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PREFACE.

In the following work, a great part of which is necessarily a
compilation from the numerous Authors that have preceded
me, will be found numerous new rules and formule adapted
to the practical purposes of the present engineering age,
many of which are not found in any other work of this kind.

All the fundamental principles of this work are rigidly
demonstrated on the most elementary principles, and chiefly
after the manner of the most approved authors of English
works, excepting for the rotation of bodies, where I’ Alem-
berts simple and elegant principle is adopted.

When the great quantity of matter, the numerous en-
gravings, and small price of this work, are considered, I
trust that no apology will be necessary for adding it to the
great number of similar works that have preceded it.

A part of the engravings used in this work, are taken
from Tomlinson’s Rudimentary Mechanics (the present
Series), for the use of beginners, which I would recommend
the student to read carefully previous to studying this work,
as that work contains a clear and popular exposition of a
great many of the leading subjects, of which I have here
treated in a more strictly scientific manner.

* T. BAKER.
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PRINCIPLES AND PRACTICE

or

STATICS AND DYNAMICS.

DEFINITIONS.

(1.) Statics treats of the laws of equilibrium of solid bodies.
(2.) Dynamics investigates the laws of motion of solid
ies,

(3.) Hipdrostatics has for its object the laws of equilibrium
of fluid bodies.

(4.) Hydrodynamics treats of the laws of motion of fluid
bodies.

(5.) Preumatics is a branch of Hydrostatics, and relates
to properties and equilibrium of elastic fluids, such as com-
mon air and the gases.

1. Motion is a continual change of the place of a body.

Nore.—If a body moves through equal spaces in equal times, it is called.
equable motion, If its motion continually increases or decreases, it is re-
spectively called accelerated or retarded motion.

2. Rest is a permanency of a body in the same place.

3. Matter is the substance that affects our senses.

Norr.—Bodies are certain portions of matter limited in magnitude, ifass
is the quantity of matter of which a body is composed. An elementary
particle is a body indefinitely amall. The space occupied by a body is called
its volume or solid content.

4. Density of a body is the proportional quantity of matter
eontained in it, to the quantity of matter contained in another
body of the same magnitude ; and it is called wuniform when
equal quantities of matter are contained in equal magnitudes.

5. Force is a power that tends to impress or destroy mo-
tion. '

Nore 1.—There are no means of estimating foroe except by its affacts
1t is differently measured in Statics and Dynamics: in Statics, it is mea-
1



2 STATICS.

sured by the pressure, which it causes a body at rest to exert against another
body with which it is in contact, or with which it is connected. The
pressures exerted by means of cords pulled by any forces are called tensions.
In Dynamics, force is measured by the velocity uniformly generated in a
given time. See Defintbions in Dymamics.

Norte 2.—1It is usual to represent forces or pressures by lines, the direction
of the line coinciding with the direction of the force, and the length of the
line expressing the amount or magnitude of the given force or pressure.

6. Gravity is the force by which bodies tend to descend in
the direction of the centre of the earth: thus, gravity urges
the fall of a stone, when left unsupported.

7. Power and weight, when opposed to one another, signify
the body that moves and the body to be moved ; 4. e. the body
that gives the motion is called the power, and that which
receives the motion is called the weight.

8. Jelocity is the swiftness or slowness of the motion of a
body, and is measured by the space uniformly described in a
unit of time, as for instance, in one second of time.

9. The momentum of a body is the product of its velocity
and quantity of matter.

Nore.—The remainder of the definitions, adapted to this work, will be
found under the head of Dynamics, Part IL, as placing them here would
only tend to perplex the student.

PART L
STATICS.

ON THE COMPOSITION AND RESOLUTION OF FORCES.

10. ProrosiTioN.—Let A B, A C (see Note 2, Art. 5.)
represent two forces acting on a point or particle A, then
these forces will be proportion-
al to the velocities communi-
cated to the particle A in their
respective directions, and con-
sequently to the spaces which
it would uniformly describe
in a given time. Complete
the parallelogram ABDC,
: then the motion in the direc-
tion A C, can neither accelerate nor repel the approach of




RESOLUTION OF FORCES. 3

the body or particle to the line BD, which is parallel to AC;
hence the body will arrive at BD in the same time that it
would have done if no motion had been given to it in the
direction A C. In the same manner, the motion in the di-
rection A B can neither accelerate nor retard the approach
of the body to the line C D ; therefore, in consequence of the
motion in the direction A C, it will arrive in the same time
that it would have done if no motion had been- given to it
in the direction A B. It hence follows that, by the joint

" effect of the two motions, the body will be found both in BD
and C D at the end of this time, and will therefore be found
at D, the point of their intersection : consequently, by the
simultaneous action of the two motions, the body will evi-
dently describe the diagonal A D of the parallelogram. And
since A B, A C, A D, represent the spaces uniformly moved
over by the body A in the same time, they are proportional
to the forces acting in these directions ; that is, the forces
A B, A C, acting at the same time, produce a force which is
represented in magnitude and direction by A D.

11. CororLary 1.—Hence, if any two forces act from the
same point, the force which is equivalent to these two is
expressed in direction and magnitude by the diagonal of the
parallelogram, the sides of which represent the direction and
magnitude of the two forces.

12. Cor. 2.—The force in the direction A D is called
the resultant of the two forces in the directions AB, AC;
and the forces in the directions A B, A C, are called the
components of the force in A D.

13. Cor. 3.—A force represented in magnitude and direc-
tion by A S, which is equal to and directly opposed to A D,
will evidently just balance the forces A B, A C.

14. Cor. 4.—If A B, taken from a scale of equal parts,
represents the magnitude and direction of one of the com-
ponent forces or weights in pounds,” cwts, &c., and AC,
taken from the sume scale, represents the magnitude and di-
rection of the other component force or weight in rounds,
ewts, &c.; then, if on the two lines A B, A C, the parallel-
ogram A B D C be constructed, the diagonal A D will be
the direction and magnitude of the resultant force or weighit,
and its length, taken from the same scale, will give the
pounds, cwts, &c., in the resultant force or weight.

1*



4 STATICS.

15. Cor. 5.—Let the component AB = P pounds, the
component A C = Q pounds, and the resultant AD =W
pounds; also let the angle B AC =g, then, by trigonometry,
AD?*=AC*4CD?*(=AB?)4+2ACxCDcos BAC*,

thatis W?*=P*4Q* 4-2PQ cos a,
or W=.(P?4Q?*4 2PQ cos a);
also, to find the angle B A D, we have
W :Q::sina:sin BAD,

in B D=Qsina.
or, sin BA W

ExamMpLE.—Two forces of 4 and 5 tons act in directions
inclined to each other at an angle of 60°; it is required to
find the weight of the resultant force, and its inclination to
the greater of the component forces.

Let P = 5 tons, Q = 4 tons, and W = resultant force or
weight, then W = /(P? 4 Q? 4 2P Q cos 60°) =
VJ(254+164+2x4x5 xa) = /61 = 7°81 tons = required
force, and sin BAD = ;;,n % = +443 = sin 26° 20’ =
inclination to the greater force.

16. Cor. 6.—If three forces acting on a point, keep it at
rest, each of these forces is proportional to the sine of the
angle made by the other two. Let the forces or weights P
and Q be components of the force or weight W, and let the
force or weight R, represented by A S, be equal to and
directly opposite to W ; then since the forces P and Q ba-
lance the force R, the force W will also balance R; whence,
by the last corollary,

W:P::8ina:8nCADorsinCAS
W :Q::sine : 8inBAD or sin BAS
A R:P:Q::8ina:s5inCAS :sin BAS.

17. Cor. 7.—If the three sides of any triangle be pa-
rallel to three forces, which, acting on a point, keep it at rest,
these three forces will be proportional to the sides of the
triangle. For the forces P, Q, and R keep the point or
particle A at rest, and these forces are proportional to the
sides of the triangle A BD.

* Becanse angle ACD == 180° = a == sup. of BAC, and cos ACD = —
€08 a, which is the angle actually used in this and the following formule,
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18. Cor. 8.—If two forces P and Q act in the same or
in opposite directions, their resultant will be respectively
equal to P4 Q or to P — Q. This is self evident from
daily experience. This may also be proved by making the
line AC = Q revolve to the right or to the left till it coincide
with, or be opposite to, the direction of AB =P, the resultant
or diagonal being respectively P4 Q ot P — Q ; thus fur-
ther establishing the truth of the doctrine of the composition
of forces.

19. ScroriuMm.—The proposition, (Art. 10.) which has
just been demonstrated, is generally known by the name of
the parallelogram of forces, and is the foundation of the
whole doctrine of equilibrium. Various demonstrations of
this important proposition have been given by the most
eminent mathematicians, such as D. Bernouilli, Dalembert,
Laplace, and Poisson; but they are all of too abstruse a
nature to be introduced in a work of this kind. The de-
monstration of the same proposition by Duchayla, though of
an elementary character, and founded on self-evident prin-
ciples, is at the same time abstruse and circuitous. The au-
thor has, therefore, here introduced the proof usually given
by English mathematicians, which, from its extreme sim-
plicity, may be considered as well adapted to those who are
onlykcommencing the study of the subjects treated of in this
work.

20. ProsLEM.—If any number of forces P, P, P, &e., act
in the same plane, in given directions on the point A, it is re-
quired to find the magnitude and direction of a single force
whick shall be equal to them all.

This force may be easily found by geometrical construc-
tion from Art. 11. First, describe a parallelogram the sides
of which represent two of the forces, and its diagonal will be
the equivalent or resultant of these two forces. Draw a new
parallelogram, with this diagonal and the line which repre-
sents the third force for its sides, and the new diagonal will
be the resultant of the three first forces. Proceed in this
manner till all the forces be included, and the last diagonal
will be the equivalent or resultant of all the forces. But
the following method is much better adapted to calculation
and general practical purposes.

Let A be the point on which all the forces act. Draw
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any two lines Az, Ay, through A, in the plane of the forces
at right angles to each other. Let the force P be repre-
sented in magnitude and direction by AP ; through P draw
PB, PC perpendicular to Ax,
Ay respectively, then ABPC
is a parallelogram, and the
force AP is equal to the two
forces AB, AC, acting in the
direction Az, Ay. Similarly
each of the other forces P, P,
&ec., may be resolved into two
others in the directions Az,
Ay. Let the angles PAux,
P’'A z, &c., be respectively de-
noted by q, o, &c., then AB = P cos a, AC = P sin a, which
are the components of the force P in the direction Az, Ay,
respectively. In like manner the components of P, P, &e.
in the direction Az, are P’ cos 4, P’ cos a”, &c.; and the com-
ponents of the same forces in the direction Ay are P sin 4,
P’sino”, &¢. Now, by putting X for the sum of all the
forces in the direction Az, and Y for the sum of all the
forces in the direction A y, there will result

X =Pcosa 4 Pcosa 4 P'cosa” 4+ & (1)
and Y ="Psine 4 P sind 4 P'sina” 4 &ec. 2

Put R = resultant of all thcse forces and ¢ the angle it
makes with Az, then

R=vXTFY7; (3) tan?:%. (4)

Note.—It must be remembered that if any of the compenent forces A B,
AB, &c., and AC, AC, &c., be estimated in an opposite direction from A,
they must be considered negative.

21. Cor.—When there is an equilibrium, the resultant or
equivalent of all the forces = 0,and .. R= v X? 4 Y? =
0; hence X and Y are each = O, or their values in equation
(1) and (2) vanish, on account of the forces counteracting
each other.

Ex. 1.—1It is required to determine geometrically and by
computation, the resultant and direction of the four pressures
or forces, P, P, P’, P”, all applied to the point A and acting



RESOLUTION OF FORCES. 7

in the same plane; the several forces being P = 24 tons,
P = 18, P’ = 32, and P” = 30, and the angles which their
respective directions make with a given line B A C being
77°, 87°, 9°, and 312°.

Geometrically. The method of solving this question geo-
metrically is already pointed out in Art. 20, i. e., by finding
the resultant of two of the forces, which may be considered
as a new force, then by finding the resultant of this new
force and the line which expresses the third force, and so on
till all the four forees shall be reduced to one force, which
will be the resultant of the four given forces or pressures,
and will be found = 734, the number of tons required, its
inclination to B A C being 13°.

Calculation. The pressures P, P’, P" being all in the first
quadrant of the cir-
cle their sines and
cosines must be po-
sitive, but the pres-
sure P beinginthe
fourth quadrant its
sine must be taken
negative ; then the
values of X and Y,
Form. (1) and (2),
being substituted
in Form. (3), there
will result

BR=vX"4+Y* =y {(24 x 9744 4 18 x '6018 4 32 x
1564 — 30 x ‘7431)* 4 (24 x 225 4 18 x 7986 +- 32 x
‘9877 4 30 x 6691)*} = 73427 tons,

and from Form. (4)

tan ¢ = —-X,i;z *23105 = tan 13°,
which are the values of the resultant and its angle of incli-
mation to the given line BAC,

Ex. 2.—Four forces in the same plane are 3, 4, §, and
6 cwt., acting upon a given point, and are inclined to a
given line at angles of 20°, 40°, 80°, and 150°, respectively ;
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required the magnitude and direction of another force which
shall just counteract or balance these four forces.
Ans. The force is 114 cwt., and inclined 80° 17 to the
given line.

Ex. 3.—In pulling a weight along the ground by a cord,
inclined to the horizon at an angle of 45° a power of 80 lbs.
was exerted ; required the force with which the body was
dragged horizontally.

Here the resultant, which represents the force of 801bs.,
is resolved into two other equal forces, the one parallel with,
and the other perpendicular to, the horizon, which last force
is wholly inefficient in acting on the body, and may, therefore,
be considered as lost; whence the required force is readily
found to be 563 lbs. nearly.

Ex. 4—Two equal forces act at an angle 120°; prove
that their resultant is equal to one of the equal forces.

Ex. 5.—A weight of 201bs., suspended by a cord from a
fixed point, is drawn by the hand in the plane of suspension
through an angle of 30°; required the pressure at the point
of suspension, and the force exerted by the hand.

Ans. 232 1bs. and 11} Ibs. nearly.

Ex. 6.—If any number of forces acting on a point, be
represented by the sides of a polygon taken in order, these
forces will keep the point at rest; required the proof when
the polygon is in one plane.

Ex. 7.—A boat is fastened to a fixed point, and is acted
on at the same time by the wind and the current. Now the
wind is S. E., the direction of the current S., and the direc-
tion of the boat from the point P, S. 20° W., also the pres-
sure on P is 300 Ibs. ; it is required to find the forces of the
wind and the current.

Ans. Force of the wind 145 1bs. ; of the current 384 lbs.

Ex. 8.—Two unequal forces P and Q act at an angle of
120°; .prove that their resultant is = /P? — PQ 4+ Q2.

22. Prop.—If the directions of three forces meet in one
point, and if their’ magnitudes be represented by the three
contiguous edges of a parallelopiped, their resultant will be
represented, both in magnitude and direction, by the diagonal
drawn from their point of meeting to the opposite angle of the
prrallelopiped.

Let the magnitudes and directions of the three forces bLe
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represented by AB, AC, AD, and let the parallelopiped
be AG. Then, since ABHC is a parallelogram, the force
AH is the resultant
of the two forces AB,
AC; but ADGH is
a parallelogram, and
ite diagonal A G is the
resultant of the two
forces AD, AH; that
is, of the three forces
AB, AC, AD.

23. Cor. 1.—If A S be prolonged till it be equal to A G,
then A S represents the magnitude and direction of a force,
that will hold the three forces AB, AC, AD in equilibrium,
because it is equal and opposite to the resultant A G of these
three forces.

24. Cor. 2.—1If four forces in different planes act upon a
point or body and keep it in equilibrium, these four forces
are proportional to the three edges and di of a paral-
lelopiped, formed on lines respectively lel to the direc-
tions of the forces.

25. Cor. 3.—Henee a single force may be resolved into
three others in different planes; and each of these may be
resolved again into others, either in the same or different
planes, and so on to any extent.

26. Scnor.—The properties in the preceding propositions
and their corollaries hold good for all similar forces aeting
on one point or body, whether they act by drawing or press-
ing, or whether they be instantaneous or continual, as in
the cases of percussion and gravity, and are of the® utmost
importance in the application of forces to mechanies and
natural philosophy. The properties of several forces in
different planes may be developed analytically by means of
three co-ordinate planes as in Art. 20, where several forces
in the same plane are developed by means of rectangular co-
ordinates. This subject shall be resumed further on, in
order that the student may proceed to those parts of statics,
which are of real utility, and not requiring at the same time
a knowledge of the geometry of three dimensions; his
studies, the author trusts, will thus be rendered more easy
and interesting.

l-ﬁ*
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THE PRINCIPLE OF THE EQ!;YAL!TY OF MOMENTS,

27. DEFINITION 1.—The product of a force and the per-
pefidicular distance of a given point from its direction, is
called the mument of the force with respéct to that point.

‘28. DEF. 2.—If through the point an axis be drawn per-
pendicular to the plane, passing through the point and the
direction of the force, this product is called the moment of the
Jorce as it respects the axis.

29. Prorp.—The sum of the moments of any number o
Jorces that tend to turn a body in one direction, is equal to
the sum of the moments of any number of forces that terd to
turn the body in the opposite direction, all the forces, in both
cases, being supposed to be in equilibrium.

Let the three forces AB, AD, AS, in the same plane,
keep the body A in equilibrium ; ‘draw the parallelogram
ABCD, the di-
agonal AC of
which will be
the resultant of
AB, AD and
equal and oppo-
site,to SA. Let
the point P be
taken in the
plane of the
three  forces,
and join AP,
DP, CP, and from P let fall the perpendiculars Pa, Pb,
Pe, Pd, on AB, AD, AS, or on their prolongations; then
the quadrilateral PADC is = triangle APD <4 triangle
PDC; and :
the areaof APAC=PAD4+ PDC—-ACD 1)

aPAC= A——-———C ; Pb,

ADx Pd
2

DC x Pec

2

aPAD=

aPDC=
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AADC:DC X ae

Hence, by substituting these four values in (1.), there
results
ACxPb=ASxPb = ADxPd+ DOxPce—DCxac
= ADxPd+DC (Pe—ac)
= ADxPd+4 ABxPa.

Hence we see that when a body or point A is kept in
equilibrium by three forces AB, A D, A S, the sum of the
moments AB X Pa 4+ AD x Pd, which tend to turn the
body in one direction, is equal to the moment A S x P b,
which tends to turn the body in the opposite direction, and
since all those forces may be resolved into innumerable other
forces, the proposition is true for any number of forces.

30. Cor. 1.—Hence the moment of the resultant is equal
to the sum of the moments of its components.

31. Pror.— 7o find the resultant of two parallel forces
acting perpendicularly at the ends of a rigid straight rod,
and the moments of these two forces.

Let A B represent the rod, (supposed to be without
weight,) A P, B Q the magnitudes of the two forces P, Q ;
and let two opposite and equal forces S, T, expressed by AS,
BT be applied to the extremities A and B of the rod, and
in the prolonga-
tion of its direc-
tion. Then, since
these two assumed
equal forces S, T
evidently balance
each other, the re-
sultant of the two
forces P, Q will be
the same as that
of the four forces
P,Q S, T. Com-
plete the parallelograms a P A S, 5QBT; then the resultant
of the two forces AP, AS is Aa and the resultant of the two
forces BQ, BT is Bb; but, since the forces S, T counteract
each other, the two forces P, Q are evideatly equivalent to
the two forces aA, 4B, which act obliquely at the ends of the




12 STATICS.

rod AB. Prolong a A, 4B till they meet at K, and through
K draw MN parallel to AB, and KF parallel to AP or BQ.
The force A a will produce the same effect as an equal force
at K acting in the direction K A: and this force may be re-
solved into two others, one in the direction K M, equal and
parallel to A S, and the other in the direction K'F, equal and
parallel to AP. In the same way the force B may be re-
moved to K, and resolved into two forces, one in the direction
KN, equal and parallel to B'T, and the other in the direction
KF, equal and parallel to BQ. Thus the four forces P, Q, S,
T, may be considered as acting at K, of which the two forces
S, T, being equal and opposite, will counterbalance each
other, and therefore produce no effect, while the other two
P, Q acting in the direction K F, will produce a resultant
equal to their sum P + Q or equal to their representatives
AP, BQ. Also by similar triangles.

AP : AS (=aP):: KF : AF

BT (=Qb) :: BQ :: BF : KF

AP :BQ :: BF : AF.
But, AP =P and BQ = Q, therefore,
P:Q:: BF : AF and
~PxAF = Q x BF.

Hence, if the line or rod A B be divided in F inversely as
the forces P and Q, their moments estimated from F will be
equal, and if an axis pass through the point F, the forces P
and Q will sustain each other in equilibrium on the the rod.

32. Cor.—If an axis pass through B, and P4+ Q=R =
resultant of the forces P and Q, then, by compounding the
last proportion,

. P:R: AF : AB.

33. Pror.—The sum of the moments of two parallel
Jorces is equal to
the moment of their
resultant.

Let P and Q be
two parallel forces,
acting in the same
direction on the line
AB; and R their
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resultant, acting at F. From any point D draw D& perpen-
dicular to their directions.

Put Da=p, Db =g, and Df = r, then by Art. 31.

P:Q::fb:af:: FB: AF;
S Pxaf=Qxfbor P(r—p)=Q(g—r)
whence Pp 4+ Qg =P+ Qr=Rr.

And if the point D’ be taken any where between @ and b,
it will be found that Qp — Pp = Rr. In this case D'a or
P is measured in the opposite direction from DY, and is there-
fore to be considered negative.

34. Cor. 1.—If one of
the forces, as Q, act in an
opposite direction, the
force P being now removed
to A, and the resultant or
fulcrum to F nearest to D,

then Pxaf=Qxfb o Pp—i/)=Qy—r)

S Pp—Qeg=P—=Q)r=Rr

Hence in all cases the sum of the moments of two parallel
forces is equal to the moment of their resultant, recollecting
that the signs of those forces that act in opposite directions
must be considered negative, as well as the signs of those
forces that are estimated in an opposite direction from D.

35. Cor. 2.—Hence the resultant of any number of pa-
rallel forces may be easily found. Let R represent a force
equal and opposite to
the resultant of the pa-
rallel forces P, Q, S,
&ec.; if all these forces
be moved parallel to
their directions till they
coincide with their re-
sultant R, they will be in equilibrium with the force R,

therefore,

R=P - Q4+ S 4 &ec.
snd RxDD=PxDB — QxD'C+4 SxDE + &e.,
whenée D'D:PXDB — Qx Dl’{C-!-SxD'E-i—g.
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_PxDB— QxDC+SxDE + &e.
= P—Q+5+ &

Nore.—The equilibrium of forces acting in different planes shall be con-
sidered further on; we shall now, as an application of what is already done,
proceed to the duscussion of the following subjects.

THE MECHANICAL POWERS.

36. By the mechanical powers we are enabled to sustain a
great weight, or overcome a great resistance, by a small force,
or change the direction of any force.

The mechanical powers are usually considered six in

namber ;—the Lever, the Wheel and Axle, the Pulley, the
Inclined Plane, the Wedge, and the Screw.
‘* The first three, when in a state of equilibrium, may be
reduced to the lever ; and the three last, may be referred to
the inclined plane; so that, strictly speaking, we cannot
reckon more than two simple mechanical powers.

87. When two forces act on each other by means of ma-
chinery, one of them is usually called the power and the
other the weight. The resistance to be overcome is the
weight ; and the force, of whatever kind, which is employed
to overcome that resistance, is called the power.

1. THE LEVER.

38. The lever is an inflexible rod movable in one plane
about a point called the fiderum or centre of motion. The
parts of the lever, into which the fulerum divides it, are
called the arms of the lever. When the arms are in the
same straight line, it is called a straight lever, otherwise a
bewded, or more commonly, a bent lever.

39. There are commonly reckoned three kinds of straight
levers, depending on the position of the points of application
of the power and the weight with respect to the fulcrum.

40. A lever of the first kind is represented in fig. I,
in which the fulerum F is situated between the power P and
the weight W. .

In a lever of the second kind, fig. II., the power P and
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the weight W act on the same side of the fulerum F, the
weight being between the fulcrum and the power.

In a lever of the third kind, fig. IIL., the power P and
the weight W act on
the same side of the
fulerum F, as in the
latter case, but the
power, in this case, is
between the fulcrum
and the weight.

41. Levers of the
first kind are steel-
yards, crowbars, pin-
cers, &c. Levers of
the second kind are
nut-crackers, oars of a
boat, where the water
is considered the ful-
crum, &c. Levers of
the third kind are such
as tongs, sheep-shears,
&c.; the bones of ani-
mals are also consi-
dered as levers of the
third kind, in which
the jointisthe fulerum,
the muscle near the
joint the power, and the force exerted by the limb, at a greater
distance from the joint, is the weight.

42. Prop.— To find the conditions of equilibrium, when a
power and weight act tn the same plane on a lever.

(1.) Let A F B be alever, F
the fulcrum, P and W the power
and weight, acting respectively
on the arms AF, BF of the
lever by their gravity, the direc-
tions AP, PW, will be thero-
fore parallel to one another. Now it is evident, from Art.
31, that if the resultant of these two forces passes through
the fulerum F, there will be an equilibrium, since the fulerum
is a fixed point ; but if the resultant pass through any other
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point in A B, as F, the force at F” will be unsupported, and
will cause the lever to move round F in the direction of this
force. Hence it is evident, from Art. 31, that the lever AB
must be divided in F, so that

P:W::FB: FA.
Whence P x FA = W x FB.

(2.) Bat if the direction of the forces P and W be inclined
to each other, let these directions meet each other in the
point K ; and let this point be rigidly connected with the
i lever A B, then the forces I?
and W may be considered to
be applied at the point K, in-
stead of the ends A, B of the
lever, and therefore the re-
sultant of these two forces will
pass through K. But when
there is an equilibrium it must
also pass through the fulerum F, as in the last case, hence
K F wilPbe the direction of the resultant. Let K f represent
the pressure on the fulcrum F, and let the parallelogram
K a f b be completed, then Ka, Kb will express the two
forces Pand W. Draw F'S, FT perpendicular to AK, BK,
then

P : W :: Ka : Kb=af
sin Kfa : sinaKy,
sinfKo : sinaKy
FT : F 8.
43. Cor. 1.—Put AF =a, BF = b, the angle PAF =
o, and WBF = g, then since FS = asine, and FT = bsin g,
we shail have, by multiplying extremes and means,
Pasina = Whsina .
44. Cox. 2.—This proposition is equally true for straight
or bent levers of any figure, also from Art. 35, it is true for
levers of the second or third kind ; while the pressure on the
fulerum in levers of the second kind is evidently = W —P,
and in those of the first and third kinds the pressure on the
fulerum is = W 4 P, the lever, in these cases, being con-
sidered to be without weight.
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45. Pror.—If any number of forces or weights P, Q, &c.;
P 9 &c., acting upon the arms of a straight lever to turn it
in opposite directions, round the fulerum ¥, be such that

t PxFM4+QxFN4 &c. —pxFm4 ¢gxFn 4 &e.

here will be an equilibrium on the lever.

For the resultant of
all these forces passes
throughF, andif we es-
timate the moments of
these forces from F, we
shall have, by Art. 35.

PxFM4QxFN4+ &c. —pxFm —gxFn—&c =
Rx0 =0, whence
PxFM+QxFN+4 &e. =pxFm+4 gxFPn 4 &e.

46. Cor.—If any of these forces or weights act obliquely,
such forces must be multiplied by the sine of the angle which
their directions make with the lever, or if the lever be bent,
such forces must be multiplied by the perpendiculars from
the fulecrum on their respective directiogs.

47. To find the fulcrum, when the power, weight, and length
of lever are given. -

Returning to Art. 40, fig. I, we have, by Art. 42,
P:W:: FW : FP; whence by comp.,
P4+W:P ::FW4H+FP=PW :FW
P4+W: :W::PW:PF .
PXPW W X AW

FW= m‘lnd PF:T—;—F,

whence the distance of the fulcrum from either end of the
lever may be found.

48, When the power is required to be very great, and it is
not convenient to
construct & very
long lever, a com-
pound lever, or a
composition oflevers
is ugsed. Inthecom-
position of levers in
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the annexed figure, the severa] levers act perpendicularly
upon one another, a8 AB, BC, CD, the fulerums of which
are respectively F, F' and F'; then
power P acting at A : weight at B :: BF : F A,
weight at B : weight at C :: F'C : F'B,
and weight at C : weightat W :: F'D : F'C.
Hence, by compounding these three proportions,
P:W::FBXFCXF'D: FAXFBXFC.
And generally, when a system of this kind is in equilibrium,
the ratio of the power to the weight or load will be as the
product of the alternate arms of each lever, beginning with
the power, to the product of the alternate arms, beginning
from the weight or load, of whatever kind the levers may be,
recollecting that if any of the levers be bent, or the forces
act obliquely, the arms must be considered as the perpen-
diculars let fall from the fulecrums on which such forces act.
49. A system or composition of levers may be conveniently
arranged, as in the
fig. annexed. Here
we have three le-
vers, two of the
second, . e, AF,
A” F’, and one of
the firstkind, A'B’;
and we will now
consider the man-
ner in which the
power P is trans-
mitted tothewcight
W. The power P
acting uponthe le-
ver AF, produces
a downward force

PXAF,
#B=—%g
The arm A'F of
the second lever is,

therefore, pulled
down by the force -1:—;—:,-{%2, and this force, multiplied by
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™ . , o . PXAFXAF
A’ F’ and then divided by F'B’, will give FEXF B
= force with which B', and therefore A", is drawn upwards.
And lastly, we find in the same manner,
W = PXAFXAF XAF
~ FBXFRB XFDB
Thus, for example, if AF, A’F’, A” F” be respectively 16,
20, and 18 inches, and B F, B’F’, B"F” be respectively 2,
2, and 8 inches ; then
P X16 X 20 X 18
W="-—Z%sx3

or the weight is 480 times the power.

50. The Balance.—One of the most useful applications
of the lever is to the balance, which consists chiefly of a
lever of the first kind with
equal arms, from the ends
of which scales are sus-
pended. This lever AB
is called the beam, C is
the fulcrum or centre of
motion, ¢ is the centre of
gravity (which term will
be hereafter particularly
defined) of the beam and
scales, this point is placed a little below the fulecrum, other-
wise the beam would rest in any position ; if, on the contrary,
the point g were above the beam, the least disturbance would
cause the beam to upset. The points of suspension A, B
should be so situated that a straight line A B, joining them,
may be perpendicular to the line joining the centre of gravity
g with the point of support m.

In a perfect balance all the parts muet be symmetrical
with respect to the fulerum ¢; that is, the on either side
of this point must be exactly equal. “Moreover, the scales
must be in equilibrium when empty, and there must be as
little friction as possible at the fulecrum e.

51. The False Balance.—This balance has its arms of un-
equal length, and is in equilibrium when charged with un-
equal weights. But the true weight of a body may be found

= 480 ¢ P,




20 STATICS.

by a false balance in the following manner. First, weigh
the body in one scale, and afterwards weigh it in the other;
then the mean proportional between these weights will be
the true weight. For let 2 = true weight of the body, and
W the number of ounces or pounds it weighs in the scale A,
and w the ounces or pounds it weighs in the scale B; then,
by Art. 39, we shall have
AcXz=BcX W,
and Be X 2= Ac X w.

By multiplying these equations, there results,
Ac.Bc.z? = Ac¢c.Bec. W. 1w,
2= W,
or z=yWuw.

That is, the true weight is a mean proportional between
the two false weights W and w.

52. The Common Steelyard.—This is another useful ap-
plication of the lever for ascertaining the weights of bodies.
It i3 a lever with arms of unequal length, by means of which
a single weight P is sufficient to determine, from its position,
the weight of any other body W.

The beam of the steelyard is shewn in the annexed figure.
Cis its fulerum. The body W, the weight of which is to
be found, is sus-
pended at the end S
of the shorter arm,
and the constant
weight P is moved
along the graduated
arm till there shall
be an equilibrium.
Let us first assume
that the scale and
heavy ball at S keep
the lever in equili-
brium or horizontal,
when theload Wand
the weight P are removed, as is the case in some steelyards.
Now, let W and P be applied to the steelyard so that they
may balance each other, then PX CP =W X CS, or
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W=LXOF . when CP = CS, W will be =P, and
when CP = 2CS, W will be = 2P, and so on. Therefore,
if the longer arm of the lever be marked or graduated so
that C1, C2, C3, &c., shall be equal to SC, 28C, 88C, &ec.,
respectively; then, when P is at the 1st, 2nd, 3rd, &c., marks,
the corresponding weights of W will be P, 2P, 3P, &e.
Thus if P = 1 pound then W will be successively equal to
1, 2, 3, &c., pounds, when P is at the lst, 2nd, 3rd, &ec.,
marks or divisions on the longer arm.of the steelyard. In.
the figure, P is shewn at the twelfth division on the longer
arm, therefore, in this case, W = 12P; and, if P = 1 pound,
‘W = 12 pounds.

53. If the lever do not balance itself, its weight must be
taken into calculation by considering it to act at the centre
of gravity ; and if the lever be in the form of a prism, or an
uniform bar of any kind, its centre of gravity will be at its
middle point.

Let I be the whole length of such a lever or steelyard, and
w its weight ; then the distance of the centre of gravity of
the lever from its fulerum C will be = } ({ — 2SC) at which
distance the weight w acts,

. WXSC=PXPC+}(1—2SC)w
WXSC—3w(l—28C)
rC ’

Ex. 1.—Let the whole length of a lever be ! = 8 feet, its
lesser arm S C = 3 feet, and its whole weight w = 4 Ibs.,
and let & weight W = 100 lbs. be suspended in the scale at
S; what weight P must be placed at the end of the longer
arm to hold the lever in equilibrium ?

whence P =

By the formula given above
- - X8 —2(8 —
P.—.:WX SC P‘}g(l 2SC)_ 100X 3 52(8 6)___59_}1‘”.

Ex. 2.—On a lever three feet in length a weight of
500 lbs. is suspended at one end, at 2} inches from its ful-
crum ; what weight at the other end will keep the lever in
equilibrium, the lever being assumed to be without weight ?

Ans. 40 Ibs.

Ex. 3.—Required the force that will draw a carriage-
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wheel over an obstruction, assuming the whole weight of the
catriage to be collected at the axis of the wheel.

Let O be the centre of the wheel DCW, C the obstruc-
tion, P the drawing power acting in the direction OP, W
the weight of the load acting in
the direction O W perpendicular
to the horizon. Draw Cm, C»
perpendicular to OP, OW. Then
the wheel, in turning over the
obstruction, must turn round the
point C; therefore O C may be
considered as a lever, the fulerum
of which is C, and Cm, Cn are the perpendiculars from the
fulcrum in the directions of the power and weight respec-
tively.

Hence P: W ::Cn : Cm ::5in COn : sin COm.

Put the radius of the wheel O W = 7, and the height of
the obstruction = #W =/ ; then Cn = /27h — A3, and

h— hi?
sinCOn = Cn _v2rh—i? = (since 4 is usually very

co™ r
h
small compared with r,) v2rh nearly = 2—:'
S PIWe 2’; :8in COm.

If, therefore, W and / gribe given, P will be least when

sin COm is greatest, that is, when COum is a right angle, in
which case its sine is = rad. = 1, whence

P=Wy 2:}.

Ex. 4.—If weights of 2, 4, and 6 cwts., be suspended at
the distances of 3, 6, and 9 feet from the fulcrum of one arm
of a straight lever, and weights of 4, 6, and 8 cwts., be sus-
pended at 2, 5, and 6 feet from the fulecrum on the opposite
arm ; where must a weight of 4 cwt. be placed to keep the
lever in equilibrium ?

Ans. 4 feet from the fulcrum on the first arm.

Ex. 5.—The arms of a bended lever PFW are of equal
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length, and make an angle at the fuleram F of 135°; re-
quired the position in which the lever will rest, when two
weights of 3 and 5 cwts. are placed at P and W ?
Ans. PF makes an angle of 8° 37" with the horizon,

Ex. 6.—Required the weight of the body W, when the
power P, on the lever in the last example, is 3 cwts., and the
arm PF is horizontal. Ans. 4} cwts, nearly

Ex. 7.—A beam A B sustaining a weight W at the point
F, is supported by two posts at A and B; ; it is required to
determine what portion of the weight
is sustained by each of the props or
posts, the weight of the beam being
neglected.

Supposing the beam to turn on B
as a fulcrum we shall have

Pressureon A X AB=W X FB,
FBxW
AB °

Similarly, by supposing the beam to turn on A as a fulcrum,
there will result,

.>. Pressure on A =

AFxW
AB °

Ex. 8,—Two men carry a weight of 2 cwt. hung on a
pole, the ends of which rest on their shoulders; what part
of the load is borne by each man, the weight hanging 6 inches
from the middle of the pole, the whole length of which is
4 feet ? - Ans. 140 lbs. and 84 lbs.

Ex. 9.—Let the length of the beam A B in Example 7
be 30 feet, F B = 10 feet, and consequently A F = 20 feet,
and the weight W = 18 cwts; required the pressures on the
supports A and B.

Pressure on B =

FBxW 10x18
A= = = N
Here pressure on B 30 6 cwts.,

'AFxW_20x 18
AB T 30

Nore 1.—~If two or more weights be suspended at different points of a

beam, supported by posts or props, the pressures due to each weight must be

found for each of the posts separately, and the sum of the pressures on each
post will give the total pressure on each.

and pressure on B = = 12 cwts.
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Nors 2.—If the weight of the beam be taken into calculation, that weight
must be considered as acting on its centre of gravity, which centre, if the
beam be of uniform thickness, will be at the middle point of the beam.

Ex. 10.—A beam, the length of which is 18 feet, is sup-
ported at both ends ; & weight of 18 cwts. is suspended at 3
feet from one end, and a weight of 12 cwts. at 8 feet from the
other end ; required the pressure at each point of support.

Adns. The pressures, by Note 1, are found to be 15
and 9% cwis.

Ex. 11.—If the weight of the beam in the last example be
12 cwts., required the pressure on each point of support.

Ans. 21 and 152 cwts.

Ex. 12.—A uniform beam 40 feet in length, the weight of
which is8 4 cwts., is supported by two props A and B, 30 feet
apart; now a weight of 24 cwts. is suspended on the beam at
the distance of 1@ feet from B, the beam projecting 8 feet
over the prop at A, and 2 feet over that at B; required the
pressure on each of the props.

Ans. 10} cwts. on A, and 17§ cwts. on B.

TO GRADUATE THE LEVER OF A SAFETY VALVE.

The safety valve is for the purpose of preventing the
bursting of boilers by the elastic force of the steam. A F is
a graduated lever turning on F
as a fulcrum; V is the valve,
which is raised when the elastic
force of the steam becomes too
great for the pressure of the
weight W, which presses down
the valve by means of the lever
AF.

Let AF=L, VF =} W= weight at A, w weight of
the lever A F, s = radius of the valve, and P = greatest
pressure per square inch of steam in the boiler. Then »7? =
area of the valve or its orifice, * r* P = pressure on the
valve, and by the property of the leyer.

LxW + }Lxw = Ix7 r* P, whence

*r’lP-iLw
W= i (1)

The weight W at the end of the lever may be determined
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from Formula (1), after which the length L/, corresponding to
any other given pressure P, may be found from the following
formula, which is derived by substituting L’ for L and P’ for
P, in (1) and transposing which gives
, " P — %L w
L= A 2

Ex. 1.—Required the weight W when AF =24, VF =
3 inches, weight of the lever 4 lbs., radius » of the valve =
1} inches, and the pressure P of the steam in the boiler 40
Ibs. per square inch.

Here the area of the valve » r? = 3:1416 x (1})? = 7-07
square inches nearly, which, by omitting the small decimal,
may be taken as 7 square inches ; whence

*rlP—{Lw_7X3X40—12X4
L 24

That is, 33 Ibs. put at the end of the lever will give the
required pressure. We have next to find the distance L’ from
F, at which this weight must be put to give any other re-
quired pressure P'.

Ex, 2.—Let the pressure P’ be 20 lbs. per square inch,
all the other dimensions and weights being as in the last ex-
ample, required the distance A F = L/,

By Form. (2).
L = »r?'lP—JLw 7X3X20—12X4
- W - 33
for the new distance A F at which the weight W must be
suspended to give a pressure of 20 lbs. per square inch.

Similarly, the distances on the lever may be found for any
other pressures to complete the graduation of the lever.

Ex. 8.—A beam of timber, 24 feet in length, is found to
balance itself on a prop 10 feet from the greater end; but on
placing the middle of the beam on the prop, it requires a
man’s weight of 200 1bs. standing on the less end, and also a
weight of 20 1bs,, at a distance of 4 feet from this end, to
balance the beam ; what is the weight of the beam ?

Ans. 11 cwts, 48 lbs.
2

W=

= 33 lbs.

=114&inches,
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THE WHEEL AND AXLE.

34. The wheel and axle consists of wheel with a cylindrical
uxis, passing through its centre perpendicular to the plane of
the wheel. The power is applied to the circumference of the
wheel, and the weight to the circumference of the axle.

55. PrOP.—The wheel and azle are in equilibrium when
the power is to the weight as the
radius of axle is to the radius of
the wheel.

Let CA, CB be the radii of the
wheel and axle, at the extremi-
ties of which the power and
weight act ; then AB C may be
considered as a lever, the ful-
crum of which is C; and since
the power P and the weight W,
being suspended by cords, act
perpendicularly to A C, we shall
have
P:W::CB:CA,thatis

P : W :: rad. of axle : rad. of wheel.

Nore.—The power may act by means of bars or handspikes inserted into
the axle, and the wheel may be removed, as in the case of the windluss and
capstan.

p56. CoRr. 1.—If the power p act in the direction a p, which
cuts A C at right angles in D, then there will be an equi-
librium whenp : W :: CB : CD.

57. Cor. 2.—When P and W sustain each other by
means of a wheel and axle, the thickness of the rope by
which they are sustained must be taken into account ; that is,
we must add half the thickness of the rope to each of the
distances at which P and W act. Therefore, if R = radius
of the wheel, r = radius of the axle, and 2 ¢ = thickness of
the rope, then we shall have

P : W :: rdt : R4t
. Ww=EE®+9)

oo W= e 1)
_W(r+t)

P==377 ©®
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59. Cor. 3.—If the wheel be acted upon without a rope,

the above proportion becomes
P:W::r4¢t:R.

When P and W may be found as in the preceding case.

Norte.—By increasing the size of the wheel in proportion to that of the
axle, a very small force may be made to balance a very great weight, but as
the weight is increased, the size of the wheel must also Le increased to an
inconvenient extent. Hence the use of a system or combination of wheels
and axles. Now as the wheel and axle is only a modification of the lever,
80°also a system of wheels and axles is only a modification of the compound
lever, already described in Art. 48. A system of wheels and axles are some-
times turned by simple contact with each other, and sometimes by cords,
chains, or straps passing over them; in all such cases the friction of the sur-
faces prevents their sliding on each other; but the most usual method of
transmitting power to complex machinery 18 by means of teetk or cogs, which
are raised on the surfaces of the wheels and axles.

60. ProP.—1In a system of toothed wheels and axles, it is
required to find the relation between the power und the weight,
when they are in equilibrium.

The power P is ap-
plied to the circum-
ference of the first
wheel a, which trans-
mits its effect to the
circumference of the
first axle or pinion & ;
this acts on the cir-
cumference of the se-
cond wheel e; and so
on through the pinion
¢ to the wheel f; till
the forceis transmitted
tothelastaxled, which
supports the weight
W. This system or
combination of wheels
and axles is evidently
the very same in prin-
ciple as the combina-
tion of levers in Art. 48 ; therefore P is to W as the product
of the radii of all the axles is to the product of the radii of all
the wheels; and if the letters, referring to the wheels and

DA

Wi
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axles in the annexed figure, denote the radii of those wheels
and axles, we shall have
P:W:: bed: aef

Wobced
whence P = aef ¢))
_Paef
and W = Tod (2)

61. Cor.—Since the number of teeth in wheels are as
their radii, P : W :: product of number of teeth in all the
pinions : product of number of teeth in all the wheels ;
whence the number of teeth in the respective wheels and
pinions may be substituted for their radii in the two pre-
ceeding formulee.

Nore.—By a combination of wheels and axles, such as that just referred
to in Art. 60, a power to any extent whatever may be acquired.

Ex. 1.—A weight of one ton or 2240 lbs. is sustained by
a rope of 2 inches in diameter, going round an axle 4 inches
in diameter ; what weight must be suspended at the circum-
ference of the wheel, by a rope of the same thickness, to
obtain an equilibrium, the radius of the wheel being 6 feet ?

W+
By Form. (2), Art. 57, P = Rac

Here W = 2240, r=2, R=172, and 2¢=2 or t = 1,

2240 (24-1) 6720
h P="""""\T7") = "~ = 92,4 lbs.
whence 72 1 %3 92445 1bs
If the thickness of the rope had not been considered, then
Wor 4480

Ex. 2.—In a combination of wheels and axles there are
given the radii of the wheels, 20, 26, and 48 inches, and the
radii of the pinions and axle 4, 5, and 8 inches. Now, if a
power of 1 cwt, be applied to the circumference of the first
wheel, what weight will it be able to sustain at the circum-
ference of the axle or last pinion ?

By Form. (2), Art. 60.
W_Paef_ 112X 20% 26 % 48

T bed”  4X5XS8
Ex. 8.—The number of teeth in each of three successive

=112X 26 X61bs=156cwt.
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wheels is 144, and the number of teeth in each of the axles
or pinions is 6 ; what weight will this machine support with a
power of 2 cwt.? Ans. 1384 tons 8 cwt.
Ex. 4.—A power of 10 lbs. balances a weight of 300 lbs.
on a wheel, the diameter of which is 10 feet; what is the
diameter of the axle, the thickness of the rope on the wheel
being one inch, and that of the rope on the axle two inches ?

THE PULLEY.

62. A pulley is a small wheel moveable about an axis
passing through its centre, in the circumference of the wheel
is a groove to admit a rope or flexible chain. The pulley is
called fixed or moveable, according as its axis is fixed or
moveable.

63. Pror.—Ir the single fixed pulley there
s an equilibrium when the power and weight
are equal.

. For through the centre C of the pulley draw
AB, which represents a lever of the first kind,
of which the fulerum is C, and since the arms
A C, CB are equal, the power and weight
suspended at A and B must be equal when
an equilibrium is obtained.

64. ProP.— When the power sustains the weight by means
of one moveable pulley, the power is just
half the weight, if the portions of the
sustaining cord be parallel.

First, it is evident that the rope
PCDABH must have the same ten-
sion everywhere throughout its length,
or the system would not be in equili-
brium, and this tension must be equal
to the power P, and since the tensions
of the two parts of the rope AD, BH
are each equal to P, the weight W,
suspended from the axle of the pulley
A B, must be necessarily equal to 2 P.
—The same may be proved in the fol-
lowing manner, suppose A, B to be
joined by a line passing through the
axle of the moveable pulley, then the
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line AB may be considered
as a lever of the second kind,
the power P acting at A, the
weight at the axle of the
pulley, and the fulcrum at
B; therefore P: W :: } AB
(=rad.): AB:: AB: 2AB,
consequently 2P = W, or
P=1W.

65. Cor. 1.—The same
principle may be applied toa
syster or combination of pul-
leys, all drawn by one cord,
passing over an equal num-
ber of fixed and moveable
pulleys. In fig. 1, P: W
:: 1 : number of parts of
the cord passing over the
moveable block. Therefore,
in fig. 1, where the num-
ber of parts of the cord go-
ing over the moveable block
is 4, we ‘shall have P : W :

whence 4P = W, or P = fW
and generally, if the number of
these parts of the cord be 7, we
shall have P : W :: 1 : n, whence

]5’=YnZ or W =P

66. Cor. 2.—1In fig. 2, the
weight, being sustained by three
cords, is equal to three times the
power ; and generally, if the num-
ber of the parts of the cord (pass-
ing over moveable pulleys) be =,
we shall have P : W ::1::2+1,
whence W= (= + 1) P.

67. Pror.—1In a combination
where each pulley hangs by a se-
parate cord, and the cords are
parallel P : W ; being
the number qf moveal;le pulle YS.
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In this combination, a cord goes over the fixed pulley E,
under the moveable pulley D, and is fixed to the hook at 1.
Another cord is fixed to D, goes under the moveable pulley
C, and is fixed to the hook at 2; and so on.

From Art. 63, the weightat D =2P,

the weight at C = 2 x weightat D =2*P.
the weight at = B 2 x weightat C = 23 P
and if the number of moveable pulleys be », then
W = 27 P.

68. Cor.—The tensions of each of the strings in this sys-
tem is shewn by the numbers above the hooks; these ten-
sions being P, 2P, 4P, &ec.

69. Note.—Although the power increases rapidly in this system, being
doubled by the addition of every moveable pulley; but this advantage over
the common system is more than counterbalanced by the very limited range,
since in the common blocks, the motion may be continued till the fixed and
moveable block come into contact, but in this system the motion can only
be continued till D and E come into contact, at which time the other pulleys
will be far apart, because C rises only half as fast as D, B only one-fourth,
and A only one-eighth as fast. Hence the longest possible range is but a
small portion of the whole height occupied by the system, which accordingly
entails a great waste of space, and is hardly of any practical use.

70. Propr.— There will be an equilibrium on the single move-
able pulley, when the power is to the weight as radius to twice
the cosine of the angle which either string makes with the direc-
tion in which the string acts.

A cord fixed at H passes under the moveable pulley B,
and over the fixed pulley
C, the power P being ap-
plied at the extremity of
the cord. The weight W
is suspended to the cen-
tre of the moveable pul-
ley B, which in this case

-is assumed to be of very
small radius. Draw the
vertical line AB of such
a length as to represent
the weight W, and com-
plete the parallelogram ADBE; then BD, B E will repre-
sent the tensions on the cord, which are evidently each equal
to the power P, ... all the sides of the parallelogram are
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equal. Now, conceive ED to be joined, by a line not shewn
in the figure, then we shall have P : W : BD : AB :: rad. :
2 cos ABD, because the angle ED B is the complement of .
ABD. Whence

W =2Pcos ABD.

71. Cor.—If the weight of the moveable pulley be con-
sidered, and that weight = w;

then P: W4 w::1:2co8 ABD. Whence
W=2Pcos ABD — w.

Ex. 1—In a system of pulleys, such as shewn in fig. 1,
Art. 65, the number of moveable pulleys being six, required
the weight, the power being } cwt. and the weight of the
moveable block and pulleys being 36 Ibs.

Ex. 2.—1If the angle made by the horizon and a cord pass-
ing under a moveable pulley be 30°; what proportion does
the power bear to the weight ? Ans. P=W.,

Ex. 3.—If the angle in the last example be 45°; what
proportion does the power bear to the weight ?

Ans. P:W::1: /2.

Ex. 4.—If w be the weight of each pulley in Art. 67, then
prove that W = 2% P — (2% — 1.

THE INCLINED PLANE.

72. The inclined plane is considered in mechanical science
as a smooth, perfectly hard and inflexible surface; the iron
rails on an ascending or descending gradient of a railway
may be regarded as a plane of this kind, or at least a near
approach to it. .

"78. Prop.— When a body is in equilibrium on an inclined
plane, P : W :: the sine of
the inclination of the plane to
the horizon : the cosine of the
angle which the sustaining.
cord makes with the plane.

Let A B be parallel to the
horizon, A C a plane inclined
to it; 'W a body sustained on
the plane by a power P acting
in the direction WD. Draw
WE perpendicular to A B,




THE INCLINED PLANE. 33

take WD, WE to represent the two forces P and W, and
complete the parallelogram WEFD. Since P and W are in
equilibrium, their resultant must be perpendicular to the
plane A C, and they will be supported by the reaction of the
plane. Hence the pressure R of the body on the plane will
be represented by the diagonal WF of the parallelogram, and
the three forces P, W, and R will, therefore be proportional
WD, WE, WF, and
P:W::WD:WE::sin WFD:sin DWF.

But sin WEFD = sin F W E = s8in B AC; and, since the
weight W may be regarded as a point on the plane A C, and
because WF is perpendicular to AC, sin DWF = cos CWD,

hence
P:W::sinBAC:cos CWD.

74. Cor. 1.—When cos CW D = rad. = 1, then
P:W::sinBAC:1
CB :AC,
that is, P : W :: the height of the plane : its length; also
W : to pressure R against the plane :: AC : A B,
that is, W : R :: the length of the plane : its base.

WxBC
Whence P = AC )]
Px AC
= B0 @
Wx AB
R="2¢c ©®

In this case the direction of
the power is parallel to the
inclined plane A C, as in the
annexed figure, and the
weight is the greatest that
can be supported by the given
power P.

75. Cor. 2.—If the power
act parallel to the base A B,
then the angle CWP = com-
plement of D WF, and
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P:W::sin BAC:cos BAC.
e CB : AB.
76. Cor. 3.—If the power act perpendicular to the hori-

zon the CWD = 90° — B AC, therefore cos CWD =
sin B A C, and consequently

P:W::l:1,or P=W.
In this case the weight is entirely supported by the power,

and there is no pressure on the plane, which is also self-evi-
dent from the nature of forces.

77. Cor. 4.—Hence it is easily seen that, if two weights
balance each other
on two inclined
planes of the same
height, as in the
annexed figure,
the weights must
be directly pro-
portional to the
lengths of the

planes on which they rest.

Nore.—Examples would have been given here, as has already been done
after the exposition of the principles of the other mechanical powers; but as
the wedge and the screw are only modifications of the inclined plane, the
screw being chiefly combined with one or more of the other mechanical
powers, it is thought best to treat immediately of the principles of these two
powers and afterwards to give copious examples on the inchined plane which,
as a power on railways, roads, &c., performs most important effects, second
ounly to those of the steam engine. Also, previous to giving these examples,
it will be proper to explain the natare and define the power of various work-
ing agents by which forces are imparted.

THE WEDGE.

78. The wedge is commonly used for separating bodies
that are strongly bound or pressed together, as for cleaving
thnber, in which case it is urged by percussion. The force
impressed by percussion, or a blow on the back of the wedge,
has an effect incomparably greater than any mere pressure
or-dead weight, 'such as is used in the other mechanical
powers. But as the force of percussion cannot be measured,
we shall only here compare its effects on wedges of different
inclinations.
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79. In the wedge A B C, the power acting perpendicular to
the back AB is to the forces acting perpendicular to either side
A C or BC as the breadth of the back
A B is to the length of the side AC or
B C, the wedge will be in equilibrium.

For when three forces are in equili-
brium, they are as the corresponding
sides of a triangle, drawn perpendicular
to the directions in which these forces
act. But AB is perpendicular to dC the
direction of the force against the back,
and A C, B C are perpendicular to the
forces acting against them ; therefore, if
P = force on the back, and W = pressure on AC or BC,

then P:W::AB:AC::2s5inACB:1.
. P=2WsinACB.

THE SCREW.

80. The screw is a spiral groove winding round a cylinder
s0 as to cut all the lines drawn on its surface parallel to its
axis at right angles. The screw is, therefore, nothing more
than an inclined plane, wrapped round the surface of the
cylinder, the base of the plane being equal to the circumfer-
ence of the cylinder's base, and coinciding with it, and the
height of the plane equal to the distance A B between two of
the threads.

81. Pror.—1In a vertical screw, when there ts an equili-
brium, P: W ::d :27r; in
which d is the distance between
two contiguous threads mea-
sured in a direction parallel to
the axis of the screw, and 2« r
is the circumference of the circle
which P describes.

For, since
the screw is
nothing more
than an in-
clined plane
ABC, un-
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wrapped from the cylinder, (see the small fig.) the base B A
of the plane being equal to the circumference of the cylinder’s
base, and the height A B of the plane equal to the distance
between two of the threads of the screw, and since the power
in this case acts parallel to the base, it follows from Art. 75,
Cor. 2, that P : W :: AB : BC :: the distance between two
of the threads : the circumference described by the power,
which in this case is the circumference of the cylinder, to
which the power P is supposed to be applied, the weight
W resting on the top of the screw, as shewn in the larger
figure.
P : W :: AB : the circumference described by P,
d :2xr,

82 Cor.—Instead of considering the screw to raise a
weight W by acting vertically, we may suppose it to be ap-
plied to produce a pressure W in any other direction, and the
proportion between P and W will be the same as before.

83. Pror.—In the endless screw there will be an equilibrium,
when P: W ::dxpxpxe' x&e : 2xrxr x r' x " x &e.,
where d is the distance between the
threads and 2«1 the circumference
described by the power, as before, and
vy v, 1", &c. the radii of all the
wheels, and , ¢, p'y &c. the radii of
all the axles.

The endless screw is so combined
with the wheel and axle, or with a
system of wheels and axles, that the
threads of the screw may work in the
teeth of the first wheel, the teeth of
the pinion of this wheel working the
teeth of the next wheel, and so on,
the weight being supported by the
axle of the last wheel. Let P =
power produced by the screw at the
circumference of the wheel E, the
power P acting on the winch AC at

A, then, by Art. 81,
P:P::d:2~xr
and in the wheel and axle, Art. 60,
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P:W::pr,r &e :r, ¢, 7, &e.
S P:Wide A0, & 2xm, 7, 0, Y, &e.

84, Cor.—In the figure to Art. 83, there are three wheels
E, F, and G, and their pinions or axles, whence in the sys-
tem referred to

P:W:idppp : 22777y,

Nore.—The number of teeth in the wheels and pinions may be substituted
for their radii, as in Art. 61,

Ex. 1.—The distance PW (fig. Art.81.) at which the power
acts is 6 feet, and the distance between two of the threads of
the screw is 2 inches; what weight will a man be able to
raise, when he acts at P with a force of 150 lbs. ?

Here the power acts 72 inches from the centre, hence
2xr = 2 X 72 X 31416 = 45239 inches = circumference
described by the power; whence, by Art. 81,

P:W::2:452'39 in which P = 150 lbs.

W= ‘15_2—3%5-130 = 33929} Ibs.

Ex. 2.—If the endless screw be turned by a winch AC of
18 inches, the threads of the screw being distant § an inch
each, the screw turns a toothed wheel E, the pinion of
which turns another wheel F, the pinion of this another
wheel G, and on the pinion or axle of which is sustained the
weight W; now the radii of the wheels to be 18 inches, those
of the pinions and axle 2 inches, and the length of the winch
AC = 22 inches ; what weight will a man be able to sustain
who acts at the handle of the winch with a force of 150 lbs. ?
From Art. 84.

P=150:W::} x2%::23x°1616 X 22 x 18%, whence

. 8
W o 150X 2x 31416 x 22 X 188 _ g )01 600 10e. —

Ix2
18496 tons. nearly.

VIRTUAL VELOCITIES.

85. Propr.—If a power and weight be in equilibrium in any
machine, and the whole be put in motion ; the power : weight
: 1 the weight's velocity : the power’s velocity.

One proof of this important proposition may be simply de-
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rived from an enumeration of the cases of the different me-
chanical powers.

(1.) The lever. Let AF B be a lever, kept at rest by the
power P and the weight W ; and let the lever move through
a very small angle to the
position a Fb; then A and
B will evidently describe cir-
cular arcs Aa, Bb, which will
be as the velocities of the
points A and B, and ultimate-
ly these arcs may be taken
for straight lines perpendi-
cular to A B, and because the triangles AFa, BFb have the
equal angels at F, we shall have

Aa:Bb:: AF :FB,
. Psvel : Wavel :: W:P.

(2.) In the wheel and acxle, if the power be made to des-
cend through a space equal to the circumference of the wheel,
the weight will be made to ascend through a space equal to
the circumference of the axle in the same time, and since
these circumferences are as their radii, we shall have

P's vel. : W’s vel. :: rad. axle : rad. wheel :: W : P

(8.) In the single moveable pulley with parallel strings, if
the weight ascend 1 inch, each of the strings is shortened
1 inch, whence the power descends 2 inches, therefore

Psevel. : Wavel::2:1:: W:P.

(4.) In the system of pulleys (Art. 65), if the weight as-
cend 1 inch, each of the strings at the lower block will be
shortened 1 inch, and the power will descend 7 inches;
therefore
Psvel. : Wsvel. ::n:1::W: P

(8.) In the inclined plane, let
the weight W be raised through a
small space Ww and let WA be
drawn in the direction of the
power, causing P to descend ; then
W w, wn are as the velocities of
power and weight, therefore

Psvel. : Wavel.:: Ww:wn:: AB:AC:: W:P.
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(6.) In the screw, if the power P describe the circumfer-
ence of a circle, the radius of which is PW, (Art. 81) the
weight W will be raised through a distance equal to two ad-
jacent threads of the screw ; therefore

Psvel. : Wsvel. :: 2»x PW:AB:: W: P,

86. Cor. 1.—Hence not only in the mechanical power,
taken singly, but in any combination of them, we shall have
generally

Psvel. : Wsvel.:: W: P,

87. Cor.—The weight of a body multiplied by its velocity
is called its momentum ; and it is hence evident that, in ge-
neral, when there is an equilibrium, the momenta of the power
and weight are equal. On this principle the power of a
machine may be estimated, and frequently this will be found
the simplest method.

ON FRICTION.

88. In the investigations of the problems in equilibrium
the surfaces of bodies have been assumed to be perfectly
smooth ; but, in practice, all bodies are found to be more or
less rough, and therefore the results that have been deduced
will be more or less modified by the effects of this roughness,
which produces a retarding force called friction. It has been
found by experiment that this retarding force or resistance,
on a given surface, is a certain proportional part of the
weight of the body moved, and that it is not affected by the
rate of motion,nor by the extent of
the rubbing surface. Thus, if the
weight W rest on the horizontal
plaune A B, and it be drawn hori-
zontally by a weight F attached to
a cord passing over a pulley P, then
the weight ¥, which is just suffi-
cient to draw W along the plane, will measure the friction of
W on the plane. If W be 1 ton, then, in the case of a well
made, smooth Macadamized road, the resistance of friction
is found to be about 4 of the whole load, or F is about 75
1bs. to the ton ; so that a horse drawing 1 ton along such a
road, must pull with a force of 75 lbs.; which is called the
traction of the horse. In the case of a railway, where the
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friction is probably the smallest in all ways, being about g4
of the weight, therefore, if W be 1 ton, then F will be
2% = 8 Ibs., and if }‘ = sho then, generally, F will be =
w . .
5 The fractions ¢ and 5 are called the co-efficients
of friction.

89. If the inclination of the plane, on which a body ts
moved, 1s small, as on the ascending and descending gradients
of railways, and the ascents and descents of common roads,
the pressure on the plane will evidently be very nearly equal
to the weight of the body ; hence the resistance produced by
friction may be calculated with sufficient accuracy after the
manner explained in the last article.

90. Now, let P = power requisite to draw a weight W,
including its friction, along a plane with a rise of A feet in
100 feet, Q = power requisite to draw W alorig the plane

exclusive of friction, and let the friction F be = \_’V = ann
n

part of the weight ; required the relation between P and W.
By Art. 74, Q:W::4:100,

rW
whence Q.—_.- i—o—o-;
AW W _ hn4100
butP_Q+F_WO+h = Toon w, 1)
1002 P
“ W=t 100° ®

Ex. 1.—If a train of 30 tons be moved along a level rail-
way; what power will be required to overcome the resistance
of friction at the rate of 8 Ibs. per ton, or 544 of the weight ?

Here the required power P is equal to the resistance of
friction, that is, by Art. 88,

W 3042240
P—F-—.z-—- ——28T‘ _2601b8.,

o, P=8W = 8x30 = 240 lbs.
Ex. 2.—The gradient of a railway rises 2 feet in 100 ;

what power will be required to draw a train of 50 tons up
the gradient, the coefficient of friction being 33 or n = 2807
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By Form. (1), Art. 89,

_ hn4100 . 5x 2804100 _

Ex. 3.—The ascent of a turnpike road is 5 feet in 100;
what power will be requisite to draw a load of 6 tons thereon,
the coefficient of friction being ¢4 or n = 247

__hn4100 _ 5 x 24 x 100
Here P = —50 = W =—To0x 24
1344 Ibs. = 112 cwt.

THE USEFUL EFFECT OR MODULUS OF A MACHINE.

90. The useful effect or modulus of a machine is, the
fraction which expresses the value of the work compared
with the power applied, which is expressed by unity. Thus,
if a machine only perform § of the work applied to it, in this
case § of the work or power applied is lost by friction, and
4 is called the modulus of the machine. The work that is
thus lost depends on the nature and extent of the rubbing
surfaces. The work thus lost in the screw, the inclined
chain-pump, &c., is very great. The following is a table of
the moduli of machines for raising water, with examples of
their application.

Inclined chain pump............ 3
Upright chain pump............ }
Bucket wheel .......c..co.eeen 3
Pumps for draining mines ... §

Ex. 1.—A power of 1501bs. is applied to the winch which
turns the axle of an inclined chain pump; what weight of
water will this power raise, the length of the winch being 20
inches and the radius of the axle 4 inches ?

By the property of the lever, or wheel and axle, in con-
Jjunction with the table,

4 W = §x20xP, whence

20x 1
W = BX20R 500 b,
Ex. 2.—The piston of a steam engine draws the rod of a
pump for draining a mine with a force of 6 tons ; what weight
of water will be raised by the piston ?

6 x 2240 =
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Here the engine is supposed to act with a lever with

equal arms.
oo W =3P = 4x6 = 4 tons.

THE PRACTICAL APPLICATION OF STATICS TO
THE WORK OF LIVING AGENTS AND TO
MACHINERY.

In applying the principles already laid down, to estimate
and compare the different kinds of work performed under
different circumstances, it becomes necessary to have a dis-
tinct measure or unit of work by which the various results
can be estimated and compared.

91. The English unit of work is the power necessury to
raise one pound through a space of one foot. Thus, if one
pound be raised one foot either by a living agent or by a
machine, then one unit of work has been performed ; if 11b.
be raised 5 feet, then 5 units of work has been performed ; if
4 1bs. be raised 6 feet, then 4 x 6 = 24 units of work has
been performed, and so on. Hence the units of work per-
Jormed are measured by product of the weight of the body in
pounds, and the space or height in feet through which it ts
raised; also, pressures or resistances of every kind, in what-
ever direction they are exerted, may be expressed in pounds,
and therefore measured by the unit of work here described.

Ex. 1.—How many units are required to raise a corf of
coals of 5 cwt. from a pit, the depth of which is 60 fathoms?

Weight of coals in pounds = 112x 5 = 560 lbs.
Depth of pit in feet........ = 60x 6 = 360 feet.
.*. the units of work required = 560 x 360 = 201,600.

Ex. 2.—The ram of a pile engine weighs 9 cwt., and it
has a fall of 21 feet, required the units of work exerted in
raising the ram?

Units of work = 9x112x 21 = 21,168.

Ex. 3.—How many units of work will be required to pump
6000 cubic feet of water from a mine, the depth of which is
80 fathoms ?

A cubic foot of water weighs 62} 1bs., hence,
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Weight of water = 62} x 6000 = 375,000
.*. units of work = 875,000 x 80 x 6 = 180,000,000.
Ex. 4.—A horse, moving at the rate of 3 miles an hour,
draws a bucket of water weighing 100 lbs., out of a well, by
means of a rope passing over a pulley; required the units of
work done per minute.
5280 x 3
60
.*. units of work per minute = 264 x 100 = 26,400.

Ex. 5,—How much labouring force will be required to
raise 1000 gallons of water from a well, the depths of which
is 50 fathoms ?

Ex. 6.—How many units of work will be performed by a
man descending a mine 50 fathoms deep, and drawing up a
weight of 140 1lbs. over a fixed pulley, the man’s weight
being supposed slightly to exceed the given weight ?

Ans. 42,000 1bs.

SOQURCES OF LABOURING FORCE AND THE WORK OF
LIVING AGENTS.

92. The chief sources of labouring force are animals, in-
cluding man, water, wind, and steam : the labouring force or
work of animals varies according to the manner in which
they exert their strength, and it is estimated by the number
of units of work which they can raise, or move by drawing,
or by pressure in any direction, in one minute. The follow-
ing table shews the amount of effective work, that can be
performed by several of the most common living agents.

Work done per minute.

Duration of labour, eight hours per day.
Horse power ......cc......... ceventeenesens cesesee. 33,000 units.*
A man turning a winch ....ovviiiiiinen.. 2,600,
drawing horizontally .......ccccoeeeeen 8,200
raising materials with a pulley ...... 1,600 ,,
throwing earth to the height of 5 feet 560 ,,

* This is the number of units of work assigned by Watt to a horse, but
by recent experiments, it has been found to be considerably too much, § of
which, or 22,000 is considered to be the work of a horse of average strength ;
however, the number given in the table is still retained by engincers as the
number of units of a horse’s power.

Space passed over per minute = = 264
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The work of a mule and an ass are respectively estimated
at § and  of that of a horse.

Work of water.—~When water acts on the float boards of a
wheel, the quantity of work which it is capable of performing
is equal to the product of the weight of the water and the
height through which it falls.

Work of steam.—Steam acts by its elastic force against the
surface of the vessel in which it is contained, and the mea-
sure of its pressure is the number of pounds it will raise
upon one square inch. Thus, if in a steam engine, the
surface of the safety valve be one square inch, and have a
weight of 40 Ibs. placed upon it, and the steam be just able
to raise the valve, and to escape, the pressure of the steam is
said to be 40 lbs. per square inch.

Ezamples of manual power.

Ex. 1.—How many tons of earth will a man raise in 8
hours working with a winch, (wheel and axle,) from a mine
20 fathoms deep ?

Here the tiine of work is 8 x 60 = 480 minutes, hence

Units of work per day ......... = 2600 x 480 (see table.)

Units of work in raising 1 ton
to the height of 20 fathoms, » = 2240x 20 x 6

or 120 feet «veeveeeininnanenes
o : _ 2600x 480 _ .
.>. Number of tons raised ...... = 2940 x 9056 — 4-64.

Ex. 2.—How many cubic feet of earth of 100 Ibs. per foot,
will a man throw to the height of 5 feet in a day of 8 hours?

__560x60x8 __
No. c. ft. = W = 537*-

Ex. 3.—How many tons of earth will a man raise with a
single pulley in a day of 8 hours, from a mine 80 feet in
depth ?
1600x60x8 __ 4,

2240x80 ~ T

Examples of horse power.

Ex. 4.—How many horse powers will it require to raise §
ewt. of coals per minute from & mine 100 fathoms deep?

No. of tons =
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Weight of coals raised per minute = 5 x 112 = 560 lbs.
Depth of mine in feet ......cceveuee. = 6 x 100 = 600 feet.
.*. units of work per minute ...... = 560 x 600 = 336,000.
Now a horse does 33,000 units of work per minute, (see
table, Art. 92.)
336000

.. Horse powers, or P = 33000

Ex. 5.—How many horse-powers will be required to lift
10000 cubic feet of water per hour, from a mine 80 fathoms
deep ?

= 104

Weight of water = 62} x 10000 Ibs.
Depth of mine... = 6 x 80 feet.
623 x 10000 x 6 x 80
60 ’
624 x 10000x 6x 80 __
60x 33000  — oM¥
Ex. 6.—How many cubic feet of water will an engine of
10 horse-powers raise per hour, from a mine 80 fathoms
deep ?
ng. 7.—Required the number of cubic feet of water which
an engine of 60 horse-powers will raise per hour, from a
mine 80 fathoms deep, supposing } of the work to be lost by
friction.
Ex. 8.—A forge hammer weighing 5 cwt. makes 60 lifts
of 2 feet each in one minute; what is the horse-power of the
engine that moves the hammer ?

.. units of work per min. =

and IP =

WORK IN MOVING A CARRIAGE OR RAILWAY TRAIN ON A
HORIZONTAL PLANE.

Norz.—When a locomotive engine commences its motion, its power ex-
ceeds the resistance, and therefore the speed of the engine continues to
increase until the resistance becomes equal to the power of the engine, then
the speed of the train will be uniform, which is commonly called a steady
speed, or the greatest or maximum speed, the work destroyed by the resist-
ance being now exactly equal to the power exerted by the locomotive engine.
The same may be said of all other machines; and it is on this principle that
the following investigations are made.

93. By Art. 88, the friction on a horizontal plane is
;—’, or the nth part of the weight w0 of the carriage or train ;
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1 . . . L. .

o being the coeficient of friction, therefore the whole resist-
w

ance to motion on the plane is also = . Let P = power

or units of work required to move the train, s = space in feet
moved over in the time ¢ in minutes, and 1P = number of
horse-powers in P; then P = 33000 IP = units of work

. N §
or pounds moved one foot in one minute, and ;= feet

. . . w w §
moved in one minute by the weight g whence o X

= units of work required in moving the carriage o
train;

W P=33000P="2x %
n t
Ws
whence P = -33—T—00~n—t (A)

In railway calculations of this kind w and s are usually
given in tons and miles, which are to be reduced to pounds
and feet by multiplying them respectively by 2240 and 5280,
also n is most commenly = 280 ; if, therefore, we substitute
2240 W for w, 5280 8 for s, and 280 for », in Form. (A), we
shall have, after reduction,

P = 128W.S__128W. S

100 ¢ (1)

IP.¢
whence W = TSS (2)

P.:
8= 128 W @)

128W. S
and ¢ 573 “4)

Ex. 1.—Required the horse-power (IP) of a loeomotive
engine, which moves with a steady speed of 50 miles per
hour, on a level railway, the weight of the train being 45
tons, and the friction 43 of the weight of the train, the re-
sistance of the air not being considered.
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By Form. (1),
128W.S _ 1-28x45x 50
P= =
t 60
Ex. 2.—An engine of 40 P moves with a steady speed of
35 miles per hour on a level railway ; required the weight of
the train, the friction being as usual.
By Form. (2),
.W’= IP.t = 40x60
1288 128x35
Ex. 3.—In what time will an engine of 50 IP, moving a
train of 60 tons, complete a distance of 40 miles?
By Form. (4),
1-28W.S _ 128 x 60x 40
= ==
» 50
Ex. 4.—How many miles per hour will a train of 40 tons
be drawn by an engine of 35 EP, the friction being as usual?
By Form. (3),
IP.t _ 35x60

S 1.28 W 1-28x40

Ex. 5.—To how many pounds per ton does the friction
amount in Example 1., the engine being 48 IP?

By transposing Form. (A)
__33000¢.FP. 33000 x60x48

w2 2240 x 40 x 5280 x 50
weight of the train, or 8 Ibs. per ton, the values of w and s
being in pounds and feet respectively.

Ex. 6.—If 4 horses draw a load of 6 tons, 2 miles per
hour, on a road of which the coefficient of friction is 45; how
many units of work will each horse perform ?

By transposing Form. (A), and putting U instead of 33000,
we shall have .

ws 6 x 2240 x 2 x 5280 .
U_nt.I-P— 20 60 x 4 == 29568 units of work.
Ex. 7.—What must be the effective FP of a locomotive
engine, which moves with a uniform speed of 50 miles per
hour, on a level railway, the weight of the train being 30
tons, and the friction as usual ? Ans. 32 IP.

= 48 horse powers.

= 534 tons.

= 614} min. = 1h. 1}{min.

= 4154 miles.

= 5} of the

1
n
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Ex. 8.—In what time will a locomotive engine of 50 IP,
which moves a train of 135 tons, complete a journey of 80
miles on a level rail ? Ans. 8h. 448 min.

Ex. 9.—At what rate per hour will a train of 100 tons be
drawn by an engine of 50 IP on a level rail ?

Ex. 10.—The maximum speed of & locomotive engine of
50 P is 40 miles per hour on a level rail; required the
weight of the train.

WORK IN OVERCOMING THE JOINT RESISTANCES OF FRICTION
AND GRAVITY ON AN INCLINED RAILWAY OR
COMMON ROAD.

94. Let P= power and w = weight in pounds of a carriage
or train, and A = rise of the inclined plane in every 100 feet

of its length ; ﬁthen, by Art. 89, Form. (1), P =L:(()).+:'-' w;
and let IP, s and ¢ respectively represent the horse-powers,
space in feet, and time required in moving the weight

100+4 tw, as in the last article; then P = 33000 1P =

100 n
units of work in pounds, and ® = feet moved in one minute
. 1004+An 100+4An 8
by the weight oo ¥ whence oon YX:=

units of work required in moving the weight, which must be
equal to the units of work in the power,

_ __ 100+An s
P = 33000 B =~ —vw x ¢
_ (100+4n) sw
whence IP = soc0+100ne (V)

Now, let W = weight moved in tons and S = space in
distance moved in miles, as usually given in railway calcula-
tions; then w = 2240'W, and s = 5280S ; these values being
substituted in Form. (A), and % being taken = 280 as in the
last article, there will result, after reduction,

256 (5+14 ) W.8
= 1000 ¢ (l)
1000 ¢ . FP @
256 6+ 14 4) 8

whence W =
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1000¢. IP
S=6G+ W ®
256 (5 + 14A)W .S
t= 1000 1P )
1000¢. P — 1280 W . S
sd A= 3584 W. S Y

Nore.—In all these formule 4 must be taken negatively, when the weight
or train descends the plane, in which case gravity assists the moving power,
it also appears that when % is negative and equal yir of a foot, then no
power is required to move the train, for the value of HP vanishes, since in
this case 5 + 14 & becomes == 0.

Ex. 1.—A train of 40 tons ascends a railway gradient,
rising 2 feet in 100, with a uniform speed of 15 miles per
hour; required the FP of the locomotive engine, the friction
being as usual.

By Form. (1),

256(5 + 142)W.S 256(5 + 28) x40x 15 — 8411
1000 ¢ - 1000 x 60 = UhaE

Ex. 2.—Required the IP, as in the last Example, when
the weight of the train is 60 tons, the rise 1 in 200 or } in
100, and the rate of motion 30 miles per hour.

Ans. 92 IP.

Ex. 3.—An engine of 75 P ascends a gradient, rising §
in 100, with a uniform speed of 20 miles per hour; required
the weight of the train.

By Form. (2),

1000¢. B> 1000 % 60 X 75 = 567
256(5+14k)S ~ 256 (% + 6) x 20 0 ton
Ex. 4.—A train of 120 tons descends a gradient, rising }

in 100, with a uniform speed of 50 miles per hour; what is
the IP exerted by the engine ?

Here 4 must be negative, because the train descends the
gradient ; hence

P =

W=

By Form. (1),
_256(5—144)S. W _ 256(5 —})x50x 120
= 1000 ¢ = 1000 x 60 = 38¢.

Ex. 5.—A train of 50 tons ascends a railway gradient,
3
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having a rize of 1in 600; what is the speed of the engine
when its IP = 407

By Form. (3) the speed is found = 25§ miles per hour.

Ex. 6.—At what rate per hour will a train of 50 tons be
drawn by an eungine of 60 FP up a gradient rising 1 in 800 ?

Ex. 7.—An engine of 40 IP draws a train of 50 tons,
with a uniform speed of 254 miles per hour up a gradient ;
required the rise per cent. of the gradient.

By Form. (5), the rise of the gradient is found to be
4 per cent.

FORCES ACTING IN AN)Y DIRECTION IN THE SAME PLANE
ON A RIGID BODY.

(A). Pror.—To find the resultunt of any number of forces
acting in the sume plane on a rigid body.

Let P, P, &c. be any number of forces, acting in the direc-
tions PQ, P'Q, &c. on
the body in the plane
rAy; let Az, Ay be
drawn in this plane at
right angles to each other;
and let 2. y: 7, y; &e.
be the co-ordinates of the
points M, M, &e.; also,
let o. a. &c. be the angles
at which the forces P, P,
&c. are inclined to the
axis Aw, at Q, Q, &ec.
Now let each of the forces
P, P, &c. be resolved into two other< X, Y; X'\ Y'; &c
parallel to the axes Ax, Ay; then there will result

X =Pcosa, X = Pcosd, &c.;

and Y = Psin,, Y = P'sing, &c.
Let X, be the resultant of the first set of forces, and m
its distance from the axis Ar; and let Y, be the resultant of

the second set, and » its distance from the axis Ay; then by
Art. 20, there will result

X, =X + X + &c
Y, =Y + Y + &
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X,m=Xy+ X'y + &c.
Yo=Yz + Yy + &c.

From these four equations X,, Y,, m, », can be deter-
mined. Take AC=m, AB =%, and draw CS, TB re-
spectively parallel to Az, Ay; then the forces X,, Y, acting
in the directions CS, T B, may be assumed to act at their
point of intersection D ; now let R be their resultant, and ¢
the angle which its direction makes with the axis Ax; then,
we shall have

R=vX®+1Y)
and tan¢ = L;

X,

whence the position and magnitnde of the resultant of all the

forces P, P, P’, &c. becomes known,

(B). Cor.—When there is an equilibrinm among the forces
P, P, P", &c., one or more of them must act in contrary
directions to the others, in which cases the sines and cosines
of their directions must be negative according to the quad-
rant in which they fall, as estimated from the axis A x.
Hence it is evident that, in this case,

R= v(X? + Y?)=0, and consequently
X] =O, and YI =0, or
X+X +&.=0, and Y+ Y + &c. =0.

Ex. 1.—ABCD is a square, the side of which is 20 inches;
and four forces of 8, 10, 12, and 16 cwts. act in the plane of
the square, at the points A, B, C, D, and make respectively
with A B the angles 80°, 45° 60° and 150°; what is the
magnitude and position of a force, which acting. on AB, shall
keep the square in equilibrium ?

Ans. Force 28-45 cwts., acting at an angle of 80° 26/, and
at a perpendicular distance of 164 inches, form (A).

Ex. 2.—Required the same, as in the last Example, when,
instead of a square, the figure is a rhombus, the acute angles
of which are each 60°.

Ex. 3.—If any number of forces, in the same plane, act on
» point and keep it at rest, they may be represented by the
sides of a polygon taken in order ; required the proof.
3%
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ON FORCES WHICH ARE NOT IN THE SAME PLANE.

(C.) Pror.— 70 find the resultant of any given number of
Jforces, acting in any given directions upon a point.

Let AP be any force acting at the point A ; from A draw
the three rectangular co-ordinates Az, Ay, Az, and complete
the parallelopiped AP ; join PB, Am; then mB is a paral-
lelogram, hence the force
AP, acting at the point
A, may be resolved into
two forces represented
by AB, Am, actingat A;
also, because CD js a pa-
rallelogram, the force Am
may be resolved into the
two forces AC, AD, act-
ing at A. Thus the force
AP is resolved into the
three forces AB, AC,
AD, acting in the direc-
tions of the three co-or-
dinates.—Let A P be represented by Q, and let @ 8, v be the
angles which AP makes with Az, Ay, Az respectively; then,
because A B is perpendicular to the parallelogram P B, it is
also perpendicular to the line PB, and .. AB = AP cos a =
Q cos a ; similarlyto AC = Qcos 8, and AD = Q cos 4.
—Now, let Q, Q", &c., be any other forces acting at A, and
making with Az angles , o', &c.; with Ay angles 8, 8/,
&c.; and with A z angles 7, 7', &c.; then, if all these forces
Q, Q', &c., be resolved each into three others acting at right
angles to each other at A, and if we make

Qcosa 4+ Q cos @ + Q" cosa" + &c. = X,
QcosB + Qcosg + Q' cos B + &c. =Y,
and QcosY + Q cosy + Q'cosy" + &e. = Z.

X, Y, Z will be respectively equal to the sum of the resolved
forces, acting in the directions of Az, Ay, Az. Now let
R be the resultant of X, Y, Z, and = p o the angles it makes
with Az, Ay, Az; and let it now be assumed that A B,
A C, AD shall represent X, Y, Z; then we shall have
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AP? = AB?2 + BP2 = AB? + Am? =
AB? 4+ AC? + AD?; whence
R=vX?*+7Y*+17Z% (1)
also AB= APcosm=Recosr, AC=Rcosp, and
AD=Rcose; whence

Z
%, coso = p- 2)

(D). Cor. 1.—Since R? = X2 + Y2 4 Z? = R? cos?~ +

R? cos? p + R? cos? o, there results

cos? * + cos?p + costs = 1. 3)
Therefore only two of the angles w p, ¢ are required to deter-
mine the position of the resultant A P.

The equations (1) and (2) are available to find the magni-
tude and position of the resultant R of three forces, acting
vn & point at right angles to each other ; which equations are
usually given for this purpose in works on mechanies.

(E.) Cor.2.—When there is an equilibrium, we shall have

R=vX*+Y?+7Z2)=0,
consequently X =0, Y = 0, Z = 0, as in former cases.

(F.) Pror.—T0 find the resultant of any grven number of
parallel forces, acting on a rigid body, and not in the same
plane.

This may be most readily done by finding the resultant of
any two of the forces (Art. 20), then by considering this ré-
sultant as one force, and next finding the resultant of this
force and a third force, and so on till the resultant of all
the forces be found.

(G.) Prop.— To determine the conditions of equilibrium of
any number of forces, acting irn any directions on a rigid body.

Let P, P, P, &c., be the forces, acting upon a rigid body
at the points Q, Q, Q', &c.; and let Az, Ay, Az be three
axes at right angles to each other; z, y, z the co-ordinates
of the point Q; 2, ¥, 2 those of the point Q, and so on.
Also let @, 8, v; o, B, o/, &c., be the angles which the direc-
tions of the forces P, P, P", &c., make with lines parallel to
Az Ay, Az respectively. Now, let the force P be resolved
into three others X, Y, Z, parallel to the three axes; similarly

X
cosw:—Ii, coS p =
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let the force P’ be resolved into the three forces X, Y', Z'; and
so on. Thus the forces P, P, &c., may be resolved into
three sets of forces, acting at the points Q, Q, &c., and
parallel to Az, Ay, A z, respectively; whenee the conditions
of equilibrium may be readily found, as in Articles A and C
and consequently the magnitude and position of their re-
sultant.

PROBLEMS ON ALL THE PRECEDING ARTICLES.

(H.) Pros. 1.—A bar of iron A B, 12 feet lung, resting on
a ledge at B, is supported vn a horizontal position at the other
end A by a chain A C, fastened to a hook at C, which is 16
Seet directly above B ; a weight W of 12 cwts. is suspended
Jrom the beam at E, 8 feet from B ; required the tension of
the cord, the weight of the iron bar being 4 cwts. = w.

Perpendicular to A C draw B D, which is readily found
to be 96 feet, which is the per-
pendicular distance, from the fulcrum
B of the force or tension acting
in the direction A C; and the weight
of the iron bar acts at its centre of
gravity G, the middle point of AB,.
Now, put T = tension of the chain
and W = weight of the iron bar ;
then, either by the property of the
bent lever Art. 46, or by the equality
of moments, we shall have

BDXT=BEXW+BGxw=BEXW+1AB Xw,
BEXW+3ABxw _8x12+6x4
BD - 96

(1.) Pros. 2.—Required the weight W, in the last Problem,
which will be necessary to break the chain A C, when it can
just sustain 2 tons or 40 cwts.

By transposing the formula in the preceding problem, there
will result
w BDXT—3ABxw 96x40—6x4

- BE - 8

(J.) ProB. 3.—A cone B C, of given dimensions and

weight, rest on one edge of its base at B, on the horizontal

whence T = =12}cwts,

= 45 cwts.
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plane AE, and is sustained by the cord A C; now AC
and A B are given to determine the tension of the cord A C.

From B draw B D per-
pendicular to A C and from
G, the centre of gravity of
the cone, draw G E perpen-
dicular to AE; then BD,
BE are respectively the per-
pendicular distances from
the fulerum B, at which
the force of tension on A C
and the weight of the cone
act, whence by the property of the bent laver,

BD x tension on A C = B E x wt. of cone,

. BE X wt. of cone_
.. tensionon AC = BD 5

in which BD and B E are readiljyfound by, geometry, the
distance of G from the base of the cone being } of its height.
Art. 114.

(K.) ProB. 4.—A and B are two fized points, and W is a
weight suspended at a loop C in the cord AB C, it 45 required
to find the tensions on the parts A C, B C of the cord.

The point C of the cord is kept at rest by three forces or
tensions; ¢. e, the weight W
acting by the cord CW, and
the tensions or forces of the
cords CA, CB acting in the
directions of the cords. From
any point ¢ in the line C'W
prolonged, draw ¢b, ¢ a parallel
to C A, C B respectively. Now
that the weight W may be sup-
ported in equilibrium, the re-
sultant of the tensions of the
cords C A, CB must be in the vertical direction ¢ C, and
must be equal to the tension exerted by W, and the tensions
of the cords C A, CB will be respectively Ca, Cb (Art. 11).
Hence, if P and Q represent the tensions of the cords C A,
C B, we shall have
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P:Q:W::Ca:Cb:Cc::85inBCc:8in ACec: ACB.
whence P and Q become khown.

(L.) Cor.—If the figure be inverted, and A C, C B repre-
sent two props supporting a weight at C, the pressures on the
two props will evidently be the same as the tensions of the
cords which have been just determined.

(M.) ProB. 5.—A cord AB C D, of which the ends A, D
are fixed, and at two loops B and C are suspended two
weights W and W'; required the conditions of equilibrium.

Let the cord make with
the vertical lines at the points
B, C, the angles o, ', and 8, &
respectively; and let B the
tension of B C, which will
evidently be the same both
at Band C. The point B is
kept at rest by three forces
or tensions, . e., the weight
W, the tension A in the di-
rection A B, and the tension B in the direction B C. Whence
by Art. K.

W:P::8in ABC :sin ABW ::sin(a+d) : sina
B si d
Hence W = -EE,—(:—Q
sina
In like manner we shall have for the point C,
W' = B sin 8(cot 8 + cot £);
and since B is the supplement of ¢, sin 8 — gin «, therefore
W : W ::cote+ cota : cotB + cotg.

In a similar manner we should find that, if there were
more angles, the weights would be proportional to the sum of
the cotangents of the angles which the supporting cords make
with a vertical line.

* Nore.—A cord, when kept at rest in this way, is called a fumcular

polygon.

= Bsind(cot e + cotd).

Problems for Ezercise.
ProB. 6.—The height of a cone is double the diameter of
its base ; what is the inclination of its axis with the horizon
when it is on the point of falling ? Ans. 45°.
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ProB. 7.—The ends of a cord 10 feet long are fastened to
two fixed points A and B, 6 feet apart, and in the same
horizontal line ; where must two weights in the proportion of
3 to 5 be hung on the cord, so that, when at rest, they shall
be in the same horizontal line, at a distance of 3 feet per-
pendicularly below AB?

Ans. 3 feet 1§ inches, and 3 feet 43 inches from the
ends of the cords.

ProB. 8.—The position of the centre of gravity of a right
cone being given to find the centre of gravity of a frustum
thereof.

Pros. 9.—Required a solution to Prob. 3, when a given
weight is suspended to the vertex of the cone.

ProB. 10.—Two uniform beams of equal length are con-
nected by a joint at one extremity, and placed across a given
cylinder ; required their position when in equilibrium.

ProB. 11.—How many tons of coals will a man, working
with a wheel and axle, draw in a day of 8 hours from a mine,
the depth of which is 165 feet ?

Pros. 12.—How many cubic feet of water will a man raise
in a day of 8 hours by a pump to the height of 35 feet, suppos-
ing that he can perform 2500 units of work exclusive of the
friction of the pump ?

Pros. 13.—A train of 80 tons ascends a gradient rising
1 in 100; required the maximum speed, the engine being
of 60 horse-powers ?

ProB. 14.—What power does the engine exert and in
what direction, when the train in the last example descends
the gradient with a constant speed of 45 miles per hour?

ProB. 15.—The area of the piston of a high-pressure en-
gine is 1200 square inches, the length of the stroke 81 feet,
and the pressure of the steam upon the piston 32 lbs. per
square inch and the number of strokes per minute 18; re-
quired the number of cubic feet which the engine will raise
from a mine 60 fathoms deep, the friction being estimated at
11b. per square inch plus the pressure of the atmosphere.

3*&
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THE CENTRE OF GRAVITY.

95. DEr.— The centre of gravity of a body or system of
bodies is that point on which the body or system will balance
itself in any position whatever; or it is that point, which
being supported, the body or system will be also supported ;
hence the whole weight of a body may be considered as col-
lected at its centre of gravity.

96. The centre of gravity of a body is not always situated
within the substance of the body. Thus the centre of gravity
of a bow is somewhere in the concavity of the bow and not
in its substance, and the centre of gravity of a ring is in the
centre of.its circumscribing circle.

97. Prop.—If a body be suspended at any point, it will
not remain at rest, till the centre of yravity be in a vertical
line passing through the point of suspension.

Let S be the point of suspension of the body SB T, G its
centre of gravity ; then the effect of the weight of the body
to put it in motion is the same as if its
matter were collected at G, Join S G,
and prolong it to K, through 8§, G
draw ST, G g perpendicular to the
horizon ; take G g to represent the
weight of the body, draw g K perden-
dicular to S K, and complete the paral-
lelogram G K g H. Then the foree or
weight G g is equivalent to the two
forces G K, G 11, of whieh G K is sus-
tained by the reaction of the fixed
point S, and G II tends effectively to
move the centre of gravity in a direc-
tion perpendicular to S G, therefore
the point G cannot remain at rest till G Il vanishes, that
is, when S (3 coincides with S T.

98, Conr. 1.—When G is in the vertical line ST, below
the point of suspension S, the weight of the hody will be
offective in drawing the point 8. DBut if G be in S 'T' above
S, the body will produce a pressure on 8. In both cases the
bodv will be at rest ; but there is this important difference
in the two cases, for if the body be moved from the position
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of rest in the former case, it will have a tendency to return
to it ; but in the latter case, if the position of the body be the
least changed, it will tend to move further from its position
of rest. In the first case it is called stable equilibrinm, and
in the second unstable equilibrium.

99. Cor. 2.—If the body be suspended by a cord P §,
when there is an equilibrium the line P S will be vertical,
and will pass, when prolonged, through the centre of gravity
of the body, which centre will evidently descend to the lowest
point.

100. Cor. 3.—Hence the following erperimental method
of finding the centre of gravity. Let the body be suspended
by a string, and be at rest, then the centre of gravity will be
somewhere in the vertical line passing through the point of
suspension. Again let the body be suspended from some
other point, then a vertical line drawn through this point
will also pass through the centre of gravity, which is, there-
fore, in the intersection of these two lines.

101. Cor. 4.—If a body be at rest upon a plane, whether
horizontal or inclined, and if a line, drawn perpendicular to
its centre of gravity, fall within its points of support, or
within its base, the body will be at rest ; but if the perpen-
dicular fall without the points of support or base, the body
will fall. For, since all the matter of the body may be con-
sidered as collected in the centre of gravity, in the former
the body is supported, and in the latter not supported.

102. Cor. 5.—In like manner, it is evident, that if a body
be placed on an inclined plane, and be prevented from sliding
by friction, the body will rest or roll down the plane, accord-
ingly as the vertical line passing through the centre of gravity
falls within or without the base.

TO FIND THE CENTRES OF GRAVITY OF CERTAIN BODIES
GEOMETRICALLY.

103. Axiom.—The centre of gravity of a material straight
line of uniform thickness and density is in the middle of the
line.

104. Pror.—To find the centre of gravity of a triangle
ABC.

Bisect AB, ACin M, N; join CM, BN, cutting each
other in G; then G is the centre of gravity of the triangle.
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For the triangle may be considered to be composed of lines,
of uniform thickness and density,
drawn parallel to AB, such as a &;
then by similar triangles,

AM:am :: CM : Cm :: BM : bm,
and AM = B M, therefore a m =
bm; hence the line a b will balance
itself on C M. Similarly every other
line parallel to A B will be in equi-
librium on C M ; therefore the whole
triangle A B C will balance itself on CM, and consequently
the centre of gravity of the triangle is in CM. In like
manner it may be proved that the centre of gravity of the
triangle is in the line B N; therefore G the point of inter-
section of CM, BN is the centre of gravity of the triangle.
Join M N; then, since AM = MBand AN=NC,MN
is parallel to B C, therefore,

BC:MN::AB: AM::2:1;
also the triangles B G C, M G N are similar, and
CG:GM::BC:MN::2:1
.. CG = 2MN, and consequently CM = 3GM,

which determines the position of the centre of gravity of the
triangle.
105. Cor.—In the same manner the centre of gravity of
a parallelogram may be found by bisecting all its four sides,
and joining the points of bisection of the opposite sides ; the
intersection of these joining lines will be the centre of gravity
required.
106. ProB.— 70 find the centre of gravity of two bodies A
and B, connected by an inflexible line A B without weight.
Divide ABin Gsothat A : B :: GB : GA; then G
is the centre of gravity. For, if G be
the fulcrum of a lever A B supporting
the bodies A, B in equilibrium, the
above proportion will hold, Art. 42,
therefore G is the centre of gravity.
107. Cor. 1.—Hence A+B : A :: AB : GB.

108. Cor. 2.—Hence the centre of gravity of any number
of bodies connected by inflexible right lines without weight
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may be found. Let A, B, C represent there bodies of which
the centre of gravity is required: join
any two of them, as A and B by the
line A B; which divide in g, by Art.
107, Cor. 1, so that A4+B : B ::
A B: Ag; then g will be the centre
of gravity of A and B. Now sup-
pose the sum of the bodies A and B
to be collected at g ; join g and C by
the line g C, and divide it at G, so that A4+ B4 C : C ::
gC : g G; then G will be the centre of gravity of the three
bodies A, B and C. '

109. Cor. 3.—In like manner the centre of gravity of any
number of bodies may be found, by finding as in the preceding
Corollaries, the consecutive centres of gravity of 2, 3, 4, &c.,
bodies.

110. Cor. 4.—1If all the bodies be in a right line, their
common centre of gravity may be found by finding the ful-
crum on which they will all be in equilibrium, as in Art. 47.

111. Cor. 5.—Hence the centre of gravity of any plane
rectilineal figure may be found by dividing it into triangles,
and first finding the centres of gravity of each of the tri-
angles ; and supposing each of them to be collected at its
centre of gravity, the centre of gravity of the whole will be
found by Art. 108 and 109.

112. ProB.— To find the centre of gravity of any irregular
plane figure A F fa.

Divide the base A F into any
number 7z of equal parts, in A, B,
C, &c., and draw the ordinates
Bb, Cc, &c., at right angles to
AF; then, if the ordinates be suf-
ficiently near to one another, the
parts ab, b¢, cd, &c. may be re-
garded as straight lines without material error. Now, con-
ceive the diagonals @ B, 5 C, ¢ D, &c. to be drawn, then the
figure will be divided into 2 » triangles ; and putting A a =
a, Bb = b, &c., and AB = B C = &c. = A, the areas of
these triangles will be

yah L bh J bk ych Lch tdh +dh, &,
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and the distances of the centres of gravity of these triangles *
from A a are respectively,
A, n—3h nt ik 2n—1h, 20+ L h, 3n—§h, 3n+}h, &e,
and multiplying each of these areas by the distance of its
centre of gravity from A @, and adding them together, there
results
MIG+2c43d----+inf) +} (@a=N)
Now put the distance of the centre of gravity of the whole

from Aa = x; then the sum of the products just found
will be equal to the area of the whole figure x r =

zx th(a+2b+ 2c+ 2d+----f). Hence
2hb+ 2¢ + 38d----- inf+ $@—=f)
r= a+2b4+2c----- i

CENTRES OF GRAVITY OF DIFFERENT BODIES.
(See Integral Calculus. Weale’s Elementary Series.)

113. The centre of gravity of a cylinder, prism, or any
other body, the parallel sections of which are equal, is in the
middle of the axis of that body.

114. In a cone or any other pyramid, the distance of the
centre of gravity from the base is 1 of the axis,

115. In a conic frustum, or in the frustum of any regular
pyramid, the distance on the axis to the centre of gravity
from the less end is

N 3R? + 2Rr + r?

1l Ry R, ¥
where L denotes the length or axis, and R and 7 the radii of
the greater and lees ends in the conic frustum, or the sides
of the two ends in any regular pyramid.

116. In the parabofoid the distance of the centre of gravity
from the vertex is § of the axis.

117. In the frustum of the paraboloid, the distance on the
2R + »?

Rl + rs?
where L is the axis and R and 7 the radii of the greater
and less ends.

118. In a hemisphere the distance of the centre of gravity
is § of the radius from the centre.

axis from the centre of the less end is { L.
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Examples for practice.

Ex. 1,—The weights of two bodies are 5 and 2 cwts., and
their distance apart 21 feet; at what distance from the
larger body is their common centre of gravity ?

By Art. 107. 5+ 2 : 2 :: 21 : 6 feet.

Ex. 2.—1If three equal bodies, considered as points, be
placed at the three angles of a triangle, then the common
centre of gravity of these bodies is the same as that of the
triangle ; required the proof.

Since the bodies A, B and C are all equal, the centre of
gravity of two of them, as A, B will be at g, the middle
point of the side A B ; then two bodies must now be con-
sidered as collected at g, and let C g be joined ; then by Art.
107 A4+ B=2C:C::CG :Gg ::2:1; hence
CG=2Gg=2Cg; ..by Art. 104, G is the centre of
gravity of the triangle AB C.

Ex. 3.—Four bodies, considered as points, the weights of
which are 6, 8, 10 and 12 lbs., are placed at the succes-
sive angles of a square whose side is 3 feet; required the
distance of their common centre of gravity from the largest
body.

ny. 4.—'Two spheres of given diameter touch one another
internally ; required the centre of gravity of the solid in-
oluded between the surfaces of the two spheres.

Ex. 5.—A iron rod of uniform thickness, 8 feet in length
and weighing 80 lbs., has a weight of 60 lbs. suspended at
one end ; what point in the rod will be the centre of gravity?

As the rod is of uniform thickness its centre of gravity is
at its middle point, that is 4 feet from the point where the
weight is suspended ; whence

80 4 60 : 60 :: 4 : 1§ feet from the less end.

Ex. 6.—One of the sides of a given right angled triangle
rest on a horizontal plane, and the other side is vertical ;
reguired the greatest isosceles triangle which can be de-
scribed on the hypothenuse as a base, so that the whole
figure shall not fall.

Ex. 7.—The height of a cylinder is double the diameter
of its base; required the angle of inclination of its base with
the horizon, when it is just ready to fall. Ans. 30°.
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Ex. 8.—Seven equal weights are placed at seven of the
angles of a cube; required the distance of their common
centre of gravity from the remaining angle.

Ex. 9.—A hemisphere and a cone abut from a common
base ; required the centre of gravity of the solid included by
their surfaces.

PART 1L

DYNAMICS.

DEFINITIONS.

119. Dynamics treats of the action of forces producing
motion, and of the laws of motion.

120. Motion is the act of a body’s changing its place ; and
is divided into two kinds, absolute and relative.

A body is said to be in absolute motion, when it is trans-
ferred from one point of fixed space to another ; and to be in
relative motion, when it changes its situation with respect to
surrounding bodies.

121. Uniform motion is when a body passes over equal
spaces in equal times.

122. Accelerated motion is when a body continually in-
ereases its motion over successive portions of space in equal
times, and it i8 called retarded motion, when the spaces de-
scribed continually decrease.

123. Velocity is the degree of swiftness or slowness of a
body’s motion, and it is measured by the space uniformly de-
scribed in a unit of time, as in one second.

124. The momentum of a body is the product of its velocity
and quantity of matter, which last is in the compound ratio
of its density and magnitude.

125. Accelerating force is measured by the velocity uni-
formly generated in & given time, without regard to the
quantity of matter moved.

126. Moving force is measured by the momentum uni-
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formly generated in a given time, and it is equal to the pro-

duct of the accelerating force and the quantity of matter.
127, Let s be the space described in the time ¢, with the

uniform velocity v ; then by Def. 123,

s=1tv, whence (= f, and »=-.

v t

Thus, if a body move uniformly at the rate of 5 feet per
second, and is 2 minutes or 120 seconds in motion ; then

s =tv=1>5 x 120 = 600 feet,

the space or distance passed over by the body.
128. Let M be the momentum of a body, W its quantity
of matter or weight, and v its velocity ; then by Def. 124,

M
W_.
Thus, if a body weighing 20 Ibs. moves with a velocity
of 6 feet per second, then
M= Wy =20 x 6 = 120 = the momentum.

M = Wuv, whence W=%, and v =

NEWTON’S LAWS OF MOTION.

129. First. A body in motion, and not acted upon by any
external force, will move with a uniform velocity in a straight
line.

130. Second. When a force acts upon a body in motion,
the change of motion in quantity and distance, is the same as
if the force acted upon the body at rest.

181. Third. When pressure produces motion in a body,
the momentum generated in a given short time is propor-
tional to the pressure.

132. These three laws of motion are the simplest prin-
ciples to which dynamics can be reduced, and on them the
whole theory rests. These laws, however, do not admit of
accurate proof by experiment, on account of the many causes
of error, which are impossible to exclude; but are firmly es-
tablished, from the following considerations. By assuming
these laws to be true, and applying them to the investigation
of the motions of the heavenly bodies, innumerable accurate
results have been deduced, by operations more or less com-
plex; and these results have, in every case, been found to
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agree with actual observation: it follows, therefore, that
these laws must be true.

133. ProP.— When the force accelerates uniformly, the
velocity generated in a given time s equal to the product of
the force and time.

Let f be the accelerating force ; then f = velocity gener-
ated in one second of time; and, since the force is uniform,
J will also be the velocity to be added in the end of the next
second ; hence 2 f will be the whole velocity generated in
two seconds. Similarly 3/ will be the velocity at the end
of three seconds ; and generally ¢/ will be the velocity at the
end of ¢ seconds; therefore, putting v = velocity, there
results

v = hence ¢ = i .
St 7

Thus, if f = force of gravity at the earth’s surface =

32} feet, and the time of motion be three seconds, then
v = ft =32} X 8 = 96} feet.

134. Pror.—If a body be urged by a constant and uni-
Jorm force, the space which it describes, from the beginning of
the motion, is equal to half the product of the force and the
square of the time.

Let the time be divided into an indefinite number of equal
parts ; then, in each of these equal parts of time, the space
described will be equal to the velocity gained ; that is, by
Art. 133, = force multiplied by the time from the com-
mencement of motion; and the sum of all these spaces, or
the whole space passed over, will be equal to the force mul-
tiplied by the sum of all these equal parts of time from the
beginning of motion. Put ¢ = whole time, s = the whole
space described, and f = force; then

8= (14-24+8+ 4+ &c.... 7). A
. But the sum of the arithmetical series 14+ 2 +3 + 4 +

t+1
&c....t is = —;——t; therefore, s = H'-—2——1 tf; but when

¢ is indefinitely great compared with the indefinitely small
parts or units into which it was assumed to be divided, we
shall have ultimately
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t+1

U=
therefore s =} 3f;
2s
whence = —=>
S
2s
and =7
135. Cor.—Since v=f¢ t= }, whence,
et s v?
by substitution s=1f= ?f’

therefore v= J2sf

136. Pror.—If a body, urged by a constant and uniform
Jorce, move through any given space, it will move through
twice that space in the same time by the velocity acquired.

For, by Art. 133, v = f¢ and, by the last Art. s? =
188 f =}t x tf; therefore, by substitution s = } ¢v»; but
the space described in the time ¢ with the last velocity v is
tv; therefore, the space described by the last velocity is
twice the space described in the same time by the accelerat-
ing force.

137. Pror.—When a body is projected with a given ve-
locity V, und acted upon in the same direction by a constant
force f : to find the space s described in the time ¢.

By Art. 135, the space described in the time ¢ by the velo-
city V = V¢; and by Art. 134, the space described in the
same time by the constant force £, will be = } ¢ f: but by
the second law of motion, when any force is exerted on a
body in motion, the effect is the same as if it acted upon a
body at rest; therefore, the whole space described will be
equal to- the sum of the spaces described by each motion
separately ; consequently

s=Ve+ Le3f=(V+ 1ef)e
138. Cor. 1.—If the body be projected in a direction op-
posite to that in which the force acts, we shall have, for a
like reason,

s=(Vit—3e2f)=(V—=13tf)e
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139. Cor. 2.—In the same manner it may be proved that
v=V +¢f, .
when the body is projected in the direction of the force, and
v=V —1tf,
when projected in the opposite direction.

140. Gravity at the earth’s surface or terrestrial gravity,
is that force by which bodies are urged towards the centre of
the earth, and it is measured by the velocity it generates in
a second of time. Experiments shew that a falling body
descends 16l5 feet in the first second, neglecting the resist-
ance of the air, and that it has then acquired a velocity of
2 x 1645 = 32} feet, which is the true measure of the force
of gravity; this quantity is usually represented by the letter
g, which being substituted for f in the Formule of Articles
134 and 135, there will result

v
s=4g0 =29 jlv. 1)
— 2s
e=./2g:=2gt='t—, 2)
25 v 2s
and ¢ = —_—_—=—-= (3
v 7 g )

Ex. 1.—Find the space through which a heavy body falls
in 10 seconds, and the velocity acquired, g being = 323,
Here s=4g¢* =} x 324 x 10* = 16084 feet, the space,
and v=2g¢=2x 32} x 10 = 643} ft. the vel. per second.

Ex. 2.—How far must a body fall to acquire a velocity of
120 feet per-second ?

v? 120*
=== feet.
Here s 29— 64} 2234 fee .

Ex. 3.—In what time will a body be in falling through a

space of 100 feet ?

Here t= 2;‘- =
Ex. 4.—How far must a body fall to acquire a velocity of
1000 feet per second ?

N %—g—g = 2} seconds nearly.
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Ex. 5.—An arrow, shot perpendicularly upwards, returned
again in 10 seconds ; required the velocity with which it was
shot, and the height to which it rose, taking g = 324.

Ans. Velocity = 161 feet; height = 402} feet.

Ex. 6.—A body is projected vertically with a velocity of
1000 feet per second; required its situation at the end of
10 seconds.

Ex. 7.—With what velocity must a body be projected
downwards, from a height of 150 feet, that it may pass over
that space in 2 seconds ?

This is done by Art. 137, and the vel. is found to be 424 ft.

Ex. 8.—If a body be projected perpendicularly down-
wards with a velocity of 50 feet per second ; where will the
body be at the end of 10 seconds? Ans. 14291 feet.

Ex. 9.—A stone is dropped into a well, and after 3
seconds it is heard to strike the water; required the depth
of the surface of the water, the velocity of sound being about
1127 feet per second. Ans. 135% feet, nearly.

Ex. 10.—A body has fallen through m feet when another
body begins to fall from a point z feet below it; required
the distance the latter body will fall, before it is passed

2

by the former.

Awns. f—”—z .

141. To determine the conditions of motion on an inclined
plane through the effect of gravity.

Let AB be an inclined plane, B C its horizontal base,
A C its height, and P a body
descending on the plane ;
from P, the centre of gravity
of the body, draw P p per-
pendicular to B C to repre-
sent the pressure of P occa-
sioned by gravity; draw also
P e parallel and P f perpen-
dicular to A B, and complete
the parallelogram e f, then the force P p is equivalent to the
two Pe, P, of which P/ is sustained by the reaction of
the plane; the force Pe is wholly efficient in accelerat-
ing the motion of the body P. Let this force be repre-
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sented by 7 and Pp by g force of gravity, then by similar
triangles.
f:9::Pe:Pp:AC:AB,
ACxg
. f= AB
Now, put AB=[ AC=#, and the angle ABC = q,
then the force, which produces motion on the inclined plane.
becomes

f=g%=gsinc.

Hence the accelerating force on an inclined plane is con-
stant, and the equations of motion will be obtained by sub-
stituting this value of f for g in equations (1), (2), and (3) of
Art. 140.

_ghet I
s =57 ._lel._gtv (1).
_2s _ght _ 29hs o
vET ST =Y (=),
2s v 21s ,
. h_ v 25  o?
Also sm“—7—~g_t_gt’—'2ya‘ 4),
— 2 Q1 —_ v? 5
8_%gt s"]a—QgBina ()1
v = gtsing = J/2gssina (6),
v 2s
and t=gsin¢= v gsina @)
. 2ghs
Cor. 1.—If s be taken = ! in Form. (2), v = v =5

it becomes v = /Zgk; hence, the velocity acquired is the
same as would be acquired in falling through the height of
the plane. .

Cor. 2.—If a body be projected down or up an inclinei
plane with a given velocity v then the distance s, which
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the body will be from the point of projection in a given time
¢, will be respectively

— o+ 22t 200
s=tv +55 —21(2lt+ght) (8),
2he? t
and s=tv———§-l———2—l(2h-—ght) 9).

Ex. 1.—The length of an inclined plane is 200 feet, and
its height 25 feet; through what space will a body descend
on it in 6 seconds?

By Form. (1),

gkt 1675 x 25 x 62 .
- = = =72 1 S
s 7 200 72 feet 41 inches

Ex. 2.—The length of an inclined plane is 100 feet, and
its angle of inclination 60°, required the time of falling down
it, and the velocity acquired ?

By Form. (7),

2s T o200
= - = _—_———— =2 s
Vogena = Y B2y x w66 208 seconds
and by (6) ¢ = gtsina =321 x 2:68 x ‘866 = 746 feet.

Ex. 3.—If an inclined plane rise 2} feet in 100, in what
time will a body, descending down this plane, acquire a ve-
locity of 5 feet per second ?

By Form. (3),

{ 100 x &
t= Lo X0 622 seconds.

Ex. 4.—If a body be projected up an inclined plane, which
rises 1 in 6, with a velocity of 50 feet per second ; required
its place and velocity after 6 seconds.

Ans. 203§ feet from the bottom, and velocity 174 feet.

Ex. 5.—If a body be projected with a velocity of 40 feet
per second down an inclined plane, which rises 1 in 8; what
space will it have moved through at the end of 6 seconds ?

Ans. 144} yards.

142. Pror.—If a circle be in a vertical plane, the times of
descent down all its cords, drawn from both extremities of
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sts vertical diameter, are equal; and the
velocities acquired in falhing down the
chords are proportional to their lengths.

Let ACB be a circle, AB its vertical
diameter, A C any chord drawn through
A, and CD perpendicular to A B ; then
by the last article.

2AC?
g.-AD

time down AC =

_ ,2AB AC?
= g Since bygeo.AD = AB.

This result being independent of the position of C, the
times of descent down all chords are equal, and also equal to
time of falling freely down the diameter A B.

Also by the last article the velocity acquired down A C
is equal to

_ 2gAC? _ 29
V29 x AD=y AB —-ACJAB
In which, since g and A B are constant, the velocity acquired
down any chord A C is as the length of A C.

In the same manner this proposition may be proved with
respect to any other plane C B.

Lemma.—Previous to discussing the following propositions,
it will be proper to give Atwood’s experiment, for examin-
ing the motions of bodies, when acted upon by constant
forces. The machine he used for this purpose was a single
fixed pulley, with its axis placed on wheels to diminish the
friction. Two equal weights P, P are placed in two similar
and equal boxes, connected with a string passing over the
pulley; then these weights will exactly balance each other.
Now, let another weight p be added to each of them sepa-
rately, and it will then be found that the velocity generated

P
2P+p
if the whole mass or weight moved be the same, that
is, 2P+ p, the velocity as p, the weight that puts the
whole system in motion; and if » be constant, the velo-
city is inversely as 2P + p which is the whole mass or
weight moved. Since, then, the velocity is proportional to

in a given time is always proportional to ; that is,
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P Pp 7 it follows that p is proportional to (2P + p) x ve-
locity, and therefore is proportional to the momentum gene-
rated in a given time, or varies as the moving force. This
establishes the truth of Newton’s third law of motion in a
most satisfactory manner.

143. Prop.— W hen two unequal bodies are connected by a
cord hanging over a fixed pulley, to determine the nature of
their motion, the cord and pulley being considered without
weight.

eget P and Q be the two bodies; then it is evident that the
moving force is in this case proportional to the excess of P
over Q, that is, to P—Q; but the accelerating force is as the
moving force divided by the quantity of matter moved, by the

third law of motion, and is therefore as_IT—T)_ - When Q

= 0, the body falls freely, and the accelerating force is the
force of gravity ¢g; hence the accelerating force in this case

is f = f)—:% g- This value of the accelerating force being

substituted for g in the formulse Art. 140, will shew the rela-
tion between the space, velocity, and time of the two bodies.

144. Prop.— To find the accelerating force when one body
draws another along an tnclined plane.

Let a body P descend down the inclined plane, and draw
the body Q up another inclined plane, (see fig. Art. 77); and
let « and 8 be the respective angles of elevation of the planes,
on which P and Q are in motion ; then the force of P in the
direction of its plane is equal to P sin ¢, and the force of Q
in the direction of its plane is equal to Q sin 8. Now, if these
forces be equal, the bodies P and Q will be in equilibrium ;
but if P sin « be greater than Q sin B, P will descend and
draw Q up the inclined plane. Since the difference of these
forces, i. e., P sin a—Q sin 8 produces motion, and the whole
mass moved is P+ Q, it may be shewn, as in the last article,
that the accelerating force is

f= Psina — Qsin 8
P+Q

145. Cor. 1.—~When P hangs vertically, then « = 90°,
and therefore,

4
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_P+QsinB
/= pyq ¥
146. Cor. 2—When P hangs vertically, and Qis on a
horizontal plane, then a = 90° and 8 = O, therefore,

P
f=rro*
Ex. 1.—P and Q hang over a fixed pulley, P = 97 Ibs.

and Q = 96 1bs.; required the space descended by P in 10
seconds.

Hero f — 2=9 97—96 g

P+Q9= 974967 = 193
39t 193x 100
193 = 12x193 =

, which, being sub-

stituted for g in 8 = } g¢?, gives

8} feet = space descended by P.

Ex. 2.—A weight P of 1 1b. drags a weight Q of 99 lbs.
along a smooth horizontal table; required the distance de-
scended in 10 seconds.

Here f = this substituted for g in s

. =L
19¢ _ 165x 100
100 100

= }gt? givess = = 1645 feet =
space descended by P.

Ex. 3.—There are two equal weights, one of which de-
scends vertically and draws the other up a plane, inclined
30° to the horizon ; required the accelerating force.

Ans. f= 1g = 47 feet.

ON MOTION UPON A CURVE AND THE VIBRATIONS OF

PENDULUMS,

147. Prop.—If a body fall from rest down a perfectly
smooth curved surface, the velocity acquired 1s equal to that
which would be acquired in falling through the same perpen-
dicular height.

Let A B C D be a system of planes; draws D T parallel
and A T perpendicular to the horizon, also draw B, Ce,
parallel to D T. The velocity acquired in falling from A to
B is equal to that which would be acquired in falling from
A to b (Art. 141, Cor. 1), and supposing no velocity is lost in
passing from one plaunc to another, the body will begin to
descend down B C with the velocity acquired in falling
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through A B consequently the velocity acquired at C will be
the same as in falling perpendicularly through A ¢. Simi-
larly it may be shown that the
velocity acquired at D will be
equal to that which would be
acquired in falling through
the perpendicular distance
AT, supposing no velocity to
be lost in passing from one
plane to another. Now, let
the number of planes be in-
creased indefinitely, then the
angles at B, C, &c., will be di-
minished indefinitely,therefore
the velocity lost is diminished indefinitely, and the system of
planes approximates to a curve ABCD as its limit, in which,
therefore, no velocity will be lost. Hence the whole velocity
acquired in falling down the curve A B C D is equal to that
which would be acquired in falling down the same perpen-
dicular altitude A T.

148. Cor. 1.—If a body be projected up a curve, the per-
pendicular altitude to which it will ascend is equal to that
through which it must fall to acquire the velocity of pro-
jection ; since the body in ascending will be retarded by the
same degrees that it was accelerated in descending.

149. Cor. 2.—This proposition is true when the body is
retained in the curve by a string or cord, which is at every
point perpendicular to the curve, since the string will, in this
case, support that part of the weight of the body, which was
before supported by the curve.

THE PENDULUM.

150. DEF. 1.—A pendulum consists of a heavy body, sus-
pended by a thread or slender wire, and made to vibrate in a
vertical plane. 'When the body is considered as a point, and
the thread or wire without weight, it is called a simple
vendulum.

151. DEF. 2.—The time from the commencement of mo-
tion till all the velocity is lost by the ascent of the body, is
called the tsme of oscillation; and the angles through which
the body moves is called the amplitude.



76 DYNAMICS.

152, Pror.— To find the time of oscillation of a pendulum
in a small circular arc.

Let a body descend from A,
and be kept in the circular arc
AOB by the thread CA, which
is supposed to be without
weight ; let the body descend
to M, and let the arc M N be
indefinitely small; then we may
consider this arc with the velo-
city at M uniformly continued.
Put this velocity = v, then the

time through M N —E;E ;

but the velocity at M is equal
to the velocity acquired in fall-
ing from D to P (Art. 147),

tharefore
t* =29 x DP=2g(OD—-O0P)
( chord A O)? — (chord M Q)?

= 2¢

2CO
—..—_‘% (arc A0)* — arc M0)?) very nearly;

since the arc AQ is supposed never to exceed 2 or 3 degrees,
! being the length of the pendulum = AC. Now, take
Oa = arc O A, and describe the semicircle adb, with the
radius Oa; draw mA, nd perpendicular, and Ae parallel to
Qa, and join Oh; then
" =92(0a’-- Om') =%mh‘; and v =mh v %;
MN _mn I

v mh

Now MN or mn being indefinitely small, Ad may be con-
sidered as a straight line, and the triangles OAm, ehd will
be ultimately similar, therefore
Oh:mh::Ad:he or mn;
mn _hd _Ad

.. time throogh MN =
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. _ha 1 hd 1
.. time through MN = 0aV 7=0a4 v ra
As this is true for every indefinitely small part of AO or Oa,
and as the sum of all the portions A d is evidently equal to
the semi-circumference a d b, the time of moving through
adb )

AOB =0a \/-‘-’; and since
adb:0a =0A ::~:1 there results
adb
M o e
OA

.. time of describing AOB = » / 51;
which, putting ¢ for the time of oscillation, becomes
: 1
= -.
v 9
153. Cor. 1.—Hence, if L and ! be the lengths of twe
pendulums, and T and ¢ the times of their vibrations; then,
since * and g are constant, we shall have
T :¢:: L : VL
or T*:¢:: L : L
From which proportions, if the length of a pendulum and
the time of its vibration be given, the length of any other

pendulum to vibrate in a given time may be found, and
vice versa.

154. Cor. 2.—In the latitude of London the length of the
seconds pendulum is found by experiment to be 39} inches,

nearly ; substituting this for { in the Form., t = » / ;, tak-
ing ¢ = 1 second, and transposing, there results
g = =*l = 32} feet, nearly.

155. Cor. 8.—If n be the number of seconds in a day,
and s the number of seconds in the same time ; then
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hence, if g be given n, the number of vibrations varies in-
versely as the square of the length / of the pendulum.
156. Cor. 4.—If I be increased by a small quantity A, and
n be diminished by a corresponding quantity »; then
n—v» i

n =Jl+A=

1—- ;-7—; nearly,

» A ni
whence ;_..4}-‘-, or »= gy
157. Cor. 5.—If I be given, and g be increased by a small

quantity 7, also let » be the corresponding increment of n;

then
’-'—+~5= v gtr_, +-}— nearly,
» 9
hence »=—"
Len =3y

158. Cor. 6.—The force of gravity above the earth’s sur-
face varies inversely as the square of the distance, in the
same latitude; therefore, if r = radius of the earth, A =
height of any place above the surface, 7 the gravity at that
height, and » the number of seconds, which a pendulum vi-
brating seconds at the earth’s surface, loses in a day ; then

n—y I A
- = \/7_'+h._l-; nearly ;
nh
y=—
r

159. Norx.—The foree of gravity has been found to vary in different
latitudes; the increment of its force ubove its force at the equator being
nearly as the square of the sine of latitude.

Ex. 1.—The length of a pendulum is 60 inches ; in what
time will it vibrate ?
By Cor. 1. T*:e7::L:1
but / has been found (Cor. 2) to be 39} inches, when it
vibrates seconds ; hence
T?:1%::60: 393
8 x 60 480

- T=v3E =Vis

== 1-24 seconds, nearly.
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Ex. 2.—Required the length of a pendulum, that makes
80 vibrations in a minute. Ans. 22 inches.

Ex. 3.—If a clock loses 1 minute in 24 hours, how much
must the pendulum be shortened to make it keep true time ?
Ans. £ of an inch, nearly.

Ex. 4.—A seconds pendulum is carried to the top of a
mountain 1 mile high; what number of seconds will it lose
in a day, the radius of the earth being 4000 miles ?

By Cor. 6, »= nh_ 86400 %1 _ 213 seconds.

Ex. 5.—A pendulum vibrating seconds at the equator,
when carried to the pole, gains 5 minutes per day; find the
proportion of the equatorial and polar gravity.

Ans. 144 : 145.

ON THE MOTION OF PROJECTILES.

160. Pror.—A body projected obliquely to the horizom,
will describe a parabola; supposing that the motion is not
effected by the resistance of the air.

Let a body be projected from A in the direction A T;
through A draw D B perpendicular to the horizon, and let
AT be the space the body would
describe with the velocity of pro-
Jjection continued uniformly dur-
ing the time ¢ and A B the space
through which gravity would cause
it to descend in the same time;
complete the parallelogram A M;
then, since the motion in the di-
rection AT neither accelerates nor
retards the approach of the body
to the line B M, the body will be
in the line BM at the end of the
time ¢. By like reasoning the body
will be in the line T M at the end of the same time, and
therefore it will be at M, the point of their intersection at
the end of the time & Let V he the velocity of projection,
then, because A T is the space which would be described
in the time ¢ with the velocity V continued uniformly,
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AT = V¢; and, since AB is the space through which the
body would fall by gravity in the time {, AB = } g #; hence

2 2
- ?i;}i = AT =B (oinee AT=Ve)

BM: =3}'AB. 1)

tt

Hence the curve AM is a parabola, of which A B is the

diameter, BM an ordinate, and 2v

Hann’s Analytical Geometry, Weale's Serves.)

161. Cor. 1.—If A D be taken = } of the parameter at

2V _Vv*

A=1}x —Z—:;—g, and DE be drawn perpendicular to
BD, DE, will be the directrix of the parabola. For the dis-
tance from the directrix to any point in a parabola is equal
to the distance of this point from the focus. (See Hann’s
Analyt. Geo. Art. 25, Par.).

162. Cor. 2.—The horizontal velocity of the body is uni-
form, since it is evidently not affected by gravity.

3

168. Cor. 3.— Because AD=-2—-5-,-, AD is the space

through which a body would fall to acquire the velocity of
projection V. A D is usually called the smpetus, or height
due to the velocity in the curve.

164. Con. 4—A T is a tangent to the parabola at A,
because it is parallel to B M; (see Hann's Analy. Geo.),
therefore, if the angle T A C be made = T AD, and AC =
AD, C will be the focus of the parabola; and, the focus and
directrix being given, the parabola can be constructed.

165. Prov.—To find the equation
of the parabolic curve, described by the
projectile, referred to horizontal and
vertical co-ordinates.

Let A = AD = impetus = height of
the directrix, AP =z, PM =y, the
angle PAm = o, V = velocity of pro-
jection, and ¢ = time of describing
AM; then

the parameter. (See
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AP=Amcosa; or =V tcosa;
since Am = V¢; also Pm =z tana; and Mm = } g¢*;
y=Pm—-Mm=u=ztana— }g¢*;

by substituting the value of ¢, from the equation z = V£ eose,
in the above equation, there results

g
2VZicosta’
Vl
and by substituting A for 2g = A D (Cor. 3), this equation
becomes

y=zxtana—

x*
4hcos'a’
which is the equation of the curve, from which all the proper-
ties relating to projectiles may be readily derived.
166. Nore.—If the curve meet the horizontal plane AH, passing through

the point of projection A, the distance AH is called the Aorszontal range, and
the time of describing the curve A M H is called the time of flight,

167. Pror.— The velocity and direction of projection besng
given, to find the horizontal range, the time of flight, and the
hewght to which the body will rise above the horizontal

plane. (See last figure.)

Let the body be projected from A in the direction A T;
also let¢ AM H be the parabolic path of the projectile, and
AH the horizontal range ; then

TH=ATsina= Vt¢sing; but TH=4g¢*;
hence Vi¢sina=4g¢
2Vsina

l=————g——-—--. )]

Again, AH = ATcos¢=?—gY-ainn x V cosa; and if

y=&atana —

1
A H be put = R, }g_: h, and 2sinacosa = sin2a; then
there will result
R =2hsin2-. (2)

Lastly, if the point C bisect A H, the maximum height H

4'0
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is evidently CB =  C% (see Hann’s Analyt. Geo.) == } TH;
73

but TH = $g¢ = {from equa. (1)} 2V inte = 4 sinla;

hence H = hsin?a 3)

168. Cog. 1.—When the impetus or velocity of projection
is given, the range varies as sin 2 «, and is consequently the
greatest when 2a = 90°, or the angle of elevation 45°; in
which case R = 24.

169. Cor. 2.—When th: velocity of projection is given,
the elevation requisite to hit a given mark, on the horizontal
plane, will be found from Equa. (2); and since sin 2a = sin
(180°—2 a), there will always be two values of a, or two ele-
vations, which will satisfy this condition.

170. Prop.— The velocity and direction of projection being
given, to find the time of flight, and range on an oblique plane
passing through the point of projection.

Let the body be projected from A in the direction AT;
also let AT be the
inclined plane, the
curve Al the path of
the projectile, and
AH a horizontal line.
Put the angle of ele-
vation TAH = q, the
angle IAH = 8, the
range Al = R, and the time of describing the curve Al = ¢;
then by trigonometry

TI:AT::8in TAI:sin AIT;
but TI=14g82, AT=V¢ sin TAI =sin(c— B);
and sin AIT = sin AIH = cos 8; hence
$9¢ : Ve ::sin(d — B) : cos B,
2Vsin(a—8
=" #) (4)
gcosp
Again, AT:AT::sinATI:sin AIT; but
AT=Ve=2V8n(—=8) _ ,, sin(c—8)
gcosp cos B
sin ATI = cos TAH = cosa, and sin AIT = cos g; hence

t
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R:4I¢E]-n—(f;a—)::cosa:coss,
cos 8
8i — B)cos e
R=“-”l(-“c—osa,3°—~ )

171. Cor.—If the plane be a descending one, as AT, the
angle 8 must be considered negative.

172. Scro.—The theory of projectiles, just given, depends
on three suppositions, which are all in some degree inac-
curate: Firstly, that the force of gravity in every point of the
curve described by the projectile is the same. Secondly,
that it acts in parallel lines. And thirdly, that the motion
takes place in a non-resisting medium. The two former of
these suppositions, however, differ insensibly from the truth ;
but the resistance of the air affects the motions of all bodies,
especially when their velocities are great, so very materially
as to make the parabolic theory almost useless in practice.
From experiments made with great care, it appears, that
when the velocity is about 2000 feet per second, the resist-
ance of the atmosphere is about 100 times as great as the
weight of the ball; and that the maximum horizontal range
i less than a mile, while according to the theory, it ought to
be above 23 miles.—Another great irregularity in the firing
of balls is the deflection of its path to the right or to the left
of the vertical plane passing through the axis of the gun.
Deviations of this kind usually take place when there is con-
siderable windage, i. e, when the ball is too small for the
calibre of the gun. This deviation has been found to be, in
some cases, as much as 300 or 400 yards in a range of a mile,
or extending from } to } of the whole range.

Dr. Hutton has deduced from experiments various rules
to remedy these deviations of the theory from actual practice;
for which, see his 7racts, Vol. I1I.

173. The following rule, obtained from experiment, has
been given, to find the velocity of any shot or shell, when
the weight of the charge of powder and that of the shot are
given.

RuLe.—Divide thrice the weight of the powder by the
weight of the shot, both in the same denomination ; extract
the square root of the quotient, multiply the root by 1600,
aud the product will be the velocity in feet.
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That is, if p be the weight of the powder, w that of the
ball, and ¢ its velocity ; then

v:lGOOJ-%—f-

Ex. 1.—It is required to find with what velocities the
following shells, weighing 90, 48 and 16 lbs., with the re-
spective charges of 4, 2 and 1 lbs. of powder, will be dis-
charged.

By the rule just given, the respective velocities are found
to be 584, 565 and 693 feet per second.

Ex. 2.—Required the time in which a shell will range
3250 feet, at an elevation of 32°,

Ans. 11} seconds nearly.

Ex. 3.—How far will a ball range on a plane which as-
cends 81° and on another which descends 84°; the velocity
or impetus being 3000 feet, and the elevation 324°?

Ans. 4244 feet on the ascent and 6754 feet on the
descent.

ON THE ROTATION OF BODIES.

174. Pror.—1In a rigid system of material particles m, m',
m’, &e., in the same horizontal plane P Q, and moveable
round a vertical aris RS, a moving force F acts at the point
P, in the same plane, to turn the system; to determine the
acceleruting force at any point.

Put m 4+ w' 4 m" 4 &c. = M; and let f; £, &c. be moving
forces which, acting separately on the particles m, m', &ec.,
would produce the same velocities as they would acquire by
the action of the force F,
when they are connected
together; and let o be the
angular velocity imparted
to the system by the force
F in the indefinitely small
time ¢, to radius = 1, and
r, ¥, 7', &c., the distances
of the particles m, m', &c.,
from the axis R S at C;
then ro will be the velocity
given to the particle m.
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Now, since the moving force f is supposed to give the velocity
7 v to m in the time ¢, we shall have r v = ';t, by the laws

of motion, or f¢ =m rv. Let the force —¢, acting at P,
balance f, acting at m, then the force ¢ will produce the same
effect on m as f does ; for if the forces ¢ and —¢ act on the
system, they will produce no change in the motion; and be-
cause f' and —¢ counteract each other, the only efficient force
is ¢; hence PCx¢ = CMx/, and (putting PC =a) ¢ =
r r mro . . ,_mrie
fa—, ..¢t_af¢_ P Similarly ¢' ¢ = i t
= &c. Now, because the forces ¢, ¢', &c., produce the same
motion in the system as the force F, we shall evidently have
F=¢ 4 ¢ 4 ¢ 4 &c.; therefore,

mr?o m' r'?

+ a

Ft=(o+ ¢+ &)t = + &e.

Fat
v= oo i .
mr 4 m7r?* 4+ m'r'?* 4 &c

But the velocity of any particle m = r v = accelerating
force at m x ¢,

Far

.. accelerating force at m = oy s 0))]
lerating f tP=- Fa 2
accelerating force at I’ = mr Fmr F e 2)
Fa

and accel. forceat 1 from RS = e prap (3)
175. Cor. 1.—When the moving force F' is a weight W,
connected to the system by a cord passing over a fixed pulley
F =W g; and since W must be one of the bodies m, m', &c.;
hence ,
Watyg
Wat 4 mrd +m'r* 4 &’
176. Cor. 2.—When the particles m, m’, &c., are not in
one plane perpendicular to RS, a plane may be taken passing
through the centre of gravity of the system, perpendicular to
R S, and the whole system may be considered to be projected

accelerating force at F =



86 DYNAMICS.

on this plane by lines parallel to R S ; then, since each point
is by this means kept at the same distance from RS, the
effect produced by the motion will not be changed ; therefore
Formulz (1), (2) and (3) will still hold.

Note 1.—The denominator of the fraction, which expresses the accele-
force on any given point of a system, is the sum of each particle multi-
plied by the square of its distance from the axis; this sum is called the
fm :{ Inertia with regard to this axis, and continually occurs in con-

dering the

rotation of bodies.

Nore 2.—Nearly in the manner just given, D'Alembert has made all the
most abstruse parts of dynamics to depend on the principle of equilibrium.
This is commonly known by the name of D’Alembert's Principle.

177. Pror.— To find the centre of gyration of any system
of material particles.

DEev.— The centre of gyration of a system of bodies, ve-
volving round an axis, is that point in which, if all the matter
of the system were collected, the same moving force would
produce the same angular velocity in the system.

Let T be the centre of gyration; and put C T = d; then

he accelerating force at the point P = Fa ;
the accelerating force at the poin S T P RS
and if all the matter of the system be concentrated at T, the
. . Fa?
accelerating force at P will be = T

angular velocity is produced in both cases, these accelerating
forces must be equal ; hence

Md*=mr 4+ m r* 4 &ec.
de AR ER I AT T . P TR,
T M - m 4 m' 4 &ec.

178. Pror.— 7o find the centre of oscillation of any system
of material particles, moveable round a horizontal axis.

Der. The centre of oscillation is that point in a system at
which, if the whole system be concentrated, it would vibrate
in the same time as the whole system would do.

Let m, m, &c. be any number of particles connected to-
gether, and let them all be projected perpendicularly on
a plane, which passes through G, their centre of gravity,
and which is also perpendicular to the axis of suspension
P C, also let O be the gentre of oscillation, and P its pro-

; and because the same
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jection in the axis PC; then since
each particle is thus held at the same
distance from the axis P C, the accele-
rating force will be the same distance
from the axis as before. The moving
forces may in this case be considered
the same as the weights m, m’, &c.;
and the distances at which they act
from C are Cp, Cp/, &c., therefore, by
Art. 175, the accelerating force on
any point O, arising from each of these bodies, will be

m.Cp.CO.g m.Cp.CO.g .

mr WA & m o om 7t & o henee

the accelerating force at O, resulting from all the particles

acting together, will be

(m.Cp4+m'.Cp' 4+ &c.).CO.g _ M.CG.CO.gsina,
m r: 4+ m' rl 4 &c. T meR 4w &’

for m.Cp4+m'.Cp 4+ &. = (m4+m + &) CI =

M.CG sin a, a being the angle C GI. Similarly the acce-

lerating force of a particle m, placed at O, is ?‘%6%(?)"3

= ¢ sin a; and since O is the centre of oscillation, these
forces must be equal ; hence

M.CG.CO.gsina=(mr? 4+ m'sr'* + &c.) g sin a,

. _mr 4 mr? 4 &

~CO= M.CG

179. Cor. 1.—Because m r34-m'r'*4 &c. =M. CG.CO
= M.CT* by the preceding prop.; we have CG.CO =
C T*; hence the centre of gyration is a mean proportional
between the centre of gravity and the centre of oscillation.

180. Cor. 1.—Because the accelerating force of the whole
system at the point O, is the same as that of a single particle
placed at O, the time of oscillation of the system will be the
same as the time of oscillation of a simple pendulum, the
length of which is C O ; therefore, if CO = [, the time of a

very small oscillation will be = r.J; .
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TO FIND THE MOMENT OF INERTIA AND THR CENTRB OF
OBCILLATION BY THE DIFFERENTIAL CALCULTUS.

181. If it be assumed that the particles m, m', &c., that
make up a body are all equal and their number indefinitely
great, m will be ultimately proportional to d M, the differential
of the mass of the body, therefore by the principle of the
differential calculus, r being the distance of m or d M from
the axis,

moment of inertia = [r*d M;
and, if £ be the distance of the centre of gyration from the

same axis,
MRM=/r*dM,

,_JrrdM .
and k&? = —

In finding the moment of inertia of lines, planes, and
solids, they are supposed to be made up of an indefinite num-
ber of particles of matter uniformly diffused over them.

182. Pror.—To find the moment of inertia of the right
lne A B, revolving round an axis perpendicular to it at B.

Put AB=2a, Bm =r, then
the differential of the mass M,
or dM, is proportional to dr,
therefore by the last article

r*dr r3

and when r =a, i* = }a? and
the moment of inertia A*M = }a*M.

183. Pror.— 7o find the mo-
ment of inertia of a circle A B,
revolving round its centre G n
its own plane.

Put the radius A G = a, the
radius m G = r; then the cir-
cumference m n = 2 » r, and the
differential of the area of the
circle mn = 2xrdr = dM;
hence

B} 1 A
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fr’dM S2xr3 dr_ir,’
M ﬁ xrdr

and when r =a, A®=4a% and AM = 4{a*'M

184. Propr.— 70 find the moment of inertia of a civcle re-
volving round an azis lying in its own plane.

Let RS be the axis of rotation, G R, a line perpendicular
to RS, pmgq any line parallel to RS. Put RG = b, AG =4,

m=r, Gm=ux and pm = mqg = y; then

dM = 2ydz /a® — 2, and r? = (b — z)?, therefore

J7*dM = [2dx (b — x)* Va? —a? hence
[de(b—r)’_Jq’ :f_‘ (62 4 1a?) f2dx Ja’
S2dx yat —a? S2dx fa? —:
by taking the integral by parts between r = — a, and
z + a, therefore
R=a*+ 103 and BM = (a® + ) M.

185. Pror.—To find the moment of inertia of a sphere
A ¢ B p revolving round a diameter A B.

Let p ¢ be a section of the sphere perpendicular to the axis
of rotation AB; put AG=a, MG =2, andmp=mqg =
Y then, because the section p g is a circle revolving round
the axis A B, which passes through its centre, the moment
of inertia of this circle = § y* M = § » y4; therefore the
moment of inertia of the circle p ¢, when its thickness is the
indefinitely small space dz, is { » y4d z ; hence

_/_: mytdx f,',ﬂ'(a“—:r’)?dx frra’ —1a,
[ryrdz  [*(a®—at)dx  ¢*a®
the integral being taken between x = — @, and 2 = @,

. BPM = }a®M.

The following are the moments of inertia of several regular
solids revolving round their axes.

186. In a cylinder 2*M = §{ a®* M.

187. In a paraboloid 2 M = } a? M.

188. In a cone k*M = ¥ a* M, a being the radius of
the base.

189. In an ellipsoid #*M = }(a® + b*) M, a and b being




90 HYDROSTATICS.

the semiaxes of the largest section perpendicular to the axis

of rotation.
190. Pror.—7T0 find the centre of oscillation in lines,

planes, and solids. X
_meatqfinertia____’_
ByArt.l78. CO-“—'—’——"“—"'——CG.M -—CG!

and 4* is found by the preceding propositions.

The following are the distances of the centre of oscillation
from the point of suspension in certain given figures.

191. In a straight line, vibrating at its extremity, CO
=3a

192: In a circle, vibrating about its axis in its own plane
CO=d+ r’;, C G being = d, and the radius of the circle

193. In a sphere, CO =d 4 T in which d and r are

the same as in the preceding article.

=r 2 42
d

PART IIL

HYDROSTATICS.

194. Hydrostatics is that branch of Statics which treats of
the equilibrium of fluids.

195. Fluids yield without resistance to the smallest force
impressed on them ; they are divided into elastic and non-
elastic fluids. An elastic fluid is one the dimensions of which
are diminished by increasing the pressure upon it, and “in-
cressed by diminishing the pressure, such as common air,
gases, and vapours. A non-elastic fluid is one the dimensions
of which sre very little affected by any pressure, however

such 88 water, mercury, spirits, &c.

196. ProP.—.Any pressure communicated to a flusd at rest
is equally transmitted throughout the whole fluid.

(This proposition, which is commonly made the basis of the
doctrine of hydrostatics is proved by experiment.)
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Let ¢ d e f be a closed box filled with water ; P a piston
fitted into the upper face of the
box, and allowed to move as
freely as possible, and suppose
another piston Q* with a trans-
verse section equal to that of
P, also fitted into the upper
face of the box; then, if a
weight be placed on P, an equal
weight must be placed on Q, to
preserve the equilibrium, thus
shewing that the weight on P
is transmitted through the fluid
to the under surface of Q, and
also with equal force, because it requires an equal weight
on Q to balance this pressure. Again, if a piston p equal to
P be fitted into a lateral opening in the side of the box, as at
a b, it will be found that a pressure must be exerted at a b to
retain the fluid in the box, before any pressure is applied at
P; if then a weight be placed on P, an additional pressure
equal to the weight on P, must be applied on p to maintain
the equilibrium ; thus proving that the pressure upon the
surface at P is transmitted with equal force through the
whole mass of the fluid.

Nore.—One of the most extraordinary properties of fluids is that of
transmitting pressures in every direction; this property can be conceived to
arise only from the perfect freedom with which the particles of a flaid move
amongst cach other. This, in a mechanical point of view, is the characteristic
distinction between fluids and solids: a solid imparts pressure only in the
direction in which the force is exerted, while a fluid imparts pressure in all
directions.

197. Propr.—The pressure at any point ¢ in the interior
of a fluid, the density of which is uniform,
and which is acted on by no force but
gravity, is equal to the weight of the
vertical column pg¢.

Assume all the fluid in the vessel A B
to be solid, except the vertical column
P q; then it is evident that the particle
¢ will be precisely in the same state as
before ; it is also evident that on the particle ¢ the pressure

* The piston Q is not shewn in the figure.
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is equal to that of the column above it p ¢; hence, when
the whole is fluid, the particle is equally pressed in all
directions, by a force equal to the weight of the vertical
column above it.

198. Cor. 1,—If the point r be not directly under the
surface of the fluid, draw ¢ r parallel to the surface of the
fluid ; then by the preceding proposition, the pressure at ¢ is
transmitted along the line ¢ r, therefore the pressure at r
must be equal to the pressure at ¢, otherwise the equilibrium
would be destroyed ; hence the pressure at r is equal to the
weight of the vertical column p ¢.

199. Cor. 2.—Since it is well known that the surface of a
fluid at rest is horizontal, it follows that a fluid in a system of
vessels in free communication with each other, cannot be at
rest except the surfaces of the fluid in all these different
veasels be horizontal.

200. Cor. 3.—Hence it also follows that the surfaces of all
perfect fluids are perpendicular to the direction of gravity.

201. Cor. 4.—In fluid surfaces of small extent, gravity
may be considered to act in parallel lines ; but in surfaces of
great extent, such as the surfaces of large lakes, seas and
oceans, the directions of gravity converge to a point at the
earth’s centre, and in these cases the surface of the fluid is
a portion of a spherical surface having that point for a cen-
tre. Since the distance of this centre is known, the deviation
of any portion of the earth’s surface from the level may
be readily calculated. See the Author’s Principles and
Practice of Levelling in his Land and Engineering Sur-
veying. eale's Series.

202. Prop.—If the fluid in any vessel A gB be at rest,
through the action of gravity alone, the pressure on an indefi-
nitely small area g r, at any point in the bottom or sides, iz
perpendicular to the plane of that
area, and equal to the weight of
the vertical column p q, the base
of which 15 g r.

The pressure exerted on ¢r
perpendicularly, is equal to the
weight of the fluid pr; let P =
perpendicular pressure on g7, and
W = weight of the fluid pr; take ¢gd = pg to represent the
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perpendicular pressure of any particle against ¢r; then
this pressure may be resolved into two eq, fg; and eq is the
part of the pressure which acts perpendicularly ; and since
gr is indefinitely small, we shall have

P:W::areagr X ge : area gs X pq;
but area gr : areags :: ¢d : q¢
. areagr.qge = area ¢s8.qgp, and hence P = W,

203. Prop.— The pressure of a fluud on any surface is
equal to the weight of a column of the flurd, the base of whick
ts the surface pressed, and the height equal to the depth of its
centre of gravity below the surface of the fluid.

Let the whole surface S be divided into an indefinite num-
ber of parts s, ¢, &c., the distances of which from the surface
of the fluid are respectively x, 2, &c.; then the pressure of
the fluid upon the indefinitely small portion s of the surface
is equal to the weight of a column of the fluid, the base of
which is s and the height z, by the last prop.; and if d be
the density of the fluid, or specific weiglht of each unit in
bulk, the pressure on s will be = sz x d, and consequently
the sum of all the pressures = (sz + 52" 4 &c.)d: but,
the nature of the centre of gravity, sx + §'2' + &c. = S4,
h being the distance of the centre of gravity of S from the
surface of the flnids; hence the whole pressure upon the
surface S = Sd x & = a column of the fluid the base of
which is S and height .

204. Cor. 1.—Hence the pressure against one of the per-
pendicular sides of a cubical vessel, filled with fluid, i8 equal
to half the pressure against the bottom, or equal to balf the
weight of the fluid ; and the whole pressure against the bot-
tom and sides of the vessel is equal to thrice the weight of
the fluid. .

205. Cor. 2.—1If A be the height of a cylinder and r the
radius of its buse; then the pressure against the base —
vr*h.d = rdrth; and the pressure against the upright
curved surface 2« rA . 3 4. d = »drA%; therefore thetwo
pressures are

as xde*h 1 vdr kS,

oras r : A,

206. Cor. 3.—On this principle Bramah’s Aydrostakc
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press may be explained ; let pistons be fitted into the large
and small cylinders A and B,
which are connected together,
as shewn in the figure, there
being a valve at C to admit the
water from B to A. A pump-
piston in the cylinder B forces
the water through the valve ¢
into the cylinder A, and thus
raises its piston. Now, let the
diameter of the cylinder A = D
inches, and that of the cylinde:
B = dinches ; then the areu
of the piston is A = } » D?, and the area of the pump-piston
in B = } = d? therefore the areas are

as d? : D3
D’?
oras | :(—I—,
Now, if D = 20 inches and d = } an inch ; then
D2 202
Ui 1y = 1600,

‘Therefore, if a force be applied to the pump piston in B, it
will produce an effect on that in A as ] to 1600. Now,
suppose the pump piston be pressed down by a lever with &
force of 5 cwts.; then the large piston will as-
cend with a force of 1600 x 5 = 8000 cwts. =
400 tons. .

207. Cor. 4.—On the same principle the na-
ture of the kydrostatic paradoz may be explained.

208. Prop.—If fluids of different densities,
such as water and mercury, be made to commu-
nicate, the heights to which they will risc in the
limbs of the pipe A B, will be in the inverse
ratio of their densities.

Let the bend be first filled with mercury, and
water be then poured into A; and let H = height
of the floid in A, and D = its density ; also let
A = height of the fluid in B, and d = ita den-
sity; then, since the bore of the pipe is supposed
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to be the same throughout, there will result in the case of
equilibrium.,
H.D = A.d, hence
H:Ah::d: D

Since the density of water to that of mercury is nearly as
1:134, we shall have

H:»A::13%:1,
that is, if the height of the mercury be one inch, the height
of the water will be 13} inches.

209. Pror.— 7o find the centre of pressure upon a plane
surface.

Der. The centre of pressure is that point in the surface
pressed by any fluid, to which, if the whole pressure were
applied, the effect would be the same as when the pressure
is diffused over the whole surface ; and if a force equal to
the whole pressure be applied in a contrary direction to this
point, it will keep the surface at rest.

Let A B C be the level surface of the fluid pressing on the
plane CG R, CR the intersection of
these planes, and, P the centre of

ressure. Suppose the whole area
CGR to be divided into an indefinite
number of small portions m, m', m",
&c., and draw m g, ¢n perpendicular
to CR, also m n perpendicular to ¢ z.
Then because CR is perpendicular to
gm, g n, it is also perpendicular to the
plane mgn, and the planes A BG,
mgn are therefore perpendicular to
each other, and m n is vertical. Now, let ¢ =anglemgn =
inclination of the surface plane A B and the plane CGR;
then the pressurc on the indefinitely small surface m is pro-
portional m . m n.

But m.m#n=m.mgq sin ¢=m 3 sin ¢, 3 being putformg.

Hence the effect of the pressure to turn the plane about
the line CR will be as m s 8in ¢ X 5 = m s? sin ¢ ; and the
effect of all the pressures to turn the plane about C R will be
proportional to
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(m 8 + m's? + m"s"? 4+ &ec.) sin ¢.
Put M=m 4 m' 4 &c. = area CGR, and HG =d; then
the pressure on C G R will be as M. GI = Mdsin ¢ ; and
the effect of the pressure at P to turn the plane about CR
will be as Mdsin ¢ x PR; hence
Mdsine x PR = (ms* + w's'* + m"s"* 4 &c.) sin ¢,
. _ms' w4 "’+&c
S~ PR= 3
Also, the effect of the pressure m s sin ¢ to turn the plane
about G H will be as ms sin ¢ x H ¢, and the effect of the
ure M d sin ¢ at I’ to turn the plane about C R will be
as Mdsin® x HR; hence
Mdsing x HR=mssin¢e. Hg+ m'ssine. Hg' + &e.
. _ms.Hg+m's. Hqg 4 &e.
- HR= M d .

From the above value of PR, it appears that the centre
of pressure P of the plane C R G is the same as the centre of
oscillation of this plane, when moving round the axis CR;
see Art. 178, .

210. Pror.— The centre of pressure against the rectangle
BF ¢ at § of the depth B D from the surface AB. (See last

)
Put BD=a, FD = 4, and let BD be divided into »n
indefinitely small parts, each equal to A, sothat a =na;
and conceive lines to be drawn through these divisions pa-
rallel to DF; then the area B F will be divided into n inde-
finitely small rectangles or lamina, each equal to 5. Now
supposing each of these lamina to be parallel to the surface
A B of the fluid, we shall evidently have
msd '8+ &e. = ba x AT bA x (2x)2 + &c. to B X (nr)
= ba3(124-22 4 32+ &c. to n?)

Bt Dnt) lm'*’(, )(1+_.)

_2()(2).

putting a for its equal n A,
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. 1 .
Now, since » is indefinitely large, the fractions ;1-3 ) 5, arein-

definitely small, consequently the above value of
ms? + w8 + &c. = }adh
Hence, supposing the plane C G R to be rectangular, we

shall have 5
_$a*b _ {a _
PR="5fa “abxpa —3*
the point P being, in this case, evidently equidistant from the
sides of the rectangle.

211. Cor.—If BD = a, and BE = % ; then the distance
of the centre of pressure of the rectangle EF from the sur-
face of the fluid will be equal to

$a*b—4hb  a'+ah +A?
(a—k)b x §(a+h) — a+h

212, Cor. 2.—If a = depth BD, & = breadth DF in
feet, and S = specific gravity of the fluid (see fig. to Art.
204); then by Art. 203, the pressure P of the fluid against
the vertical rectangular plane BF = } a® b S, that is,

P=13}ab8,
and by Art. 210, the power P, being applied at § of the depth
of the fluid, will sustain the plane.

Ex. 1.—Required the pressure on a flood gate of a canal,
the breadth of which is 12 feet and depth 6 feet.

k ] .
P= 6——1—-1—%-5—-(—;?—'-5 = 18500 lbs. = 6434 tons.
Ex. 2.—The depth of water, pressing against an embank-

ment 100 feet long, is 9 feet, required the pressure thereon
in tons.

P=

9? x 100 x 62-5
2
Ex. 8.—Required the pressure on the stavesof a cylindrical

vessel filled with water, the depth being 6 feet and the dia-
meter of the base 5 feet.

Here the curved surface of the vessel must be considered
as a plane; hence

P=§a’b'8=

= 253125 lbs. = 1134 tons.

62x 5 x 3-1416 x 625
2

= 1767 l* 1bs.
5
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Ex. 4.—The depth of a cylinder filled with fluid is 3 feet;
required its diameter when the pressures against the staves
and bottom are equal.

Put x = diameter of the cask,
thenP=§32»Sor=13~8a%,
whence x = 6 feet.

213. Pror.—A perpendicular embankment or wall ABCD
sustains the pressure of the water BCEF, required the con-
ditions of equilibrium, when the wall is just on the point of
overturning on D us a centre.

Let K1 be a vertical line passing through G the centre of
gravity of the wall, P the centre of
pressure of the water, the distance
CP being = 4 B C, by Art. 210.
Draw P L perpendicular to AD in
H; then since the section A C of
the wall is hcre considered to be
rectangular, the centre of gravity G
is at the middle point of the wall,
and therefore DI = 4 DG = } AB.
Now, HDI may be considered as a
bent lever, the fulerum of which is D, the weight of the wall
acting in the direction of the centre of gravity G on the arm
D1, and the pressure of the water on the arm D H, or what
amounts to the same thing, a force equal to that pressure
drawing in the direction HL. Put P = pressure of the
water and W weight of the wall; then

PxDH=Px4BC=Wx4DC,

3DC. W

2BC
When this equation holds, the wall or embankment will just
be on the point of overturning; but in order that the wall
may bave complete stability, this equation ought to give a
much larger value of P than its actual amount. The fol-
lowing formulw are for embankments of one foot in length,
because, if they have stability for that length, they will be
stable for any other length,

Put a = B C depth of water and embankment, which are

or P=
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here supposed to be equal, 5 = D C ="breadth of the em-
bankment, S = specific gravity of water, and s = that of
the wall; then by Art. 204, P =4a?x 1 x S, also W =
a x b x 1 x s, each value being for 1 foot in length, which
being substituted in the above equation, there will result

3bxabs
2 -_— e T .
$a2S = Y a

or, a’S=38s,

or, a=b\/%s,

and b=oa Jgs},

which gives the breadth of an embankment or retaining wall
that will just sustain the pressure of the water, the wall must
therefore be made at least 1 foot thicker than shewn by thix
equation, to give it due stability.

Ex. 1.—Let the height of the wall B C = depth of the
water = 12 feet, and the respective specific gravities of
water and the wall be 62°5 lbs. and 120 lbs. per cubic foot ;
required the thickness of the wall, so that it may have com-
plete stability to sustain the pressure of the water,

62:5 625 25 .
= 120-12"/3600-12)(@ = 5 feet,

the thickness that will just sustain the pressure of the water,
therefore 1 foot must be added to this thickness to give the
wall complete stability,

hence 5 41 = 6 the required width of the wall.
Ex. 2.—Let DC or AB = 3 feet, and the weight of a
cubic foot of the wall = 150 lbs., required the height of the

wall when it is on the point of being overturned, the water
being at the top.

S
b=a\/:—n=l2\/3

3 x 150
62-5
Ex. 8.—Required the thickness of a rectangular embank-

ment or retaining wall, when its height is 12, and the weight
of & cubic foot of the material is 125 1bs., 80 that it may just
5

5
a=bJ-3-S—=3J =-13§~/5=8'05f00t.
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be on the point of being overturned, the water standing at
the brim.

214. Pror.— The section BCD of an embankment or
retaining wall is triangular, the face B C being vertical; re-
quired the condition of equilibrium, when the wall is just on
the point of being overturned on D as a centre.

Draw D n bisecting B C in n, from the centre of pressure
P draw PH perpendicular to BC
cutting D= in G, which is the centre
of gravity of the triangular section
of the wall, also draw G I, D H re-
spectively perpendicular to DC, PH;
then HDI may be considered as a
bent lever, the pressure of the water
acting at H, and the weight of the
wall acting at I. Put BC =4a,DC
= b, and the specific gravities of the
wall and water as in the last problem;
then PC = GI = HD = } a, and, by the nature of the
centre of gravity, DI = 3 DC = } b; the weight of 1 foot
in length of the wall = } abs, and the pressure at P of the
same length of water = § a? S; hence by the property of
the bent lever,

3l xtabs=}ax }a$,

S 2s
whenceb:a,\/Z‘, anda_bv.s..

215. Cor. 1.—If x = B r = any variable depth of the
water, and y = r s = the corresponding width of the em-
bankment ; then, these values being substituted for @, & re-

spectively in the equation b = ay/ §§¢’ give

8
y=x\/-2-;,

an equation of the first degree, which is therefore the equa-
tion of the straight line B D, and consequently the triangular
embankment B C D is equally strong throughout.

216. Cor. 2.—By comparing the values of & in this and
the preceding problem, it will be seen that an embankment
or retaining wall with a triangular section is stronger than
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one with a rectangular section, when the quantity of mate-
rial in these two forms of the embankment is considered; for
when the walls have the same quantity of material in both

the base of the wall in Art. 214, must be twice the
width of the base of the wall in Art. 213 ; if, therefore, we
put P = pressure the wall sustained in Art. 213, and P’ =
pressure sustained by the wall in Art. 214, 25 for b in the
latter case, there will result by substitution in the formule of
the respective problems,

2
P= 3_1:_5’ and P'= 4bs

2
88 : 482

PP
HEE I
123 :8.

Ex. 1.—There is a triangular embankment of brick-work,
each cubic foot of which weighs 117 lbs., and its depth B C
is 14 feet ; required its width at the base D C when it is just
on the point of being overturned, the water standing at the
brim. (See last figure.)

625 3

S 5
DC=b=a ./2‘ = 14 \/2.117 = 39J65_7}feetnmly.
Hence the breadth of the base of the embankment must be
at least 8 feet to ensure perfect stability.

Ex, 2.—A triangular embankment is 12 feet in depth, the
weight of the material is 130 lbs. per cubic foot, required
its width at the base when just on the point of being over-
turned by the pressure of the water, which is 104 feet deep.

Here put ¢ depth of the water, then in this case P =
1S and W = } a b s, as before, therefore § bx }abds =
}e x4 S, whence

cS 10} x 624}
b=cy7— =10 3= 2 =4 = i
../2‘“ }42)(12)(130 4816 feet=4 ft. 94 in,

Note.—The usual form of an embankment is that having a section in the
form of a trapezoid with the longest side for its bass, these embankments
are usually formed of earth and clay, with or without a perpendicular or
sloping face of brickwork against the water; the following proposition refers
to embankments of this kind.



102 HYDROSTATICS.

217. Pror.— The section AB CD of an embankment is a
prismoid, having a perpendicular face B C, required the con-
ditions of equilibrium when the embankment is on the point of
being overturned on D as a centre.

Divide the embankment into parts by drawing A E per-
pendicular to DC; and let
B C = a as before, the top-
breadth AB = EC = b and
the bottom-width D E of the
sloping part ALLD = ¢; then
the weights of the portions
A C and AED respectively
for one foot in length, are a b s
and 4acs, these weights acting
at the points N and I respec-
tively. Now DN=DI+ { EC=c+}b, and DI =
3DE = }c; hence the sum of the moments of the em-
bankment ABCD is

abs(c+4b)+tacs x 3e=3(B*+2bc+3c*)as

which must be equal to the moment of the pressure of the
water

St (B4 2bc+ 3M)as=Ltaxta’S
or (B*+2bc+3c?)s = }a’S.

Hence, when the depth a of the embankment and its bot-
tom-width & 4 ¢ are given, the breadth ¢ or batter of the
sloping part may be found, which is

e St
= SEFRITTS

8
whence the width b of the top of the embankment becomes
known.

Ex. 1.—A trapezoidal embankment is 12 feet deep, and
the bottom-width 6 feet ; required the top-width, when the
embankment is on the point of being overturned, the weight
of the material being 100 lbs. per cubic foot.

3b+crs—a’8 3x6*x100—127x 62°5
A e
+/18 = 4} feet nearly,
hence the top width AB = 6 — 4= 13 feet.

DE=c=
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Here, as before, it will be proper to observe that the width
of the embankment must be at least one foot greater both at
top and bottom to secure its stability.

Ex. 2.—Required the top-width of the embankment when
the depth is 14 feet and the bottom-width 7 feet, the weight
of the material being as in the last example,

Ans. 2 feet nearly.
Notr.—It very frequently happens the face of the embankment has also
a slope or batter, in this case the section of the embankment must be divided
into two triangle aud a paralielogram, and the moments of the saveral parts
added together, as in the last problem; but, after having already seen so
much of like subjects, the student will have no difficulty in doing this.

REVETMENT WALLS.

218. Der.—When a wall sustains the pressure of earth,
sand, or any loose material, it is called a revetment wall.

219. The thrust of earth, &c., upon a wall is caused by a
certain portion, in the shape of a wedge, tending to break
away from the general mass. The pressure, thus caused, is
similar to that of water, but here the weight of the material
must be reduced by a particular ratio dependant upon the
angle of natural slope, which is about 45° in earth of mean
quality. Coulcomb has shewn that the angle which the line
of rupture makes with the vertical is one half of the angle
which the line of natural slope makes with the same vertical
line. He has also further shewn, that when the earth is level
at the top, the pressure of the earth may be found by con-
sidering it as a fluid, the weight of a cubic foot of which is
equal to the weight of a cubic foot of the earth multiplied by
the square of the tangent of half the angle included between
the natural slope and the vertical. Therefore the square of
the tangent of 4 45° = 224° = 1716 is the multiplier which
must be used in all ordinary practical cases to reduce a cubic
foot of the material to a cubic foot of equivalent fluid which
will have the same effect as the earth by its pressure upon
the wall.

220. Pror.—A perpendicular wall A B C D sustains the
pressure of the earth CBF (fig. to Art. 213), required the
conditions of equilibrium, when the wall is on the point of
being overturned on D as a centre.

Put @ = BC = height of the wall, 5 = AB = its breadth;
s = the weight of one cubic foot of the wall, S = that of one
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cubic foot of the earth, and » = 1716 ; then the weight of
a cubic foot of the equivalent fluid is # S, and the pressure

of the earth is
a?

*2—)( nS,
whence the moment of the earth is
a a? nS_a'nS’
gXgX"v="g
and the moment of the wall is
2
-}bxabxs:al;s,
and in case of equilibrium these moments must be equal,
alls anS$
2 - 6’

nS
whence b—a./3—‘-.

Ex. 1.—A revetment wall is 40 feet in height, sustaining
the pressure of earth of mean quality, which weighs 100 lbs.
per cubic foot ; it is required to determine the thickness of
the wall, one cubic foot of which weighs 120 lbs.

nS ‘1716 x 100 .
this thickness must be increased to about 10 feet, that the
wall may have due stability.

Ex. 2,—Required the thickness of the wall at bottom
when its height is 30 feet, its section trapezoidal, as in Art.
217, and its thickness at the top 2 feet, the weights of the wall
and the earth being the same as in the preceding example.

BURCHARGED REVETMENTS,

221. When the earth stands above the wall A C with its
natural slope AF, AC is called a Surcharged Revetment,
C G being the line of rupture, and therefore AEGCBA
is the part of the earth that presses upon the wall, which
part must be taken into the calculation, with the exception
of the portion ABF which rest upon the wall; i.e., the
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calculation must be for the part CEF G, which must be

reduced to its equivalent quantity of
fluid by multiplying the weight of a
cubic foot of it by the square of the
tangent of the angle B CG = half
the angle which the natural slope
makes with the vertical, and then
proceeding as in the last problem.
For complete investigations on the
nature of revetments, see Moseley's
Mechanical Principles of Engineer-
ing and Architecture and Hani's
Mechanics for Practical Men.

ON ELASTIC FLUIDS.

222, DEF.—Atmospheric air and other gases possess the
property of contraction and expansion, and are, therefore,
called elostic fluids. Atmospheric air is the best known of
all elastic fluids, and shall, therefore, form the subject of the

following investigations.

THE BAROMETER.

223. The annexed figure is a glass tube
about 32 inches long, open at bottom and
closed at the top. Let the tube be inverted
and filled with mercury; then placing the
finger on the open end, so as to prevent the
mercury from escaping, reinvert it, and plunge
the open end into a vessel of mercury ; if the
finger be now removed, it will be seen that the
mercury will stand at the height of about 29
or 80 inches in the tube, above the level of the
mercury in the vessel. That the mercury is
supported in the tube by the pressure of the
air on the surface of the mercury in the ves-
sel, is evident from placing the barometer
under the receiver of an air pump (to be here-
after described). As the air is exhausted the
mercury sinks in the tube, and when the ex-
haustion is carried to its full extent, so very

little pressure is produced on the surface of
. Sen

s e e e ———— e ——

)
[~
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the mercury in the vessel, that the mercury in the tube and
in the vessel are nearly on the same level ; and when the air
is again admitted into the receiver, the mercury will rise in
the tube to its previous height.

Since the pressure of the air on any portion of the surface
of the mercury in the vessel is equal to the weight of the
superincumbent column of air, the pressure of the mercury
upwards against the lower end of the tube is the weight of
= oolnmn of mercury, the base of which is the area of a sec-
tion of the tube and height ¢b; and this pressure is balanced
by the pressure of the air downwards on the surface of the
mercury in the vessel.

224, Pror.— The density of the air is pro-

ional to the force that compresses it.

Let CBAD be a bent cylindrical tube of
glass, having the end C open and the end D
closed; and let the communication between
the two branches be stopped by pouring in a
small quantity of mercury at C, till it fills the
bent part A a; then by turning the cock at D,
the air in @ D will be of the same density as
the air in AC. Now, close the cock at D, and
pour in mercury at C, and it will force the
mercury to rise in a D ; continue this till the
mercury stands at B, as high above b, to which
point it has risen in ¢ D, as the height of the
mercury in the barometer ; then the column of
mercury B&' is equal to the weight of a column
of air resting on it at B, by the last article.
Therefore the pressure against the air in a D,
arising from the pressure of both the mercury
and the air in B 4, is twice as great as it was
against the air in @D ; and it is now found
that Db = } D a, consequently the air being
compressed into half its natural space, its den-
sity is doubled. Again, if another column of
mercury be poured into CB, 8o that the height
of the mercury in A C above that of the mer-
cury in a D, shall be twice the height of the
mercury in the barometer, the pressure against
the air in a D will now be thrice as great as it
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was against it in @ D, and the space C D now filled with air
will be observed to be = }a D, consequently the density
in ¢D is equal to 3 times the density of the atmosphere.
Similarly the density of air is found in all cases to be pro-
portional to the compressing force.

224.* Cor. 1.—Since the force compressing the air is-
balanced by its elasticity, the elastic force of the air is equal
to the compressing force; hence, also, the air’s elasticy is
proportional to its density.

224.+ Cor. 2.—Let P be the compressing force on a
surface = 1, when the density = A, and p = compressing
force, when the density = 3 ; then

35 . P= pa,
3

225. Pror.— The density of any gas remaining the same,
s elastic force increases in prouportion to its increase of
temperature.

1t appears from the experiments of Dalton, Gay, Lussac,
and others, that all gases, under the same pressure, expand
equally for equal increments of temperature, at least from the
freezing to the boiling point of the thermometer ; and the
degree of expansion is the same in all. This expansion for
each unit of bulk is 3 of the bulk, from 32° to 212° of
Fahrenheit’s thermometer, that is, the expansion for 212°—
32° = 180°, is 3; and therefore the expansion for one degree
= v X § = 745; hence, if V = volume, or solid content,
of any gas at 32° temperature, and v = its volume at £
temperature, then

t—382 t—32
”—V(‘ +‘4”8F)' and ¢ =1+ -

Now, let P = pressure on a unit of surface of the gas, and
p = pressure which would reduce the volume v at the tem-
perature ¢ to the volume V; then, by the preceding prop.,

P:p::V:v;
hence, if t—32 = 7, and &« = ]y, there will result
' P
P
P = (l+ “7)P:

P:p:: a:

=—{,-,=l+a-r,
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and p—P =arP,

that is, the increase of elasticity is proportional to the in-
crease of temperature.

THE DIVING BELL.

226. The Diving Bell is a vessel inverted in water, and
let down to any depth by means of a rope, the air occupying
the upper part of the vessel and diminishing in bulk as the
vessel descends in the water. Let AB be the surface of the
water, E CF the diving bell, Dd
the height to which the water
rises in the bell ; also let V be the
content of EC F, v the content of
e C f = space occupied by the
condensed air, & = weight of a
column of water, the pressure of
which is equal to that of the atmo-
sphere, AC = a, and Cd = a.
Now, when the air was in its na-
tural state and occupied the whole
space of the bell, its eclasticity
was measured by the height of the
column of water 4 ; but when it occupies the space ¢ Cf; the
pressure of the water is as the depth Ad = a + r, and the
pressure of the atmosphere is as 4, therefore the whole
pressure of the air in e C f'is equal to the weight of a column
of water of the height 2 + a + x; but the elastic force of
the air is inversely as the space occupied ; therefore,

h:h4at+a::v:V.
227. Cor.—When the form of the bell is given, the rela-

tion of the above quantities may be determined in numbers.
For instance, let the bell be in the form of a prism ; then,

h:htat+x ::0:V ::z2:CD,
S22+ (@+ h)x=CD x A,
whence the value of x may be found.

Ex.—Let the depth AC = a = 100 feet, C D = 10 feet;
then since 4 = 32 feet, the above equation will become

2% + (100 + 32) x + 10 x 82,
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or, 2%+ 132z = 320;
and by solving this quadratic, there results,

2= —66 + ./662+320=2'41 ft. = 2 ft. 5 in. nearly=C d,

the positive sign of the surd being used, the negative ome
being inadmissible.

ON THE EQUILIBRIUM OF FLOATING BODIES.

228. Pror.—The centre of gravity of a body floating in
a fluid, and the centre of gravity of the fluvd displaced by the
body, are in the same vertical line.

The pressure of the body downward is its weight, which
may be considered as collected at its centre of gravity; and
the pressure of the fluid upward may also be considered as
collected at its centre of gravity, and this pressure is the
same a3 the weight of the body, acting in an opposite direc-
tion; also, since the body is at rest, the weight of the body
downward, and the pressure of the fluid upward, must be
opposite and equal ; therefore, the two centres of gravity are
in the same vertical line.

229. Prop.— To determine when the equilibrium of a body,
JSloating in a fluid, is stable, unstable, or indifferent.

Let G be the centre of gravity of the body A CB, floating
in a fluid, the surface of
which is A B; let the
centre of gravity of the
fluid displaced be in the
line M G m, when the
body is at rest, and let
G’ be the centre of the
fluid displaced, when the
body is moved through
a small angle a; also let
the vertical line G'M meet m GM in M, then M is called the
metacentre of the floating body. Now, the weight of the
body acts downward in the direction G P, and the pressure
of the fluid acts upward in the direction G' M ; and when M
is situated above G, these two pressures obviously tend to
bring the floating body back to its former position, and
therefore, the equilibrium is stable. But if the metacentre
M be below G, as at m, the weight of the body, and the
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pressure of the fluid in the opposite direction, tend to move
the body farther from its former position, and therefore the
equilibrium is unstable. Finally, if M coincide with G, the
forces being equal, and acting on the same point in opposite
directions, the body will be at rest in any position, and there-
fore the equilibrium is indifferent. Consequently the equili-
brium of a floating body is stable, unstable, or indifferent re-
spectively, as the metacentre falls above, below, or coincides
with, the centre of gravity of the body.

230. Cor.—The moment of the force, tending to bring the
body buck to its former position, or to move the body farther
from it, is the weight W of the body x FG = W x MG x
sina; ..., when the weight W and the angle « are given, the
stability varies as G M.

231. Pror.—A body immersed in a fluid descends or as-
cends with“a force equal to the difference between its own
weight and the weight of an equal bulk of fluid ; neglecting
the resistance of the fluid.

Let W = wt. of the body, and w = wt. of an equal bulk
of the fluid; then the pressure downward is W, and that
upward is w; therefore W — w = pressure or force, which
causes the body to descend; also, W is the mass or weight
moved, and ¢ multiplied by the pressure or force divided by

the mass moved, gives
W —w

-(-§)»

232. Cor.—When W is less than w, the body will ascend,

the accelerating force downward =

and the accelerating force upward = (% - l) g

ON HYDROSTATIC MACHINES.

THE AIR PUMP.

233. The air pump is a machine for exhausting the air
from a close vessel, called a receiver ; thus producing a near
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approach to a perfect vacuum. The glass receiver R is fixed
on a metal plate, and made perfectly air-tight. A pipe C
communicates with the receiver and with two cylindrical
barrels @ and 5, by means of two valves opening upwards,
which are shewn at the bottoms of the barrels. ln these
barrels are two air-tight pistons with valves also opening
upwards ; these pistons are worked up and down by a rack
wheel. Now, suppose the piston in @ to be at the bottom,
and that in b at the
top of the barrel;
then, as the piston
in a ascends, a
partial vacuum is
formed below the \
piston, and the Tae
elastic force of the ¢ KA
air in R and C, i
pressing upon the '
valve, opens it, and

fills the barrel a.

Next, let the wheel

be turned back, and

the piston a is now

made to descend ;

the valve at the

bottom of a is then

closed by the pres-

sure of the air upon

it, and the valve in
the piston within it

is opened, and the air in the barrel is forced out by reversing
the motion of the wheel. The wheel acts in the same manner
on the piston in the barrel d, thus expelling a barrel of air
at every turn of the wheel, until the elastic force of the air in
the receiver and pipe is not sufficient to open the valves at
the bottoms of the barrels, and then the process of exhaustion
must cease. The air is readmitted into the receiver by a cock
at A.  One end of a bent glass tube &, which is more than 30
inches in length, opens into the tube C, while the other end
is immersed in a vessel of mercury ; this tube acts as a guage,
and shews by the ascent of the mercury within it, the amount
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of rarefaction in the receiver, because, as the rarefaction pro-
ceeds in the receiver, the elastic force of the air pressing on
the mercury in the guage-tube is diminished.

234. Prop.—To find the density of the air in the receiver
of an air pump afler any given number of turns of the wheel.

Let R be the content of the receiver and pipe, and & the
content of each barrel; then the air which filled the space
R, when the piston in the barrel a was at the bottom, will
fill the space R + b, when the piston in a ascends to the top
of the barrel ; therefore, if 3 = density of the air before the
stroke, §, = its density afterwards, we shall have

R+b6:R::8:3,,

_ _Rs
'T R4
Similarly it will be found that if 3, be the
density after » turns, that

Rn s

TR+ by

Hence it appears that the density of the
air in the receiver decreases in geometrical
progression ; and therefore can never be
completely exhausted.

S8

L

THE COMMON PUMP.

235. The common suction pump is us-
ually thus constructed : AC is a cylindrical
barrel, A B a pipe having its lower end in
water, v is a fixed valve opening upwards,
and p is an air tight piston, moveable by
a handle or brake fixed to the rod, and
having a valve ¢ opening also upwards.
Now, let the piston p descend as low as it
can, each valve being shut ; then, when p
ascends, there will be a vacuum in the
barrel between A and C, and the valve
v will be opened by the upward pressure
of the air in the pipe AB, and the air will
follow the piston and fill the empty space
AC. The air in the pipe will thus be-
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come rarefled, and hence the pressure of the air on the
surface of the water at W will be greater than the pressure
of the air in A B, and therefore_the water will be forced »
short distance up the pipe A B, till the equilibrium is re-
stored. On again depressing the piston, the valve v is closed,
and the valve o forced open (as in fig. 2), through which
the air in A C escapes. On raising the piston a second time,
more air rushes from A B, and the water in the pipe rises
still higher. Thus, by alternately raising and depressing the
piston, all the air will be drawn out of A B, and the water
will rise up to the valve v. The piston being now raised,
water instead of air will open the valve v, and rush into the
barrel, and, on lowering the piston, the water closes this
valve v, thus preventing it from flowing back ; at the same
time the water forces open the valve ¢/, and passes through
it, so that the water is now both above and below the piston.
This action being continued, the water will rise still higher
above the piston, till it be discharged at the spout S.

Note 1.—In this pump the height of the valve v above the water must
not greatly exceed 30 feet; because the pressure of the atmosphere, in its
rarest state, wilP not raise the water in a vacuam above that altitude.

NorE 2.—The lifting and forcing pumps are only modifications of that
just described ; they have, however, the advantage, if required, of raising
water to the height of several hundred feet. See Hydraulics, Weals's Series.

236. Pror.—To0 find the height to whick the water will
rise afler any given stroke in the common pump.

Let the water, after a given number of strokes, rise to P,
in the pipe A B, and after the next stroke let it rise to p;
(these points are not shewn in the fig.). Put A = height of
a column of water equivalent to the pressure of the air,
AS=a, AP=5b,c=A—PB, and Bp = z; also put
& = area of a section of the pipe AB, and m& = area of a
section of the barrel AS. Now, let the piston be at A, then
the elasticity of the air AP, together with the weight of the
column of water B P, is equal to the pressure of the air, or
is = column of water of the height 4 ; hence

elasticity of air in AP = column of water above P =¢;
let the water rise to p after the next stroke, then
elasticity of air in Ap = column of water above p=¢ — .
Now, the air which filled the space A P, before the rise of
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the piston, will expand, after its ascent, and occupy the space
PS; hence

density of air in AP : density of air in pS :: space pS : space AP.
2t (b—x)k + ambk : bk,
wb—x 4 am:b.
But the density of the air is proportional to its elastic
force ; hence

c—x:¢c::5:5—x+ ma; therefore
be =(c—x)(am+ b —x), whence
1 —(am+b+c)+acm=0;

whence the valve of z = rise of water due to one stroke, may
be found.

THE S8YPHON.

237. The syphon is a bent tube AB C. If its shorter leg
A B be put into a vessel of water D, it will transfer the
liquid to the vessel E, in the following
manner. Draw the air out of the syphon
by suction, or any other means, and the
water will rise in it to B by the pressure
of the air on the surface of the liquid
above A, and then it will descend by its
own gravity to C. The syphon being
thus filled with liquid, the forces which
act upon the liquid in the tube are the
pressure of the air upon the surface above
A, and the weight of the column of liquid
BC, acting in the direction ABC; and
the pressure of the air at C, and the weight
of the column A B, acting in the opposite
direction. But as the column BC is
longer than the column A B by FC, the sum of the pressures
in the direction A B C is greater than the sum of the pres-
sures in the direction CB A, the liquid will, therefore, con-
tinue to flow in the direction ABC till the surface of the
fluid falls to A.

Note.—The syphon will not act, if the length of the shorter leg be much
greater than 30 feet; see Note 1, Art. 138.
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238. Cor.—The action of intermitting springs that ebb
and flow, as they are
termed, depends on the
principle of the syphon.
Water being collected from
various springs a, & into
the cavern A B, and the
only way by which it can
be discharged is the chan-
nel B C D, which is bent
like a syphon. When AB
is so full of water, that it
stands at the level A C, it will flow out, and continue to do
so until it is either exhausted or on a level with the outlet B.

ON SPECIFIC GRAVITIES AND THE EQUI-
LIBRIUM OF FLOATING BODIES.

239. Der.—The specific gravity of a body is its weight
compared with the weight of some other body of the same
magnitude. Thus, silver has about 10} times the specific
gravity of water, because a cubic foot of silver contains
about l()i times the quantity of matter that water contains,
or is bulk for bulk 10} times heavier; the specific gravity
of a body is, therefore, proportional to its density. The
specific gravity of distilled water, at a temperature of 60°, is
usually considered the unit of comparison, or 1, for all solids
and liquids ; and the specific gravity of air, at the same
temperature, when the barometer is at 30 inches, is adopted
as the unit of comparison for all gases and vapours.

240. Prop.—If a body be either wholly or partly immersed
in @ fluid, it is pressed upwards by a force equal to the weight
of the fluid displaced.

Let A B be the horizontal surface of a fluid, and LM N a
body suspended in it; draw the vertical lines pr, ¢ s inde-
finitely near to each other; then the indefinitely small por-
tion m n of the upper surface of the body is pressed down-
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ward by the weight of the column of fluid mn s, and a
like portion p ¢ of the under surface is pressed upward by a
force equal to the column of fluid p ¢ » m ; hence the dif-
ference of these forces, which presses upwards against p ¢ is
the weight of the column mpgn.
Similarly it may be shewn that
the upward pressures against the
whole body LMN exceed the
downward pressures, by a quan-
tity of fluid equal to the magni-
tude of the body, that is, the body
is pressed upward by a force equal
to the weight of the fluid dis-
placed. Again, let A'B’ be the
surface of the fluid, the body being now supposed to float in
the fluid ; then the pressure upward against p ¢ is equal to
the column p ' §' ¢; hence the sum of all the upward pres-
sures i8 equal to the weight of fluid of the bulk M'N'L ;
that is, the body is pressed upward by a force equal to the
weight of the fluid displaced.

241, Cor. 1.—When a body Aoats in a fluid, it displaces
a quantity of fluid equal in weight to itself; and when it
sinks it displaces a quantity equal to its bulk.

242. Cor. 2,—The weight lost by a body, when whoﬁz
immersed in a fluid, is equal to the weight of an equal b
of the fluid.

243. Cor. 3.—A solid placed in fluid will sink, if its spe-
cific gravity exceed that of the fluid ; it will float on the
surface, being at the same time partly immersed, if its spe-
cific gravity be less than that of the fluid ; and it will remain
wholly immersed, at any depth, if the specific gravities of the
fluid and solid are equal.

244. Prop.— To determine the eific gravities of
bodies. oo

(1.) For a solid heavier than its bulk of water.—~The spe-
cific gravity of a solid body is found by the Aydrostatic
balance C P, which is a common pair of scales, with a fine
silver thread attached to the under surface of the scale C.
The substance S, the specific gravity of which is required,
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is first weighed in air, and
then, being attached to the
thread, is immersed in pure
water, at the temperature
of 60° and again weighed.
Let W be the weight of
the body in air, and w its
weight in water ; then
W—w is the weight lost,
which is equal to the
weight of fluid displaced,
by Cor. 2 of the preceding
Prop.; hence W—uw is also
the weight of water equal
to the bulk of the body,
the weight of which is W ;
therefore,

W: W —w:: wt of body : wt. of an equal bulk of water
:: gpecif. grav. of body : specif. grav. of water.

Now, since the specific gravity of water is 1, by the Def.
Art. 239; therefore W

specific gravity of the body = o

(2). For a solid lighter than its bulk of water.—Attach to the
body another solid heavier than water, so that the compound
body may sink in water. Put W' = weight of the heavy
body in air, w' = its weight in water, C = weight of the
compound body in air, and ¢ = its weight in water ; then

wt. of water = in bulk to comp. body = C—e¢,

ditto ———ee———— t0 heavy body = W'—,

.~ ditto to given body = C— ¢ —(W'—o);
hence W ;: C—c—(W'—') :: spec. grav. of body : spec.
grav. of water; and therefore W

w
spec. grav. of body = C—e—(W—w) “Wiwte
(8). For a liguid or powder.—Weigh a vial, first when
empty, secondly when filled with the liquid or powder, and
third{y when filled with pure water; then the weight of the
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liquid or powder divided by the weight of the water will be
the specific gravity required.

(4). For any kind of gas, &c.—Extract the air, by means
of an air-pump, from a flask, containing about a gallon, and
formed of thin copper, with a narrow neck, which may be
opened and closed at pleasure by a stop-cork ; now, having
weighed the flask, let it communicate with the vessel con-
taining the gas, the specific gravity of which is required to
be found. The flask, being filled, is again weighed ; and the
difference of these weights will be the weight of the gas, and,
since the content of the flask is known, the specific gravity
of the gas is found as before.

Notre.—In the preceding methods of finding the specific gravities of
bodies, it has been assumed that the weight of the body in air was the #rue
weight of the body; but since air iteelf is a fluid, the body loses a portion
of its weight in air, in the same manner as when weighed in water; a small
correction is therefore required on this account, that the weight of the body
in a vacuum may be obtained, which is the true weight.

245. Prov.— The specific gravity G of a body is given, as
determined by weighing it tn air and water ; to find its true

specific grarity.
Put W = wt. of the body in air, v = its wt. in water, as
before, x = its true wt. = its wt. in a vacuum, and y =

spec. grav. of air as compared with water; then the wt. of
an equal bulk of water = x — w, and the wt. of an equal
bulk of air = £ — W ; hence
T—w:xz—W::l:y,
x— W = v(z — w), whence
W—rw

-~ ’

1 —q

but the true specific gravity of the body is
x
substitution,

x
— and by

x We—yw

z2—w W—w

w
Now S —— G, and W%z G —1; whence, by sub-
stitation, &c.,
the true specific gravity = G — (G — 1).
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TABLE OF SPECIFIC GRAVITIES.
(Weights in ounces per cubic foot.)

METALS,
Platinum . . . .
Pure gold, cast . .
—m e hammered .
Mercury . . .
Lead . . .
Pure silver, cast R
Bismuth, cast . . .
Copper, do. . .
Cobalt, do. . .
Nickel, do. . »
Iron, do. . . .
Bar iron . .
Steel, hard . . .
— soft . . .
Tin, cast . .
Zing, do. . .
Antimony, do. . . .
Arsenic, do. . . .

19:500
19-258
19362
13568
11-352
10474
10-511
9-823
8:788
7812
7-807
7207
7-788
7816
7833
7°201
7191
6:702
5763

MINERAL PRODUCTIONS.

Ponderous spar . 4430
Oriental ruby . . 4283
Oriental sapphire 3994
Orisutal topaz . 4011
Oriental beryl . . 3549
Diamond . '501 to 3:531
White Parian marble 2-838
Green marble . . . 2742
White marble of Carrara . 2:724
Jasper . . 2°660 to 2:764
Granite . . . 295
Pure rock cryoul 2:653
Purbeck stone . . 2601
White flint . . . 2594
Portland stone . . . 3580
Plumbago . . 1860
Vewmtle oo.l . . 1270
Staffordshire coal . 1240
Pumioe stone . . . 914
Flint glass . . . 332
White glass . . . 2893

119

Green glass . . 2642
Alabaster . . . 2000
Brick . . . 2000
Gnnpowder, about . . 937
Ice . . 930
WOOD8.
Ligoum vite . . 1333
Box, Dutch 1-328
French . 970
Heart of oak (60 )ears old) 1-170
Dry oak . . ‘925
Mahogany . . . 1063
Beech . . . . 850
Elm . *600
Fir . 570
Poplar . *383
Cork . 240
LIQUIDS.
Sulphuric acid . . 1841
Nitric acid 1217
Water from the Dend Sea 1-240
Human blood . 1053
Cow’s milk . 1032
Cider . . 1018
Sea water . . . 1028
Water at 60° . . . 1000
Wine . . . . ‘994
Olive oil . . . . 915
Pure alcohol . . . 7
Muriatic ether . . . *730
Naphtha . . . 708
GASES.
Atmospheric air . 1000
Do. compared with m ‘001395
Oxygen . . . . rne
Chlorine . . . . 2500
Hydrogen e« . 0069
Nitrous oxide . . . 1534
Carbonic acid . . . 1397
Coal gas . . . 450 to 650
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oall;];:. 1.—How many cubic feet are there in a ton of dry

20 x 112 x 1
—)5?2—5-—)2—9 = 8813% cubic feet. Ans.

Ex. 2.—A piece of copper weighs 93 grains in air, and 82}
grains in water ; what is its specific gravity? Ans. 8857.

Ex. 3.—A piece of elm weighs 30 Ibs. in air, and when a
piece of copper, which weighs 32 lbs. in water, is connected
with it, the compound weighs 6 lbs. in water ; what is the
specific gravity of the elm ? Ans. 600.

Ex. 4.—A cast iron pipe is 6 inches diameter in the
bore, and 1 inch in thickness ; required the weight of a
running foot. Ans. 67°45 lbs.

PART IV.

HYDRODYNAMICS.

246. Hydrodynamics treats of the motion of fluids, and of
the forces which they exert upon bodies to which their action
is applied.

247. Propr.— The velocity of a fluid issuing from a small
orifice at the bottom of a vessel, kept constantly ﬂilll, is equal
to that whick a heavy body would acquire in falling through
a space equal to the depth of the orifice below the surface of
the fuid,

Iﬁt A B be the surface of the fluid, D the small orifice.
Consider the fluid to be composed of an
indefinite number of lamin®, which du-
ring their descent remain parallel ; then,
whatever moving force is lost by the
descending fluid will be communicated to
the fluid at the orifice. Let Dec be a
small column of fluid discharged in the
indefinitely small time ¢ by the pressure
of the column CD; and let Db be the
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which would have been discharged by its own weight, that
is, by its gravity in the same time ¢. Let, also, V and v be
the velocities of the fluid in the columns D¢, Db, by the
pressures C D, D 4; then, since the moving forces are as the
quantities of motion produced in a given time,

¢D:Db::column De X V : column Db X v; and

because the spaces described by constant forces in equal
times are as the velocities acquired
V’ o3
DexV:DbXxov:i:i—:——;

29 29
and since v is the velocity in falling through D&, by the force
of gravity,

F =

v? . . Vs
é—!;, and similarly CD_.2—§,

V= 2g9.CD,
which is the velocity acquired in falling through CD by the
force of gravity.

248. Cor.—Since fluids press equally in all directions, the
preceding Proposition holds, when the orifice is in a side of
the vessel, or when it is made to throw the fluid in a vertical
or oblique direction; in the former case it will rise to the
level of the fluid in the vessel.

249. Cor. 2.—If h = height of the vessel, @ = area of
orifice, and Q = quantity of fluid discharged in one second ;
then

Q= a+2gh; whence
t ]
a= —L., and h=2g:' .
V2gh Q

Ex. 1.—Find the velocity with which water issues from a
small orifice at the bottom of a vertical tube, filled with
water to the height of 100 feet.

V=4/2'9 x 100= y/ 64} x 100=20 4/ 164;=80ft 2}in nearly.

Ex. 2.—Find the same when the water issues into a

vacuum, its upper surface being open to the air.
Here 82 feet must be added to the height of tlée water in
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the tube for the pressure of the atmosphere, after which the
method of solution will be the same as in the last Example.

. Ex. 3.—What quantity of water will be discharged from
a vessel 10 feet high, in one second, through an orifice one
inch in diameter in the bottom of the vessel ?

Nore 1.—The actual velocity has been found by D’Alembert to differ
from the theoretical velocity considerably in many cases; but when the
vessel is kept constantly full, and each stratum of the fluid is supposed to
keep parallel to itself as it descends,

. ,29.CD
the vel. = ,/ -
<
where K == surface of vessel, £ = area of orifice; and when % is very small,

the velocity becomes /2 g.CD, which is the same velocity as that already
found.

Nore 2.—Experiments do not agree with this theory as to the quantity
of water discharged; Bossut has shewn that the actual discharge : the
theorectical discharge :: *62 : 1, or nearly as 5 : 8.—The vein of water that
issues through the orifice suffers a contraction, by which its section has been
found to be diminished in the above ratio. This contraction has been called
the vena coniracta, and calling the area of the orifice 1, the area of the vena
contracta will be % == 625 nearly. Hence the theoretical quantity of the

flnid discharged must be multiplied by § to obtain the true quantity.

251. Proe.— To determine the time of emptying any vessel
through a very small orifice.

Let MN be the surface of the descending fluid in the vessel
MON, and O the orifice; put PO =
z, PN = PM = y, K = area of the
descending surface, and £ = area of
the vera contracta, and t = time of
discharge. Then the velocity of the
fluid at the vena contracta = /2gu,
and therefore the quantity of fluid dis-
charged in the indefinitely small time
dt is equal to kd¢t/2gx. Now, let
the surface of the fluid in the vessel
descend from M N to m» in the time d¢; then Pp = dx,
and the content MN zm = — Kdz; but this is equal to
the quantity of fluid discharged, therefore

kdty2gx=—XKdzx; whence
— Kdx

= ==

k42gz’
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—kdzx
o t=f ags

252. Cor.—When the vessel M ON is a solid of revolu-
tion round the vertical axis OP, then K = = 32, and therefore

— y’ d .Z'.

kv2ga
in which, if the value of y be substituted in terms of z, the
integral may be readily found.

253. Pror.— o find the distance to which water will
spout, through a small orifice in the vertical side of a vessel
placed on a horizontal plane.

Let G A be a vessel filled with water, C a small orifice in
the vertical side A B, and A H
the horizontal plane. On A B
describe the semicircle A F B,
and draw the ordinate CD;
then by Art. 249, Note 1, the
velocity of the fluid will be very
nearly equal to that which would
be acquired by a body in falling
down BC; this velocity must,
therefore, be considered as that
with which the fluid is pro-
jected. Now, the curve C H,
described by the fluid, is a parabola, and B C = } of its
parameter at C, by Art. 161; and since the fluid evidently
spouts horizontally, C is the vertex of the parabola, C A its
axis, and A H an ordinate ; therefore,

A H®* =4CBxCA = 4C D? (by the nature of the circle),
. AH=2CD.

254. Cor.—When the orifice bisects AB in E, the distance
spouted by the fluid will be = 2 EF = AB = depth of the
fluid, which is exidently the maximum distance that it can
spout on the horizontal plane A H.

255. Pror.—To find the velocity with which water is dvs-
charged from a reservoir of given height h, through a pipe of
given length |, and diameter d.

The experiments and investigations of M. Poncelet are

"

t =
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considered strictly accurate, the limits of this work does not
admit of their insertion here, the following is his formula for
the velocity per second, all the dimensions being in feet.

T kd
= 48
v */l+54d’

Ex. 1.—Water is brought to supply Mentz from a reservoir
653 feet in height, by pipes 9843 feet in length, and 3%

mches in diameter; required the velocity of the water per
second.

First 3% in. = 2625 of a foot, and 653 = 65°6 feet, then

d 656 x 2625

"=V 502 *® Vosisysix 2625
second nearly.

Ex. 2.—In the last example, how much water will be dis-
charged in 24 hours?

The area of the section of the pipe = ‘7854 x (-2625)* =

‘0541 square feet, the quantity of water per second =
2 x 0541 = ‘1082 cubic feet, and 24 hours = 86400 se-

conds ; .~. the quantity of water brought by the pipe in 24
hours will be
86400 x *1082 = 9348} cubic feet.

256. Prop.—To determine the mean velocity with which
water runs in rivers and open canals.

The formula for this purpose is also derived from expe-
ments, of which no less than 91 were made by Eytelwein on
rivers and canals, the dimensions used by him are reduced to
feet, and are the following :—

¢ = wet contour
s = area of a section of the fluid,

:T= hydraulic mean depth,

= 2 feet per

g = force of gravity,
a = angle of inclination of surface of stream,
and v = mean velocity; then

v = V(%) 9. sina +(rhs) — rbs = the velocity in feet.
Nore,—It has been proved that the greatest velocity 1s at the surface i
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the middle of the stream; from which it diminishes towards the bottom and
sides, where the velocity s least. -

ON THE PERCUSSION AND RESISTANCE OF FLUIDS.

257. Pror.— When a stream impels a plane perpendicular
to 1ts action, the force with which it strikes the plane is as
AdVs; wkercA...area of the plane, d = density of the
Suid, and V = 1ts velocity.

The impulsive force of the stream is as the number of
particles that strike against the plane in a given time, mul-
tiplied by the force of each; and the number of particles that
strike the plane in a given time is evidently = A d 'V ; also,
the force of each particle is proportional to V; .- the force
of all the particles against the plane is as A 4 V2.

Note.—It has been here supposed that after the particles strike the plane,
their action immediately ceases; but in reality they rebound, and acting on
those which are behind, retard their velocity; therefore a difference will
result between theory and experiment.

258. Cor.—If f = impulsive force of the stream against
the plane A, 2 = a constant co-efficient to be determined by
experiment, and 2 = height due to the velocity V, so that
V* = 2g k; then

S=2Akdgh

259. Pror.—If a stream strikes perpendicularly on a plane,
which 15 itself in motion, the ympulsive force s = Ad(V—v)?*;
where v ts the velocity of the plane.

It is obvious that both the number of particles which
strike the plane, and the force of each particle, must be as the
relative velocity, that is the difference of the absolute veloci-
ties the force will be a8 A d (V—0)?, or f = Ak d(V—v)*.

260. Cor. 1.—When v is opposed to V, that is, when the
plane moves against the stream, then f= Ak d (V+v)*.

261. Cor. 2—When V =0, f = Akdv’; therefore a
plane, moving against a fluid at rest, receives the same im-
pulse as if the fluid were to move with the velocity », and
the plane to be at rest; that is, the resistance of a fluid to a
body in motion is the same as the impulse of a fluid, which
moves with the same velocity against a body at rest.

THE WATER WHEEL.
262. It has been found by experiment that a water wheel
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performs the greatest quantity of work when the velocity of
the water is 2§ times that of the wheel, whence by Art. 259,
the power of water (the velocity of which is given) striking
the paddles or float-boards of wheel might be calculated ;
but the following method has been found in practice to be
less complicated : for when a body descends from a given
height, it is capable of raising a body of equal weight through
the same height. Therefore, if water fall upon a wheel, the
quantity of work which it is capable of performing, abating
friction, is equal to the product of the weight of the water,
and the height through which it descends ; whether it falls
upon the paddles of an undershot or a breast wheel, or into
the buckets of an overshot wheel.

263. Pror.—Gliven the breadth a, and depth b, of a
stream, its mean velocity v, in feet per minute, the height h,
of the fall, and S = specific gravity of water; it is required
to determine the horse power of the water wheel, when the
modulus of the machine is nth part of the work of the water,
and U = units of work in a horse power.

Water descending per minute...... = a b v cubic feet.
Weight of water in the same time = abv S Ibs.,
Hence work of water per minute = adbkv S,

And the work of the wheel......... =nabhvS;

.. P = horse-powers............... = n—a—%.

Ex. 1.—The breadth of a stream is 5 feet, depth — 3 feet,
mean velocity 20 feet per minute, and height of the fall 25
feet ; required the P of the water wheel which performs 4
of the work of the water, that is, } of the work of the wheel
i8 lost by friction.

w nabhvS 4x5x3x20x25x62'5 _ 114
- U - 5 x 33000 - )

Ex. 2.—The section of a stream is 4 feet by 8, the mean
velocity of the water 20 feet per minute, and the fall 30 feet;
what is the P of the water wheel, its modulus being 4; and
how many bushels of corn will the wheel grind in a day of
14 hours, one HP being able to grind a bushel of corn per
hour?
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P = nabhvS _ 4x4x3x20x30x62'5
- U 5 x 33000

.*. bushels ground per day == 10}¢ x 14 = 152&.
Ex. 3.—The section of a stream, the mean velocity, and
fall of the water are the same as in the last example ; how
many cubic feet of water will the wheel raise to the height -
of 120 feet, the modulus of the machine being § of the work

of the water ?
Put H = the height to which the water is pumped ; then

Work of the wheel per minute............ = nabhv S units,
» of pumping 1 cubic foot of water... = H S »
nabhvS
HS
3 x4 x8x20x30__
120 -

= 104§.

.. number of cubic feet pumped per min. =

n«“flh Y ; which in number gives
40 cubic feet.

WORK PERFORMED BY THE SUN’S EVAPORATION.

264. The heat of the sun is continually raising the temperature of the
atmosphere, thus making it capable of absorbing water from the immense
surface of the oceans and seas that surround the earth. The water, thus
raised, forms clouds at various elevations above the earth’s surface. The
sudden cooling of the atmosphere, either by cold currents or by meteoric
changes, precipitates these clouds in the form of rain; while the dews of
night descend by the gradual cooling of the atmosphere, through the absence
of the sun. The water, therefore, which thus falls, may be considered as the
measure of the sun’s evaporating power. In the torrid zone the annual fall
of rain and dew amounts, at & mediuam, to about 100 inches in depth, and at
the northern border of the temperate zone, as at Archangel, the medium
fall of water is about 20 inches in depth; the mean of these depths is 60
inches or 5 feet, which may be taken as the mean depth of water which
descends upon the whole of the earth’s surface. Now, if we take 900 feet
as the mean height from which this water falls in the form of rain and dew,
there will result,

The work of the water falling on one square mile of the earth’s surface
per minute, through the agency of the sun’s evaporation in horse powers,

that is,
P = 27878400 X 5 X 900 X 625
T 865 X 24 X 60 X 33000

Hence, the work, thus done, on the whole surface of the globe, taking its
diamater at 8000 miles will be

TP == 8000 X 3'1416 X 452 == 90,880,000,000.

== 452.
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Now, taking the united powers of all the steam engines in the British
Tales to be 24 millions of horse powers, and the united powers of all the
steam engines in all the other states of the world to be 33 millions of horse
powers, thus giving for the steam engines of the whole world 6 millions of
horse powers, which, it is presnmed, is not far from the truth, at the present
time (1851), we shall have the work due to the sun’s evaporation some-
‘what more than 15000 times the work of all the steam engines in the world,
supposing them to work continuously day and night. This comparison shows
how insignificant the most stupendous works of man are to those of his
CreaToR. Though only a very trifling part of this vast power is available
for the purposes of moving machinery, yet it serves a still more important
purpose in watering and invigorating the vegetation on the surface of the
earth, and in producing the countless amall streams up to large rivers, which
diversify and spread health throughout creation, as well as supply immense
facilities for inland navigation. Such is the stupendous and magnificent
scale by which we must measure the mechanism of creation, and such the
boundless power and beneficence of the GREAT CREATOR,

One of the immense results of the power of evaporation may here be given
in the

Work of the Great Fall or Cateract of the River Niagara,

This river, which discharges all the water issuing from the great cen-
tral chain of lakes in North Americs, falls with astonishing grandeur over
a perpendicular rock 133 feet in height, in one unbroken sheet; the rapids
above this fall extend several miles, making an addition of 200 feet to the
height of the fall; the whole height of the fall is therefore 333 feet. It is
calculated that 33 millions of tons of water are discharged, at an average,
per hour by this fall; bence the work of the water per minute may be
readily determined in horse powers, that is

1P — 38000000 X 2240 X 333
- 60 X 33000

This river is, therefore, (see last Art.) capable of performing more work
than twice the work of all the steam engines in the whole world.

== 12,432,000.

‘WORK OR POWER OF THE TIDES.

Assuming that the average height of the rise of the tides in the At-
lantic and Pacific oceans to be 20 feet, which is probably less than the
true average, and the united length of the coasts of these two oceans
(which may be said to extend from pole to pole) including their wind-
ings, to be 100,000 miles, we shall thus have a body of water 100,000
miles in length raised to the height of 20 feet, and of a breadth vary-
ing according to the widths of the respective oceans. This vast power
is immensely greater than that which results from the sun’s evaporation ;
(Art. 264) and is due to the joint attraction of the sun and moon. Although
a very small portion of this immense power is used for mechanical p
on account of its being inconveniently situated for that purpose; because the
shores of these oceans are exposed to tempests, which would in most cases
greatly damage or entirely destroy any macbinery, which might under other
circnmstances be conveniently moved by the tide. There are, however, a
few ponds, which are filled by the tide in convenient situations, for moving
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the machinery of corn mills, &c. Yet the rise of the tide is of immense im-
portance in aiding the purposes of navigation, by its repeated flow into nu-
merous rivers, harbours, bays, creeks, &c., which would otherwise in many
cases be almost useless for this purpose. Besides, the continued agitation of
the ocean by the tide diffuses the saline matter, derived from some of the
strata which forms part of its basin, equally throughout every part of its
liquid mass; thus maintaining its waters in a perpetual state of salubrity,
which would otherwise become stagnant, and in all probability so putrid as
to be destructive to animal life. 'We may hence perceive another grand pur-
pose of the GREAT CREATOR carried ont by the agency of the tide for the
continued renovation of nature, and of far greater importance than its use as
a moving power for machinery, which the ingenuity of man by the agency
of steam can produce in localities more convenient for his several require-
ments.

MISCELLANEOUS QUESTIONS IN HYDROSTATICS AND
HYDRODYNAMICS,

Ex. 1.—The depth of water pressing against an embank-
ment is 9 feet, required the pressure upon 40 feet of its
length. Ans. 45} tons.

Ex. 2.—An empty vessel is sunk 600 feet in sea-water,
required the pressure on a square inch of its surface.

Ans. 2093 lbs. nearly.

Ex. 3.—A flood-gate 10 feet deep and 5 feet wide, is placed
vertically in water ; required the pressure on the upper and
lower halves of the gate, the water standing at the top.

Ans. 39061 and 117182 lbs.

Ex. 4.—A cubical iceberg swims, with its sides vertical,
100 feet above the level of the sea, required a side of the
cube. Ans. 326 yards.

Ex. 5.—Find the thickness of a wall at the bottom, the
section of which is a right angled triangle, sustaining a body
of water against its vertical side, the height of the wall being
12 feet, the depth of the water 10 feet, and the specific
gravity of the wall to that of the water as 11 to 7.

Ans. 5 feet 1% inch.

Ex. 6.—The concave surface of a cylindrical glass bottle,
filled with fluid, is divided into 4 annuli, so that the pressure
on each annulus is equal to the pressure on the base; re-
quired the height of the cylinder and the breadth of each
annulus, the radius of the cylinder being given.

Ex. 7 —Requlred the thickness of the wall, in Ex. 5,
when its section is a vertical rectangle.

Ans. 4 feet 2} inches, nearly.
Ge*
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Ex. 8.—A diving bell in the form of a cone is let down
into the sea to the depths of m and » fathoms; required the
heights to which the water will rise within it, its axis and
diameter of its base being respectively a and & feet, and the
barometer standing at 30 inches.

Ex. 9.—How deep will a globe of oak sink in common
water, its radius being one'foot?  Ans. 1 foot 8§ inches.

Ex. 10.—Each of the 8 pontoons, used in floating the parts
of the Britannia tubular bridge was a parallelopiped 100 feet
in length, 25 feet in breadth, and 12 feet in depth; required
the weight of their united power of buoyancy, supposing
them all to sink till even with the surface of the water, and
that the weight of each pontoon was 200 tons.

PART V.

CENTRAL FORCES.

DEFINITIONS.

265. Centripetal force is a force which continually tends
to draw or impel a body towards a certain fixed point or
centre,

266. Centrifugal force is that which impels the body to
recede from such a centre, if it were not prevented by the
centripetal force; this force, according to the first law of
motion, impels the body to move uniformly in a straight line.

267. The centripetal and centrifugal forces are called cen-
tral forces, because, by their combined action on the same
body, they cause it to describe a curve round a centre.

268. The radius vector is a line drawn from tbe centre of
force to the moving body.

269. Prop. 1.— When a body, acted upon by a force tend-
ing to a fixed point or centre, has also a projectile motion n
a direction not passing through that centre, it will move in a
curve line situated in one plane ; and the radius vector will
describe equal areas in equal times, or areas proportional to
the times.
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270. Let the body move along A B uniformly in a unit of
time by a projectile or centrifugal force ; then by Newton’s
first law of motion if no other force were to act on the
body, it would move in the same
straight line to @, in the next unit
of time, making the distance B a =
AB. Now, when the body is at
B, let a centripetal force, or a force
tending to the centre S, act upon it,
and by a single impulse draw it
along Bp in a unit of time, in the
same manner as if this force alone
acted upon it. Complete the paral-
lelogram Ba Cp, and join SC, Sa.
Then, since the body would move
along Bea in consequence of the
original force, and along Bp in
consequence of the centripetal force at S, by the composi-
tion of motion (Art. 10), the body will move along B C,
the diagonal of the parallelogram. Also, because Ca is
parallel to S B, the area SBC = area SBa (since AB =
Ba)area SAB. In like manner, if the two forces act on
the body at C, the centrifugal in the direction Cb, and
the centripetal in the direction C S, these forces will cause
the body to describe the diagonal CD of the parallelo-
gram Cé Dg, and the radius vector S D will describe the
area SCD = area SBC = area S A B, in the next unit
of time ; and so on continually. Now, suppose the unit of
time to be diminished, and the number of units to be in-
creased, both indefinitely ; then the areas described by the
radius vector in these units will still be equal to each other,
and consequently the polygon A BC D.....E will ultimately
be a curve line, and the centripetal force which was assumed
to act by impulses at B, C, D.....E, will be a continuous
force acting at every point of the curve; and, since it has
been proved that equal areas are described by the radius
vector in equal times, it is evident that in different times
the areas described will be proportional to these times.

Note.—This is Kepler's first law of Planetary Motion, which he discovered ,

by the aid of obseryation l_llone, and which was first confirmed by Mathe.
matical Demonstration by Sir J. Newton, as shewn in this proposition.
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271. Cor.—If a body move in a curve, so that the radius
vector, drawn from the body to a fixed point, passes over
areas proportional to the times, the body is acted upon by a
centripetal force tending to that fixed point.

272. Prop. 2.—The velocity of body, moving in a curve
ADE at any point D, is inversely as the perpendicular SY
drawn from the centre of force S upon the tangent DY to the
curve at D. (See last figure.)

Put SY = p, r = time of describing C D, and » = velo-
city at D; then CD = 7v, and the area SCD =4CD.SY
= 47v x p. Now, if A = area described by the radius
vector in a unit of time, A r will be the area described in the

time 7 = area SCD; ... Ar=4rop, undv:%, that is,

. . 1 . .
the velocity varies as —, or inversely as the perpendicular

upon the tangent, since the area A described in a unit of time
is constant.

273. Prop. 3.—If one body be drawn in a straight line
A S towards the centre of force S, and another body revolve
n a curve line AMB about the same centre S; then if the
Jorce at S be equal at all equal distances, and the velocities of
the bodies be equal in any one case, when they are at equal
distances from S, thevr velocities will always be equal at equal
distances from S.

Let the velocities of the two bodies at the equal distances
SN, SM be equal. Take Mm an in-
definitely small arc, which may be con-
sidered as a straight line, and describe
the circular arcs M N, m#, from the cen-
tre S, and draw the radii vectores M S,
mS; from p, the intersection of M S,
mn, draw p g perpendicular to Mm.
Let £ be the accelerating force at N or M
towards the centre of force S, and let Nu
or M p represent this force. Now, the
force M p may be resolved into the two,
Mg, pg: of these two forces M ¢ alone
is efficient in accelerating the body’s motion at M, Puteo=
angle S M m ; then the actual force M ¢ = f cos ¢, and, be-
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cause M m is indefinitely small, the increase of velocity from
M to m will also be indefinitely small ; therefore M m may
be ultimately supposed to be described with a uniform velo-
city ; and since the velocities at N and M are equal, if r =

time of describing N n uniformly, then i

Mm
Mp  ~Cose
time of describing Mm uniformly with the same velocity.
Now, the increment of the velocity from N to » is equal to
the product of the accelerating force and time = f'r; and the

—
=

increment of the velocity from Mtom = f'cos ¢ (;:—‘p= I

which is the same as in the former case. Therefore, since
the velocities at N and M are equal, and the increments of the
velocities from N to » and from M to m are also equal, the
velocities at » and m must also be equal ; and similarly it
may be shewn that the velocities are equal at all other equal
distances.

274. Cor.—When the bodies pass through the centre of
force S, or recede from it, the same proposition holds good
with respect to their velocities. In the former case, though
theoretically correct, it is practically impossible.

275. Prop. IV.—If a body describe the circumference of a
circle A a B uniformly in consequence of a projectile and an
attractive force, the latter being situated at the centre S ; the
accelerating force acting upon the body is measured by the
square of the velocity divided by the radius of the circle.

Let the body describe the arc A a uniformly in the time
7, with the velocity V, and let
AS=R; then Aa=1V.
Now, the body would describe
the tangent A T uniformly
with the same velocity, and in
the same time, if it were not
acted upon by the central force
at S; but as it describes the
arc A a, it is evident that the
force at S, upon the body at
A, would make it describe Az
or T'a in the time +; a T, an being respectively perpendicular
to AT, AS. Letf = accelerating force at A; which force
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may be considered constant through the indefinitely small
space A n or T a, therefore, by Art. 134, An=Ta =},
But Anx2 AS = (chord A a)?
= (arc A a)? ultimately = V2,3,
and .. 32 x 2R = V242

Hence f= %2

275a. Cor. 1.—If T be the time of one entire revolution of
the body round the centre of force S ; then, since the whole
circumference A a B = 2R, there will result
2xR

TV=21‘R,O!'V=——T—-

2 2
Hence f = YR—,:’ 2—',172-1-‘

276. Cor. 2.—If a body describe the circumference of a
circle with a uniform velocity, the centripetal and centrifugal
Jorces will be equal, because the distance of the body from
the centre of force is always the same, the two forces are in
equilibrium ; hence the centrifugal force f” is = f;, and is

s

measured by V—E; therefore, generally, when the centre of
force is the centre of the circle,
A4
f=r =R

277. Cor. 3.—If a body be retained in a circle of radius
= R, by a rigid rod joining the body and the centre of the
circle, or if the body be retained in a circular curve, as a
railway train is retained by the rails and the flanges of the
wheels, and if a given angular velocity = V be communicated
to the body ; then the force f° will be evidently compounded

]

of the value YR- and mass M of the body, that is,

V!
f"—=M.-ﬁ'-

But M (by the definition) = %-V, W being the weight of
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the body, and g the force of gravity at the earth’s surface,
LWV
= g-R’
which is called by Mathematicians the Vis Viva, or living
force, half of which, namely,
VW

= —2-9—,
i the force which tends to produce motion in machines ; and
2
since & = -2v—, h being the height due to the vel. V, there

results,
Vi W
f=h W= ETR
which is the Formula used in the article on water wheels, and
in various other parts of this work. See Moseley’s Principles

of Engineering and Hann's Mechanics.

The following are given to illustrate the preceding propo-
sitions and their corrolaries.

284. Pros. 1.—Taking the radius of the earth to be 4000
miles, the mean distance of the moon from the centre of the
earth to be 60 of the earth’s radii, to determine the attractive
force exerted on the moon, which causes it to revolve round
the earth in 27} days, the earth being assumed to be at rest.

By Art. 275,

._4"R 4 x 314162 x 4000 x 5280

f=—p = 274 x 24 x 60 X 60
And since the force of gravity at the earth’s surface — 323
feet = g, we shall have

S 19 :: 12 : 604, that is,
‘0089 : 32% :: 1 : 60* nearly;
therefore the attractive force of the earth varies inversely.as
the square of the distance from its centre.

285. Pros. 2.—The radius of gyration of a grindstone is
2 feet, its weight § of a ton, and it makes 360 revolutions in
a minute; required its centrifugal force, or tendency to
burst.

= 0089 feet.




136 CENTRAL FORCES.

Here V = 4—5—3:————1‘:;5—)(—3#69 = 754 feet per second nearly.
and by Art. 277,
2
f_ Ww. V’ = *;2(;)5(;) = 44} tons nearly.

286. Pros. 3.—The radius of a grindstone is r, its weight
W, and the velocity of its circumference v feet per second ;
required the centrifugal force.

The radius of gyration, in this case, is {r /2 =
Hence the velocity V of the centre of gymtlon =

&R\/R2xv_§~/2v

- f= g-R “g.rv2’

Nore.—This formula gives generally the amount of centrifugal force
which tends to tear asunder & circular wheel or disc of uniform thickness,
when it is whirled round with a great velocity. The great amount of cen-
trifugal force, as shewn in Art. 285, is the cause of the frequent violent
raptures of grindstones, and the serious accidents thence resulting.

287. Pros. 4.—Required the centrifugal force, in the last
Prob., when W = 16 cwts,, r = 14 feet, and v = 80 feet

per second.
W.ot 16 x 80° 16 x 80?
tt==—= 3
S = vz 2 3ve " T aapxg X0 O toms

288. ProB. 5.—A circular disc, the weight of which is
W, is whirled round so as to make S revolutions in a minute;
the radius of the disc is R, the radius of its axle r, and the

1
friction upon it - of the whole weight ; required the number

of revolutions the disc will make before its stops.
Radius of gyration = 4 R /2 feet.

*X3RV2XS rRSJ2ﬁ

60 - 60 ’
=SR2 W
9X60
being the work due to the height fallen through to acquire
the given velocity.

Velocity of wt. per second = 2

*. units of work in the disc = —2-‘% X (velp =
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Circumference of the axis = = », and
units of work destroyed by friction in 1 revolu. = =7 X g
Put N = No. of revolutions before the disc stops; then

xr xg x N = units of work destroyed by friction.

P S2R2W w r* S*R?
—-éaT—g—z *r X 7)( N, WhenoeN—rW'

Also, if s = given number of revolutions per second, then
S = 60 s, and by substitution

N='H._‘_'_§_'..

gr

Note.—These formule are independant of the weight of the disc, as they
obviously ought to be.

Ex.—A disc of metal is whirled round with a velocity of
88 feet per second, being the speed of the wheels of a rail-
way train moving at the rate of 60 miles per hour, the radius
of the disc is 5 feet, the radius of its axle 2 inches, and the
coefficient of friction %, or # = 10; required the number of
revolutions which the disc will make before it stops.

By Art. 288,

nxs?R? 10 x 31416 x 882 x 5?
No. of revo, = — -—— =
gr 32¢ x

THE FLY WHEEL.

290. When a moving power is supplied irregularly, as by
the piston of a steam engine, the action of which is inter-
mitting or by impulses, while various machines moved by
this important power require a regular force, the method
of regulating the motion of such machines is by means of
a fly wheel, in which a ponderous mass of metal, revolving
freely on an axis, is connected with the machinery, and by
its inertia produces a resevoir as well as a regulator of
force; since a small surplus of force acting for a short time
will accumulate a considerable power in the fly wheel, and
this power being applied suddenly for a short time is capable
of supplying the short intermissions of the moving power,
and producing a near approximation to perfect regularity in
the motion of the machinery.

=1184515.
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291. Pros. 7.—The weight of a fly-wheel = W 1bs., the
external and internal radii of the rim are R and r feet; the
wheel makes s revolutions per second, the diameter of the

axis is d inches, and the friction upon i of the whole weight

of the wheel ; required the units of work in the wheel, and
the number of revolutions which it will make before it stops,
the inertia of the axle and spokes of the wheel being neglected
88 not materially affecting the result.

k] L ]
The radius of gyration & = ¢R '2'_’ .
2
Units of work in the wheel = 32(2 " ‘2“’)’ % =

3 sy’ W(R’ + r’) .

H . L
Circum. of axis = T

*d W »gW
%% Tz’

Put N = number of revolutions made by the wheel before
it stops ; then

‘Work destroyed by friction in 1 revo. =

w
‘Whole work destroyed by friction = ,1(; X N,
2 2 2
LTdW e meW R
127 g
2
whence N — 2778 (R + %)
gd

Nore.—This result is also independent of the weight of wheel.

Ex.—The external and internal radii of the rim of a fly
wheel are 5 and 3 feet; it makes 3 revolutions per second ;
the diameter of the axle is 2 inches, and the friction upon it
<5 of the weight of the wheel, or » = 10; how many revo-
lutions will it make before it stops ?

. 2 2 2
The No. of revo, N = 12X 10 x 81416 x 8 x (5+8%) .o,
32% x 2
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292, ProB. 8.— When the force acts in one direction only,
o find the limits within which the angular velocity of the fly-
wheel varies.

Let AR Q S be the fly wheel, O its centre, OR a crank,
on which the rod PR acts in directions parallel to the dia-
meter E F; and let P be a constant force acting on the rod
PR ; also, let Q be a weight equi-
valent to the resistance to the
motion of the machine, and act-
ing perpendicularly at Q the ex-
tremity of the radius OQ. Draw
RH, 74 perpendicular to EF and
indefinitely near to each other;
also, put RO = r, QO =R, and
= = circumference to rad. = 1.
Now let the point R move through
the indefinitely small space R~ ;
then the force of P is measured by
the product of the resolved part
R 7 of the forcé P and the small space R », which product is
evidently = P x R » = P x H 4, since the force » r is wholly
ineffectual. Let the force P act from E to F, then H% be-
comes = the diameter E F, and the whole force from E to F
will be = P X EF =P X 2r; and the whole dynamical
effect of the resistance of the machine in an entire revolution,
which is represented by Q, will be equal Q x 2= Q; bat,
since the whole effect of the force P is consumed by the use-
ful and useless resistances of the machinery taken together,
there results.

2Pr =2QrR,
or P:Q'R .
r

Now, let the resistance Q just balance the force P, when
the crank is in the two positions OR, O S; and put the
angle RO A = } the angle RO S = ¢; then,

Prcos¢ = QR;

and by substituting the value of P in this equation, there
results, after reduction,
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1 1

Co8 9= = Fgr — 01983
oo = T1° 26,

and arc RA S = 2¢ = 142° 52.

293. For the double acting engine we find in a similar
manner.
2 2
co8 $ =" = —— = *6366.
L 3-1416
. arcRS =2¢ = 100°54.

294. Norx.—As further investigation on this subject would necessarily in-
volve a detailed exposition of the theory of the steam engine, which is apart
from the object of this work; therefore, the reader, who desires efficient in-
formation on this subject, may consult Tredgold on the Steam Engine, Mose-
ley's Engineeriny, Hann's Treatise on the Steam Engine.

THE GOVERNOR.

295. ProB. 9.—To explain the use and principle of the
governor of the steam-engine, and to find ihe position which
tts balls assume in consequence of the centrifugal force, the
angular velocity being given.

A B is a vertical shaft turning freely on the sole B by its
connection with the machinery of the steam engine; CP, CQ
are two bars moving free-
ly on the centre C, and
carrying the two weights
P,Q; FD, FE are two
rods connected to the bars
at D, E, and attached to a
collar I, which is capable
of sliding freely up and
down the shaft AB. This
collar is united with a
lever which opens or
closes the throttle valve,
which supplies the cylin-
der with steam. en
AB revolves too fast, the balls by their centrifugal foree fly
outward, raising the slide I, and partially closing the throttle
valve; and when the shaft moves too slowly the balls col-
lapse, and the slide consequently descending, admits a more
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full supply of steam, thus regulating the motion of the en-
gine to almost complete uniformity.

The weight P is acted on by two forces, <. e., the centri-
fugal force in the direction P n, and gravity in the direction
Po; and taking P n, Po to represent these two forces, com-
plete the parallelogram P zm o, we shall have the triangles
Pmo, AP O similar, and, if f represent the centrifugal
force, and W the weight of P, then

L-FO,
L=

|

94 o

Also, by Art. 277,
W.

g.PO’
and by substituting this value in the preceding equation, there
results after reduction
2
co=22C

or, if v = the angular velocity per second of the governor at
an unit’s distance from the shaft AB, then V=P 0.7, and
by substitution,

f=

9
CO:;‘

Now, if n = number of revolutions per minute, then

% = number per second.
_2xn_ *n
T 60 T 30
32%, 9.
whence CO = o in feet.

_ 80°x324x12. .
= —(m—l—wmmches.

35200 ,
=0 inches nearly.

296. The throttle valve of the steam engine cannot be
opened without an adequate force exerted by the governor,
which may be measured by finding what weight will produce
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that force. Let p be the required weight, W being the
weight of one of the balls of the governor, as in the last
article ; then Hann has shewn in his valuable works on the
steam engine, referred to in the Note Art. 294, that

P 21 CP

W = 100 CD

and that, if g—-ll—; = §, which is the usual proportion in the
governor,
p _ 21 3_ 63
W T 1002 200°
W= 200p _ .
R — 8 = 3174 p,

and if p = 10 1bs., then P = 313 lbs. nearly.

THE SUPER-ELEVATION OF THE EXTERIOR RAIL IN RAILWAY
CURVES.

297. The super-elevation of the exterior rail, or the rail on
the convex side of the line, in railway curves, the radii of
which are within certain limits, is rendered absolutely neces-

to counteract the centrifugal force produced by the
velocity of the train, since all moving bodies have a tendency
to continue their motion in a direct line. From this cause
the railway train is impelled towards the exterior rail, and
would finally leave the rails, were it not prevented by the
conical inclination of the tire and the flanges of the wheels.

298. Propr.—To determine the centrifugal force of a rail-
way train, or that portion of the weight of the train, which
makes it tend to leave the curve.

Let V = velocity of the train per second, R = radius of
the curve, F = centrifugal force, and g force of gravity at
the earth’s surface, also let W = weight of the train; then
by Art. 277,

F= LA
=JR

Ex. 1.—When R = } a mile = 2640 feet, V = velocity =
30 miles per hour = 44 feet per second, and g = 82} feet
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= velocity of a body falling from rest, at the end of a
second ; then

2 22
po Wx4

32} x 2640 ~ 9651

that is, the force that urges the train to quit the curve is ;4
of its whole weight, in this case.

Ex. 2—When V = 60 miles per hour = 88 feet per
second, and R the same as in Example 1; then

W x 882 ,
F = 351 2640 = vy 1 Ws

that is the force, in this case, is v of the weight of the train.
Hence it may be perceived how extremely dangerous high
velocities are in curves of small radius.

299. Nore.—This great amount of centrifugal force, in cnrves of small
radius, would be very much increased by the high velocities, which some

are sanguine enough to expect as likely to be attained on railways; since
this force varies as

W = nearly 4 W,

2

YE oras V?

for the same curve: thus for a velocity of 120 miles per hour, on a curve of
¥ of a mile radius, we shall have

W X 1762 :

= = w,
4 32% X 2640 T

that is, the centrifugal force is, in this case, more than 4 of the whole weight
of the train; while for curves of 1 mile radius, which are very common in
railways, f = 1y W, or nearly } of the weight of the train. It must, there-
fore, be evident that a velocity.of 120 miles per hour, or even one of 90 miles
per hour, must be extremely dangerous, especially on an embanked curve,
should any accident throw the train off the line, which is often the case with
the present velocities. Moreover, the resistance of the air, which varies as
V3, must be considerably augmented by high winds opposed to the direction
of a train of these great velocities; while its engine would require a power
greatly superior to those now in use.

300. This force, except in curves of very small radius, is
counteracted by the conical inclination of the tire of the
wheels, each pair of which is firmly fixed on the axle which
turns with them ; the inclination of the tire is commonl
about z an inch in the whole breadth of the wheel, which is
3}» inches. This inclination of the tire with the lateral play
of the flanges of the two wheels of } an inch on each side,

and the centrifugal force urging the train towards the exterior
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rail, when moving in a curve, increase the diameter of the
outer wheel, and diminish that of the inner one, which causes
the train to roll on conical surfaces, thus necessarily pro-
ducing a centripetal force to counteract the tendency of the
train to leave the curve. However, in curves of very small
radius, the centrifugal force is not sufficiently counteracted by
the centripetal force thus generated, the centre of which last
named force is the vertex of the cone, of which the increased
and diminished diameters of the wheels are sections. The
amount, therefore, of this centripetal force shall be determined
in the following—

301. Pror.— The velocity of the train, the guage of the
rails, the radius of the wheels, and the inclination of their
tire being given, to determine the centripetal force generated
by the contcal inclination of the tire of the wheels of the train,
and by the centrifugal force impelling the train outwards.

Let d = mean diameter of the wheels of the train, 3 =
increment and consequently the decrement which the dia-
meters of the exterior and interior wheels respectively re-
ceive, through the conjoined action of the centrifugal force
and the inclination of the tire; then under these circum-
stances the respective diameters of the exterior and interior
wheels will be

d+ 3 and d—35;

also, if R’ = radius of a circle which the centre of a carriage
would describe in consequence of the inclination of the tire
of the wheels, and & = breadth of the road or guage of the
rails; then R’ + %4, and R — } & are radii which would be
described respectively by the exterior and interior wheels ;
and by similar triangles,

d43:d—38:: R4+46: R — {5,

whence d :8:: 2R' : b, and

bd

R=2—'-°

Or, if -’-l' = inclination of the tire, and A = deviation of the
wheels, then

3 =24

’
n
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and, by substitution,
_bdn
~ 4a

Now V and W representing the velocity and weight of the
train, as in Art. 298, the centripetal force corresponding to
the radius R’ will be

Rv

W V2
F= —ro
g Rl b
or, by substituting the value of R,
4W V2a
F= bdgn

302. Pror.— To determine the deviation of the wheels, and
the radius of the curve, when the centrifugal and centripetal
Sorces, in Art. 298 and 301, just balance each other.

Because the forces F and F act in contrary directions, they
will hold each other in equilibrium when they become equal,
and the train will cease to have a tendency to quit the curve;
this will take place when

WV WV3
gR - gR/ )
or R=R.
Also, by Art. 298 and 301.
WV2_ 4WV2a
gR = bdgn ’
bdn
. 4R’
which is the deviation requisite to produce an equilibrium
between the centripetal and centrifugal forces of the train.
And, since R = R the vertex of the imaginary cone, of
which the increased and diminished diameters of the wheels
are sections, will coincide with the centre of the curve, there

will consequently be no dragging on the wheel on either of
the rails,

whence A =

. o bdn
If,in R =-47, d = 38 feet, b = 4 feet 8} inches =
7
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4-7 feet = breadth of the narrow guage,-:—c =4}, and A =

§ of an inch, the radius of curvature corresponding to this
deviation, when the two forces are in equilibrium, will be
R = If:%: 47 x 8 x T+ 4 x § X {5 = 888 feet.

But, since an accidental depression of the exterior rail
might cause the flange of the wheel to rub the rail on that
side ; it would be advieable, for the sake of greater safety, to
limit the value of R’ to not less than 1200 or 1500 feet.
Moreover, in curves of less than 1500 feet radius, it will at
once appear that a super-elevation of the exterior rail will be
absolutely necessary to counteract the excess of the centri-
fugal above the centripetal force.

803. Pror.—To determine the super-clevation of the ex-
terior rail in rasway curves of less than 1200 or 1500 feet
radius; the same things being given as in the preceding pro-
position.

Let x = super-elevation of the exterior rail ; then, since
b = breadth of the way, the inclination of the plane on
which the train moves = % torad. = 1, and hence the gra-

vity of the train will impel it to the interior rail with the force
F= Wz

b

This force, together with the centrifugal force, resulting
from the deviation of the train to exterior rail of the curve,
must hold the centrifugal force in equilibrium; therefore,
from Articles 298 and 301, there will result

Wz WV WV2

T B

which is the formula for the super-elevation of the exterior
rail, and due to Pambour; who, by solving it for some of
the usual cases, produces the following
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TABLE OF THE SUPER-ELEVATION TO BE GIVEN TO THE
EXTERIOR RAIL IN CURVES.

Buper-elevation to be given to the Rail

Radius of the|  in Inches, the Velocity of the mo-
Dedgn:tln:n“?: ta?.;? aggons m. tion in Miles per hour being :—
10 Miles. 20 Miles. 30 Miles.
Waggon with wheels 3 250 1'14 580 2%9
feet in diameter. 500 057 288 656
Guage of way, 4°7 feet. 1000 029 1438 330
Play of the waggons on 2000 015 871 193
the way, 1 inch. 3000 010 o 90
Inchination of the tire of 4000 007 036 083
the wheels, 1 in 7. 5000 006 ‘028 i) ]

The corectness of the above results is pretty generally con-
ceded. It must, however, be considered, that it is extremely
difficult, if not impossible, to realize in practice, the precise
conditions and proportions determined by these important
formuls ; as accidental depressions and enlargements of guage
of part of the rails, as well as many other matters that cannot
be subjected to calculation, will unavoidably derange these
results.

The reader, who wishes for further information on these
subjects, may consult 7Tredgold on the Steam Engine;
also, Baker's Ratlway Engineering, and his Land and En-
gineering ; in whick approved and Practical Systems of lay-
ing out the works of Railways, &c., &c., will be found.

MISCELLANEOUS EXERCISES.

(L) If a body move in a curve by means of a projectile
and centripetal force, the latter acting in the direction of
right ordinates, and varying inversely as the nth power of the
distance from the obscissa or axis of the curve; prove that
the velocity V of the body in the curve is equal to

dz (my—"H

diy ’
in which y is the ordinate indicating the position of the body,
z the curve, and m the force of gravity at a unit’s distance

from the axis.
Nore.—This question and its solution was published by the Author in the
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.

Gentleman’s Math. Companion for 1828—4.—Its solution is on a new prin-
ciple, a8 he has not seen a similar method of solution adopted by any other
author ; and the method may be obviously extended to the motions of bodies
in curves, when acted upon by central forces as well as by parallel forces, as
in the Question. The solution is also given below.

Let AP be the curve described by the body, A M its axis,
PM, RQN two ordinates indeffinitely
near to each other, and PR a tangent
to the curve at P. The body at P
would describe P R if the centripetal
force did not act, in the same time in
which it now describes PQ ; there-
fore RQ represents the space through
which it is drawn by the centripetal
force. Now PR = dz2, RQ=1}d%y
(Dealtry’s Fluxional Calculus, Art. 165.), and the force of
gravity at P = my—" ultimately = force of gravity at Q.
The motion through the indefinitely small space RQ =1d?y
may be considered to be uniformly accelerated by the force
my—"; therefore the time of describing R Q == time of de-

o dy
seribing PR = ( —

m Y
in the direction PR is uniform, the velocity V of the body in
the curve = PR - .time of describing P R, that is,

d*y dz
— — —_— —n)},
V=dz < (my—")—d2y(my )

(I1.) The equal and uniform bars A B, B C are moveable
about each other on an axis passing through B, which is
perpendicular to the plane A BC, while a pin at the end A,
of the bar B A, if moveable in a vertical groove A C; and
the end C, of BC, is moveable about an axis passing through
C, and perpendicular to the plane ABC; it is required to
find the velocity of A, and the action on the groove when A
arrives at a given position in consequence of gravity and its
original motion.

Nore.—This question was proposed and answered by B. Gompertz, Esq.,
F.R.8., dc. in the Gentleman's Math. Companion, for 1821-2.

4 ..
; hence, because the motion in

Printed by J. 8. Hopsow, 22, Portagal Street, Lincoln’s Inn, London.


















