222
29 3764
29 4306
29 4849
29 5392
29 5936
29 6480

29 7025
29 7570
29 8116
29 8662
29 9209
29 9756
30 0304
80 0852
80 1401
801950

80 2500
80 3050
80 3601
80 4152
30 4704
30 52566
80 5809
30 6362
30 6916
307470

30 8025
30 8580
309136
30 9692
31 0249
31 0806
311864
311922
31 2481
81 3040

31 3600
314160
314721
31 5282
31 5844
31 6406
31 6969
817532
31 8096
31 8660

31 9225
31 9790
32 0356
82 0922
321489
32 2056
82 2624
82 3192
32 3761
32 4330

32 4900
32 5470
82 6041
32 6612
327184
827756
32 8329
32 8902
82 9476
83 0050

88 0625
831200
381776
338 2852
33 2929
88 3506
83 4084
83 4662
38 5241
33 5820

33 6400
33 6980
33 7561
33 8142
338724
33 9306
33 9889
34 0472
341056
341640

34 2226
34 2810
34 3396
34 3982
34 4569
34 5166
34 5744
34 6332
84 6921
347510

34 8100
34 8690
34 9281
84 9872
85 0464
351056
851649
85 2242
85 2836
35 3430

85 4025
85 4620
855216
35 5812
356409
36 7006
85 7604
35 8202
85 8801
859400



36 0000
36 0600
36 1201
36 1802
36 2404
36 3006
36 3609
36 4212
36 4816
36 5420

86 6025
36 6630
86 7236
36 7842
86 8449
86 9056
36 9664
37 0272
370881
37 1490

37 2100
372710
373321
37 3932
87 4544
37 5166
37 6769
37 6382
37 6996
3717610

37 8225
37 8840
37 9456
38 0072
380689
381306
381924
38 2542
38 3161
383780

38 4400
38 5020
38 5641
38 6262
88 6884
38 7506
38 8120
38 8752
38 9376
89 0000

QUARTER S8QUARES,

89 0625
891250
391876
89 2502
39 3129
89 3756
89 4384
89 5012
89 5641
89 6270

39 6900
39 7530
89 8161
39 8792
39 9424
40 0056
40 0689
40 1322
40 1956
40 2590

40 3225
40 3860
40 4496
40 5132
40 5769

40 6406
407044
40 7682
40 8321
40 8960

40 9600
41 0240
41 0881
411522
412164

41 2806
4] 3449
41 4092
414736
41 5380

41 6025
41 6670
417316
41 7962
41 8609
41 9256
41 9904
42 0552
421201
421850

15800
01
02
03
04

422500
42 3150
42 3801
42 4452
425104

425756
426409
427062
427716
428870

429025
429680
43 0336
43 0992
431649

43 2306
43 2964
43 3622
43 4281
43 4940

43 5600
43 6260
43 6921
437582
43 8244
43 8906
439569
44 0232
44 0896
441560

442225
442890
44 3556
44 4222
44 4889
44 5556
44 6224
44 6892
44 75461
44 8230

448900
44 9570
450241
450912
451584
452256
452929
45 3602
454276
454950

173

455625
456300
456976
457652
45 8329
459006
459684
46 0362
461041
461720

46 2400
463080
46 3761
46 4442
465124

46 5806
46 6489
467172
46 78566
46 8540

469225
469910
470596
471282
471969

472656
473344
474032
474721
47 5410

476100
476790
477481
478172
47 8864
479556
480249
48 0942
481636

- 482330

483025
48 3720
484416
485112
48 5809
48 6506
487204
487902
488601
489300



49 0000
49 0700
49 1401
49 2102
49 2804

49 8506
49 4209
49 4912
49 5616
49 6320

497025
497730
49 8436
49 9142
49 9849
50 0556
501264
501972
50 2681
50 8390

50 4100
50 4810
50 6521
50 6232
50 6944
507656
50 8369
50 9082
50 9796
510510

511225
51 1940
512656
51 3872
51 4089
51 4806
51 5624
51 6242
51 6961
517680

51 8400
51 9120
51 9841
52 0562
521284
52 2006
52 2729
52 8452
52 4176
52 4800

-QUARTER BQUARES.

52 5625
52 6350
527076
527802
52 8529

52 9256
52 9984
530712
53 1441
53 2170

53 2900
58 8630
534361
53 5092
58 5824

53 6556
53 7289
53 8022
53 8756
53 9490

54 0225
54 0960
541696
54 2432
54 3169

54 3906
54 4644
54 5382
54 6121
54 6860

547600
54 8340
54 9081
54 9822
55 0564
55 1306
55 2049
55 2792
55 3686
55 4280

b5 5025
555770
556516
55 7262
55 8009

55 8756
56 9504
56 0252
56 1001
56 1760

1500
01

02
03
04

56 2500
56 8250
56 4001
56 4752
56 5504
56 6256
56 7009
56 7762
56 8516
56 9270

57 0025
57 0780
671536
67 2292
57 3049

57 3806
57 4564
67 5322
57 6081
57 6840

577600
57 8360
57 9121
67 9882
58 0644
581406
58 2169
68 2932
58 3696
58 4460

58 5225
58 5990
58 6756
58 7522
58 8289
58 9056
58 9824
59 0692
59 1361
59 2130

59 2900
59 3670
59 4441
59 5212
89 5984

59 6766
59 7629
59 8302
59 9076
59 9850

60 0625
60 1400
60 2176
60 2952
60 3729

60 4506
60 5284
60 6062
60 6841
60 7620

60 8400
60 9180
60 9961
61 0742
6115624
61 2306
61 3089
61 3872
61 4656
61 5440

61 6225
617010
617796
61 8582
61 9369
62 0156
62 0944
621732
62 2521
62 3310

62 4100
62 4890
62 5681
626472
62 7264
62 8056
62 8849
62 9642
63 0436
63 1230

63 2025
63 2820
63 3616
63 4412
63 5209
63 6006
63 6804
63 7602
63 8401
63 9200



640000
640800
641601
64 2402
643204

64 4006
64 4809
64 5612
646416
64 7220

64 8025
64 8830
64 9636
65 0442
851249
652056
65 2864
653672
654481
655290

656100
656910
657721
65 8532
659344

66 0156
66 0969
661782
66 2596
66 3410

66 4226
66 5040
66 5856
66 6672
66 7489
66 8306
66 9124
66 9942
670761
671580

87 2400
67 3220
67 4041
67 4862
67 5684

67 6506
677829
678152
678976
67 9800

QUARTER BSQUARES.

@8 0625
681450
68 2276
68 8102
68 8929

684756
68 5584
68 6412
68 7241
68 8070

68 8900
68 9730
690561
691892
69 2224

69 3056
69 3889
69 4722
69 5556
69 6390

69 7226
69 8060
69 8896
699732
700569
70 1406
702244
70 3082
70 3921
70 4760

70 5600
70 6440
707281
70 8122
70 8964
70 9806
710649
711492
712336
713180

71 4025
714870
715716
716562
717409
718256
719104
719952
720801
721650

722500
723350
72 4201
72 5052
725904

726756
727609
728462
7293816
730170

731025
731880
732736
78 8592
734449
78 5306
736164
737022
737881
738740

739600
74 0460
741321
742182
74 3044
74 3906
74 4769
74 56632
74 6496
747360

748225
749090
74 9956
750822
751689
752556
753424
75 4292
755161
756030

756900
757770
75 8641
759512
76 0884
761256
76 2129
76 3002
76 3876
76 4750

178

76 5625
76 8500
767876
76 8252
769129

77 0006
770884
771762
77 2641
77 3820

77 4400
77 280
77 6161
777042
777924
77 8806
779689
780572
781456
782340

78 3225
784110
78 4996
78 5882
786769

787666
788544
789432
790321
791210

792100
792990
79 8881
794772
79 5664
796556
797449
798342
799286
800130

801025
801920
802816
8038712
80 4609
80 5506
80 6404
807302
80 8201
809100



81 0000
810900
811801
812702
818604
814506
81 5409
81638
81721
818120

81 9025
819930
820836
821742
822649
823556
82 4464
825372
82 6281
827190

828100
829010
829921
83 0832
831744
832656
83 3569
83 4482
83 5396
836310

837225
83 8140
839056
839972
840889
841806
84 2724
84 3642
84 4561
84 5480

84 6400
847820
84 8241
84 9162
850084
851006
851929
85 2852
853776
854700

QUARTER SQUARES,

85 5625
856550
857476
858402
859829

860256
861184
862112
863041
863970

864900
86 5830
866761
867692
868624
86 9556
870489
871422
872856
87 3290

87 4225
875160
876096
877032
877969
878906
879844
880782
881721
882660

- 883600

884540
885481
88 6422
887364
888306
88 9249
890192
891136
89 2080

89 3025
89 3970
894916
89 5862
89 6809
897756
898704
899652
900601
90 1560

1900
01
02
03
04
05
06
07
08
09

902500
90 3450
90 4401
90 5352
906304
907256
90 8209
909162
910116
911070

912025
912980
91 3936
91 4892
91 5849
916806
917764
918722
91 9681
920640

921600
922560
923521
924482
92 5444
926406
927369
928332
92 9296
93 0260

931225
932190
93 31566
93 4122
93 5089
936056
937024
937992
938961
93 9930

94 0900
941870
94 2841
94 3812
944784

94 5756
94 6729
947702
94 8676
94 9650

950625
951600
95 2576
95 3552
954529
95 6508
95 6484
957462
958441
959420

96 0400
961380
96 2361
96 3342
96 4324
96 5306
96 6289
967272
96 8256
96 9240

97 0225
971210
97 2196
97 3182
974169
97 5156
97 6144
977132
97 8121
97 9110

980100
981090
98 2081
98 3072
98 4064
98 5056
98 6049
987042
98 8036
98 9030

99 0025
991020
992016
993012
99 4009

99 5006
99 6004
99 7002
998001
99 9000



ANSWERS TO EXAMPLES.

(Page 3.)
1849 6 241 7056
10 000 240100 946 729
7 812025 32 307 856 49 112 064
64 016 001 92 563 641 205 262 929
(Page 12.)
130 458 51 448 70 965
107 712 231 903 389 697
608 968 951 735 909 972
448 329 978 072 863 184
(Page 13.)

£364, 138, 43d.

(Page 186.)
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7934 1047y 255465883 5695A%  G6T68AEY
M
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251 001
947 702 25
9 031 828 09

000 000 085 030 56
1,003,924 925 444

27 474 552

343 1 000 000
3375 2571 353
17576 7 880 599
166375 19902 511

1y To00
i it
Hs Ly
# 1131

3%
3534%
8134
3 6993943
55 4648041

. 42,875
103 823
7200 237 491
1367 631
1,092 727
1,003 003 001
1,015 075 125

(Page 17.)
128 022 986 809

7 682,752 241
010 114 727 184
001 497 69
9037719 438 4

(Page 19.)
3356 702 375 22 330 474 496
567 663 552 59 638 983 643
731 432 701 164 837 013 587

3892119 517
5773874184

994 908 665 087

(Page 24.)

*}Hﬂ k] 2
o Ae3Tian
TodosoT S 123c2212
s $5ETEET

993 348339
163 3688,
8 935 30418355¢

35 561 354313
653 440 3473383

(Page 25.)

997 002 999
985 074 875

709 899 390 552 743

2,226 435 085 860 552

125,014 250 541 506 859

00 0000 000 926 859 375
8,045 325 330 982 633
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(Page 26.)
81 78 074 896
625 104 060 401
4 096 639 128 961
10 000 333 621 760 000
28 561 426 231 402 496
104 976 988 053 892 ¥81
531 441 1 004 006 004 001
6 765 201 1063 772 210 101 441
21 381 376 6 404 947 515 799 066
57 289 761 12 531 684 988 464 096 016

393 160874 Ts i LT3 L1
Iiffels 13283375 wdx  wsrdest  lr$88848%w

4743% sitdr rodor 1EHHEE
2,856 1 96 826 319 964 16
86 536 506 25 000 000 937 890 625
3976 498 143 989 361 400 517,584 516 726 397 337 6
000 533 794 816 1,004 006 004 001

96 075 126,724 921 344 256
000 000 000 000 104 821 185 121
23 372 086 087 589 538 991 402 867 506 25
116 472 876 292 942 043 022 360 985 6

(Page 34.)

1024 161 051 STTYIA
16 807 1564 62515% 262 06431335

52545 7o 1o
15,053 664 563 2 152,753 985 827 571 424
1,020 160 641 281 024 000 657 748 550 151
000 005 807 138 916 642 57
000 000 000 000 048 117 014 085 7

(Page 38.)

6103515625 ; 164 884 258 895 036 416 ;

1577 202 -

1,141 720 871 941 795 033 376 768 379 488 362 032 745
202 160 436 880 904 143 ;

(000 002 540 847 689 640 483 1;
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000 000 000 000 001 801 152 661 463 ;

{000 000 000 000 000 000 000 000 000 000 000 000 000 000
068719 476 736 ;

124 554 829 371 809 625 521 988 622 383 405 844 834 489
639 063 493 3.

Y S (2})s0 7314 136 1716 p23
(Page 39.)
312 712 (1§)2 135 4316 19
221 b24 17386 2388 2385 1380 29108

(Page 40.)

2317 x 774 x 112 5202 x 408 x 58
307x6 x22 7202 x 152 x 12

7 %5433 2x%x902 +118; 36 x 24 318 x5,
b <74 (¥ 5 73 x 116 x 13% +172,

(Page 42.)
£0628, 135. 5,8d.  £3829, 6s. 6d.  £99834, 11s. 4 ,8d.

(Page 44.)
£429, 14s. 9.67d.  £8242, 0s. 11, 52d.  £2048, bs. 9 6d.
£6511, 12s. 6 98d. £246010, 3s. 4 8d.
(Page 49.)

1=025;  giler=00015242; k= 1296;
2491-150,0625; oz = 000 976 562, etc. ;
Todoog=00001; A = 3636, etc.; 78125; 9;

Yo' = 573 92, etc. ;
Q014 773 48, ete, =33L0000; ;
7 304 6019, ete. = 10889 ;
11 973 037 9186, ete. = 1000999900000,
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(Page 51.)
+; 755 TEEOT TETSIOE0T 5
1 . N
STTEUUSUTITOE SUBIBABABIEAT 5 TOTOTTTTTTTTOTT §
4; 13
(Page 52.)

9 256 64 s ™

1801152661463  sxryyosorTrdsTORITITIITIN

- 8192 ST8HE =D x (D)

1 1
62% TT84801 mmm‘rnmm

(Page 53.)
64 6561 2 821 109 907 456 1331 1
3141126 580 731 587 340 586 460 636 236 874 776 576
c54iir ‘
(Page 54.)
ks TTO TS UST 57T
TEUSTEE FULTUS TLIBUT SIS STI VR UBE §LD
FTSETTE BT TET
61 040 881 526 285 814 362 156 628 321 386 486 455 989
674 569
398 010 574 215 107 679 422 058 885 600 836 061 208 944
572 721
(Page 56.)
£6763, 1s. 1,2d.  £1298, 0s. 7,7d.  £2113, 168. 11d.
£8517, 3s. 6,2d. £11357, 11s. 9 4d.
(Page 59.)
6 13 23 49 105

8 15 30 99 91
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(Page 61.)
97 943 25 806
131 1047 1518 596
147 5941 307 158 621
541 13497 1073 592 714
(Page 63.)
1256 6 251 703 156
1856 6 953 35 473 500
217 9 084 1111111111
1370 837 095 581 629 374
2 583 347 659
(Page 64.)
17 635 27 176 167 1856
(Page 66.)
3162277 13228756 26324893 54781383
6,.244998 16031219 27 874719 308917465
6928214 19773719 30903074 976 882797
9643650 20639767 38366652 1305,048463
10677078 21400934
(Page 68.)
591607995 39,924929565 19874858490
8,.83176143 51,16639522 173 00291905
1157583690 8577876626 358 99862116
18 86796221
(Page 69.)
213822 146843 00784462
1.921041 464359 76675628718
370809 1,0001699 2923576
9025622 999829 9643419
1657145 18 0642144
1 S o 23
& 14 % % &
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(Page 70.)
7071068 9204467 5222330
2582247 1,1902381 72111026
8277591 1.0246951 1,.3627703
9128709 3461094 9775252
9176629

(Page 71.)

b5 15 Y 883 &e 1 15 131 1483 &e
545 Y ¥, 088, & HH WY, 55 48, &
$ 4P, PP, & Y, ¥, 3%, T, %P, &e.
12, 8P, oA, de. b5 3 4 O &o
bHH b & 15 4 381 385, 1485 3488 de

(Page 74.)
33 111 274 862
41 145 583 905
(Page 77.)

3215578176 59 547 442 625 231 815 006 207
440 589 476 776 357 8944 897 170 224 289

(Page 78.)
24 84 2311 219564
34 151 9204 76101
47 1307 0000 53565337
62 8673, . 80079
(Page 81.)

1,.2599021051 and 1,5874010502
2,1544346901 and 46415888321
4,1911087263 and 176653923682
9226357936 and 86125668074
3206410577 and 1028102145
1945925378 and 0378662530
14422495706 and 2,0800837895
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11,1190045752 and 123 6521861345
785155629564 and 61 ,6469362704

7179054354 and 5153882140
7572886307 and 5734860711
10011653094 and  1,0023319754
0791715773 and 0062681359
(Page 82.)
8¢ Het8 i o
3 488 s 34
4L 5688 Erag) hiuazisd
(Page 86.)

16 656857, 277450896, and 4631469991
4114422, 16928467, and 69650855

1.717127, 2948525, and 5062992
924223, 854188, and 789460
369919, 136839, and 050620

4394678, 19313206, and 84875359
318137, 10121116, and  32,199019

1281035, 1641051, and 2102208
653817, 427476, and 279492
239221, 057227, and 013690

(Page 88.)
2,058924 1,.760968 4356025
3001174 1,105889 (7418806
3,093367 1,053559 1,0019565
(Page 91.)

3.3019272 40,.8232162 0223351

26918012 2027717281 000041526

628970793 4.7692355 00040952

1,5409891 24791914

64351133 0102877

29907 3015113 4805411 7198244
2 695882 17 604734 1090546
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4247928

47712 12547
1,04139 26852

2935 0032
3,640 4814
3492 2015
4 473 6475
2 922 9330

94771213
8,672 0979
7857 9353

0497 1499
9 637 7843
2 562 5809
0,922 2542
1,762 0059

61566
7014 8
38936

(Page 91.)
13** 5? 6-§
-1
6 17t st
nt olith 13
a3t g5t 23t
(Page 100.)
1920506 2 959481
(Page 104.)
84509 80400
111394 33523
(Page 111.)
6472 5663 0915 0197
1,991 9434 0993 0260
0871 0642 8 964 2425
2.707 0419 3981 65785
17954281 3,855 1071
(Page 112.)
9 922 9485 6,795 8800
89991305 4642 4645
5,754 3483
(Page 115.)
1,138 6984 0,882 1657
2690 8776 9,909 9494
4,582 9001 3631 0903
7821 6284 4 030 9836
8,270 4321 3339 7441
(Page 117.)
1,7332 584 32
2094901 71,783
0046083 087708

185
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111190045752 and 123,6521861345
7.8616562954 and 616469362704

7179054354 and 5153882140
7572886307 and 5734860711
10011653094 and 1,0023319754
0791716773 and 0062681359
(Page 82.)
§2 HetE # o’
HE EY L2233 s 131253
4481 688 i xan) Rryizel
(Page 86.)

16 656857, 277450896, and 4631 469991
4114422, 16928467, and 69 650855

1,.717127, 2948525, and 5062992
924223, 854188, and 789460
369919, 136839, and 050620

4394678, 19313206, and 84875359
318137, 10121116, and  32,199019

1281035, 1641051, and 2,1022086
6853817, 427476, and 279492
239221, 057227, and 013690

(Page 88.)
2.058924 1,760968 4356025
3001174 1,105889 7418806
3.093367 1,053659 1.,0019565
(Page 91.)
3.3019272 40 .8232162 02233561
2.6918012 2027717281 000041526
628970793 47692355 00040952
1.5409891 24791914
64351133 0102877

29907 3015113 4805411 7198244
2 695882 17604734 1090546
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(Page 91.)
2
5 1t Y 6
-1
ot 6 17t 3t
-8 -

7 11% Bm 13 !
TRCIIN £ EPYS £ 23t
(Page 100.)

4247928 1920506 2 959481
(Page 104.)

47712 12547 84509 80400
1,04139 26852 1,11394 33523
(Page 111.)

29350032 64725663 09150197
36404814 19919434 0,993 0260
3492 2015 0871 0542 8 964 2425
4473 6475 2,707 0419 3,981 5785
2,922 9330 1,795 4281 3,855 1071
(Page 112.)

94771213 9 922 9485 6,795 8800
8672 0979 8,999 1305 4 642 4645

7.857 9353 5,754 3483
(Page 115.)
0497 1499 1,138 6984 0882 1657
96377843 2,690 8776 9909 9494
2,562 5809 45829001 3631 0903
09222542 78216284 4,030 9836
1,762 0059 8,270 4321 3339 7441
(Page 117.)
615 66 1,7332 584 32
7014 8 2094901 71,783
3.8936 0046083 087708

185



188 ANBWERS TO EXAMPLES,

] (Page 118.)
2904,1073 164 621 72
40063565 672848 46
03810678 481 6529
001157376 033 00934
2.107438 6,016 757
(Page 123.)

84,165, or 84,16328; 26956 Ib. ; 4912938
83729 5 gallons ; 171 0260 8 gallons ;
164 603 pounds;  £13,1s.1,5d ; 265215 tons;
£146, 16s. 1d.; 6704426 ;  £5368, 12s. 6d. ;

£8324, 9s, 6,7d. ; £32360, 4s. 7 2d.
(Page 125.)

1312532 grains; 8,263 912 grains;  £2, 3s. 8d. ;
£4493, 25, 8.2d.;  59...8"331, or 1,095163 ;
£3, 0s. 7d.

(Page 126.)

207417 tons; 4009766 gallons ; 23312 ,53 pounds ;
000 015 471 inch ; 13872 inch,

(Page 127.)

6,86814 gallons;  1°...22'...20" 434 ; 1* 51™ 23'15;
' 0927925 of a grain ; 43 0266 grains.
(Page 129.)

AJs share = £878, 13s. 10,2d. ; B’s = £128, 128, 10,3d.; C.'s
=£502, 7s. 2d.; DJs=4£573, 6s. 94d.; E’s=£9, 17s.
3.7d.; Fs=£34, 168 95d.; G's=£172, 13s. 8.7d.; H.s
=2£77, 8s. 10d. ; L’s=£326, 198, 10,7d. ; K’s=17s. 5 2d. ;
Ls=4£1, 148, 5§ 9d.; M’s=£2, 178, 1 4d.; N.s=£13,
12s. 11,7d.; O/s=108. 9d. ; P’s=4s. 9 8d.; and Qs = £45,

. 48. 7 2d.



ANSWERS TO EXAMPLES, 187

Als share =£4128, 18s. 9.1d.; B.'s=£3254, 15s, 7.7d.;
CJs £2267, 14s. 7 ,4d. ; D/s=£1227, 17s. 2 2d. ; E’s = £306,
118, 6,.2d. ; F)s =£871 11s. 4d. ; G's=£112, 7s. 6 2d. ;
H's=£1580, 08. 1 4d.; L's=£40, 18s, 2,6d.; K.s=£426,
48, 0,7d. ; L’s=£4820, bs. 8,9d. ; M.’s=£3737, 8s. 7.7d. ;
N.'s = £1031, 1s. 46d.; O's = £2127, 18 1,7d.; P.s
= £1225, 165 89d.; Qs = £2943, 10s. 108d.; R.’s
= £6418, 18s. 89d.; 8.z = £396, 3s. 4,1d. ; and T.s
= £3805, 155 9 4d.

(Page 130.)

3944 9245, or 3944 92; 96 185 300 000, or 96 185 464 000 ;
143 41687, or 143 41711.

(Page 131.)

B44 771 267 605 6 000 000 001 377 36
999 9407 000 000013 41172 003 745 056

(Page 132.)

£8487, 17s. 5,76d.; £16446; £17 146, 12s. 576d.,
£17 529, 3s. 9 6d., and £17 797, 11s. 22d. ;
£689 804 904 000 000 000 000 000 ;
£151, 5s. 2 2d., £173, 3s. 4 2d., £197, 19s. 11 55d., and
£226, 1s, 9 7d.

05644277 011 6533 1,037 9905
0541815 044 5913 21,101 973
0280375 9756817 15773591

(Page 133.)

£3791, 9s. 6,7d., £3279, 18s. 11 5d,, £2841, 7s. 4 3d., and
£2464, 158, 8 2d.
£,000 000 091 969 4, and £,000 000 000 023 538.



188 ANSWERS TO EXAMPLES,

(Page 134.)

4924818 1,009 865 1379 730
835 5264 778 7385 1,348 006
092 8725 096 44156 1,320 469

2 544 039 1414214 1,296 84

1,464 592 1442 249 1,276 518
408 472 1414214 1,258 925

5008 per cent. 35265 per cent,
(Page 136.)
3,109 211 008 088 002 6,573 06
5685 321 2253830  9508,166
8982416 043 991 6 2 631 271
2,860 484 33433156

881 2694 1,067 738

23,212 years; 2345 years, 17 673 years, 14 24 years,
11 896 years, and 10 245 years.

(Page 147.)

Binary scale, 11 110 100 001 001 000 000 ;
Ternary, 1 212 210 202 001 ; Quaternary, 3 310 021 000 ;
Quinary, 224 000 000 ; Senary, 33 233 344 ;
Septenary, 11 333 311;  Octenary, 3 641 100;
Nonary, 1 783 661.

(Page 148.)

Binary, 100010011 101, repeated ; 1001, repeated ; 101
111 010 01 repeated.

Ternary, 1121, repeated; 1210, repeated ; 201 221 211 02,
repeated.

Quaternary, 202 131, repeated ; (21, repeated ; 233 103 132
21, repeated.

Quinary, 2321; 3; 332143424 031 123 010 204 1, repeated.

Senary, 312 150 243 405, repeated ; 3, repeated ; 423 352
511 45, repeated.
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Septenary, 352 456314 210, repeated ; 4125, repeated ;
D511 343 646 041 553 230 206 2, repeated.
Octenary, 4235, repeated ; 4631, repeated ; 572 336 467 51,
repeated.
Nonary, 475, repeated ; 53, repeated ; 657 738 185 42, re-
peated. .
(Page 150.)

4315410425, &c., 36 21631203, &c., and 3028278431, &c.;
12 3011414, &c., 11 335550452, &e.
(Page 152.)

39 273 square feet, 3 square inches, and 9 3 square lines ;
743 square feet, 4 square inches, and 4 5 square lines ;
10254 cubic feet, 6 cubic inches, and 125 of a cubic line ;
53 square feet, b square inches, and 8 square lines ;
1559 cubie feet, 9 cubic inches, 3 6 cubic lines.
(Page 153.)

11 feet, and 1% of a line ; 1 foot, 3 inches, 7 lines, and 3...3.

(Page 154.)
11 feet 11...2...1...10...8; 10 4...1...6...6...10...2, &e.
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