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PREFACE.

TrE Author’s COMPLETE SCHOOL ALGEBRA was written to meet the wants
of our Common and High Schools and Academies, and to afford adequate prepara-
tion for entering our best Colleges, Schools of Science, and Universities.

The present volume is designed for use in these advanced courses of training.
Thus, while it is thought that the former affords as extended a course in Algebra
‘as is expediont for the preparatory schools, it is believed that this will be found
to contain all that these higher schools require.

It wag deemed necessary to make the work, a complete treatise, including the
Elements, for purposes of reference, and for reviews, and also in consideration
of the fact that our higlier institutions have various standards of requirement
for admission. In fact, there are few students of Higher Algebra who donot
find it necessary to have the Elements at hand for occasional consultation,

This Elementary portion is embraced in the first 150 pages, and contains all
the definitions, principles, rules, and demonstrations of the CoMpPLETE Scmoot
ALGEBRA, with an abundant collection of New Ezamples; but from it all-ele-
mentary illustrations, explanations, solutions, and suggestions, are omiltted,
The whole is so arranged as to secure readiness of reference and convenience
of review by somewhat mature students.

The subjects treated in ParT II1., which constitutes the Advanced Course
proper, will be best seen by turning to the Table of Contents, In this place
the author wishes merely to call attention to a few of the distlnguinhlng fea-
tures of this Part. o

1. The conception of Function and Variable is introduced at once, and ia
made familiar by such use of it as mathematicians are constantly making.: No
one needs to be told that this tonception lies at the foundation of all higher

. algebraic dlscusslon yet, utmhgely enough, the very terma are scarcely to L
found in our common text-books, and the pmctlcui use of the conception 1
totally wanting. : : :



iv - PREFACE.

2. The first chapter in the Advanced Course is given 1o an elementary and
practical exposition of the Infinitesimal Analysis. The author knows from his
own experience, and from that of many others, that this subject presents no
pecaliar difficulties to ordinary minds ; and everybody knows that it is only by
this analysis that the development of functions, as in the Binomial Formuls,
Logarithmic Series, etc., the general relation of function and variable, the
evolution of many of the principles requisite in solving the Higher Equations,
and many other subjects, are ever treated by mathematicians, except when theg
attempt to make Algebras. No mathematician thinks of using the clumsy
and antiquated processes by which we have been accustomed to teach our pupils
in algebra to demonstrate the Binomial Formula, produce the Logarithmic Series,
deduce the law of derived polynomials, examine the relative rate of change of &
function and its variable, etc., except when he is teaching the tyro. Why not,
then, dismiss forever these processes, and let the pupil enter at once upon those
elegant and productive methods of thinking which he will ever after use?

3. By the introduction of a short chapter on Loci of Fquations, which any
one can read even without a knowledge of Elementary Geometry, and which
in iteelf is always interesting to the pupil, and of fundamental use in the sub-
sequent course, all the more abstruse principles of the T'heory of Hquations are
{llustrated, and the student is thus enabled to se¢ the truth, as well as to demon-
strate it abstractly. How great an advantage this is, no experienced teacher
needs to be told.

4. In the.treatment of the Higher Equations, while some things have been
discarded which everybody knows to be worthless, but which have in some
way found a place in our text-books, a far more full and clear discussion of
practical principles and methods is given, than is found in any of the trea-
tises in common use.

5. The important but difficult subject of the Discussion of Equations has
been reserved till late in the course, for several reasons. Thus, when the pupil
reaches this topic, he has become familiar with most of the principles to be
applied, and has become sufficiently imbued with the spirit of the algebraic
analysis to be enabled to grasp it. To discuss an equation independently and
well, is a high mathematical accomplishment,and should not be expected of the
tyro, It is nothing else than to think in mathematical formuls, and hence is
one of the later products of mathematical study. It is hoped that the position
assigned to this subject in the course, and the manner of treating it, will inaure
better results than we have hitherto been able to obtain,

- G, In the selection of Suljects to be Presented, constant regard has been had
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to the demands of the subsequent mathetntical course. This bas led to the

' omission of a number of theorems and methods, which, though well enough
in themselves as mere matter of theory, find no practical application in a sub-
sequent course, however extended ; and has, at the same time, led to the
introduction of not a few things which the advanced student always finds occa-
sion to use, but for which he searches his Algebra in vain, if he has at hand
nothing but our common American text-books,

o 7. In Method of Treatment the following principles have been kept constantly
inmind: 1. That the view presented be in line with the mathematical thinking
of to-day. 2. That everything be rigidly demonstrated and amply and clearly
illustrated. 8. When long experience has shown that the majority of good
students have difficulty in comprehending a subject, special pains should be
taken to elucidate it. 4. No principle is thoroughly learned by a pupil until he
can apply it ; and nothing so fixes principles in the mind as the use of them.
Hence an unusually large number of examples has been introduced. 5. It is
often necessary to multiply examples in order to meet the requirements 6f the
class-room. '

8. Answers.—The answers to examples are not generally annexed to them in
the text, There are, however, two editions of the volume, one with the answers
at the end, and the other without any answers, except an occasional one in the
body of the book.

9. Finally, the Order of Topics is such that a student requiring a less extended
course than the entire volume presents, can stop at any point, and feel assured
that what he has studied is of more elementary importance than what follows,
Thus students who do not desire to study the Higher Equations can conclude
their course with the firat chapter of Part I11.; and a course which includes the
first three chapters of this part will be found as extended as most of our
Academies, and perhaps many of our Colleges, will find expedient.

Such works as those of SERRET, CTRODDE, COMBEROUSSE, Wo0D, HYMERS,
HiND, TODHUNTER, YOUNG, and most of our American treatises, have been at
hand during the proparation of the entire volume. 'To Wmnrrworrn's charming
little troatise on Choice end Chance, the suthor is indebted for a number of
examples in the last section.

The quick eye and cultivated taste of my friend, Mr. W, W, BEMAN, A.M,,
Instructor of Mathematics in the University, liave done me excellent service in
reading the proof-sheets, and have, I trust, given the work a degree of typo-
graphical accuracy not usually found in first issues of such treatises,
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* With these words of explanation a8 to what T have attempted todo, 1 commit
the volume to the hands of iy fellow-laborers in the work of teaching, assared’
from the generous and appreciative recoption which they have given uiy previous
efforts, that this will not fail of a candid consideration,

EDWARD OLNEY.

UNIVERSITY OF MICHIGAN,
Ann Ardor, July, 1878,
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INTRODUCTION.

SECTION I

GENERAL DEFINITIONS, AND THE ALGEBRAIC NOTATION.

BRANCHES OF PURE MATHEMATICS.

1. Pure Mathematics is a general term applied to several
branches of science, which have for their object the investigation of
the properties and relations of quantity—comprehending number,
and magnitade as the result of extension—and of form.

2. The Several Branches of Pure Mathematics are Arith-
metic, Algebra, Calculus, and Geometry.

3. Arithmetic, Algebra, and Calculus treat of number, and Geo-
metry treats of magnitude as the result of extension.

4. Quantity is the amount or extent of that which may be -
measured; it comprehends number and magnitude.

The term quantity is also conventionally applied to symbols. used
to represent quantity. Thus 25, m, X1, etc., are called quantities, .
although, strictly speaking, they are only representatives of quantities..

8. Number is quantity conceived as made up of parts, and.
answers to the question, “ How many ?”

6. Number is of two kinds, Discontinuous and Continwu-
om.

7. Discontinuous Number is number conceived as made
up of finite parts; or it is number which passes from one state of
value to another by the successive additions or subtractions of finite
units ; 4. e, units of appreciable magnitude.

8. Continuous Number is number which is conceived as
composed of infinitesimal parts; or it is number which passes from
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one state of value to another by passing through all intermediate
values, or states.

9. Arithmetic treats of Discontinuous Number,—of
its nature and properties, of the various methods of combining and
resolving it, and of its application to practical affairs.

10. Algebra treats of the Equation, and is chiefly occupied in
explaining its nature and the methods of transforming and reducipg
it, and in exhibiting the manner of using it as an instrument for
mathematical investigation.*

11. Calculus treats of Continuous Number, and is chiefly
occupied in deducing the relations of the infinitesimal elements of
such number from given relations between finite values, and the con-
verse process, and also in pointing out the nature of such infinites-
imals and the method of using them in mathematical investigation.

'12, Geometry treats of magnitude and form as the result of
extension and position.

LOGICO-MATHEMATICAL TERMS.

13. A Proposition is a statement of something to be con-
sidered or done.

14. Propositions are distinguished as Azioms, Theorems, Lemmas,
Corollaries, Postulates, and Problems.

15. An Aaxtom is a proposition which states a principle that
is 8o simple, elementary, and evident as to require no proof.

16. A Theorem is a proposition which states a real or supposed
fact, whose truth or falsity we are to determine by reasoning.

17. A Demonstration is the course of reasoning by means
of which the truth or falsity of a theorem is made to appear. The
term is also applied to a Jogical statement of the reasons for the
processes of a rule. A solution tells kow a thing is done ; a demon-
stration tells why it is o done. A demonstration is often called proof.

* The common definition of Algebrs, which mgkes its distinguiehing features to be the literal
notation. and the use of the signe, is entirely at fanlt. When Algebra first appeared in Europe, it
possessed neither of these features! What was it then? On the other hand, the signs are

to all branches of math ice, and the literal notation is upmmincnt in the Calculus
a8 in Algebra, and is used, mare or less, in Arithmetic and G ey,
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18. A Lemina is a theorem demonstrated for the purpose of
using it in the demonstration of another theorem.

19. A Corollary is a subordinate theorem which is sug-
gested, or the truth of which is made evident, in the course of the
demonstration of a more general theorem, or which is a direct
inference from a proposition.

+«20. A Postulate is a proposition which states that something
can be done, and which is so evidently true as to require no process
of reasoning to show that it is possible to be done, We may or may
not.know how to perform the operation.

21. A Problem is a proposition to do some specified thing,
and is stated with reference to developing the method of doing it.

22. A Rule is a formal statement of the method of solving a
general problem, and is designed for practical application in solving
special examples of the same class. Of course a rule requires a
demonstration.

23. A Solution is the process of performing a problem or an
example. It should usually be accompanied by a demonstration of
the process.

4. A Scholium is a remark made at the close of a discussion,
and designed to call attention to some particular feature or features
of it.



PART 1”7
LITERAL ARITHMETICt.

OHAPTER I,
FUNDAMENTAL RULES.

SECTION I.

NOTATION.

25, 4 System of Notation is a system of symbols by means
of which quantities, the relations between them, and the operations
to be performed upon them, can be more concisely expressed than
by the use of words.

SyMBOLS OF QUANTITY.

26. In Arithmetic, as usually studied, numbers are represented
by the charaeters, 1, 2, 8, 4, 5, 6, 7, 8, 9, 0, called. Arabic figures, or,
simply, figures.

27. In other departments of mathematics than Arithmetic, num-
bers or quantities are more frequently represented by the common
letters of the alphabet, @, d,¢, . . . m, n, . . . @, y, 2 These letters
may, however, be used in Arithmetic; and the Arabic figures are
used in all departments of mathematics. This method of represent-

* Parts I.and IT. are a pend of the el ts of the scl designed as a review for
pupils who have studied some elcmonury trelt.loe, or for the use of mch teu:ﬁers and classes as
desire a text-book which ins & tment of the subject, to be filled out by them-
eelves. In the author's COXPLETE SCHOOL Amun, the toplca here presented will be found
fully amplified, illustrated, and applied. All the el iples are here atated, and are
nsually demonstrated. There are also numerous examples under every topic. The Ky to the
CoMPLETE SOHOOL ALexBRA Will furnish additional les for use in tion with this part.

4 Part L treats of the familiar operations of Addition, Subtraction, Multiplication, Division,
Involution and Evolution, and the theory of Fractions. The only difference betwoen the pro-
cesees here developed and the corresponding ones in common Arithmetic grows out of the
netation,
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ing quantities by letters is often called the Algebraic method, and
the method by the Arabic characters the Arithmetical. It would be
better to call the former the Liferal method, and the latter the
Decimal.

28. The Literal Notation has some very great advantages
over the decimal for purposes of mathematical reasoning. 1st, The
"gymbols are more general in their signification; and 2d, We are
enabled to detect the same quantity anywhere in the process, and
even in the result. Thus it happens that the processes become
general formule, or rules, instead of special solutions.

29. In using the decimal notation certain laws are established, in
accordance with which all numbers can be represented by the ten
figures. Thus, it is agreed that when several figures stand together
without any other mark, as 435, the right-hand figure shall signify
units, the sccond to the left, tens, the third, hundreds, etc. ; also that
the sum of the several values shall be taken. This number is, there-
fore, 4 hundreds + 3 tens + 5 (units).

In like manner, certain laws are observed in representing numbers
by letters.

First Law.

30. Known Quantities, that is such as are given in a prob-
lem, are represented by letters taken from the first part of the
alphabet; while Unknown Quantities, or quantities whose
values are to be found, are represented by letters taken from the
latter part of the alphabet.

Accented letters, as @', o, @', """, ete., (read “a prime,” “a sec-
ond,” “g third,” etc,) and letters with subscripts, as a, a,, a,, a,
ete, (read “a sub 1,” “a sub 2,” ctc.,) are sometimes used. This
form of notation is used when there are several Zike quantities in the
same problem, but which have different numerical values. Thus, in
a problem in which several walls of different heights, breadths, and
lehgths are considered, we may represent the several heights by a,
a’, a", ete, or a,, @, a, etc.; the thicknesses by #', 8", ', ete., or 3,,
b,, by, ete., and the lengths by 7, 7", 1", ete., or I, I, I, etc. :

The Greek letters are also often used both for known and unknown
quantities. ‘

SEcOND Law.

. 31. When letters are written in cornection, without any sign
between them, their product is signified. Thus abe signifies that the
three numbers represented by 4, b, and ¢ are to be multiplied together.
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32. A character like a ﬁgure 8 placed horizontally, " , i8 used to
represent what is called Jnfinity, or a quantity larger than any
assignable quantity.

SymBoLs OF OPERATION.
33. The Symbols of Operation used in Algebra are the

same a8 those used in Arithmetic, or in any other branch of mathe-.
matics, and need not be recapitulated here.

«
EXPONENTS.

34. An Exponent is a small figure, letter, or other symbol
of number, written at the right and a little above another figure,
letter, or symbol of number.*

35. A Positive Integral Exponent signifies that the
number affected by it is to be taken as a factor as many times as
there are units in the exponent. It is a kind of symbol of multipli-
cation.

36. A Positive Fractional Exponent indicates a power
of a root, or a root of a power. The denominator specifies the root,
and the numerator the power of the number to which the exponent
is attached.

37. The Radical Sign, v, is also used to indicate the
square root of a quantity. When any other than the square root is
to be desngnated by this, a small figure specﬂ'ymg the root is placed
in the sign.

38. A Negative Exponent, i. e., one with the — sign before
it, either integral or fractional, signifies the reciprocal of what the
expression would be if the exponent were positive, 7. e, had the
+ sign, or no sign at all before it.

. SymBoLS OF RELATION.
39. The Sign of Geometrical Ratio is two dots in fhe
form of a colon, : .
40. The Sign of Arithmetical Ratio is two dots placed
horizontally, .- .

41. The Sign of Equality is two parallel horizontal lines,
= . The double colon, ::, is the sign of equality between ratios.

* In giving this deﬂnitwix, be careful and nof add, “‘and indicates the power to which the
wBumber is 0 be raised.” This is false : an exponent does not rily indicate a power.




' NOTATION.. q

42. The Sign of Variation is somewhat like a figure 8
open at one end and placed horizontally, o« .

43. The Sign of Inequality is a character somewhat like
a capital V placed on its side, <, the opening being towards the
greater quantity.

SYMBOLS OF AGGREGATION.

44. A Vinculum is a horizontal line placed over several
terms, and indicates that they are to be taken together. The paren-

thesis, (), the brackets, [ ], and the brace, { }, have the same
signification.

45, A vertical line after a column of quantities, each having its
own sign, signifies that the agg regate of the column is to be taken
as one quantity. Thus, + a z is the sume as (¢ — & + ¢)z.

+c

SyMBoLs OF CONTINUATION.

46, A seriesof dots, . . . . . ., or of short dashes, - - - - - -,
written after a series of expressions, signifies “etc.” Thus, a: ar
tart;ard . ... .. ar" means that the series is to be extended
from ar3 to ar", whatever may be the value of 7.

SyMBoLs or DEDUCTION.

4%7. Three dets, two being placed horizontally and the third
above and between, .., signify Zkerefore, or some analogous expres-
sion. If the third dot is below the first two, -, the symbol is read
““gince,” “because,” or by some equivalent expression.

PoSITIVE AND NEGATIVE QUANTITIES.

48. Positive and Negative are terms primarily spplied to
concrete quantities which are, by the conditions of a problem,
opposed in character.

ILL.—A man’s property may be called positive, apd his debts negative. Dis-
tance up may be called positive, and distance down, negative. Time before

& given period may be called positive, and qfter, negative. Degrees above 0 on
the thermometer scale are called positive, and delow, negative,

‘49, The signs + and — are used to indicate the character of
quantities ag positive or negative, as well as for the purpose of indi-
cating addition and subtraction.
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&0, In problems in which the distinction of positive and negatwe
is made, each quantity in the formulm is to be considered as having
8 sign of character expressed or understood besides the plus or
minus sign, which latter indicates that it is to be added or sub-
tracted. The positive sign need not be written to indicate character,

as it is customary to consider qnantltles whose character is not
specified as positive.

ILn. 1.—In the expmslon ab + m — cz, let the problem out of which it arsse
be such, that @, m, and z tend to a positive result, and b and ¢ to an opposite, or
& negative result, Giving these quantities their signs of character, we have
(+a) x (—b) + (+m) —(—¢) x (+2), which may be read, “ positive & multi-
plied by negative b, plus positive m, minus negative ¢ multiplied by positive .”
Suppressing the positive sign, this may be written, a(-b) + m — (—c¢), by also
omitting the unnecessary sign of multiplication.

ILL. 3.—As this subject is one of fundamental importance, let careful atten-
tion be given to some further illustrations. We are to distinguish between dis-
cussions of the relations between mere abstract quantities, and problems in which
the quantities have some concrete signification. Thus, if it is desired to ascer-
tain the sum or difference of 468, or m, and 327, or %, a8 mere numbers, the
question is one concerning the relation of abstract numbers, or quantities, No
other idea is attached to the expressions than that each represents a certain num-
ber of units. But, if we ask how far a man is from his starting point, who has
gone, first, 468, or m miles directly east, and then 327, or n miles directly west ;
or if we ask what is the difference in time between 468, or mn years B. C., and
827, or n years A.D,, the numbers 468, or m, and 827, or n, take on, besides their
primary signification as quantities, the additional thought of opposition tn direc-
tion. They therefore become, in this sense, concrete.

Aguain, a company of 5 boys are trying to move a wagon. Three of the boys
can pull 75, 85, and 100 pounds each ; and they exert their strength to move the
wagon east. The other two boys can pull 90 and 110 pounds each; and they
exert their strength to move the wagon west. It is evident that the 75, 85, and
100 are quantities of an opposite character, in their relation to the problem,
from 90 and 110. Again, suppose a party rowing a boat up a river. Their
united strength would propel the hoat 8 miles per hour if there were no cur-
rent ; but the force of the current is sufficient to carry the boat 2 miles per hour.,
The 8 and 2 are quantities of opposite character in their relation to the problem.
Once more, in examining into a man’s business, it is found that he has a farm
worth m dollars, personal property worth n dollars, and accounts due him worth
¢ dollars. There is & mortgage on his farm of b dollars, and he owes on account
« dollars. The m, n, and ¢ are quantities opposite in their nature to b and a.
This opposition in character ts indicated by calling those quantities which con-
tribute to one result positive, and those which contribute to the opposite result
negative.

&1. Purely abstract quantities have, properly, no distinction as
positive and negative; but, gince in such problems the plus or



NAMES OF DIFFERENT FORMS OF EXPRESSION. » 9

additive, and the minus or subtractive ferms stand in the same
relation to each other as positive and negative quantities, it is cns-
tomary to call them such.

Irr—In the expression 5ae — 8¢d + 8ry — 2ad, though the quantities, a, ¢, d,
¢ and y be mérely abatract, and have no proper signs of character of their own,
the terms do stand in the same relation to each other and to the result, as do
positive and negative quantities. Thus, bac and 8zy tend, as we may say, fo
tnerease the result, while — 8od, and — 2ad tend fo diminish it. Therefore the
forlmer may be called positive erms, and the latter negative.

82. Scu.—Less than zero. Negative quantities are frequently spoken of
as ‘‘less than zero.” Though this language is not philesophically correct,
it is in such common use, and the thing signified is so sharply defined and easily
comprehended, that its use may possibly be allowed as & conventionalism,
To illustrate its meaning, suppose, in speaking of a man’s pecuniary affairs,
it is said that he is worth ‘‘less than nothing;" it is simply meant that his
debts exceed his assets. If this excess were $1000, it might be called nega-
tive $1000, or —$1000. So, again, if a man were attempting to row a boat
up a stream, but with all his effort the current bore him down, his progress
might be said to be less than nothing, or negative. In short, in any case
where quantities are reckoned both Ways from zero, if we call those
reckoned one way greater than zero, or positive, we may call those reckoned
the other way ‘‘less than zero,” or negative.

53. The value of a Negative Quantity is conceived to increase as
its numerical value decreases.

ILL.—~Thus —8 > —5, as & man who is in debt $8 is better off than one who is
in debt §5, other things being equal. If a man is striving to row up stream,
and at first is borne down § miles an hour, but by practice comes to row go well
as only tobe borne down 8 miles an hour, he is ovidently gaining ; ¢. ¢., —8 is an
tnerease upon —5. Finally, consider the thermometer scale. If the mercury
stands at 20° below 0 (marked —20°) at one hour, and at —10° the next hour, the
temperature is increasing ; and, if it increase sufficiently, will become 0, passing
which it will reach +1°, +2° ete. In this tllustration, the guantity passes from
negative to positive by p g through 0.

It appears in geometry, tlmt & quantity may also change its sign in passing
through snfinity. Thus the tangent of an arc less than 90° is positive ; but if
the arc continually increases, the tangent becomes infinity at 90°, passing which
it becomes negative.

Now, as we know of no other way in which a vn.ry'ing quantity can change its
sign, it is assumed as a fundamental principle in tathematics that, IF A vArY-.
ING QUANTITY CHANGES ITS BIGN, IT PASSES THROUGH ZERQ, OR INFINITY.

NAMES OF DIFFERENT FORMS OF EXPRESSION,
854, A Polynomdial is an expression composed of two or more



10 : LITERAL ARITHMETIO,

parts connected by the signs plus and minus, each of which parts is
called a term.

55. A Monomdial is an expression consisting of one term; a
Binomial has two terms; a Trinomial has three terms, etc.

56. A Coefficient of a term is that factor which is considered
a8 denoting the number of times the remainder of the term is taken.
The numerical factor, or the product of the known factors in a term,
is most commonly ocalled the coefficient, though any factor, or the
product of any number of factors in a term may be considered as
coefficient to the other part of the term.

837%7. Similar Terms are such as consist of the same letters
affected with the same exponents.

SECTION 1I.
ADDITION.

58. Addition is the process of combining several quantities, so
that the result shall express the aggregate value in the fewest terms
consistent with the notation. ‘

59. The Sum or Amount is the aggregate value of several
quantities, expressed in the fewest terms consistent with the nota-
tion.

60. Prop. 1. Similar terms are united by Addition into one.

DeM.—Let it be required to add 4ac, bac, — 2ac, and — 8ac. Now 4ac is 4
times ac, and Sac is 5 times the same quantity (ac). But 4 times and 5 times the
same quantity make 9 times that quantity. Hence, 4ac added to 5ac make 9ac.
To add — 2ac to 9ac we have to consider that the negative quantity, — 2ac, is so
opposed in its character to the positive, 9ac, as to tend to destroy it when com-
bined (added) with it. Therefore, — 2ac destroys 2 of the 9 times ac, and gives,
when added to it, 7ae. In like manner, — 8ac added to 7ac,gives 4ac. Thus the
four similar terms, 4ac, Bac, — 2ac, and — 8ac, have been combined (added) into
one term, 4ac ; and it is evident that any other group of similar terms can be
treated in the same manner. Q. E.D.

~ 61, Cor. 1.—In adding similar terms, if the terms are all posi-
tive, the sum 18 positive; if all negative, the sum 18 negative ; if-
some are positive and some megalive, the sum takes the sign of that
kind (positive or negative) which is in ezcess.

Scm.—The operation of adding positive and negative quantities may look
to the pupil like Subtraction. For example, we say +5 and —8 added make
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+2. 'This looks like Subtraction, and, in one view, it is Subtraction, But
why call it Addition? The reason is, because it is simply putting the quanti-
ties together—aggregating them—not finding their differencs. Thus, if one
boy pulls on his sleigh 5 pounds in one direction, while another boy pulls 8
pounds in the opposite direction, the combined (added) effect is 2 pounds in
the direction in which the fitst pulls. If we call the direction in which the
first pulls positive, and the opposite direction negative, we have +5 and —8
to add. This gives, as illustrated, +2. Hence we see, that the sum of +5
and —8 is +2.

But the difference of + 5 and — 8 is 8, as will appear from the following
illustration : Buppose one boy is trying to drawa sleigh in a certain direction,
and another is holding back 81bs. 1f it takes 10 1bs. to move the sleigh, the
first boy will have to pull 18 lbs. to get it on. But if, instead of holding back
8 lbs., the second boy pushes 5 1bs., the first boy will have to pull only 5 bs,
Thus it appears, that the difference between pushing 5 1bs. (or + 5) and hold-
ing back 8 lbs, (—8) is 8 1bs.

In like manner the sum of $25 of property and $15 of debt, that is the
aggregate value when they are combined, is $10. +25 and —15 are +10.
But the difference between having $25 in pocket, and being $15 in debt, is
$40. The difference between +25 and —15 is 40.

62. Cor. 2.—The sum of two quantities, the one positive and the
other negative, is the numerical difference, with the sign of the greater
prefized.

63. Cor. 3.—1It appears that addition in mathematics does not al-
ways imply increase. Whether a quantity is increased or diminished
by adding another to ¢, depends upon the relative nature of the two
quantities. If they both tend to the same end, the result is an increase
in that direction. If they tend to opposite ends, the result i3 a dimi-
nution of the greater by the less.

64. Prop. 2. Dissimilar terms are not united into one by addi-
tion, but the operation of adding is expressed by writing them in
succession, with the positive termns preceded by the + sign, and the
negative by the — sign.

DEM.~—Let it be required to add + 4cy?, + 8ad, — Qoy, and — mn., 4oy* is 4
times cy®, and 8ab is 8 times ad, a different quantity from cy*; the sum will,
therefore, not be 7 times, nor, 8o far as we can tell, any number of times ey® or
ab, or any other quantity, and we can only ezpress the addition thus: 4cy*® + 8ab.
In like manner, to add to this sum — 22y we can only express the addition, as
4cy* + 8ab + (—2ay). But since Rzy is negative, it tends to destroy the positive
quantities and will take out of them 2zy. Hence the result will be 4cy® + 8ad
—2ry. The effect of — mn will be the same in kind as that of — 2zy,and
hence the total sum will be 4cy* + 8ab— 22y —mn. As a similar course
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of reasoning can be applied to .any cade, the truth of the proposition ap

Sca.—1In such an expression as 4ey® + 8ab — 22y — mn,the — sign before the
mn does not signify that it is to be taken from the immediabely preceding
quantity ; nor is this the signification of any of the signs. But the quan-

tities having the — sign are conmdered as operating to destroy any which
may have the + sign, and eice versa.

65. Cor—Adding a negative quantity is the same as subtracting
a numerically equal positive quantity ; that is,m + (— n)is m — n,
shown as above.

Dem.—Since a negative quantity is one which tends to destroy a positive
quantity, — » when added to m (i.e. + m) destroys n of the units in m, and
hence gives as a result m — n.

ne

66. Prob.—To add polynomials.

RULE.—COMBINE EACH SET OF SIMILAR TERMS INTO ONE
TERM, AND CONNECT THE RESULTS WITH THEIR OWN SIGNS. THE
POLYNOMIAL THUS FOUND IS THE SUM BOUGHT.*

Dem.—The purpose of addition being to combine the quantities so as to
express the aggregate (sum) in the fewest terms consistent with the notation,

the correctness of the rule is evident, as only similar terms can be united into
one (60, 64).

67%7. Prop. 3. Literal terms, which are similar only with respect
to part of their factors, may be united into oneterm with a polynomial
coefficient.

DEM.—~Let it be required to add Sar, — 2¢x, and 2m2. These terms are
similar, only with respect to z, and we may say Ga times ¢ and — 2¢ times z
make (5¢ — 2¢) times z, or (5& — 2c)r. And then, b — 2¢ times z and 2m tinmes
z make (5a — 2¢ + 2m) times , or (5a —~ 2¢ + 2m)z. Q. E. D.

68. Prop. 4. Compound terms which have & common compound,
or polynomial factor, may be regarded as similar and added with
respect fo that factor.

DEM. 5(z® — y*), 2(z® — »?) and — 3(z® — y*?) make, whan added with re-
spect to (z? — y?), 4(z* — y*), for they are 5 + 2 — 8, or 4 times the same quan.
tity (2® — »®). In a similar manner we may reason on other cases. Q. E. D.

"

* Thir is the proficient's rule, as exhibited on pege 456 of the ComrLET® Sclul. Amum
Sam. 2
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Scm.—The object and process of addition, as now explained, will be
scen to be identical with the same as the pupil has learned them in Arith-
metic, except what grows out of the notation, and the comsideration of
positive and negative quantities. For example, in the decimal notation let
it be required to add 248, 10508, 5008, 81, and 106. The units in the several
numbers are similar terms, and hence are combined into one : 8o also of the
tens, and of the hundreds. The process of carrying has no analogy in the
literal notation, since the relative values of the terms are not supposed to be
knawn. Again, there is nothing usually found in the decimal addition like
positive and negative quantities. With these two exceptions the processes
are cssentially the same. The same may be said of addition of compound
numbers,

ExAMPLES.
1. Find the sum of 2a —32%, é2® — 7a, — 3a + 2%, and a — 3z3.
«®. Find the sum of a®% — 3% 4 3a%) — 5ab%, 3a® — 4a®b + 353
— 3ab%, a3 + b3 + 3a*bh, 2a® — 4b® — 5ab®, 6a%d + 10ab®, and — 6a®
- Ta%b + 4ad® + 2W3.
8. Find the sum of 5catz® + 4da*z® + mz®y’%, and 10ca®at®
— 2Watz® 4 6matys.
-4, Add 22:& — 41‘} + 28, 2%y — ab + :c‘}, 4% — 23, and 2x§ -3
+ 23,
«5. Add }(= + y)and §(z — y).
T 6 Add ez +2y+ezVE + Vg + Vi 3yt =20t + 343, 402 — 34z
— 2By, and 20z — 44/7 — 2.
<% Add ez — 2ay, 2az — 3ay, my — az, with respect to z and y.
~8. Add (a+d) vz—(2+m)Vy, 4y1'+ (a+ c)zb, 3n \/y-—(2d—e)z*,
=2nvz + 12¢ vy, and (m+n)y'}+ (b+2c) vV =.
- /79, Add 2* + 2y + y3, ax® — axy + ay’,and — by® + bxy + bat.
< 10. Add a(z + ¥) + b(z — y), m(z + y) —{z — y).
vll Add mVz —y + 6nvVz—y — 64z —y —3nvz —g.
. - 4a
12, Add Baz~¥ + By~1 — 2, =% —
. y 'y v-z-
—8a.
13, Add §Va¥ = a3, —34/a¥ =23, and 4/a¥ — a7,

; + 8¢, and — 6az~¥ — my-!
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a+b—c a—-b+e¢

14- Add 14 3
Vv =1 (o8 —1)F

and — 2a(z® — 1)°1,

15. Add 1}(\'/53 - y'f +z"’), and g(:c* + -‘% - % .

16. Add (2 — 3+ )VET =35, (a+b—0c)(a® — y*)¥, and
B+ c—a)vzt —ys. ‘

17. Condense the polynomial 4az¥ — 3y? + 2z — 4mV'Z +3my*
— a2} + 6ez, into 2(a — 2m)VE +3(m — 1)y* + 8cz

SECTION [III.
SUBTRACTION.

69. Subtraction is, primarily, the process of taking a less
quantity from a greater. In an enlarged sense, it comes to mean
taking one quantity from another, irrespective of their magnitudes.
It also comprehends all processes of finding the difference between
guantities. In all cases the result is to be expressed in the fewest
terms consistent with the notation used.

70. The Difference between two quantities is, in its primary
signification, the number of units which lie between them ; or, 7¢ ¢s
what must be added to one in order to produce the other. When it is
required to take one quantity from another, the difference is what
must be added to the Sublrahend in order to produce the Minuend.

71. Prob,—To perform Subtraction.

RULE.—CHANGE THE SIGNS OF EACH TERM IN THE SUBTRA-
HEND FROM 4 TO —, OR FROM — TO +, OR CONCEIVE THEM TO
BE CHANGED, AND ADD THE RESULT TO THE MINUEND.

DeM.—Since the difference sought is what must be added to the subtrahend
to produce the minuend, we may consider this difference as made up of two
parts, one the subtrahend with its signa: changed, and the other the minuend.
‘When the sum of these two parts is added to the subtrahend, it is evident that
;l;aﬂﬂ‘:st part will destroy the subtrahend, and the other part, or minuend, will

sum, e
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" Thus, to perform the example :

From Sax — 60 — 8d — 4m

Take 2z + 2 —5d + 8mY)  If these three

Subtrahend with sigus changed, — 2az — 2b + 5d — 8m quantities are

Minuend, Bax — 6b — 8d — 4m | added together,
—_ . )the sum will

Difference, 8ax — 8b + 2d—12m evidently be the

minuend. If, therefore, we add the second and third of them (that is, the sub-

trahend, with its signs changed, and the minuend) together, the sum will be

wht is necessary to be added to the subtrahend to produce the minuend, and
- hence is the difference sought. Q. E. D.

72. Cor. 1.—Whken a parenthesis, or any symbol of Like significa-
tion (44), occurs in a polynomial, preceded by a — sign, and the
parenthesis or equivalent symbol is removed, the signs of all the terms
which were within must be changed, since the — sign indicates that
the quantity within the parenthesis is a subtrahend.

73. Cor. 2—Any quantity can be placed within a parenthesis,
preceded by the — sign, by changing all the signs. The reason of
this is evident, since by removing the parenthesis according to the
preceding corollary, the expression would return to its original form.

EXAMPLES.

1. How much must be added to 8 to produce 12? What is the
difference between 8 and 12? How much must be added to 3az®
— By? (the subtrahend) to produce 8az*® 4 2y3 ?

Answer—To 3az® we must add 5az%; and to — 5y we must
add + 7y® Hence in all we must add 5az® + 7ys.

2. From 328 — 22% —x — 7 take 22 — 328 + z + 1
8. From a* — 2% take a% + 2axz + 2%.

. 4. From 1 + 8% + 3=z +z* take 1 — 32 + 3z — ot.
5. From ot + 2a:*y'!L + y‘* take ot — 2“‘*31*.# yf.
- 6 From 7v/1 ¥ 2% — Say* take — sVTTa + 3ay‘.
7. From ay® + 104/a} take ay + 2v/ab.
8. From ba® — 84/mn + 1 take 5%z + (mn)t — 1.
9. From et b + Va—b tak;b +a—(a—0)¥ + vai
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10. Remove the parentheses from the following:
a—{(b—c)—=d}; Ya— {30 — [4a — (ba — 20)]} ;
a—8)—c+d—{a—b—2(c—d)};
3R —b—c)—5{a— (2W+c)} +2{b~(c—a)}

11, Include within brackets the 3d, 4th, and’ 5th terms of 3ad

—a? + az — 100y + 50. Also the 4th and 5th. Also the 2d and 3d.

THEORY OF SUBTRACTION.—Subtraction is finding the difference between
quantities, that is, finding what must be added to one quantity to produce ¢he
other. This difference may always be considered as consisting of two parts,one
of which destroys the subtrahend, and the other part is the minuend itself,
Hence, to perform subtraction, we change the signs of the subtrahend to get
that part of the difference which destroys the subtrahend, and add this result to
the minuend, which is the other part of the difference.

———l - e

SECTION IV.
MULTIPLICATION.

Y4. Muwltiplication is the process of finding the simplest ex-
pression consistent with the notation used, for a quantity which
shall be as many times a specified quantity, or such a part of that
quantity, as is represented by a specified number.

75. Cor. 1.—The multiplier must always be conceived as an ab-
stract mumber, since it shows HOW MANY TIMES the multiplicand 13
to be taken.

76. Cor. 2.—The product 18 always of the same kind as the mul-
tiplicand.

?7. Prop. 1.—The product of several factors 1is the same in
whatever order they are taken.

DEM.—18t. @ x b, is @ taken b times,ora +a+a+a+a----- to b terms,
Now, if we take 1 unit from each term (each @), we shall get b units; and this
process can be repeated a times, giving @ times d,ord x a. .axb="0 x a.

2d. When there are more than two factors, as abc. We have shown that gd
=ba. Now call this product m, whence abc = me. But by part 1st, mc = em.
. abe = bac = eab = cha. In like manner we may show that the product of any
number of factors is the same in whatever order they are taken. Q. E.D.

78. Prop., 2.—~When two factors have the same sign their prod-
uct 18 positive: when they have different signs their vroduct is neg-
ative.
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DeM.~18t. Let the factors be + @ and + b. Considering & as the multiplier
we are to take + b, @ times, which gives + ab, a being considered as abstract in
the operation, and the product, + ab, being of the same kind as the multipli-
cand ; that is, positive. Now, when the produet, + ab, is taken in connection
with other quantities, the sign + of the multiplier, @, shows that it is to be
added ; that is, written with its sign unchanged. .. (+ b) x (+ @) = + ab.

2d. Let the factors be — a and — b. Considering a as the multiplier, we are
to take ~ b, @ times, which gives — @b, @ being considered as abstract in the
operation, and the product, — ab, being of the same kind as the multiplicand ;
that is, negative. Now, when this product, — ab, is taken in connection with
other quantities, the sign — of the multiplier shows that it is to be subtracted ;
that is, written with its sign changed. .. (—0) x (—a) = + ab.

8d. Let the factors be — @ and + b. Considering a as the multiplier, we are
to take + b, ¢ times, which gives + ab, @ being considered as abstract in the
operation, and the product, + ab, being of the same kind as the multiplicand ;
that is, positive. Now, when this product, + @b, is taken in connection with
other quantities, the sign — of the multiplier shows that it is to be subtracted ;
that is, written with its sign changed. .. (+b) x (—a) = — ab.

4th, Let the factors be + @ and — b. Considering @ as the multiplier, we are
to take — b, @ times, which gives — ab, @ being considered as abstract in the
operation, and the product, — ab, being of the same kind as the multiplicand ;
that is, negative. Now, when this product, — ab, is taken in connection with
other quantities, the sign + of the multiplier shows that it is to be added ; that
is, written with its own sign. .. (—b) x (+ @)= —ab. Q. E.D.

79. Cor. 1.—The product of any number of positive factors is
positive.

80. Cor. 2—The product of an even number of negative factors is
positive.

81. Cor. 3.—The product of an odd number of negative factors is
negative.

82. Prop. 3.—The product of two or more factors consisting of
the same quantity affected with exponents, is the common quantity
with an exponent equal to the sum of the erxponents of the factors.
That is a™ X a" = a™t"; or a™. a" a' = a™***, etc., whether the expo-
nents are integral or fractional, positive or negative.

DEM.—1st. When the exponents are positive integers.: Let it be required to’
multiply a™ by a” and a*. a™ = acaa - - - - to m factors, a* = agaade ---- to n
factors, and o" = aaaaa - - - - to 8 factors. Hence the product, being composed
of all the factors in the quantities to be multiplied together, contains m + n + #
factors each ¢, and hence isexpressed g=+*+*, 8ince it is evident that this rea-
soning can be extended to any number of factors,as ™ - @™ x & x a”, etc.,
ete., the proposttien in this case is proved.
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2. When the exponents are positive fractions. Let it be required to multiply
id [ »
a* by a@*. Now o™ means m of the n equal factors into which & is conceived to

be resolved. If each of these n factors be resolved into b factors, a will be re.

m
solved into bn factors. Then, since o" contains m of the = equal factors of @,
and each of these is resolved into b factors, m factors will contain bm of the bn

m n [
equal factors of @. Hence @* = a%. In like manner ab may be shown equal to
cn m [ vm en
@™ ; and a* x a¥ = @™ x a®. This now signifies that @ is to be resolved fnto
: " ° b
bn tactors, and bm + en of them taken to form the product. .. a* x a® =a™
o mtoen mLe
x a®=a ™ ,ora™ ¥ which proves the proposition for positive fractional
exponents, since the same reasoning can be extended to any number of factors,
m 3 e
asa™ x a® x ad, etc.
8d. When the exponents are negative. Let it be required to multiply a—™ by
a-", m and n being either integral or fractional. By definition a—" x a—» =

517"‘ x ‘-:7. Now, as fractions are multiplied by multiplying numerators together

and denominators together, we have El;- x ;1"- = a—_};; by part 1st of the demon-

stration. But this is the same as a—™+morg—"m—"* . ¢ ™ x g~ "=a~"™—",
EXAMPLES.

1. Prove as above that 81F x 81 = 81" and that 8¢ = 81,
2. Prove that m* X m® = m**?,

3. Prove that 168 X 16t = 16'%.

4. Prove that o5~ X 5% ig 1.
5. Prove that a=2 X a3 is a.

Scn.—The student must be careful to notice the difference between the
signification of a fraction used as an exponent, and its common signification.
Thus 3 used as an exponent significs that a number is resolved into 8 equal
Jactors, and tho product of 2 of them taken ; whereas § wused as a common
Jraction signifies that & quantity is to be separated into 8 equal parts, and
the sum of two of them taken.

83. Prob.—To hzultiply monomials.

. RULE~MULTIPLY THE NUMERICAL COEFFICIENTS AS IN THE
DECIMAL NOTATION, AND TO THIS PRODUCT AFFIX THE LETTERS OF
ALL THE FACTORS, AFFECTING EACH WITH AN EXPONENT EQUAL TO
THE ‘8UM OF ALL {HE EXPONENTS OF THAT LETTER IN ALL THE
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FACTORS. THE SIGN OF THE PRODUCT WILL BE -+ EXCEPT WHEN
THERE IS AN ODD NUMBER OF NEGATIVE FACTORS; IN WHICH CASE
1T WILL BE —. '

DEM.—This rule is but an application of the preceding principles. Since the
product is composed of all the factors of the given factors, and the order of ar-
rangement of the factors in the product does not affect its value, we can write
the product, putting the continued product of the numerical factors first, and
then grouping the literal factors, so that like letters shall come together.
Finally, performing the operations indicated, by multiplying the numerical
factors as in the decimal notation, and the like literal factors by adding the ex.
ponents, the product is completed.

84. Prob.—To multiply two factors together when one or both
are polynomials.

RULE.~MULTIPLY EACH TERM OF THE MULTIPLICAND BY EACH
TERM OF THE MULTIPLIER, AND ADD THE PRODUCTS.

DEM.—Thus, if any quantity is to be multiplied by @ + b — ¢, if we take it a
times (2. e. multiply by a), then b times, and add tho results, we have taken it
@ + b times. But this is taking it ¢ too many times, as the multiplier required
it to be taken @ + b minus ¢ times. Hence we must multiply by ¢, and subtract
this product from the sum of the other two. Now to subtract this product is
simply to add it with its signs changed (¥1). But, regarding the — sign of ¢
as we multiply, will change the signs of the product, and we can add the partial
products as they stand, even without first adding the products by a and b.
Q. E. D.

85. THE0.—The square of the sum of two quantities is equal to
the square of the first, plus twice the product of the two, plus the
square of the second.

8G6. Turo.—The square of the difference of two quantities <s
equal to the square of the first, minus twice the product of the two,
plus the square of the second.

87. Turo.—The product of the sum and difference of two quan-
tities is equal to the difference of their squares.

The demonstration of these three theorems consists in multiplying
z4+ybyz+y,z—ybyz—yande + ybyz—y.
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ExAMPLES.

1. Multiply together 3az, — 3a%x®, 4by, — y3, and 2az9%y".

2. Multiply together 3z#, — ma", 2m*, -7, — 2, and 2z™

3. Multiply together 0ok, = y and {z*y*; also 3a33%, and
- 3ai[,*. ¢

¥ oy w7t ~* by m®

4. Multiply m® by m™%, a= by a", a36~* by a3, m " bym™,
v/a by Ya, Y3 PY Yok,

5. Multiply 3¢ — 20 by a + 4.

6. Multiply 2® + zy + y* by 2% — zy + y*.

7. Multiply m¢ + né + 04 — m3n® — m20® — n20® by m® + n®
+ 0%,

8. Multiply a™ — a" + a® by a™ — a.

9. Multiply together 2 — a, 2 — 4, 2 — ¢, z — d.

10. Multiply together 2 +y, * — y, 2® + 2y + y® and 22 — 2y
+ y*.
Sue.—Try the factors in different orders, and compare tho labor required.

]

11. Multiply by 1 by a4 1,
12, Multiply 2a/-9b1—" + 3a*~15™ by 10a?~/*1p**+1 — 5ar-p-™,
13. Square the following by the theorems (85, 86) :
l1+a z—2, 3f-+ 3y, a'}-—a"}b', z" + z, %:I: —Z—, "+ ¥,

J}a* - }a‘*’ bz”ly"’; - ay”’z":, 2020~ =P 4+ Jay.

14. Write the following products by (87):
(3m® + 5u3) X (3m* — 5nt), (v2y¥ + 1‘/53*) xﬂ(\/§y§ - .{/§z}),
(1+32) X (1 — 4a), (99az + 94/a7) X (99az — Oatat).

15, Expand (¢ +d+¢) (@a+d—c) (a—b+¢c) (—a+ b+o).
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MuLrIPLICATION BY DETACHED COEFFICIENTS.

88. In cases in which the terms of both multiplicand and multi-
plier contain the same letters, and can be so arranged that the ex-
ponents of the eame letters shall vary in the successive terms of
each according to the same law, a similar law will hold good in the
product, and the multiplication can be effected by using the co-
efficients alone, in the first instance, and then writing the literal
factors in the product according to the observed law. A few
examples will make this clear:

1. Multiply 2a® — 3a%z + 5az* — 2® by 2a* — az + 2%,

OPERATION.

2—3+ 5— 1
2— 14+ 7

4—6+10— 2
-2+ 83— 5+ 1
+14—21+35—7

4—8 4+ 97— 28 + 36 — 7
Prod., 4ab — 8a‘z 4 27adz® — 28a®x® + 36art — Yzt
2. Multiply «3 + 22 — 4 by «® — 1.

SUG.—By writing these polynomials thus, z° + 0z* + 22 — 4, 2* + v —1, ,
the law of the exponents in each case becomes evident. Hence we have,

1+40+2—4
1+0~1

1+0+2-—-4
—-1=0—-23+4

1+0+1—4—-2+4
Prod, @®+0z*+ 2% —42 —2z +4,0rz’ +2%—42'—2+4

3. Multiply 3a%® + 4azx — 52% by 2a* — 6az + 423.
4. Multiply 2a® — 3ad® + 553 by 2a% — 55%.

8ua.—The detached coefficients are 2 + 0 —8 + §,and 2 + 0 — 5.

5. Multiply a® + a%2 + a2® + 2% by @ — =.
6. Multiply z® — 32z% + 3z — 1 by 2®* — 22 4 L
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SECTION V,
DIVISION.

89. Division is the process of finding how many times one
quantity is contained in another.

¢
90. The problem of division may be stated: Given the product
of two factors and one of the factors, to find the other ; and the suffi-
cient reason for any quotient s, that multiplied by the divisor it
gives the dividend.

91. Cor. 1—Dividend and divisor may both be multiplied or
both be divided by the same number withowt affecting the gquotient.

92, Cor. 2—If the dividend be multiplied or divided by any
number, while the divisor remains the same, the quotient is multiplied
or divided by the same.

93. Cor. 3.—If the divisor be multiplied by any number while the
dividend remains the same, the quotient is divided by that number ;
but if the divisor be divided, the quotient is multiplied.

94, CoR. 4.— The sum of the quotients of two or more guantities
divided by a common divisor, is the same as the quotient of the sum
of the quantities divided by the same divisor.

95, Cor. 5.—The difference of the quotients of two quantities
divided by a common divisor, is the same as the quotient of the dif-
Jerence divided by the same divisor.

These corollaries are direct consequences of the definition, and need no
demonstration ; but they should be amply illustrated.

96, Der.—Cancellation is the striking out of a factor common to both
dividend and divisor, and does not affect the quotient, as appears from (91),

97. LEMMA 1.— When the dividend is positive, the quotient has
the same sign as the divisor ; but when the dividend is negative, the
guotient has an opposite sign to the divisor.

98, LEMMA 2.— When the dividend and divisor consist of the
same quantity qffected by exponents, the quotient 18 the common
quantity with an exponent equal to the exponent in the dividend,
minus that in the divisor.
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These lemmas are immediate consequences of the law of the signs and
exponents in multiplication,

99, Cor. 1.—Any guantity with an exponent 0 is 1, since it may
be considered as arising from dividing a quantity by itself.

Thus, # representing any quantity, and m any exponent, z™ + o™ =2° =1,

*700. Cor. 2.—Negative exponents arise from division when
there are more fuctors of any number in the divisor than in the divi-
dend.

101, Coxr. 3.—A factor may be transferred from dividend to
divisor (or from numerator to denominator of a fraction, which is
the same thing), and vice versa, by changing the sign of its exponent.

102. Prob. 1.—To divide one monomial by another.

RULE.—DIVIDE THE NUMERICAL COEFFICIENT OF THE DIVI-
DEND BY THAT OF THE DIVISOR AND TO THE QUOTIENT ANNEX THE
LITERAL FACTORS, AFFECTING EACH WITH AN EXPONENT EQUAL TO
ITS EXPONENT IN THE DIVIDEND MINUS THAT IN THE DIVISOR, AND
SUPPRESSING ALL FACTORS WHOSE EXPONENTS ARE 0. THE SIGN
OF TILE QUOTIENT WILL BE + WHEN DIVIDEND AND DIVISOR HAVE
LIKE SIGNS, AND — WHEN THEY HAVE UNLIKE SIGNS.

Drm.—The dividend being the product of divisor and quotient, contains all
the factors of both; hence the quotient consists of all the factors which are
found in the dividend and not in the divisor.

103, Prob. 2.—To divide a polynomial by @ monomial.

RULE~—DIVIDE EACH TERM OF THE POLYNOMIAL DIVIDEND BY
THE MONOMIAL DIVISOR, AND WRITE THE RESULTS IN CONNECTION
WITH THEIR OWN BSIGNS.

DrM.—This rule is simply an applieation of the corollaries (94,

104, Der.—A polynomial is said to be arranged with reference to a certain
letter when the term containing the highest exponent of that letter is placed first
at the left or right, the term containing the rext highest exponent next, etc., etc.
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105. Prob. 3.—To perform division when doth dividend and
divisor are polynomials. -

RULE—HAVING ARRANGED DIVIDEND AND DIVISOR WITH
REFERENCE TO THE SAME LETTER, DIVIDE THE FIRST TERM OF THE
DIVIDEND BY THE FIRST TERM OF THE DIVISOR FOR THE FIRST
TERM OF THE QUOTIENT. THEN SUBTRACT FROM THE DIVIDEND
THE PRODUCT OF THE DIVISOR INTO THIS TERM OF THE QUOTIENT,
AND BRING DOWN A8 MANY TERMS TO THE REMAINDER A8 M4Y
BE XECESSARY TO FORM A NEW DIVIDEND., DIVIDE A8 BEFORE,
AND CONTINUE THE PROCESS TILL THE WORK I8 COMPLETE.

DEM.—The arrangement of dividend and divisor according to the same letter
enables us to find the term in the quotient containing the highest (or lowest if
we put the lowest power of the letter first in our arrangement) power of the
same letter, and so on for each succeeding term.

The other steps of the process are founded on the principle, that the product
of the divisor into the several parts of the quotient is equal to the dividend,
Now by the operation, the product of the divisor into the first term of the
quotient is subtracted from the dividend ; then the product of the divisor into the
aecond term of the quotient ; and so on, till the product of the divisor into each
term of the quotient, that is, the product of the divisor into the whole quotient,
is taken from the dividend. If there is no remainder, it is evident that this
product is equal to the dividend. If there ¢ a remainder, the product of the
divisor and quotient is equal to the whole of the dividend except the remainder.
And this remainder is not included in the parts subtracted from the dividend, by
operating according to the rule.

Scm.—This process of division is strictly analogous to ‘‘Long Division »
in common arithmetic. The arrangement of the terms corresponds to the
regular order of succession of the thousands, hundreds, tens, units, etc.,
while the other processes are precisely the same in both.

ExAMPLES.
m 1
1. Divide mi by m¥, n* bya-1, (ab)?™ by (ab)*, a® by ab, a-*
by a3, z ¥ by z-3%, z-* by z ¥,
a~9h® M'*z'*y a Sed-1bz—¢

z%y% 3m3n-1z*% & 8a~2zy~1z
nents, and explain the process.

3. Divide 15ay® by 3ay, 8a¢d3¢c*d by 4atbtc?, satst by a’}b*,
—85a4but by Ya2bz, —20a%5¥c by —40abtc, 3* by ¥', —y* by y°°
120%°-% by —"a-bPg-", —4a¥b-1ct by — 124 ¥por-n, r-eripr-od
by a*-**1p+ct, and z:‘:'y" by wiy".

2. Free

from negative expo-
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4. Divide 928k — 12%%® +8a%k* by Sak, 11z¢ysath + 12128y
— dztyrabt by 1lzdys, 1502° — 15a°z + 3az by — 5az, 4a’omé
—12a-1°m® + 5280 by — 12a-1°, 2092y~ — 24tzy™ by 10zy,
y% + 3a’y* - 2.1/% by y'}, Bt — B — P — i by ™, aa:?
—2az™ =" + 3az by az+.

%.
. Divide 624 — 13az® + 13a%z®—13a3z—bat by 22% —8azx—at.

6
9.
8
9,

13.
14.
15.
16.

Divide 4z® — 28zy + 49y* by 22 — 7y.

Divide 2% + y3 +3zy—1byaz+y—1.

. Divide a%51* — 64 by ad* — 2, v — da¥ by ¥ — 24%.
. Divide oy — a by z*y} - *, 243a® + 1024 by 4 + 3a.
10.
11.
12.

Divide 4% — $y* + Hy® —dy* — Wy + §byy* — L + 5.
Divide 1 + 22% — VYz¢ — 162% by 1 + 2z + 3z2* + 4x3. .
Divide (2% — y*)* by (z — 9)°,a® + 53 by a + b-1.
Divide y4¢ — yl‘ by y — ; ‘

Divide 1 by 1 — 2%, also by 1 + 22,1 + z,and by 1 — 2.
Divide a'** + a"b + ad" + &'+ by a" + "

Divide a*™ "% — ™" 'P'-P¢" + a"b7'c™ + o' M

— @B 4 B by @R 4 Bett

17.

18.

Divide m™**' + amn™ + nm™ + an**' by m + n.

Divide mn(z® + 1)+ (n? + m?®) (z¢+2) + (n' +2nm) (z8 + z¥)

by nz® + mz + n.

19.

Divide Akzt + 2(h — k)z® — (h® + 4 — k%)% + 2 (h + k)2

— Lk by kx®* — h + 2.

20.

Divide z + y + 2z — 34/zyz by ot + y*.+ A

DivisioN BY DETACHED COEFFICIENTS.

1086, Division by detached coefficients can be effected in the same
cases as multiplication (88). The student will be able to trace the
process and see the reason from an example,
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1. Divide 10a¢ — 27a%2z + 34a®2® — 18ax® — 824 by 2a% — 3az
+ 428,

OPERATION.
29—8+4)10—-27+84—18—-8|5 —06 —2
10 — 15 + 20 Ba® — 6az — 22°  Quot.
—12+14—18
—12 + 18 — 24
- 4+ 6-—8

— 44+ 6-—-8
~ % Divide 24 — 3a2% — Ba®z® + 18a32 — 8a¢ by 2* + 2az — 2a*.
~ 3. Divide 6a¢ — 96 by 3a — 6.
 8va.—The detached coefficients are 6 + 0 + 0 + 0 — 96 and 8 — 6.

- 4. Divide 3y® + 3zy®* — 4x®y —423 by z + y.
5. Divide 27 + y7 by # + y; also 24 — y* by 22 — y2,

SYNTHETIC DIVISION.

107, When division by detached coefficients is practicable, as in
the examples in the last article, the operation may be very much
condensed by an arrangement of terms first proposed by W. G. Hor-
ner, Esq., of Bath, Eng., which is hence called Horner’s method of
synthetic division. A careful inspection of the OPERATION under
Ex. 1, in the last article, will acquaint the student with the process.

OPERATION. EXPLANATION OF OPERATION.—Arrange the
2110~27+384—18~8 coefficients of the divisor in a vertical column
+8 +15—20424 +8 at the left of the dividend, changing the signs of
—4 —18— 6 all after the first. Draw a line underneath the

5 —8 —2 whole under which to write the coefficients of
Im Quot. the quotient.

The first coefficient of the quotient is found
evidently by dividing the first of the dividend by the first of the divisor,
and in this case is 5. As the firét term of the dividend is always destroyed by
this operation, we need give it (10) no farther consideration. Now, multiplying
the other coefficients after the first (i. e. + 3 and — 4) with their signs changed,
by 5, we have + 15 and — 20, which are to be added (1) to — 27 and + 84. Hence
we write the former under the latter. The first term* of the second partial divi-
dend can be formed mentally by adding (?) + 15 to — 27, and the next term of
the quotient by dividing this sum (— 12) by 2. Hence — 6 is the second term of

# Strictly, the * coefficlent of ; ** but this form is used for brevity.
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the quotlent. (We did not add (?) — 20 to + 84, because there is more to be
taken in before the first term of the next partial dividend is formed.)

Having found the second term of the quotient (— §), we multiply the terms
of the divisor, except the first, (with their signs changed) by — 6, and write the
results, — 18 and + 24, under the third and fourth of the dividend, to which
they are to be added (?). Now we have all that is to Le added* to + 34 (viz.,
— 20 and — 18) in order to obtuin the first term of the next partial dividend.
Hence, adding, we get — 4, which divided by 2 gives — 2 as the next term of
the %uotient. Multiplying all the terms of the divigor except the first, as before,
we have — 6 and + 8, which fall under — 18 and — 8. Now adding + 24 and
— 6 to — 18, nothing remains. Soalso + 8 — 8 =0, and the work is complete,
as far as the coefficients of the quotient are concerned.

2. Divide z¢ — 528 + 15z¢ — 2423 + 272® — 13z + 5 by x4 — 28
+ 42 — 22 + 1.
OPERATION.

111 —-5+15—-244+27—184+ 8
+2| +2— 44+ 2~ 1+ 85

—4 - 6+12—- 6+10
+2 +10—20
-1

[1-3+5 0 0o 0 o
Quot., T —38r+ 8

- 3. Divide 4y® — 24y® + GOyt — 80y® + 60y — 24y + 4 by 2y*
—4y + 2

- 4, Divide 27— y" byz — y; also1 by 1 — .

- 5 Will 2 + 2 divide # + 2 — 70" — 20z + 12 without a re-
mainder? Will 2—-3?

6. Will z + 8, or z — 3, divide 2* — 62* — 162 + 21 without a re-
mainder? Willz + 7,ore— 72

* The student will not fail to sce that this addition is equivalent to the ordinary subtraction
siuce the signs of the terms have been chunged.
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OHAPTER IL
FACTORING.

SECTION I
FUNDAMENTAL PROPOSITIONS,

108. The Factors of a number are those numbers which mul-
tiplied together produce it. A Facfor is, therefore, a Divisor. A
Factor is also frequently called a measure, a term arising in Gepme-
try.

109. A Common Divisor is a common integral factor of
two or more numbers. The Greatest Common Divisor of two or
more numbers is the greatest common integral factor, or the product

of all the common integral factors. Common Measure and Com-
mon Divisor are equivalent terms.

110. A Common Multiple of two or more numbers is an
integral number which contains each of them as a factor, or which
is divisible by each of them. The Leust Common Multiple of two
or more numbers is the least integral number which is divisible by
each of them.

111. A Composite Number is one which is composed of
integral factors different from itself and unity.

112. A Prime Number is one which has no integral factor
other than itself and unity.

113, Numbers are said to be Prime to each other when they have
no common integral factor other than unity.

Sch. 1.—The above definitions and distinctions have come into use from
considering Decimal Numbers. They are only applicable to literal numbers
in an accommodated sense. Thus, in the general view which the literal no-
tation requires, all numbers are composite in the sense that they can be fac~
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tored ; but as to whether the factors are greater or less than unity, integral
or fractional, we cannot affirm.

.

114. Prop. 1.—A monomial may be resolved into literal foc-
tors by separating its letters into any number of groups, so that the
sum of all the exponents of each letter shall make the exponent of
that letter in the given monomial.

115. Prop. 2.—Any factor which occurs in every term of a
polynomial can be removed by dividing each term of the polynomial
by t.

116. Prop. 3.—1If two terms of a trinomial are POSITIVE and
the third terin is twice the product of the square roots of these two,
and POSITIVE, the trinomial is the square of the suM of these square
roots. If the third term is NEGATIVE, the trinomial ¢s the square of
the DIFFERENCE of the two roots.

11%. Prop. 4.—The difference between two gquantities is equal
to the product of the sum and differcnce of their square roots.

118. Prop. 5.— When one of the factors of a quantity is given,
to find the other, divide the given quantity by the given factor, and
the gquotient will be the other.

119. Prop. 6.—The difference between any two quantities is a
divisor of the DIFFERENCE between the same powers of the quan-
tities.

The 8UM of two quantitics is a divisor of the DIFFERENCE of the
same EVEN powers, and the SUM of the same ODD powers of the quan-
tities.

DeM.—Let # and y be any two quantities and n any positive integer, First,

@ — y divides o — y». Second, if n i even,  + y divides z* — y*.  Third, if n is
odd, ¢ + y divides a» + y*.
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FIRST,

Taking the first case, we proceed in form with the division, till four
of the

terms of the -yt — gy (22 + 2"y 4 an=4y8 4+ ete.
quotient (enough to ™ — -y

determine the law) are -ly -yt

found. We find that each an -ty — an-tys

remainder consists of two terms,  a#-iyE — yn

the second of which, — y*, is the -yt — r-dys

sccond term of the dividend constantly o iyd — gyt

brought down “anchanged; and the first Zn-2y8 — gty
contains 2 with an exponent decreasing by LSy h — gy

unity in each successive remainder, and y with an

exponent tncreasing at the same rate that the exponent of z derreases. At this
rato the exponent of z in the nth remainder becomes 0, and that of y, n. Hence
the nth remainder is y* — y* or 0, and the division is exact.

SECOND AND THIRD.
2+ yycu + yn (,ot—l —3‘"‘11/ 4 -l""]/g — 1‘"“][3 ,etc.

a* + -y
Ty Ey
—grly —an-Tye
T kg
Taking 2 + y -2y + r-iy3
for a divisor, we — S g g
observe that the exponent — gyt — pr-dyd
of z in the successive re- T -tyd £y

mainders decreages, and that of ¥ increases

the same as before. But now we observe that the first terin of the remainder is
— in the odd remainders, as the 1st, 3d, §th, etc., and 4+ in the even ones, as the
2d, 4th, 6th, etc. Hence if n Is eocn, and the second term of the dividend is — y»,
the nth remainder is y* —y* or0, and the division is exact. Again, if 2 is odd,
and the second term of the dividend is + y*, the nth remainder is —y* + y*,
or 0, and the division is exact. Q. E. D,

120, Con.—The lust proposition applics equally to cases involv-
ing fractional or negative exponents.

DEM.—Thus, o —y* divides w*-—y*, since the latter is the difference between
the 4th powers of of and 1. o n general o h— y-s divides 0~ — y-‘:, a
being eny positive integer. This becomes evident by putting @ -£= v, and
y":' =1; whence &~ = = o, and y':"' =us, But 08 — ws in divisible by e—w,

) e K !
hence @™ = — 3+ is divisiblo by o~ m— g+,
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121. Prop. ?.—A trinomial can be resolved into two binomial
JSactors, when one of its terms is the product of the square root of
one of the other two, into the sum of the factors of the remaining term.
The two factors are respectively the algebraic sum of this square root,
and each of the factors of the third term.

ILL.—~Thus, in 2* + 72 + 10, we notice that 7z is the product of the square
root of z¢, and 2 + 5 (the sum of the factors of 10). The factors of 2® + T2
+;0uez+2andz+ 5. Again, 2®* — 8z — 10, has for its factors # + 2 and
z — 5, — 82 being the product of the square root of z* (or z), and the sum of
—~ 5§ and 2, (or — 8), which are factors of — 10. 8till again, 2* +82 — 10
= (z— 2) (¢ + 5), determined in the same manner.

DeM.—The truth of this proposition appears from considering the product of
z + a by z + b, which is 2* + (@ + D) 2 + ¢b. In this product, considered as a
trinomial, we notice that the term (@ + b)z is the product of #7° and a + b, the
sum of the factors of ab. In like manner (z + a) (z —b) =2* + (a— b}z — ab,
and (z — a) (z — b) =2* — (a + b)z + ab, both of which results correspond to the
enunciation, Q. E. D.

[Nore.—In application, this proposition requires the solution of the problem :
Given the sum and product of two numbers to find the numbers, the complete
solution of which cannot be given at this stage of the pupil’s progress. It will
be best for him to rely, at present, simply upon inspection.]

122, Prop. 8.—We can often detect a factor by separating
a polynomial into parts.

Ex. Factor 2® 4 122 — 28.

SoLuTioN.—The form of this polynomial suggests that there may be a bino-
mial factor in it, or in @ part of it. Now 2* — 4z 4+ 4 is the square of 2 — 2,
and (r* — 4z + 4) + (162—82) makes 2* + 12z — 28. But (¢* —4z +4) + (162—382)
=@-2@—D+@—~6=(z—2)(—2 +16) = (2 — 2)(» + 14). Whence
z — 2, and z + 14 are geen to be the factors of 2% + 122 — 28.

Mi1sCELLANEOUS EXAMPLES.
1. Factor Tfyty — 28f%gy® + 42f3gy, 4adys — T2yt + 12xys.
2. Factor m¢ — n4, 1 — 24/7 + 7, 25604 + 544a% + 289, 1 — ¢3.

3. Factor 28— 2 — 72, y®— 24,48 + 58 +é--2, a® +23a +22.

’b’

40 Factor 2 . d', c..l - d-" 0. - d"a

40
(.
me mz'+z"°
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4
5. Factor af —m¥, 400 — 5y-¢, % — 310, o0 4 222 — ve2,

6. Factor 2* — 1, 507m¢ + 1320mend + 86718, va — /.
7. Factor o2 —2ax — a®, a™ == 404 Va"c™ + 4b8¢™, £t + 1/.2+2a:%.
8. Fuctor gya'™ — fra™p™+* + X"+, 3a + 36 — 6vab.
9. Resolve z into two equal factors ; also two unequal factors.,
10. Resolve 3Sz‘y’z* — 34/y%z into two factors of which one is
Ry vz
11. Resolve 121a*5%:? into two equal factors; also into four equal
factors.
12. Remove the factor 7(ak’)* from 84a3%+.
13. Remove the factor ’7'::— + %ﬁom mén—8 — 47;%

14. Remove the factor a* — a3d + a®b% — ab® + b4 from ab
4 bS.
+ 1B, Factor 16a+5az — z — 3, R1abed—28cdzy + 15abmn—20mnzy,
Rz* + 232y — 20y*, 120258 — 12032 + 802,

16. Factor 32% — 12x8y% — 4y® + 1, 72d*m® — 8icd3m?
+ 96¢c*d%m?®.

1%. The terms of a trinomial are 30ad, 9a* and 256%. What sign
must be given to each that the trinomial may be fuctored ?

18. The terms of a trinomial are — 9a, 12V« and 4. What must
be the signs of the last two terms that the trinomiul may be
factored ?

on
19. Is a ¥ — 4™ exactly divisible by at —porat + 00

20. Is m® — n8 exactly divisible by Vi —~ va? by vV + va?
by ¥/m %= 4/nt

21. Is r101 4 y1ot exactly divisible by « + y? by — y?

2. Is 22019 4 %079 exactly divisible by 2* — y?? by 2 + y*?

23. What is the quotient of (ky¥ + me¥) = &t V7 + Vmsby?
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24, What is the quotient of (2 + g¥) + (41€ + y7%)?

25. Write the following quotients: (u® + 38) + (a% + b%);
(@ =) = (z—2); (@) = (@ 4n); (@ + )
+ (% + z), m being & positive integer.

1 100
26. Factor 23 +az +2+a, 1—a, 1+a Z10 ~ gioe and
z® -« — 9900.

:I/'

b
27. Factor 10a[ 5+ 5] — 20a, 45 + 4o¥ + 1 and 360~ — 52,

28. 28 — a8 — 2z + 2, 623 — Taz® — 20atz, 2™ + 31z~ — 32,

SECTION 1II.
GREATEST OR HIGIHEST COMMON DIVISOR.

123. DEr —It is scarcely proper to apply the term Greatest Common Divisor
to literal quantities, for the valucs of the letters not being fixed, or specific,
great or small cannot be affirmed of them. Thus, whether a? is greater than a,
depends upon whether a is greater or less than 1, to say nothing of its character
a8 positive or negative. 8o, also, we cannot with propriety call a* — y* greater
thana —y. Ifa=4},andy =}, a0 —y’ = J,and e —y = 1%; .. in this case
a' —y*<a—y. Again,if a and y are both greater than 1, but ¢ <y, a® — y*
though numerically greater than @ —y is absolutely less, since it is a greater
negative.

Instead of speaking of G. C. D. in case of literal quantities, we should speak
of the ITighcst Common Divisor, since what is meant is the divisor which is of
the highest degree with reference to the letter of arrangement.

[NoreE.—The general rule for finding the Greatest or Highest Common
Divisor is founded upon the four following lemmas.]

124. Levua 1.—The Greatest or Highest C.D. of two or more
numbers is the product of their common prime factors.

Dem.—Since a factor and & divisor are the same thing, all the common fac.
tors are all the common divisors. And, since the product of any namber of fac-
tors of a number is a divisor of that number, the product of all the common prime
Jactors of two or more numbers is & common divisor of those numbers. More-
over, this product is the Greatest or Highest C. D, gince no other factor can be in-
troduced into it without preventing its measuring (dividing), &t least, one of the
given numbers. Q. E. D, 3
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ExAMPLES.
1. What is the G. C. D. of 72, 84, and 180?

BSoLuTION.—Resolve the numbers into their prime factors, and take the pro-
duct of those which are common to all.

2. Find the G. C. D. of 48, 204, and 228.
3. Find the G. C. D. of 81, 123, and 315.
4. Find the Highest C. D. of 823yz® and 15z%y.

SoLuTION.—Here we see that z, z, and y are all the literal factors com-
mon to both; and since 8 and 15 have no common factor, @ x # x y is the
Highest C. D.

5. Find the H. C. D. of 14%378m® and 304875m*®n3.
6. Find the H. C. D. of 8a%éc, 18235, and 26a*s¥mn.

7. Find the H. C. D. of 73:*3/" b and 4yt

8. Find the H. C. D. of 5a%z®y — 10az8y + Sazty and 3atzty
— 3z’y8_

9. Find the H. C. D. of 2* —2 — 12 and 23 — 2% — 92 + 9.

BOLUTION.—2® — 2 — 12 = (2 — 4) (¢ + 8)(121). 2 —2* -2 + 9 =2*(z—1)
—z—1) =@ -9 (@—1)=(@—8)(z+ 8)(@—1). Now wesee that 2 +3 is
& common divisor of the two polynomials, and since it is the only divisor com-
mon to both, it is the H. C, D.

10. Find the H. C.D. of 43%23 — 12%z% + 120%x — 45® and 45%z3
— 8b%z® — 4b%x + 8B, .

125, Scu.—The difficulty of factoring renders this process impracticable
in many cases. There is a more general method. But, in order to demon-
strate tho rule, we require three additional lemmas,

126. LeMua 2—~A4 polynomial of the form Ax* + Bx*—!
+Cx*~*- - - - Ex + F, which has no common factor in every
term, has no divisor of its own degree except itself.

DEM —1st, Such a polynomial cannot have one factor of the nth degree—its
own—with reference to the letter of arrangement, and another which contains
the letter of arrangement, for the product of two such factors would be of a
higher (or different) degree from the given polynomial.

2d. It cannot have & factor of the nth degree with reference to the letter of
arrangement, and another factor which does not contain that letter, for this last
factor would appear as a common factor in every term, which is contrary to the
hypothesis. Q. E. D,
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127, LeuuA 3—A divisor of any number is a divisor of any
multiple of that number.

ILL.—This is an axiom. If o goes into b, ¢ times, it is evident that it goes
into n times b, or 7b, n times g, or ng times.

128, LEMMA 4—A common divisor of two numbers is a divisor
of their sum and also of their difference.

DeM.—Let @ be & C. D. of m and n, going into m, p times, and into n, g times.
Then(m xn)+a=p=xg¢g Q ED

129. Prob.—To find the H. C. D. of two polynomials without
the necessity of resolving them into their prime factors.

RULE.—1st. ARRANGING THE POLYNOMIALS WITH REFERENCE
TO THE SAME LETTER, AND UNITING INTO SINGLE TERMS THE LIKE
POWERS OF THAT LETTER, REMOVE ANY COMMON FACTOR OR FACTORS
WHICH MAY APPEAR IN ALL THE TERMS OF BOTH POLYNOMIALS, RE-
SERVING THEM AS FACTORS oF THE H. C. D.

2d. REJECT FROM EACH POLYNOMIAL ALL OTHER FACTORS WHICH
APPEAR IN EACH TERM OF EITHER.

3d. TAKING THE POLYNOMIALS, THUS REDUCED, DIVIDE THE ONE
WITH THE GREATEST EXPONENT OF THE LETTER OF ARRANGEMENT,
BY THE OTHER, CONTINUING THE DIVISION TILL THE EXPONENT OF
THE LETTER OF ARRANGEMENT IS LESS IN THE REMAINDER THAN IN
THE DIVISOR.

4th. REJECT ANY FACTOR WHICH OCCURS IN EVERY TERM OF THIS
REMAINDER, AND DIVIDE THE DIVISOR BY THE REMAINDER AS THUS
REDUCED, TREATING THE REMAINDER AND LAST DIVISOR A8 THE
FORMER POLYNOMIALS WERE. CONTINUE THIS PROCESS OF REJECT-,
ING FACTORS FROM EACH TERM OF THE REMAINDER, AND DIVIDING'
THE LAST DIVISOR BY THE LAST REMAINDER TILL NOTHING RE-
MAINS,

IF, AT ANY TIME, A FRACTION WOULD OCCUR IN THE QUOTIENT,
MULTIPLY THE DIVIDEND BY ANY NUMBER WHICH WILL AVOID THE
FRACTION.

THE LAST DIVISOR MULTIPLIED BY ALL THE FIRST RESERVED COM-
MON FACTORE OF THE GIVEN POLYNOMIALS, WILL BE THE H. C. D.
SOUGHT.
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Dex—~Let A and B represent any two polynomials whose H. C. D. is
sought.

1st. Arranging A and B with reference to the same letter, for convenience in
dividing, and ulso to render common factors more readily discernible, if any
common factors appear, they can be removed and reserved as factors of the H.
C. D, since the H. C. D. consists of all the common factors of A and B.

2d. Having removed these common factors, call the remaining factors C and =
D. We are now to ascertain what common factors there are in C and D, o1 to
find their H. C. D. As this H. C. D, consists of only the common factors, we can
reject from each of the polynomials, C and D, any factors which are not common.
Having done this, call the remaining factors E and F.

8d. Suppose polynomial E to be of lower degree with respect to the letter of
arrangement than F. (If E and F are of the same degree, it is immaterial which
is made the divisor in the subsequent process.) Now, as E is its own only divisor
of its own degree {LEM. 2), if it divides F, it is the H. C. D. of the two. If,in
attempting to divide F by E to ascertain whether it is a divisor, fractions arise,
F can be multiplied by any number not a factor in E (and E has no monomial
factor), since the common factors of E and F would not be affected by the opera-
tion. Call such a multiple of F, if necessary, F'. Then the H, C. D. of E and
F',is the H. C. D. of E and F. If, now, E divides F’, it is the H. C. D, of E and
F. Trying it, suppose it goes Q times, with a remainder, R.

4th. Any divisor of E and F is a divisor of R, since F' — QE = R, and any
divisor of & number divides any multiple of that number (LEM. 8), and a divisor
of two numbers divides their difference. The H. C. D. divides E, hence it di-
vides QE, and, as it also divides F', it divides the difference between F’' and QE,
or R. Therefore the H. C. D, of E and ¥, is also a divisor of E and R, and can-
not be of higher degree than R.
5th. We now repeat the reasoning of the 8d and 4th paragraphs concerning
E and F, with reference to E and R. Thus, R is by hypothesis of lower degree
than E; hence, dividing E by it, rejecting any factor not common to both, or in-
' troducing any one into E, which may be necessary to avoid fractions, we ascer-
tain whether R is a divisor of E. If it is, it divides F', since F' = R + QE (LeM.
3, 4), and hence is the H. C. D. of E and F'.

6th. Proceeding thus, till two numbers are found, one of which divides the
other, the last divisor is the H. C. D.of E and F, since at every step we show
that the H. C. D. is a-divieor of the two numbers compared, and the last divisor
is its own H. D.

7th. Finally, we have thus found all the common factors of A and B, the pro-
duct of which is their H, C. D. Q. E. D.

EXAMPLES,
1. Find the H.C.D.of 12a25* + 85%y® — 15ab%y -+ 1Ratdy + 3by*
— 15aby®, and 6a35% — 6atbty — 2b%y® +2absy? + 6aby — Batby®
- 2but + Rubuys, .
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OPERATION,
12a%0* + 8b%y* — 15ab%y + 12a%by + 8by* — 15aby* - - - . . . . - (4).
6a%b* — Ba’bly — 2y’ + 2adbty’ + 6a’by — 6atby® — 2yt + 2aby® - - (B).
400 + by* — Baby + 4oy + y* —bay* - - - - - . - . _ . . . ).
8a% —8a'by —by® + aby® + Ba’y —Ba’y’ —yt + oy - - . - . - . (D).
@ra)a®—Gy+ e+ G +y) - - - - - - - - .- .- (B).
(8 + 8y)a® — (Bby + By*)at + by* +¥)a— @y +y*) - - - - - - - (F).
(& (H)
4a.’-—6ya+y') 8a® — 3”“’ + yta_ ’f
(Iy - - - - 12® —12at + 4y'a — 4y*Sa
(K)- - - - 122 —15ya® + 8y'a
L) - «~ = - - - - dya* + ya— 4y°
4
M) - - - - - - Dya¥ + dy7a —16y* (8y
(Ny- « - - - - - 12yat — 15y%a + '3°
(0) - - Reject19y®* — - - 19y'a — iuy* G
P) « =~ = = = = =« - - - a—y)4a® —bya + y*(4a—y.
4a* — 4ya
T = ya+yt
- ya+y*

~. The H. C. D. of (A) and (B) is (b) (b +%) (@ — y) = ab? + aby — by — by®.

Scu.—Tt often occurs that one or more of the above steps are not required,
especially the removing of a compound factor from the given polynomials.

2. Find the H. C. D., with respect to z, of 2¢ — 828 - 212 — 20z
+ 4, and 223 — 122® + 21z — 10.

OPERATION.
200 — 12® + 212 —10)2* — 82% + 2a* — 202 + 4
2

- - - -« - - 2t — 1627 + 422* — 40z + B8(2—2
‘ At — 122° + 212 — 102
— 42 + 22* — 802+ 8
— 4r® + 242 — 422 + 20
(D) Reject =8 - . - - . - — 82 4+ 122~ 13
By - - - = = = = « « - o - 2t — 4dv+ 4
ot — 4z 4+ 4)22° — 122® + 22 — 10(22 — 4
2t — 8o* + 8 :

— &* + 13z —10.

— 4t + 16218
(F) - Reject =8 - —8z+ 6 {(X)
@ - - - - « - - .2 z—2)2* —4zr + 4(2—2
2t — 22
T+ 4

-2 + 4
Hence z — 2 is the H. C. D.
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8. Find the H. C. D. of 22% + 5 — 82 + 2%, and 423 + 30 — 722

4. Find the H. C. D. of 2az® + 2a + 4ax, and 7 + 14bz + 1bz®
+ 14dz®,

5. Find the H. C. D. of 6a® + 7az — 32%, and 64% + 1laz + 3z°.

6. Find the H. C. D. of 4a® — 4a® — ad® + d*, and 4a® + 2ab
- 208, :

7. Find the H. C. D. of 12z¢ — 2423y + 122%y%, and Bz;y’
— 24a%y3 + 4zyt — 8y".

8. Find the H. C. D. of 52az3 — 24az¢ — 44az® — 122 + 8az®
+ 60az, and 14a%b + 60a®ba® — 16a%b2d + 2atdzr® — V4adz
— 2acbat,

———

130. Prob.—7To find the H. C. D. of three or more polynomials.

RULE~Fixp THE H. C. D. OF ANY TWO OF THE GIVEN POLY-
NOMIALS BY ONE OF THE FOREGOING METHODS, AND THEN FIND
THE H. C. D. or THIS H. C. D. AND ONE OF THE REMAINING POLY-
NOMIALS, AND THEN AGAIN COMPARE THIS LasT H. C. D. witTH
ANOTHER OF THE POLYNOMIALS, AND FIND THEIR H. C. D. ConN-
TINUE THIS PROCESS TILL ALL THE POLYNOMIALS HAVE BEEN
USED.

DeM.—For brevity, call the several polynomials, A, B,C, D, ete. Let the H. C.
D. of A and B be represented by P, whence P contains @il the factors common
to A and B. Finding the H. C. D. of P and C, let it be called P'. P’, therefore,
contains a! the common factors of P and C; and as P contains all that are
common to A and B, P’ contains all that are common to A,8, and C. In like
manner if P” is the H. C. D. of P’ and D, it contains all the common factors of
A,B,C,and D,etc. Q. E. D.

EXAMPLES.

1. Find the H. C. D. of 2* + 11z + 30, 22% 4 21z + 54, and 923
+ 53z% — 9z — 18. The H. C. D. is x + 6.

2. What is the H. C. D. of 102® + 1023y® + 20z4y, 22° + Ry3,
and 4y + 122%y% + 423y + 122y% P
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SECTION IIl.

LOWEST OR LEAST COMMON MULTIPLE,

131, DEF.—In speaking of decimal numbers, the term Least Common
Multiple i8 correct, but not in speaking of literal numbers. For example, the
nubers (@ + b)* and (a® — b?) are both contained in (a + b)* x (¢ —b), and in
any multiple of this product, as m(a + )% (@ — ). But whether m(a +b)® (a—b)
is greater or less than (a + b)*® (# — b) depends upon whether a is greater or less
than b, and also whether m is greater or less than unity. In speaking of literal
numbers, we should say Lowest Common Multiple, meaning the multiple of low-
est degree with respect to some specified letter.

132. Prob.— 1o find the L. C. M. of two or more numbers.

RULE~—TAKE THE LITERAL NUMBER OF THE HIGHEST DEGREE,
OR THE LARGEST DECIMAL NUMBER, AND MULTIPLY IT BY ALL THE
FACTORS FOUND IN THE NEXT LOWER WHICH ARE NOT IN IT.
AGAIN, MULTIPLY THIS PRODUCT BY ALL THE FACTORS FOUND IN
THE NEXT LOWER NUMBER AND NOT IN IT, AND 50 CONTINUE
TILL ALL THE NUMBERS ARE USED. THE PRODUCT THUS OBTAINED
18 THE L. C. M. i

DeM.~Let A, B, C, D, etc,, represent any numbers arranged in the order of
their degrees, or values. Now, as A is its own L. M., the L. C. M. of all the
numbers must contain it as a factor. But, in order to contain B, the L. C. M.
must contain all the factors of B. Hence, if there are any factors in B which are
not found in A, these must be introduced. 8o, also, if C contains factors not
found in A and B, they must be introduced, in order that the product may con-
tain C, etc,, ete. Now it is evident that the product so obtained, is the L. C. M,
of the several numbers, since it contains all the factors of any one of them, and
hence can be divided by any one of them, and if any factor were removed it
would cease to be a multiple of some one or more of the numbers. Q. E. D.

1. Find the L. C. M. of (23 — 1), (2® — 1), and (z + 1).

SoruTioN.~The L. C, M. must contain 2® — 1, and as it is its own L. M., if it
contains all the factors of the other two, it is the required L. C. M. The factors
of z° — 1.are (@ — 1) (z* + 2 + 1). But this product does not contain the factora
of (2* — 1), which are (2 + 1) (2 —1). Henoce, we must introduce the factor
(z + 1), giving (2* — 1)(z + 1), as the L. C. M. of 2* — 1 and 2* — 1. Now,as
this product contains the third quantity, it is the L. C. M. of the three.

2. Find the L. . M. of (a + 3)", a* — 3%, (a— )", and a® + 3a*b
+ 3B + B,



3, Find the L 0. M. of (2% — 4), (2* + 2), and (2* — 9).
4. Find the L C. M. of (a¢ — 2% + 1), (1 + a), (a — 1), and &
5. Find the L. C. M. of 3a%%%y, 57az®, 87y®, and 9asst,
6. Find the L. €. M. of (I — 182 + 81a%), (3a} + 1) (1 — 34/a),
and (27a¥ — 90 — 8va + 1),

. .

Scu.—In applying this rule, if the common factors of the two numbers are
not readily discerned, apply the method of finding the H. C.D., in order to
discover them.,

7. Find the L. C. M. of 2®—2ax? 4 4asx — 8a3, 2% + 2ax?+ 4ate
+ 8a8, and x* — 4as.

BoLUTION.—The L. C. M. of these numbers must contain 23 — 2a2® + 4o’z
— 8a®; and as it is its own L. M., if it contains all the facters of z® + 2az®
+ 4a’z + 8a3, it is the L. C. M. of these two polynomials. But as the common
factors of these numbers, if they have any, are not readily discerned, we apply
the method of H.C. D., and find that z® + 4a?® is the H. C. D. of the two. Since,
then,z? — 2ax? + 4a'r — 8a* contains the factor #* + 4a® of the second number,
it is only necessary to introduce the other factor in order to have the L. C. M. of
the two, Now, (z* + 2a2® + 4a'z + 8a3) + (z* + 4a*)=2+2a. Hence, (z*—2a2?
+ 4a'z — 8a%) (z + 2a) or 2¢ —16a* is the L. C. M. of the first two numbers,
since it contains all the factors of each, and no more. Now, to find whether
24 — 16a* is a maultiple of the remaining number, z* — 4a?, or, if it is not, what
factors must be introduced to make it so, we proceed in the same way as with
the first two numbers. But our first step (or Z17)shows us that 2¢ —16a* is a
multiple of 2* — 4a®. ... 2* — 16a* is the L. C. M. of the three given numbers.

8. Find the L. C. M. of 2% — 32 — 70 and 23 — 392 + 70.
0. Findthe L.C. M. of 224+ 2 — 2, 2*— 2z — 6, and 2% — 42 + 3.

10. Find the L. C. M. of a3~ 4a?b + 9ab?— 106® and a®4 2a%d
— 3abt 4 2083.

11. Find the L.C. M. of 23— 92% + 26z — 24, 23— 102 + 31z
— 30, and 23 — 112% 4 38z — 40,

12. Find the L. C. M. of ¢ —102* + 9, 4 +-102® 4 202% —10z—21,
and z¢ 4 4z%— N2t — 4z + 21,
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CHAPTER IIL

CTIONS.

DEFINITIONS AND FUNDAMENTAL PRINCIPLES.

133. A Fraction, in the literal notation, is to be considered
as an indicated operation in Division.

134. Scn.—In the literal notation it becomes impracticable to consider
the denominator as indicating the number of equal parts into which unity is
divided, and the numerator as indicating the number of those parts repre-
sented by the fraction, since the very genius of this notation requires that

the letters be not restricted in their signification. Thus in 5’ it will not do

to say, b represents the number of equal parts into which unity is divided,
since the notation requires that whatever conception we take of these
quantities should be sufficiently comprehensive to include all values,
Hence » may be a mixed number. Now suppose b = 4%. It is absurd to
speak of unity as divided into 4} equal parts.

135. Cor. 1.—Since numerator is dividend and denominator
divisor, it follows from (91, 92, 93) that dividing or multiply-
ing both terms of a fraction does not alter its value; that multi- .
plying or dividing the numerator multiplies or divides the value of
the fraction ; and that multiplying or dividing the denominator
divides or multiplies the fraction.

136. Cor. 2—d fraction is multiplied by its denominator by
simply removing it.

137, The terms Infeger or Entire Number, Mizved Number,
Proper and Improper, are applied to literal nnmbers, but not with
strict propriety.

Whether m + n is an integer, a mixed number, or a ttaction, depends upon
the values of m and 7, which the genius of the literal motation requires to be

understood as perfectly general, until some restriction is imposed.
As a matter of convenience, we adopt the following definitions :
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138. A number not having the fractional Jorm is gaid to have
the Integral Form; ssm + n, 2c*d — 843z + 3xby¢.

139. A polynomial ha.ving. part of its terms in the fractional
and part in the integral form, is called & Mixed Number.

140. A Proper Fraction, in the literal notation, is an ex-
pression wholly in the fractional form, and which cannot be expressed
in the integral form without negative exponents. .

By calling such an expression a proper fraction, we do not assert anything
with reference to its value as compared with unity. Thus % is a proper frac-

tion, though it may be greater or less than unity. It may also be written
ab—'.

141. An Improper Fraction is an expression in the frac-
tional form, but which can be expressed in the integral or mixed
form without the use of negative exponents.

142. A Stmple Fraction is a single fraction with both
terms in the integral form.

143. A Compound Fraction is two or more fractions con-
nected by the word of. ) .

This term is not generally applicable in the literal notation. Thus we may
write —3— of g with propriety, but not g— of l’:—‘, unless @ and b are integral, so
that the fraction -%— may be considered as representing equal parts of unity,as %

does. If the word of is considered as simply an equivalent for x, the notation
is of course, always admissible. But it is scarcely & simple equivalent.

.

144. 4 Complex Fraction is a fraction having in one or
both its terms an expression of the fractional form.

145, A fraction is in its Lowest Terms when there is no com-
mon integral factor in both its terms.

146. The Lowest Common Denominator is the num-
ber of lowest degree, which can form the denominator of several
given fractions, giving fractions of the same values respectively,
while the numerators retain the integral form.

147. Reduction, in mathematics, is changing the form of an
expression without changing its value.
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REDUCTIONS.

148. There are five principal reductions required in operating
with fractions, viz.: 70 Lowest Terms,—From Improper Fractions
to Integral or Mized Forms,—From Integral or Mized Forms to Im-
proper Fractions,—To Forms having a Common Denominafor,—
and from the Complez to the Simple Form.

149. Prob, 1.—7T0o reduce a fraction to its lowest termas.

RULE.—REJECT ALL COMMON FACTORS FROM BOTH TERMS; OR
DIVIDE BOTH TERMS BY THEIR H. C.D.

DEM.—Since the numerator is the dividend and the denominator the divisor,
rejecting the same factors from each does not alter the value of the fraction
(91). Having rejected all the common factors, or, what is the same thing, the
H. C. D. (which contains all the common factors), the fraction is in its lowest
terms (145).

Scm. 1.—S8ince the H. C. D. is the product of all the common factors
(109), the above process is equivalent to dividing both terms of the frac-
tion by their H. C. D. Whenever the common factors of the terms are not
readily discernible, the process for ﬁndmg their H. C. D. (129) may be
resorted to.

Scm. 2.—The opposite process is sometimes serviceable, viz.: the intro-
duction of a factor into both terms of a fraction, which will give it a more
convenient form. It requires no special ingenuity to solve such problems,
since, if the factor does not readily appear, it con be found by dividing a
term of one fraction by the corresponding term of the other.

150, Prob. 2.—To reduce a fraction from an improper to an
integral or mixed form.

RULE.—PERFORM THE DIVISION INDICATED (133).

151. Cor—By means of negative indices (exponents) any
JSraction can be expressed in the integral form.

152. Prob. 3.—To reduce numbers from the integral or mixed
to the fractional form. ‘

RULE.—MULTIPLY THE INTEGRAL PART BY THE GIVEN DE-
NOMINATOR, AND ANNEXING THE NUMERATOR OF THE FRAC-
TIOKAL PART, IF .m!, WRITE THE SUM OVER THE GIVEN DE-
NOMINATOR. :
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DeEM.—In the cage of & number in the integral form, the process consists of
multiplying the given number by the given denominator and indicating the
division of the product by the same number, and hence is equivalent to. multi-
plying and dividing by the same quaatity, which does not change the value of
the number. The same is true as far as relates to the integral part of a mixed
form, after which the two fractional parts are to be added together. As they
have the same divisors, the dividends can be added upon the principle that the
sum of the quotients equals the quotient of the sum (94).

153. Prob, 4.—To reduce fractions having different denomi-
nators to equivalent fractions having a common denominator.

RULE~—MULTIPLY BOTH TERMS OF EACH FRACTION BY THE
DENOMINATORS OF ALL THE OTHER FRACTIONS,

DEM.—This gives & common denominator, because each denominator is the
product of all the denominators of the several fractions. The value of any one
of the fractions is not changed, because both numerator and denominator are
multiplied by the same number (1385).

154. Cor—To reduce fractions to equivalent ones having the
Lowest Common Denominator, find the L. C. M. of all the denomi-
nators for the new denominator. Then multiply both terms of each
Jraction by the quotient of that L. C. M. divided by the denominator
of that fraction.

188, Prob. 5.—~To reduce complex fractions to the form of
simple fractions.

RULE.—MULTIPLY NUMERATOR AND DENOMINATOR OF THE COM-
PLEX FRACTION BY THE PRODUCT OF ALL THE DENOMINATORS OF
THE PARTIAL FRACTIONS FOUND IN THEM; OR, MULTIPLY BY THE
L. C. M. OF THE DENOMINATORS OF ™IE PARTIAL FRACTIONS.*

DeM.—This process removes the partial denominators, since each fraction is
multiplied by its own denominator, at least, and this is done by dropping the
denominator. It does not alter the value of the fraction, since it is multiplying
dividend and divisor by the same quantity.

ADDITION.
156. Prob.—To add fractions.
RULE.—REDUCE THEM TO FORMS HAVING A COMMON DENOMINA-

TOR, IF THEY HAVE NOT SUCH FORMS, AND THEN ADD THE NUMERA-
TORS, AND WRITE THE 8UM OVER THE COMMON DENOMINATOR.

* The papil is ruppored to have obtained sufficient knowledge of fractions in common arlth-
metic to perform these operations,
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DeuM.~—~Thereduction of the several fractions to forms having a common denomi-
nator, if they have not such forms, does not alter their values (Z35), and hence
doen not alter the sum. Then, when they have a common denominator (divisor),
the sum of the several quotients is equal to the quotient of the sam of the sev-
eral dividends divided by the common divisor, or denominator (94).

157 . Cor.—Expressions in the mixed form may either be reduced
to the improper form and then added, or the integral parts may be
added into one sum, and the fractional into another, and these results

2

added.

SUBTRACTION.
158. Prob.— 7o subtract fractions.

RULE~—REDUCE THE FRACTIONS TO FORMS HAVING A COMMON
DENOMINATOR, IF THEY HAVE NOT SUCH FORMS, AND SUBTRACT THE
NUMERATOR OF THE SUBTRAHEND FROM THE NUMERATOR OF THE
MINUEND, AND PLACE THE REMAINDER OVER THE COMMON DENOMI-
NATOR. =

DEM.—The value of the fractions not being altered by the reduction, their dif-
ference is not altered. After this reduction, we have the difference of two quo-
tients arising from dividing two numbers (the numerators) by the same divisor
(the common denominator). But this is the same as the quotient arising from
dividing the difference between the numbers by the common divisor (95).

159, Cor—Mized numbers may be subtracted by annexing the
subtrahend with its signs changed, to the minuend, and then combining
the terms as much as may be desired. The reason for the change of
signs is the same as in whole numbers (7 1).

MULTIPLICATION.
160. Prob. 1.—To multiply a fraction by an integer.
RULE~MULTIPLY THE NUMERATOR OR DIVIDE THE DENOMI-

NATOR.

Drym.—8ince numerator is dividend and denominator divisor, and the valune of
the fraction is the quotient, this rule is a direct consequence of (92, 93).

161. Prob. 2.—To multiply by a fraction.

RULE—MULTIPLY BY THE NUMERATOR AND DIVIDE BY THE
DENOMINATOR.*

* It {s aseumed that the pupil knows how to divide a fraction by an integer, from his study
of arithmetic. Neverthelens the problem will be introduced hereafter for the parpose of famil-
nrizing the pupll with the Uteral operatious,
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Dem.—Let it be required to multiply m, which is either an integer or a frac-
tion, by g.

1st. Suppose 4 and b are both integers. Multiplying m by a gives a product
-b times too large, since we were to multiply by only a sth part of a; hence we

divide the product, am, by b, and have .
2d. When either a or b, or both are frections. Let ¢ be the twctor by which
numerator and denominator of b must be multiplied to make »o mmple frac-

tion (185). Then will g be a simple fraction, 1. e., ac and be are each integral ;
and the multiplication is effected as in Case 1st, giving . This reduced by

dividing both terms by ¢ gives Qb'__”. Hence we see that in any case, to multiply

by a fraction, we have only to multiply the multiplicand by the numerator of
the multiplier, and divide this product by the denominator. It is also to be ob-
served that this reasoning applies equally well whether the multiplicand is inte-
gral or fractional.

162. Cor.—To multiply mixed numberc, JSirst reduce them to im-
proper fractions.

Drvisiox. .
163. Prob. 1.—To divide a fraction by an integer.

RULE.~—DiIVIDE THE NUMERATOR OR MULTIPLY THE DENOMI-
NATOR.

DEM.—Since numerator is dividend, and denominator divisor, and the value
of the fraction the quotient, this rule is a direct consequence of (92, 93).

164. Prob, 2.—To divide by a fraction.

RULE~—Di1vIDE BY THE NUMERATOR AND MULTIPLY THE QUO-
TIENT BY THE DENOMINATOR. OR, WHAT IS THE SAME THING,
INVERT THE TERMS OF THE DIVISOR AND PROCEED A8 IN MULTIPLI-
CATION.

DEM.—The correctness of the first process appears from the fact that division
is the reverse of multiplication, and, hence, as we multiply by the numerator
and divide by the denominator in order to multiply by a fraction, to divide by
one we must divide by the numerator and multiply by the denominator.

The process of inverting the divisor and then multiplying by it is seen to be
the same as the other, since this multiplies the dividend by the denominator of
the divisor and divides by the numerator.

Again, this process may. be demonstrated thus: Inverting the divisor shows
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how many times it is contained in 1. Then if the given divisor is contained so
many times in 1,1t will be contained in 5, 5 times as many times ; in }, $ as many
times; in az®, az® times as many times; or in any dividend as many times the
number of times it is contained in 1, 88 is expressed by that dividend, whether
it be integral, fractional, or mixed. (The suthor prefers this demonstration.)

ScH. 1.—8ince to multiply one fraction by another we may multiply the
numerators together for the numerator and the decnominators for the denomi-
natgr, and since division is the reverse, we may perform division by dividing
the numerator of the dividend by the numerator of the divisor, and the de-
nominator of the dividend by the denominator of the divisor.

This method will coincide with the others when they are worked by per-
forming the operations by division as far as practicable, and this is worked
by performing the multiplications equivalent to the divisions when the latter
are not practicable.

~ 165. Con.—The reciprocal of a quantity being 1 divided by that
quantity, the reciprocal of a fraction is the fraction inverted.

GENERAL ScHOLIUM.—In both multiplication and division of fractions, or by
fractions, all operations which' can be performed by dividing should be so per-
formed, in order that the result may be in its lowest terms. :

S1aN8 OF A FRACTION.

166. In considering the signs of a fraction, we have to notice
three things, viz.: the sign of the numerator, the sign of the denomi-
nator, and the sign before the fraction as a whole. This latter sign
does not belong to either the numerator or denominator separately,
but to the whole expression.

da — Bed
Om 1 AmE’
and of 5ed is —. In the denominator, the sign of 2zis +,and of 4y* + also.
The sign of the fraction is —. These are the signs of operation

Thus, in the expression — in the numerator the sign of 44 is +,

The essential character of a fraction, as positive or
negative, can only be determined when the essential character of all
the numbers entering into it is known. It may then be determined
by principles already given
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ExXAMPLES.
1. Reduce the following fractions to their lowest terms :
770a’by'-' 2Wazt 2astter +1 3m*n — 3ns
1210a30%y%" 55037 "o 2.’ 1 — 2% 12mPa¥ + Rmnd + 1204
gh—yt a*h—1 a*—B8zx—4 30+ 3ag 3Bxt + Ra+9
gl —yt 1+ayh 29—4z—b 41,*3_41,’?_,]:’ x5 + bzd 4 6’

620 —32—45 (1+2)' a-oPp-rcd 23312 303420 —8s
628 +1924+10" (1—2")” a,,_,,r,bmcg’ Z28y%—1" 928 — 1% — 36z + 48’

224 — 23— 922 + 132—5 20b3+ ab® — 8ab+5a 28— 82% +21z—18
1w — 1922 4+ 172—>5 ° V08— 1202456 ° 3z3—162%+21zx ’

16x4 — 5322 + 45z + 6

8z4¢ — 3023 + 3lz% — 12

ad— ah —ab®+ 3% (a®— }2)®
a—0b to a® —- ps d
at + adx+ a®2® + axd 4+ xt ab — at 8 + §2® + Jr + 1
to ?
a+2x a® — a® ot — %
42t —z + 4 bpt — 12p¢® — Gpdq + 12¢* 6[p® — 2¢°]

=1 ' Vil »+q

2. What factor will change

to

?

1 24 + 1428 + 27 mP +a® 4 2mn —x—y
3. Reduce = P y P s
1— a0 2 at + 4adx + 6a®2® + 4axd + a4 z
a+1’ 2—2° a3 + 3a%z + 3ax? + a3 >’ 1z
ah-“ .

a™ 4+ na

, and

to integral or mixed forms.

3a%y® (m+m)* o  zlat 9
4. Express 7(1’53/" "+ m)-.: o= e and 2 ™a — b)*
in the integral form.

5. Reduce the following mixed to fractional forms:. 1 +

2 : L t—
1+ o+ gap — Malh 1 a0t = 2

3ath + 2abs — b3 o8 LR " -
ath 4 2a ‘ +c a,.%l:.fx_l F.7

1+

bt — LT
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- 3. 42 ay 7
6. Reduce g7, 75 =4 aZ’ nd " to forms having a C. D,

at+z a—12

7. Reduce = a2 and Z a’ + to forms having a 0 D.
8 Reduce 27, w(:' 4;9;'), Z:; and ~ _1_ ~ to equivalent

fractions having the L. C. D.

1 z x® .
9. Reduce 5—;—;/, @—7_7)—,-, and G’—:W to eqnxvglent frac-

tions having the L. C. D.

1+2% and $=2 46 forms having the L. C. D.

10, Redllce(1+ zys 804 Sy—0s
m® n® m® —nt m'+u
11. Reduce Pl e by to forms having the
L.C.D.
3z 2+3x
12. Reduce , 3 x’ e and G2t = to forms having the L. C. D.
13. Reduce the following complex fractions to simple ones:
b x a ¢ me + n?
1+Z, §a® — jat 3 . IT—?i_ n___
’ T8 18 %) ’ ’ —1 -1 '
be §0%y® + Jcta §+y’ e 9 % m
z f k
@
c
b+ )
d+ =
s
e aa z—" Tz, 1 1
14 Add 3, 5 pond s S end s oo end g
e+ a—b—2c, 2 3 .
5~ and 2 7 :1:‘+a7:’+9:+1‘nd -t +r—1’
a=b c~a db-—c. 1 z+1 d‘:0>’+:¢=+1 1
b aw M T Tz ¥ —8z+ 9 R

1 2a
Pl ey 4
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z a® 1
15.Add aw+x:’a+z’unda3+x"a-(——+4a )'
andb+ +4=a,§i"
3 a+1 ea—1 1+z 1—2z
lG.AddEy—b_lyand b+1 1+z+ziandl—w+$”
z+3 z—4 nda'+5 ¢
gy ey e
1 1 . 2
17. Add EDICET)) and (@+c)(a+e)’ 3Bmy:—=z and

y — 6mpy® 2‘_ Y x?
(3my’-—x)” Yy z+J z® + a2y
2 2 2 (@a—8)2+ (b—c) + (¢ — a)®
18. Adda—b’b—c’c—a’md (@a—0)(6—¢)(c—a)
(a + b)® (e —=0)®
19. From pr— take + 35 from B take )
1
fromx_,zta.ke m.
3e — 2 _4a—10, (a® + %)
20. From 7:«:———-—3~— take x 5 from @@ =) take
a b
5+t—l + 2.
b 24
2. From 5Ty~ o =1) ™ 57% 7 3)

. .o dr + 12 l4a 2 — bt 22+ 0 a—10
22. Multiply 7 by z+9° az+ab z—b "' a+b
a+b a—z . a+y b a 1 28 +2w—3
bya-—b’ b+y byb-—- a+bbyb+b’ 2t + 6z + 6 by

4z* — 122 — 40 '

32% — 18z + 15
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b Ra-?

o Y 405 —jomt by jos — o by
_ 1057 1+2 o} o gt tn
— g T—% by 1—2z+m', 5 by —a%; y"" Y'Z-w

23. Multiply

i’ 2% '} ™ .
23 — 228 4= 1 ¥ —1 a4 ¥ -2
24. Multiply {_ o I } g

N +yF+yt+1 oyt -1

" —3b, 1 1 1
reciprocal of ""b"" (l + Z)(l + l’) by (l- l) At S s
1. 1 2 Y2
bY ot 1Hir et by l—jo+ja® —Jpa; [F_fﬁ—m]
(r2 — y2)2 ,a®—1 a® —1
W@y r@ e @ Y @ o

by the

. 1—22 1-— y
25. Multiply together T¥y 752 and 1 + ———5:
26, Multiply «* —z+1 by 22 +z"! +1; 1_3:_9 by

2b
2+——b‘

. 308 1 1 R my"

21, Dmde by 135 mond ———bymsns ; oo oy 3 by m=3n-%; Taz
m
by -

nasptad

by 11m3n -4 * '},
llmniy

28. Divide

1— 9a° by 1 +9at;
= by 2"
x"

. 1—at ad— b2 a—1b x a
29. Divide iTra by 1~a; a+2bby3a+6b; (&—5) by

(a,+x)'.( z l—z) ( z _1—x). c—b ¢3-p?
ax 1+a:+ x by 1+z z ’(c+b c’+b‘)

by (c+b c'+b’)

't
80. Divide mt—n-¢ by m+lz 4;2; _: :)bg) 6abb,; a% =9
s — a+b+c, (x4 T+% x

ot —Reby g (z+y + ) ( w+«y)'



. 1-%\*
31. Divide ‘”’;;yy Loy | 2
a—pr \1ta/
eq)d 4 1
32. Divide 2+ ;‘)H (@)% py "
as+d
. 1 .1 1 e pol 11
33. Divide &_5+l75+?3_—3a b'c bya+5+5'

at 450 a7y gk g @ - g
8—4_ d—'l’ a_i_b_"’ a'ib—l! ? -4 + y_a’
+ b~%a of negative exponents.

and a-*b

34. Free

c+d - (523)} m+n and

35. What is the reciprocal of —— s s

cd—1 \27 m—n
(m +n)~
(m —n)~
36. Is the fraction — 4a? — 3ma esgentially positive, or negative
228 + 4y* ’ ’

when a, m, 2, and y are each negative ?

SorLuTrioN.—Since (— a)® = a?, 4a* is essentially positive. Since (— m)(— 2)
= mz, the term 8mx, tn ilself, 48 positive, and the numerator becomes 4at
— (+ 8ma), or 4a* — 8mz (72). Now, whether 4a* — 8mz gives & + or a -
result, depends upon the numerical values of a,m, and 2. If 4a* > 8mz, 4a*
—3mz is + ; but, if 4a® < 3ma, 4a* — 83mz is —, Again, since (—2)? = —2?,
the first term of the denominator, 2z®, is essentially negative. And since
(—9)* = g, the term 4y* is essentially positive and the denominator becomes
— 2¢? 4+ (+4y?), or — 22° 4+ 4y*. Whether this is + or —, depends upon the
relative values of z and y. If we suppose 4¢® > 3mz the numerator becomes +,

and if 2z° be greater than 4y* the denominator becomes —, and we have — -},
which gives a positive result.

. — 3asxy—"Ths 1 e
37. What is the essential sign of — W_—;—, when a=—1,5=2,

= —3,and y= — 4?

— ¥ ‘
88. What is the essential sign of @Ln:_'_i%’_z, when g = — 3§,

b=—8 m=—1,andy=1°?
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— 2atar — 34k,
89. What is the essential gign of — M, when g=-32,
’ — am¥ — 5prm?

b=—2, m=—8and2z=—2?

11 1

’ 1 y@yz+z + 2)
¢+—'—'1 $+y

40. Simplify

o :‘/+2
i _ 1 x
a—a _a—y (e—2)° " (a—y)*
1 _ 1 ’
(a—y)(a—2)* (e—y)*(a—2)
. 3
abe 3—a—b+e
To1_1 “a+r-c 0 ™
bc " ca ab
a+ ba
1+b
7 (a‘—b.)o
a- a
1-2

b



OHAPTER IV.
POWERS AND ROOTS. .

SECTION I
INVOLUTION.

DEFINITIONS.

168. A Power is a product arising from multiplying a number
by itself. The Degree of the power is indicated by the number
of factors taken.

Sca.—It will be seen that a power is a species of composite number in
which the component factors are equal.

169. A Root is one of the equal factors into which a number is
conceived to be resolved. The Degree of the root is indicated
by the number of required factors.

170. An Exponent or Index is a number written a little
o the right and above another number, and

1st. If a Positive Integer, it indicates a Power of the number;

2d. If a Positive Fraction, the numerator indicates a Powsr, and
the denominator & Roof of the number;

3d. If @ Negative Integer or Fraction, it indicates the Reciprocal
of what it would signify if positive.

Scu.—Tt is obviously incorrect to read 4*, ‘‘the § power of 4.” There is
no such thing as a 2-fifths power, as will be seen by considering the defini-

tion of & power. Read 4%, ‘4 exponent ¥;” also a*, “‘a nent 53" @ *

XpO! ’ expo H ’
‘g exponent — .” These are abbreviated forms for, *‘a with an exponent
— %, "etc. In this way any exponent, however complicated, is read without
difficu,ty.
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- 171. A Radical Number is an indicated root of a number.
If the root can be extracted exactly, the quantity is:called Rational ;
if the root cannot be extracted exactly, the expression is called Jrra-
tional, or Surd.

172. A Root is indicated either by the denominator of a frac-
tional exponent, or by the Radical Sign, v. This sign used
alone slgmﬁes square root. Any other root is indicated by wmtmg
ite'index in the opening of the v part of the sign.

173. An Imaginary Quantity is an indicated even root
of a negative quantity, and is so called because no number, in the
ordinary sense, can be found, which, taken an even number of times
a8 a fuctor, produces a negative quantity.

Thus ¥ — 4 is imaginary, because we cannot find any factor, in the ordinary
sense, which multiplied by itself once produces —4. Neither + 2 nor — 2 pro-
duces — 4 when squared. For a like reason ¥ — 3a¥, ¥ — bz, or ,{/— 140ay*
are imaginaries.

174. All quantities not imaginary are called Real
175. Stmilar Radicals are like roots of like quantities.
Thus 4V5e, 82v/5a, and (a® — 2*)VBa are similar radicals.

176. To Rattonalize an expression is to free it from radicals.

177. To affect a number with an Exponent is to per-
form upon it the operations indicated by that exponent.

178. Involution is the process of raising numbers to required
powers.

179. Evolution is the process of extracting roots of numbers.

180. Calculus of Radicals treats of the processes of re-
ducing, adding, subtracting, or performing any of the common
arithmetical operations upon radical quantities.

- INVOLUTION.
181. Prob. 1.—To raise a number to any required power.,

RULE.~MULTIPLY THE NUMBER BY ITSELF AS MANY TIMES, LESS
ONE, AS THERE ARE UNITS IN THE DEGREE OF THE POWER,

.. 182, Con—Since any number of positive factors gives & youﬁvo
product, all powers of positive monomials are positive, » Again,



since an EVEN number of negatwe Jactors gives a POSITIVE product,
and an oDD number gives a NEGATIVE product, it follows that even
powers of negative numbers are positive, and odd powers negative.

183. Prob. 2.~ 7o affect a monomial with any exponent,

RULE~PERFORM UPON THE COEFFICIENT THE OPERATIONS
INDICATED BY THE EXPONENT, AND MULTIPLY THE EXPONENTS' OF
THE LETTERS BY THE GIVEN EXPONENT.

DeM.—1st. When the exponent by which the monomial is to be affected is a positive

"
snteger. Let it be required to affect 42" 2— * with the exponent p; or in other
words raise it to the pth power, p being a pomtive integer. The pth power of

M‘b z—is 4a"b z—* x 4a"'b' - x 4a"‘b T to p factors. But as
the order of the arrangement of the factors docs not affect the product (77),
this product may be considered as, p factors each 4, into p factors each a®, into p

L
factors each ", into p factors each z—~. Now p factors each 4 give 4¢ by definition.
p factors each @™ are expressed a**, since a™ is m factors each a,and p factors con
tlinmg m factors each, mke in t.he whole pm mcum, or aP™, Again, p factors

each b' are expressed b' since b' ia n fwtors each b' and p factors, containing n
Sactors each, are pn factors each b',or b' . And since a!":-:—.,p factors, or %x%
x ;—' - - - to p factors make %. as fractions are multiplied by multiplying

numerators together for a new numerator and denominators for a new denomi-

nator, and 2* x 2* x 27- - - to p factors are z». But % = 22—, Hence collect-
’ [ f iad
ing the factors we find that (4a=b"z—*)? = draswb™ z~». q. B. D,

Bd When the exponent is a positive fraction. Letitberequiredtol.ﬁect

4a"b z—*, with the exponent - 2 L This means that 4a*b" z—* 1s to be resolved
into ¢ equal factors and p of them taken. Now, if we separate each of the fac-
Ly

tors of 44"’ z—¢ into g equal fadtors, and then take p of each of these, we shall
have done what ia signified by the exponent %
S
By definition, 4% represents one of the g equal factors of 4.
P obtain one of the ¢ equal factors of a», we take one of the ¢ equal factors



of & trom each of the m factors represented. But ore of the ¢ equal Zactors of
1 = . )
a 18 represented by ¢ °, and m of these is a° by definition.

‘O
To separate ¥ into ¢ equal factors, we notice that b is n of the 7 equal fac.
tors of b. Now, if we resolve each of these r factors into g equal factors, b is
resolved into 7¢ equal factors; doing the same with each of the n factors repre-
mted and taking one from each set, we have b resolved into rq equal factors

nnd n of them taken ; that is b"' is one of the ¢ equal factors of b

1
To resolve z-4= > into ¢ equal factors, we oconsider that a fraction is
resolved by resolving its numerator and denominator separately. Baut one of the
4

gequal factors of 1 is 1; und oneof the g equal factors of 2*is 22 as seen in the re-

1 —2
solution of a=. Hence ¢ns of the ¢ equal factors of z-+ or 1y =g 9,
29

L]
Collecting these factors we find that one of the g equal factors of dambrz~* is
1 m s _
4%q7bep 9, And finally p of these being obtained according to Case 1st, gives
»y s m
49@" b7z ¢, a8 the expression for Wb' z-* affected with the exponent ;’ which

result agrees with the enunciation of the rule.

8d. When the exponent is negative and either integral or fractional. Let
it be required to affect M*lf'lz-‘ with the exponent —¢. This by the definition
of negative exponents, signifies that we are to take the reciprocal of what the
expression would be if ¢ were positive. But 4a'b-':z-‘ affected with the exponent .
t (positive) is 4'a'~b:—'z-" by the preceding cases, whether ¢ is integral or frac-

tional. The reciprocal of thisis ————. But since these factors can be
Lambra-t
transferred to the numerator by changing the slgns of their exponents, we have

4-tq-mp u:h 28 the result of affecting 4a"'b'z-' with the exponent —¢, which
result agrees with the enunciation of the rule,

184, Prob. 3.—7To expand a binomial afectedw#h any expo-
nent.

" RULE.—THIS RULE IS BEST STATED IN A FORMULA. THUS,
LET @, b, AND m BE ANY XUMBERS WHATEVER, POSITIVE OR
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NEGATIVE, INTEGRAL OR FRACTIONAL, THEN WILL (#+J)™ REPRE-
SENT ANY BINOMIAL, AFFECTED WITH ANY EXPONENT, AND

(a + d)"=a" + ma~~1b + "i%@-——f—;-lz

m(m —1) (m -—3— ?) U

TTT 2
m(m—1)(m —2)(m—3)

4

tTYy a3 g ¢

m(m—1)(m —2) (m — 3) (m — 4)

1 -2 -3 -4 35
This is the celebrated BINOMIAL FORMULA, or THEOREM, Its demonstra-
tion will be found in the subsequent part of the work. At this stage of his
progress the student should learn the formula and become expert in applying it.

a~s

+

a~%%, + cte.

188, CoR. 1.—The expansion of a binomiul terminates only when
the exponent i3 a positive integer, since only when m is a positive
tnteger will a fuctor of the form m(m — 1) (m — 2) (m — 3), etc.,
become 0, as is evident by inspection.

186, CoR. 2.— When m is a positive integer, that is when a bino-
mial is raised to any power, there is one more terne in the devclop-
ment than units in the exponent.

Since the first coefficient is 1; the 2d, m; the 84, :r_n(_m_s:-_l), the 4th,
mim —1)(m —2) m(m — 1) (m — 2) (m — 3)

g g+ the Bth, =mh—my =Ty
last factor ig m — (the number of the term — 2); and the number of the term,

therefore, which has m — m as a factor is the (m + 2)th term. But this is 0.
Hence the (m + 1)th term is the last.

; etc,we notice that the

187%. Cor. 3.— When m is a positive integer, the coefficients equally
distunt from the extremes are equal.

Thus (a@ + b = (b + a)*; the former of which gives a» + ma™-'b +

7 — Dgmens +, ete., and the Inter bm + mon=ta + 0 Dpmotas 4, ete.

Whence it appears that the first half of the terms and the last half aro exactly
symmetrical,

188. Cor. 4.— The sum of the exponents in each term is the same
as the exponent of the power.

8cH.—The last two corollaries apply to the form (z + ¢)™, and not to such
forms as (244 — 3b*)™, after the latter is fully cxpanded.
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189. Oor. 5—A convenient ride for writing out the powers of
binomials may be thus stated :

18t. There is one more term tn the development than there are
units in the exponent of the power. .

2d. The FIRST contains only the first letter of the bmomml, and the
last term only the second, while all the other terms contain both the

letigrs.

3d. The exponent of the first letter of the binomial in the first term
of the development is the same as the exponent of the required power
and DIMINISHES by unity to the right, while the exponent of the
second letter begins at unity in the second term of the expansion and
INCREASES by wunity to the right, becoming, in the last term, the same
as the exponent of the power.

4th. The coefficient of the first term of the expansion is unity.; of
the second, the exponent of the required power ; and that of any other
term may be found by multiplying the coefficient of the preceding
term by the exponent of the first letter in that term, and dividing the
product by the exponent of the second letter + 1.

190. Cor. 6.—1If the sign between the terms of the binomial is
minus, as (a — b)=, the odd terms of' the expansion are + and the
even ones —, This arises from the fact that the odd terms involve
even powers of the second or negative term of the binomial, and the
even terms involve the odd powers of the same.

Examprzs.
1. What is the square of 3a3? Of —2ab2? Of a}z_*? of ——i}a‘}x?

Of 23vx? Of §V2? Of——ﬂ;
z

2. What is the square of 1 — z + % ? Of 2 — 323 ?
8. Expand the following: (3 2x-x') , (ax’— 1) (:c-—y+z) ’
(1 —ah)’, @by

4, Affect 3a¥2% with the exponent 4 ; 4atz® with the expdnent 2

a*z with the exponent — m, with the exponent §, §; 59;}31 with the
exponent §, =, — 3.
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.B. Perform the following operations and explain each as a process
of factoring, sccording to (DEx.183): (125a¥z%)}, (6dasc)f,
(IOa_}y)%, (41m— y')'i, (a*x*y'*)’*, (a'bgc's)"!.

6. Expand the following by the Binomisl Formula: (z + )%,
(€= 9% (0 =% (4 9)" (=9 6+ ), @-an},
(1 — %), Va*—a%et, (m — : ===, (a*+ bf';’)ir .

z)¥ V4
Three results.
1 1-3
3 — %g— gt — —3e% — ¢
Vo3 —aded=av1 — ¢ = a(l — }¢ g% T

= —= (1 —-z')-i=1 + §at +Jat 4+ Fpat + et +,ete.

V12t
PRI LS SRS ol ol dead
(@* +82%)" =a + % 8ad T i6at

7. Write ont by Cowr’s. 5 and 6, the expansions of the follow-
ing: (a+2)%, (a—b)", (@r—2), (F—yh)s, (@ +91)s, @ F—ym)e.

——_e$ —etc.)

—, ete,

SECTION 1I.
EVOLUTION.

191. Prob. 1.-—To extract any root of @ perfect power of that
degree.

RULE~—RESOLVE THE NUMBER INTO ITS PRIME mcrons, AND
SEPARATE THESE INTO A8 MANY EQUAL GROUPS A8 THERE ARE
UNITS IN THE DEGREE OF THE ROOT REQUIRED; THE PRODUCT OF
ONE OF THESE GROUPS IS THE ROOT SOUGHT.

192, Scu.—The sign of an even root of a positive number is ambiguous
(that is + or —), since an even number of factors gives the same product
whether they are positive or negative (79, 80). The sign of an odd root is
the same as that of the number itself, since an odd number of positive factors
gives a positive product and an odd number of negative factors gives a
negative product (80, 81).

193. Con. 1.—The roots of monomials can be extracted by
extracting the reguired root of the coefficient and dividing the expo- -
nent of each letter by the index of the root, since to extract the sguar:
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100t i8 do qffect a number with the exponent §, thaoubarou‘},thcnth
root 1, etc. (183). ‘

194. CoR. 2.—The root of the product of several numbera s the
same as the product of the roots.

Thus, Vabezs ="V . V5. Ve V7, since to extract the mth root of adez
we have but to divide the exponent of each letter by m, which gives,

1111 g
amtmgnz, or Va -V Ve Ve
195. Cor. 3.—The root of the quotient of two numbers is the same
as the quotient of the roots.

T /m . Ym . m
Thus, ‘/ — is the same a8 ‘7: , since 10 extract the »th root of o we have
n

n
but to extract the 7th root of numerator and denominator, which operation
1
is performed by dividing their exponents by . Hence VA ™ ﬂ; = YL—'-"-
‘ n . Va
p—
ExAMPLES.

1. Extract the square root of each of the following numbers by
resolving them into their factors, 7. e. by (291): 222784 ; 21316 ;
and 5499025.

2. Extract the square root of each of the following, as above:

81a‘x"y*z_*, atc® +2a8bc® +a®hcs, mé—2miz+miat.
3. Extract as above: 4/25a4b3, 64a"°zi, 49xy}, 144a¢ms,

1/ ?—“—‘—bf, 1‘/ 16n"y°, &/ 128m 213, 1’/ 1728x'y*, v/ =32aT0y-s,

6m3n

4. Solve exercises 2 and 3 also by (193).

5. Show as in (194) that 4/8 x 27 = 4/8x 4/27; also that
m = va™ xV ;-l-'

6. Is VaET = vay5? s 1/§ 1/\/‘:? Is Vab=+vavie

Why does the reasoning in the cases which are true not apply to the
others? State the true propositions; also the false assumption.

Som.—The extraction of reots by resolving numbers into their factors.
according to this rule, is limited in its application for several reasons. In
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the case of decimal numbers we can always find the prime factors by trial,
and hence if the number is an exact power, can get its root. But in case
the number is not an exact power of the degree required, we have no method
of approximating to its exact root by this rule, as we have by the common
method already learned in arithmetic. In case of literal numbers the diffi-
culty of detecting the polynomial factors of a polynomial is usually insuper-
able. Hence we seek general rules which will not be subject to these
objections.

196. Prob. 2.—7To extract roots whose indices are composed of
the factors 2 and 3.

SoLuTION.—To extract the 4th root, extract the square root of the square root.
Since the 4th root is one of the 4 equal factors into which a number is conceived
to be resolved, if we first resolve & number into 2 equal factors (that is, extract
the square root) anc then resolve one of these factors into 2 equal factors (that
is, extract its square root) one of the last factors is one of the 4 equal factors
which compose the original number, and hence the 4th root. In like manner
the 6th root is the cube root of the square root, etc.

197. Prob. 3.—To extract the mth (any) root of a number.

SoLUTION.—Instead of giving in detail the demonstrations of the processes for
the extraction of roots, we assume that the student is familiar with the subject
a8 presented in common arithmetic,* and propose here to show him how to see
a rule for the extraction of any root of a decimal number, and of a polynomial,
in the expansion of a binomial. Thus

.

For the
Square root  (a+b)*=a®+(2a +bP gives the rule;
Cube (a+b)?=a®+(3a* +8ad +b*) “ oonu
Fourth « (@+b)*=a* + (4a® + B6ath + 4ab? +b3)b “« o« o«
Fifth « (a+b)°=a’ +(5a* +10ab +10a2b® + Gab3 +b4)p « « «

etc., etc., ete.

In all cases @ represents the part of the root already found, and b the next
figure or term of the root; observing that in decimal numbers, a is tens with
reference to b.

The method of pointing off decimal numbers into periods, and the reason,
are shown for the square and cube root in common arithmetic; and the same
reasoning.extends to other roots.

A polynomial must be arranged as for division, since this is the form which
a power takes when the root is similarly arranged.

The solution of & few enmples will familiarize the student with this method

# The whole subject {s fully presented in the Courrurn S8om00L ALGEBRA,
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Ex.mrmé.
1. Extract the square root of 7284601.

SOLUTION,
The formula is (@ + b)) = a® + (2a + d)bd.

At fipst a® = the greatest square in 7. ..a=2. %284801/2699
4 .
2a = 2(20) = the T'rt@l Divisor............ . cessacrane 40| 828

*. 828 + 40 = 8 is the probable* second root ﬁgure
(2a + b) = 40 + 8 is the True Divisor if 8 is the second root
figure. But 48 x 8 = 884. .. 8 is too large. Wo will try

6 as the second root figare..........ccoivieiniiin, 6
Whence (22 + b) =the True Divisor..........coviunieainen 46 ’ 276
Now, 2a = 2 (200) = the Trial Divisor........... vveeieeseess 0205248
. 5248 + 520 = the probable next root ﬂgure Ceeeees ceeees 9
(2a + b) =520 + 9 =the True Divisor............cccvuvrnn. 529 | 4761
Again, 20 = 2 (2080) = the T'rial Divisor...........ccooveenn. 5380 l 48501
.. 48501 + 5380 = the probable next root figure............
(2@ + b) = 5380 + 9 = the True Divisor............ccvuvnnens 5889 | 48501
2. Extract the cube root of 99252847,
BOLUTION.
The formula is (& + b)® = a® + (3a® + Bab + b*)b,
At first ¢® = the gre#teut cube in99. .a=4. 9(‘2553847]_413
64
8a® = 8 (40) = the 771l DIVIBOT.. .o vnveorooenononeeonnns 4500 | 35263
.. 85252 + 4800 = 7, the probable next root figure.
(8a® + 8ab + b®) = 4800 + 840 + 49 = 5689, the Zru¢ Divisor
if 7 is tho next root figure. But, as this does not go 7
times in 85252, 7 is too large ; and we try 6.
Now, the corrections to be added to the trial divisor to make
the true divisor, are 8ab = 8(40)6= 720
and Wt =(6)* = 86
Hence the true divisoris.........oooivieiiiiiiiiiiane, 55506 | 33336
New T'rial Divisor,8a® = 8(460)* = ..........c.ecunt.... 634800 | 1916847
L {Bab=8(4680)8 = .......cuinieiiiiiennaa... 4140
Corrections: {7 S e 9
True Divisor............. e a e ae e e 638949 | 1916847

* The new root figure cannot be larger than this giiotiont. It 1s often not eo largs, and the
pmbtt_rmtyql its being conalderably iess incresses with the degree of the root we are extracting. .
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8. Extract the 5th root of 3693624272235%.

SOLUTION.

Formula: (@ +b)® = a® + 5a%b + 10a%* +100%5° + Bads + 8
=a® + [5at + 102% + 10a%0* + 5ab® + 56,

At first a® = the greatest 5th power in 3608. ..a=05. . 86938342*2285&]5_1’_1
8125
Trial Divisor: 564 = 5(B0)* = ...vveveeeness.. 81250000 5OSGREET o
1st. 100% = 10(50)* x 1 = ....... 1250000
.24 10atsr =100 x 1P = ... 25000
Corrections:§ gg £aps = 5(50) x 12 = .eervvures 260
F L oS 1
True DIVIBOT: ... veee i seiseuienaanns 30505051 | 82525251
Trial Divisor: 5a° = 5(310)° = .ovvvrvrsn. 336260050000 | 2433717622557
1st. 10a% = 10(510)? x T=... 9285570000
|20, 100%* =10(510)* x T*=. 127449000
Corrections:3 83 5ups — 5(510) x 72 = ... .. 874650
dth. ' =74 = .. . iiieine.ns 2401
Tr1e DIVISOT . e e eeeneaes 347673046051 |. 2433717622857

4. What is the 7th root of 1231171548132409344 ?

SOLUTION.

Formula: (a+b)"= a+7a% + 21a°b* + 85a40? + 854304 + 21ad° + Tab® 4 V'
= a7 & [7a8 191k 1 RRadh? 1 85030° + 21a®h + Tad® + bSTH,

1281171548152400844/384
2187
Trial Divisor: 7a% ="7(80)% =.......... 5108000000 101247154813
(18t. 21a% = 21(30)® x 8 =.......... 4082400000
2d. 85440 = 85(30) x 82 =........ 1814400000
8d. 850°0° = 85(30)° x 82 =......... 483840000
4th, 21a%b¢ =21(30)* x 84 =........ 77414400
Bth, 7ab®=7(30) x 85 =..... ...... 6881280
L6th, ¥ =85 =......c0vurennnn ciee 202144
- . 1568107824 | 92545582592
Trial Divisor: 7a® =7 (380)" =...21076554685000000 | 87015722212400844
(1st. 21a%b =21 (380)° x 4=... 665575411200000 ‘

Corrections:

2 | 2d. 85045 = 85(380)* x 4*=. 1167676160000 |
£ |54, 350%? = B5(880)* x 4* =. 122913280000
g 4th. 21a%ht = 21 (880)* x 4% =. 776204400
3 | 5th. 7ab® = 7(880) x 4° =.... 2728840

(Oth. b5 =48 =.,.,....eu....ns 4006 .
- ST755080558102696 | 87015728212400844
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5. Extract the square root of each of the following numbers: 7225,
9801, 553536, 5764801, 345642, 2, .5, 3, 50, 1.25, 1.6.

6. Extract the cube root of each of the following numbers: 74088,
122097755081, 2936.493568, 61234, 12.5, .64, .08, 2, 5.

7. Extract the 4th root of 52764813. (See 196.)

& Extract the 6th root of 2985984, (See 196.)

9. Extract the 8th root of 1679616. (See 196.)
10. Extract the 5th root of 5. 4/5 = 1.37974 —.
11. Extract the 7th root of 2. 4/2 = 1.104+.

12. Extract the square root of 49x%y® — 3023y + 16y¢— 24zy3
+ 2574,

SOLUTION.
Formula : (a+b)=a®+ (2a+d).

a®=25x* l 2z — 802y + 492ty * —24xy® + 16y | 5o® — oy +4y*
.. a=Dx? bzt
2a="Trial Div. = 102® | —802%y + 402'y*
b=—30z%+10r? = —3ry
s True Div.=10z*—8ry | —802%y + 9z*y®
2u= Tricd Div.= 102F —6xy | 4007y —24ay® +16y*
oo =402y +102t = t
and True Div.=10z* —6zy +4y*

402%y® —24ay® +16y*

CONDENSED SOLUTION.
224 —802°y + 492yt —24ay?® + 10y* | 52* —Bay + 4y*
2/r+
102* — 32y | — B0y + W275*
~30z%y + Yty
102* —6ay +4y* | 4027y —24ay® + 16y*
40z*y* —24ay* + 16y

5
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15. Extraet the. cube root of each of the following: a® — 853

+ 12ab% — 6ah, 523 — 1 — 345 + x® — 3z, 6624 + 1 — 6323 — 9z

+ 82% — 3625 + 332%, 60c®zt + 48cz® — 27c® + 108c8z — 90ctz®

+ 82¢ — 80c323, 204c4z% — 144c®z + 828 — 36¢x® — 171c328 4 64¢0

C$1020%2%, 27z — 8a¥ — 36 + 36a¥ + 120 — 5aa? + 027Y 4 2vad
¥

+z*—6z ¥,

16. What is the 4th root of 16a¢ — 9643z + 216a%z% — 216az®
+ 81z¢?

17. What is the 6th root of 729 — 29162 + 4860z¢ — 4320z
+216028 — 576210 + 64x1%?

[NoTe.—Solve the 16th and 17th both by (297) and (196)].

18. Find the fifth root of 32z%— 80z¢ + 8023 — 40z% + 10z — 1;
also of =" 4152~ — 52~ + 902~* —602~"° 4- 2802~* — 270z ~* + 4952 ~*
— 55024 513 — 4652% + 27524 — 9028 + 1528 — 10,

19. Find the 6th root of a®— 6a®d + 15a45% — 204353 + 15a2b4
— 6ab® +5¢ by (196). '

SECTION [l

. CALCULUS OF RADICALS.

REDUCTION.
198. Prob. 1.—To simplify a radical by removing a factor.

RULE —RESOLVE THE NUMBER UNDER THE RADICAL SIGN INTO
TWO FACTORS, ONE OF WHICH SHALL BE A PERFECT POWER OF THE
DEGREE OF THE RADICAL. EXTRACT THE REQUIRED ROOT OF THIS
FACTOR AND PLACE IT BEFORE THE RADICAL SIGN AS A- COEFFICIENT
TO THE OTHER FACTOR UNDER THE SIGN,

DrM.—This process is simply an application of Cor., ArT. 194,

199, Oor.—The denominator of a surd fraction can always be
removed from under a radical sign by multiplying both terms of the
Jraction by some factor whick will make the denominator a perfect
power of the degree required,
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Sca.—A surd fraction is conceived to be in its simplest form when the
smallest possible whole number is left under the radical sign,

200. Prob. 2.—To simplify a radical, or reduce it to its lowest
terins, when the index is a composite number, and the number under
the radical sign is a perfect power of the degree indicated by one of
the factors of the index.

RULE.—EXTRACT THAT ROOT OF THE NUMBER WHICH CORRE-
SPONDS TO ONE OF THE FACTORS OF THE INDEX, AND WRITE THIS
ROOT AS A SURD OF THE DEGREE OF THE OTHER FACTOR OF THE
GIVEN INDEX.

DEM.—The mnth root is one of the mn equal factors of & number. If, now,
the number is resolved first intom equal factors, and then one of these m factors
is again resolved into n other equal factors, one of the latter s the mnth root of
the number.

201. Prob. 3.—To reduce any number to the form of a radzcal
of a given degree.

RULFE~RAISE THE NUMBER TO A POWER OF THE SAME DEGREE
AS THE RADICAL, AND PLACE THIS POWER UNDER THE RADICAL SIGN
WITH THE REQUIRED INDEX, OR INDICATE THE SAME THING BY
FRACTIONAL EXPONENT,

DeM.—That this process does not change the value of the expression is evi.
dent, since the number is first involved to a given power, and then the corre.
sponding root of this power is indicated, the latter, or indicated operanon, being
just the reverse of the former.

202. Oor—70 introduce the coefficient of a radical under the
radical sign, it is necessary to raise it to a power of the same degree
as the radical ; for the coefficient being reduced to the same form as
the radical by the last rule, we have the product of two like roots,
which is equal to the root of the product.

203, Prob. 4.—To reduce radicals of different degreesto equiv-
alent ones having « common inde.

RULE~—EXPRESS THE NUMBERS BY MEANS OF FRACTIONAL IN-
DICES. REDUCE THE INDICES TO A COMMON DENOMINATOR. PER-
FORM UPON THE NUMBERS THE OPERATIONS REPRESENTED BY THE
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NUMERATORS, AND INDICATE THE OPERATION -SIGNIFIED BY THE
DENOMINATOR.

DrM.—The only point in this rule needing further demonstration is, that mul-
tiplying numerator and denominator of a fractional index by the same number

L] ma .
does not change the value of the expression, ¢. ¢., that 20 = g, Now, @ signi-
fies the product of a of the b equal factors into which 2 is conceived to be re-
solved. If we now resolve each of those b equal factors into m equal factors, @
of them will include ma of the mb equal factors into which @ is conceived to be
resolved. Hence ma of the mb equal factors of # equals a of the b equal factors.

[The student should notice the analogy between this explanation and that
usually given in Arithmetic for reducing fractions to equivalent ones having a
common denominator. It is not an identity.]

204. Prob. 5.—To reduce a fraction having a monomial radi-
cal denomvinator, or a monomial rudical factor in its denominator,
to a form having a rational denominator.

RULE.—MULTIPLY BOTH TERMS OF THE FRACTION BY THE RADI-
CAL IN THE DENOMINATOR WITH AN INDEX WHICH ADDED TO THE
GIVEN INDEX MAKES IT INTEGRAL.

205. Prob. 6.—To rationalize the denominator of a fraction
when it consists of a binomial, one or both of whose terms are radi-
cals of the second degree.

RULE~MULTIPLY BOTH TERMS OF THE FRACTION BY THE DE-
NOMINATOR WITH ONE OF ITS SIGNS CHANGED.

DeEM.—In the last two cases the student should be able to show, 1st. That
the operation does not change the value of the expression; and, 2d. That it
produces the required form. [This is the substance of all demonstrations in Re-
ductions.]

206. Prop. 1.~A factor may be found which will rationalize
any binomial radical.
DEM.—If the binomial radical is of the form ¥/(a + by*, or (@ + )", the fac-

toris (@ + b) * , according to (204).

L oL 1
If the binomial is of the form “Va' + Vb, or a™ + b Leta™ =2, and
1 L x
b*=y; whence a™ = 2* ,and % = y*. Also let p be the least common maultiple
ap

bl b4
of m and n, whencoe #'» and g are rational. But ¥ =™, and §® = b, If
now we can find a factor which will render * + g7, 2 % y, this will be a fac-
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2 L 2 »
tor which will render a™ + 3*, a™+ ™ which is rational. To find the factor
which multiplied by 2* + y" gives 2% + y'», we have only to divide the latter by

B YT  pr—1) — g P—9) gir g (50

z,+v._z'(' o= o 4 g% Y~ (» ¥+
--- & y»—"0 (4), the + sign of the last term to be taken when p is odd, and
the — sign when it is even (119). Therefore zX?—) — gXP—Nyr 4 gep—ytr—

oXP—=Yy 4 ... & y(»—D, iga factor which will render ¥a* + Vi rational,

the former. Now

L r .
@’ being understood to be @™, and y” = b*, and p the L. C. M. of m and n. '

If the binomial is ¥/a* — V¥ , the factor is found in a gimilar manner, and is
aXP—D 4 gHr—Nyr 4 gAp—Iptr 4 L. g(P=D,

207. Prop. 2.—A trinomial of the form /'a + /b + 4/ ¢
may be transformed tnto an expression with but one radical term by
multiplying it by itself with one of the signs changed, as v/ a + v/ b
— A/ The product thus arising may then be treated as a binomial

radical by considering the sum of the rational terms as one term,
and the radical term as the other.

Thus, (V& +Vb *Ve)(Va +Vb~Ve)=a+b—c + 2Vab. Again,
[@+b—c)+2Vab] x [(@ +b—¢c) ~2Vab] = a® + B + ¢ — 2ab — 2b¢
~ 2ac, a rational result.

ExAMPLES.

1. Reduce the following to their simplest forms: 4/108a%2%,
4/3%0a%2%y3, 4/56z%y, 4/931Tmexz, +/2873a%5, V1129996 7,
¥/ 26464825, (r04121093)Y, V2T ¥ a8, V(@ < y%) (2—9),

1 — ——
(@-"y")*, 1v/363z55, (@ — b) [(a® —B?) (a — B)]3, 53/704atys,
ab/63a="z%—". L

2. Reduce the following to their simplest forms (see Scu. 199):

YA I T /2 ., /1 [g_ﬂ ¥
G A M 7 M AN 7 M AR AR e B
a1 3./4 VAN /2, /L and
8 5 11y 13 b 3 2
z8 — y3 32% + 6zy + 3y3
z+y 5(z* —y*)
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3. Reduce the following to their simplest forms (see 200):
VI2Ba%z3, V363a%a8, V1T2at?y?, ¥/ — 1020277,
* Y1350z — 40527 + 805a%z® — 135az¢.

‘4. Reduce 5az® to the form of the square root; also 7Yzy; also };

algo 3¢ — 2. Reduce 21:3;1/' to the form of the 3d root,—to the form
of the 5th root. Reduce = 3 to the form of the 4th root,—to the
form of the cube root. Reduce 4/} to the form of the cube root,—

to the form of the 4th root.

5. Introduce under the radical signs the coefficients in the follow-
ing expressions:

WE $V3, 373, VB, WV, (“’+i'/)‘\/x3—3z’y+3xy“—-y8
(z +y)Vz—¥, —'\/lzo.c, aa(l—--—))}

6. Reduce to equivalent forms having a common radical index,
+/2 and 4/3; also 4/3, 4/5; also 4/2z, //32%, 4/z, and +/2z* ; aleo
24/¢, 34/z, and V5 ; also 34/5az, 24/2zy, v/10z; also z — y and
(z + y)}. Explain each operation upon the principles of factoring
as in (203).

%. Prove upon the principles of factoring that's/2 = 4/8; also
that 4/5 = v/25 ; also that /3 = +/2%.

8. Reduce the following to equivalent forms having rational de-

. . 2a+/5z 5 Ve vz Nz 1 1
nominators : —-—-——-.\/3_5 ) 2—‘——‘\/5 N '\/—_b-’ —'{/; ’ {/"7 ’ '\/§ > '\'/§ ’
8 ¥3 Vi A |
'VB ’ Vﬁ b W! 15/-3-

9 Reduce the following to equivalent forms having rational de-

nominators: Yoo %Y+ 4 2z z vz — Ay
: _ % _,
Vx_y ’3'\‘/3““" $+1/_1/ ﬁ+@’
2 3 2 /- 34243

VE+ V2 VB+48 VE—vE AB+4B° VE-v3
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x Vadt +1—z Vw—1+1/a:+1
Vat ¥ ot —3 Vot ¥ 1+2 Ve=1l—4ac+1
Vet +z+ 1+ 428 21 8 2

Vi te+tl—vVa +z-1 V3+V3+1 RV Sy

10. What factor will rationalize 4/z — 4/y? What {/'"s_{/—ay
What 4/8 + /3 + v/5?

2
(1 + ‘Z,)*

11. By what must numerator and denominator of — be

multiplied to reduce it to the form of a simple fraction ? By what
4

(5!
AT A

z,
12. Introduce the coefficients of each of the following into the
parentheses: 8 (a® — x')*, as(a + a’z)*, and z%(1 -—'x’)*.

a+ bz —4at + 5% _ Na® + b2 —a

13. t| ——— = al
Show hata—bx+\/n9+b“z' . s also
that Vz— —1{ Vz—Va
Vz—a Vz++a
SECTION 1IV.

COMBINATIONS OF RADICALS,

ADDITION AND SUBTRACTION.

208. Prob. 1.—To add or subtract radicals.

RULE—IF THE RADICALS ARE SIMILAR, THE RULES ALREADY
GIVEN (66, 71) ARE SUFFICIENT. IF THEY ARE NOT SIMILAR, MAKE
THEM 80 BY (198, 203), AND COMBINE A8 BEFORE. IF THEY CAN-
NOT BE MADE SIMILAR, THE COMBINATIONS CAN ONLY BE INDICATED
BY CONNECTING THEM WITH THE PROPER SIGNS.

[NoTE.—The student is presumed to be able to give the demonstrations of

the problems and propositions in this section, as they are but a recapitulation of
what has preceded.]
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MULTIPLICATION.

209. Prop. 1.—The product of the same root of two or more
quantities, equals the like root of their product. (See 194.)

210. Prop. 2.—8imilar radicals are multiplied by multiplying
the quantities under the radical sign and writing the product under
the common sign ;

L

Or by indicating the root by fractional indices, and, for the pro-
duct, taking the common number with an index equal to the sum of
the indices of the factors. (See 82.)

211. Prob. 2.—To multiply radicals.

RULE.—Ir THE FACTORS HAVE NOT THE SAME INDEX, REDUCE
THEM TO A COMMON INDEX, AND THEN MULTIPLY THE NUMBERS
UNDER THE RADICAL SIGN, AND WRITE THE PRODUCT UNDER THE
COMMON BIGN.

DrvisionN.

212, Prop.—The quotient of the same root of two quantitics
equals the like root of their quotient. -

213. Prob. 3.—7To divide radicals.

RULFE.—IF THE RADICALS ARE OF THE SAME DEGREE, DIVIDE
THE NUMBER UNDER THE SIGN IN THE DIVIDEND BY THAT UNDER
THE SIGN IN THE DIVISOR, AND AFFECT THE QUOTIENT WITH THE
COMMON RADICAL SIGN.

IF THE RADICALS ARE OF DIFFERENT DEGREES, REDUCE THEM TO
THE SBAME DEGREE BEFORE DIVIDING.

INVOLUTION.
214. Prob, 4—To raise a radical to any power.
RULE.—INVOLVE THE COEFFICIENT TO THE REQUIRED POWER,

AND ALSO THE QUANTITY UNDER THE RADICAL BIGN, WRITING THE
LATTER UNDER THE GIVEN SIGN.

215. Cor.—7o raise a radical to a power whose index 18 the ins
dex of the root, is simply Yo drop the radical sign.
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. EvoLuTION. )

216. Prob, 8.—To extract any required root of a monomial
radical,

RULE.~—~EXTRACT THE REQUIRED ROOT OF THE COEFFICIENT.
AND OF THE QUANTITY UNDER THE RADICAL SIGN BEPARATELY,
AFFECTING THE LATTER WITH THE GIVEN RADICAL SIGN. REDUCE
THE RESULT TO ITS SIMPLEST FORM.

[NoTE.—This problem should not be taken till after Quadratic Equations.]

21%7. Prob. 6.—7To extract the square root of a binomial, one
or both of whose terms are radicals of the second degree.

SoLuTION.—Such binomials have either the form a + 2% or m¥a + n¥5,
Now observing that (z + )* = 2* + 22y + y?, we see that if we can separate
either term of any such binomial surd into two parts, the square root of the pro-
duct of which shall be § the other term, these two parts may be made the first
and third terms of a trinomial (corresponding to * + 2ry + y?*), and the middle
term being the second term of the given binomial, the square root will be the
sum or difference of the square roots of the parts into which the first term is
separated.

[NoTE.—This process requires the solution of a quadratic equation. Thus to
extract the square root of 12 — 4140, Letting z and y represent the terms of
the binomial root, we have 22 + y* = 12, and 22y = — #140. Whenco 2 = 5
or #7, and y = 47 or ¥5, and the root is 45 — ¥7. The sign between the terms
beoing determined by the sign of the surd in the given binomial. On this ac-
count this subject should be reserved until after the student has studied quad-
ratic equations, or the solution effected by inspection. Thus, in this example
V140 = 2435. Now 435 = #5 x #7, and since the sum of the squares of these

factors is 12, we have V12 — y140 = 45 — 7.

ExAMPLES.

1. Add 4/50 and 4/98. Add 4/112a0%z and 4/252zb%2 Add
4/1373a%z% and v/500a%z8. Add 4/®y® and 4/aty®. Add v/1183
and —4/1008. Add 54§ and 24/24. Add 4§ and }+240. Add
43, /3 and }4/3. Add 4/182%6%, 4/504%5* and 34/18a302%.

2. Show that z'% + (”_:)* + y/‘/ 1+ (;)*—_- (A +y1) gt +aht.

atx—2ax’ + 28 a*z4-2ax® 4 o8 (a’ + 2
Show that 1/ a® 42+ z* +"/ at —2ax+z* = a’-—x')v
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a a
———— and
a+vat =zt a—+vat —zt

Vatz—va—z
Vatz+va=z

3. From 3+/3 take 24/7;. From 4/192 take 4/24. From +/7%
take 4/}. From 34/¥ take —§4/3. From 4/a%4® take 4/2%y%. From
&/a"b take +/bz™.

4. Show that 1/ B ) S e

Add

2304~ Y L1875

a*+2ab® +6% | /aPb—Rab*+5° _ 4abv/b
5. Show that 1/ A —2ab+0° 1/(,2..,_2,,[,.{.(,3 = at—pe
6. Multiply 4/3 by 4/2* Multiply +/2 by /3. Multiply

VI by v§ 2z by vazt, 247y by 377y, VI+ ¢ by
VIF 7%, VEby vF 243 by 342, 24/25 by 3v/5, V24 by 64/3.

7. Maltiply 9 + 2410 by 9 — 210, /z* — vy + Vg by
Vz+ 4y, 37/5+2¢/6 —2 by 245 + 1846, /5 —24/6 by
34/4 — v/386.

8. Divide §4/5 by }4/2, 84/8 by 24/3, V/6by v/4, $4/5 by 31/10.

9. Divide 24/32 + 34/2 + 4 by 4v8, 4vZ by 23z

. 4
6 + 24/3 — /B by 46, Vab'z — bicz byva—oe, V%by ‘/Z;
(e +8)+at—1 by (@ —b) V(e + 1)2, a+b—c+2vab by

— 24Nzt —at  at—Azt—at b 23 —a?
— - y 4 -
Va+ -, {z,_ s A, /———x._a.} s rat

* It is of the ntmost importance that the pupil be able to give a complete analysis of such
examples. Thus,/ 3 = /B, since the former is oneof the two equal factors of ¢, and the
“latter 1s thres of the siz equal Mctdrs of 8. In like mannerV'8=%9. Consequentyy
V3 x V3=8x V8. Now slnce the product of the same root of two numbers is equal t
the like root of the product, W x Vo=V73.
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10. Raise 34/22% to the second power. Raise §4/2aa? to the 5th
power. Cube —§4/3. Square 4/3 ~4/2. Cube 34/a—z Cube
Va— VB

11. Extract the square root of 274/ 135z%y+4 ; the cube root of
284y ; the 4th root of 255¢4/y; the 5th root of 2244/3z¢; the

cube root of (1—z)4/T—z; the cube root of g Z; the sqyare
root of $4/%.

12. Extract the square root of 49+124/5; of 574+124/15; of
(a® +a)z—2azVa; 2—24/2=1; of /18—4; i_ of —%t-i-%x/t—ﬁ:-ﬁ.
(See 217.)

SECTION V.
IMAGINARY QUANTITIES,

218. An Imaginary Quantity is an indicated even root
of a negative quantity, or any expression, taken a8 a whole, which
contains such a form either as a factor or a term.

Thus ¥ =7, V=37, W —a%, 2+vV—4, V=6, 8—%Y =1, ete., are imaginary
quantities.

219. 8cn. 1.—Tt is a mistake to suppose that such expressions are in any
proper sense more unreal than other symbols. The term Impossible Quantities
should not be applied to them: it conveys a wrong impression. The ques-
tion is not whether the symbols are symbols of real or unreal (imaginary)
quantities or operations, but what interpretation to put upon them, and how
to operate with them when they occur.

220. 8cn. 2.—A curious property of these symbols, and one which for
some time puzzled mathematicians, appears when we attempt to multiply
V-z byv "z Now the square root of any quantity multiplicd by itself
should, by definition, be the quantity itself ; hence v —zx vV —z= —uz.
But if we apply the process of multiplying the quantities under the radicals,
we havevV—z s/ =7 =V2%= + » as well as —z. What then is the pro-.
duct of V—zxvV =zt Is it —z, or is it both +2 and —z? The true
product is —z ; and the explanation is, that Va* is, in general, +2 and —a.
But when we know what factors were multiplied together to produce 2%, and-
the nature of our disoussion limits us to these, the sign of Vz* is no longer
ambiguous : it is the same as was its root.
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221. Prop.—Lvery imaginary monomial can be reduced to the

n
Sorm m'y/ =1, in which m is real (not tmaginary). m may be
rational or surd.

DEM. 24 —~¥, p being an even number, is the general symbol for an imagin-
ary monomial. Now if p is & power of 2, we may write at once p == 2*, whence

e 2" Y — [y jy—
W —g=e ¥V g=a Vi) = ¥y ¥V=l=m¥=1i It p contains other
factors than 2, let » represent their product, and 2+ the product of all the factors
of 2 contained in p ; whence p = 72*, in which r is odd, since the product of any

number of odd factors is odd. We then have 2 41’/ —y = a'r:/:; =z "’/JT(:'T)

"o

— — 8/ S B,
=z4/y4/ 1=wn;/y -[/4’—1 = a:';/y 4/ =1, since any odd root of — 1
" [ JA—
is — 1. Putting z ¥y = m, this becomes m ¥ — 1.
222. Sca.—When n=1, 7. e., when there is but one factor of 2 in the

index of the root, the form becomes m ¥ =1. This form is called an imagin-

ary of the second degree ; m ¥=1 is of the fourth degree, ctc. In this dis-
cussion we shall confine our attention mainly to magmanel of the second

degree.

223, Prob,—To add and subtract imaginary monomials of the
second degree, or such as may be reduced to this degree.

RULE—REDUCE THEM TO THE FORM m4/— 1, AND THEN COM-
BINE THEM, CONSIDERING THE SYMBOL 4/— 1 AS A SYMBOL OF
CHARACTER.*

ExAMPLES.

1. Add /=% and v/ —0.
OPERATION. ¥ —4= ¥H{—1)=24—1,and ¥=90 =8¢—1.
=R Vo9 =241 + 8V 1 =541,
Scr.—The last operation should not be looked upon as taking the sum of
2 times a certain quantity (represented by 4/—1) and 8 times the same
quantity, but as 2 of @ certain character added to~3 of the same charaeter.

* See (48, 49, 50). Wo mean to say that, as a guantity (considercd numerically), m and
m 4/~ 1, are exactly the vamé, juet ae is tho case in the expressione + m and —m; but that the

eymbol V-1 glvep tome pecaliar or concrete significance to m, as does the sign +, ‘or —, or §
What this t is, we here say. It has its clearest interpretation in the
Co-ordinate, or General Geometry,
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Thus the operation of reducing 4/—4 and 4/—9 to the forms 24/—1 and
84/—1 is to be looked upon as rendering the expressions homogeneous. It

is, however, to be observed that the symbol 4/—1 is subject, also, to the
ordinary laws of number, and may be operated upon accordingly. Thus it
has a double significance.

2. Add 4v — 27 and 34 — 16; also 3av — 25 and 2av — 4;
aleo 54/ —16 and M/— 9. '/ =16 + cvV — 9 = (48" + 3c)4/+-1.

8. Add ¥/=T1024 and v/=729.

OPERATION. 1/—1 V1024 A/=1, and 4/=TT20 = 4/720 4/=1.

BA V—1024 = b4/ —1.

4. Show that in general ¥/ —z + ¥V —y = (Vz = ¥ y)v =1,
when # is odd.

5. From 4/ —9 take 4/ —4. From 44 — 27 take 34 — 16.
From 3a4/ — 25 take 24/ —4. Show that av/ — b — v/ —d
= (aVb — e/ d)v — L.

6. From 4/— 4096 take 4/ — 9. Rem. 14/ —1.
Scn.—It would scem improper to omit the 1 before the symbol 4/—1 in
such a case as the last, though it has been customary to do so. If we are to

consider 4/—1 as a sign of character (‘‘affection,” as some say), there is no
more reason for omitting the 1 in such a case, than there is in such as 4 —5

= —1. That is, if we write 44/ —1 — 84/—1 = 4/—1, we ought to write
4—5= —, or §5 — $4 = §, to be consistent.
7. Show that 4/ —8 + 4/ — 18 = 54/ — 2 = 54/24/ —1; also
that 44/ — 27 4+ 2/ —12 = 16434/ —1; also that v/ — 16
“1=14/—1; alsothat2v/ —a — v —a = +vaVv —

224. Prop.—Every polynomial containing some real, and
some imaginary terms of the second degree, or such as can be re-
duced to this degree, can be reduced to the form a£by —1, in
which a and b are real. a and b may be rational or surd.

DEM.—This is evident from the fact that all the real terms can be combined
into one (it may be a polynomial) and represented by a, and the imaginary terms
being reduced to the form m 4'— 1 can also be combined into one term repre.
gented by + b4 =1,
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225. 8cn.—The form o + b4/—1 is considered the general form of an
imaginary quantity of the second degree. When a = 0, it becomes the same
28 ma/—1. The two expressions a + by/—1and ¢ — b4/—1 are called Con-
jugate Imaginaries. Hence the sum of two conjugate imaginaries is real
(26). Also the product of two conjugate imaginaries is real [(a + d4/=1)

x (@ —ba/=1) = a* + b, ns will appear hereafter]. The square root of the
product of two conjugate imaginaries, taken with the + sign, is called the

Modulus of each. Thus + 4/@ + b is the modulus of both @ + b4/ —1 and
a—1by/ =1.

Exs.—Find the sum, and the difference of 2 +4/~1 and 3—4/ —64;
also of a+4/—band a+4+/—c. Last results, 2a+(vVbo++¢)v—1,
(Vb —+c)v/—= 1.

MULTIPLICATION AND INVOLUTION.

226. Prob.—To determine the character of the product of sev-
eral imaginary monomial factors of the second degree.

RULE~—DIVIDE THE NUMBER OF FACTORS BY 4, AND IF 0 OR 2
REMAINS, THE PRODUCT IS REAL, AND + IN THE FIRST CASE AND —
IN THE SECOND; IF 1 OR 3 REMAINS, THE PRODUCT I8 IMAGINARY,
+ IN THE FIRST CASE AND — IN THE SECOND.,

DEM. ¥ =1 x ¥ =1 or (¥=1)®= —1, since the symbol ezponent 2 de-
stroys the symbol ¢ (220).

Again, ¥=1 x ¥=1 x ¥=1 or (¥=1)* =(¥=1)* ¥=1. But (¥=1)*
= —1; hence, ¥—1 x =1 x ¥=lor (¥=1)'=—14/"1.

Again, VIx V=1 x Y=Ix ¥=1 or (V:i)‘=(1/'—_1)’ V:i)'
=(—-1)(-)=+ 1.

Again,
VZ1 x ¥=Ix ¥=SIx ¥=1 x ¥=Tor (V21)'=(¥=3)°(¥=10)"(¥=1)
=+14/-1.

Collecting these results, and extending them in a similar manner, we have,

(¥V=1)'=-1, (¥=1)* =+1,
(v=1)'=—1v=, (V=1)° =+14/=],
(v=1)'=+1, . (v=1)'"=—1,
(V) '=+1/9, _ (V=1)''=—1v],
(v=1)=-1, (v=1)"'=+1,

(V1) =—1/-, (V=1)"=+1/=1
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‘Whence we see that the four forms —1, —1 ¥ =1, +1,and +14—1 are all
the different forms which arise, and that these results correspond to the enun-
clation of the rule.

EXAMPLES.
1. Multiply 4/ — 38 by 2¢/— 2.
OPERATION. 4¥—8=4¥3¥—1, and 2¥—3 = 242 ¥=1.
AV B x 2V R =4V3 V=1 x2¥2 ¥Y=1=848 ¥(=1)* = —&46.

2. Show that v/ —a® x ¢/ —y*=—azy; also that 34/ — 5x44/— 3
= —124/15. What is the product of —24/— 2 by —3v/— 3¢
3. Show that ¥/—2 x ¥/ — 8 =24/—1; also that v/ — 256 x
“27=124/3 4/ —4/—1; also that V=2 x 4¢/—3=4 ¥/108 v_1.
Sues. V—3=42 V=1, and V=8=48 V=1 .~ V=3 x4—8
=V3 VI x VB ¥=i= ¥16 V(= 1y =2V V(= P=2¥-1.
VT8 x 4VTE = V3 V=1 x 4V VTI="V2 V(CTrxava V=D
=4V VT =4 Vi V VT = 4¥i6 /71
4. Show that (3—24/— 4) x (5+34/— 4)=389—24/— 1; also that
A+vV=1)x 1=V = D=2

5. Show that 2 is the modulus of /2 + 4/ — 2 and V2 — /= 2.
What is the modulus of 3+24/— 3 and 3—24/— 8?2 Of 5—34/—1

and 5 4 34/ —1°?
6. Show that (v/—7)" = — 7¥4/=T; slso that (\/_—-_é)"=8°.
7. What is the 5th power of 24/— 3?7 Of 34/— 27
8. What ia the product of 4/ —z%, v/ —y3%, 4/—2%, and V—uw?

DivisioN oF IMAGINARIES.
22%. Prob.—To divide one imaginary of the second degree by
another.
RULE.—REDUCE THE IMAGINARY TERM, OR TERMS, TO THE FORM

m4/ = 1. or m(4/—= 1)°, AND DIVIDE AS IN DIVISION OF RADICALS,
OBSERVING THE PRINCIPLES OF (226) TO DETERMINE TEE CHARAC-
TER OF THE QUOTIENT OF IMAGINARIES.
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ExAMPLES.
1. Divide vV — 16 by v/ — 4.

OPERATION, V— 10 =4¥"1, and ¥—4=24—1; .. ¥— 16+ V—14
=4V=1 + 2¢Y=1 =2(¥=1)°, But by (226) (¥=1)° = + 1; hence the

quotient is 2.

ScH.—A superficial view of the case might make the quotient + 2. Thus,
as the radicals are similar it might be inferred that ¥—1 + ¥—1= V Z_.ll.
=¥1= 11 (See 220.)

2. Show that 64/ — 3 + 24/ — 4 = #4/3; also that — 4/ — 1
+ —64" =3 = 154/3; aleo that 1 + 4/ — 1= — 4/ —1; also
that 6 +~ 24/ —1 = — 34/ — 1.

3. Divide 24/ —1 by 4/ =2; also 34/ — 16 by — 12; also 4/a
by v — L

Sve’s. 2V—1+ V3=V VIr+ Va3V =VsVv-l

4. Show that 84/ — 16 + 24/ — 4 = 44/ 24/ — L.

5. Show that (1 + ¥/ —1) + (1—4/ —1) = 4/ —1; also that
G+vV=2)+2—-v/=2 =1+ A/24/ =1 ; also that

— _ 3+ 2/3v =1 a—v -
1+6 ) 21 wRo e a+ vV -z
a —x + 2V —2z , a4+ =% a—+—b
= lso that +
@tz Sy SRy g 3
__ R(a® - B)
T et +b

(@+ 8 =1)°+ (a— v/ —1)°
(6 + 8V =1)" + (a— b/ — 1)"'

[Nore.—Here ends the subject of Literal Arithmetic. The student is now
prepared for the study of Algebra, properly so-called; 4. e., The Scsence of the
o .] N

]

6. Simplify



PART 1L

AN ELEMENTARY COURSE IN
ALGEBRA.

CHAPTER L
SIMPLE EQUATIONS.

———

SECTION I
EQUATIONS WITH ONE UNKNOWN QUANTITY.
DEYINITIONS.
1. An Equation is an cxpression in mathematical symbols, of
equality between two numbers or sets of numbers.

2. Algebra is that branch of Pure Mathematics which treats
of the nature and properties of the Equation and of its use as an
mstrument for conducting mathematical investigations.

3. The First Member of an equation is the part on the left
hand of the sign of equality. The Second Member is the part
on the right.

4. A Numerical Equation is one in which the known
quantities are represented by decimal numbers.

8. A Literal Equation is one in which some or all of the
known quantities are represented by letters.

6. The Degree of an Equation is determined by the highest
number of unknown factors ocourring in any term, the equation
heing freed of fractional or negative exponents, as affecting the un-
known quantity.

7. A Stmple Equatton is an equation of the first degree.

8. A Quadratic Equation is an equation of the second
degree.
9. A Cubic Eguatton is an equation of the third degree.
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10. Equations above the second degree are called Higher
Equations. Those of the fourth degree are sometimes called
Biquadratics.

TRANSFORMATION OF EQUATIONS.

11. To Transform an equation is to change its form without
destroying the equality of the members.

12. There are four principal transformations of simple cquations
containing one unknown quantity, viz: Clearing of Fractions, Trans-
position, Collecting Terms, and Dividing by the coefficient of the
unknown quantity.

13, These transformations are based upon the following

AXI0MS.

AxioM 1.—Any operation may be performed upon any term or
upon either member, which does not affect the value of that term or
member, without destroying the equation.

AxioM R—If both members of an equation are increased or di-
minished alike, the equality is not destroyed.

14. Prob.—To clear an equation of fractions.

RULE~—~MULTIPLY BOTH MEMBERS BY THE LEAST OR LOWEST
COMMON MULTIPLE OF ALL THE DENOMINATORS,

DEM.—This process clears the equation of fractions, since, in the process of
multiplying any particular fractional term, its denominator is one of the factors
of the L. C. M. by which we are multiplying; hence dropping the denominator
multiplies by this factor, and then this product (the numerator) is multiplied by
the other factor of the L. C. M.

* This process does not destroy the eguation, since both members are increased
or diminished alike.

IL1.—An equation is aptly compared to a pair of scales with equal arms, kept
in balance by weights in the two pans.

TRANSPOSITION.

© 15. Transposing s term is changing it from one member of
the equation to the other without destroying the equality of the
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16. Prob.—To transpose a term.

RULE—DROP IT FROM THE MEMBER IN WHICH IT STANDS AND
INSERT IT IN THE OTHER MEMBER WITH THE SIGNX CHANGED.

DEM.—If the term to be transposed is +, dropping it from one member
diminjshes that member by the amount of the term, and writing it with the —
sign in the other member, takes its amount from that member; hence both
members are diminished alike, and the equality is not destroyed. (Repeat
AxromM 2.))

2d. If the term to be transposed is —, dropping it ¢ncreases the member from
which it is dropped, and writing it in the other member with the + sign ¢n-
creases that member by the same amount ; and hence the equality is preserved.
(Repeat Ax1oM 2.)

17. To Solve an equation is to find the value of the unknown
quantity ; that is, to find what value it must have in order that the
equation be true.

18. An equation is said to be Satisfied for a value of the un-
known quantity which makes it a true equation; <. e, which makes
its members equal.

19, To Verify an equation is to substitute the supposed value
of the unknown quantity and thus see if it satisfies the equation.

ScH. 2.—The pupil must not understand that the verification is at all
necessary to prove that the value found is the correct one. This is demon-
strated as we go along, in obtaining it. The object of the verification is to
give the pupil a clearer idea of the meaning of an equation, and to detect
errors in the work.

20. Prob. 1.—70 colve a simple equation with one unknown
quantity.

RULE~—1. Ir THE EQUATION CONTAINS FRACTIONS, CLEAR IT OF
THEM BY ART. 14.

2. TRANSPOSE ALL THE TERMS INVOLVING THE UNENOWN QUAN-
TITY TO THE FIRST MEMBER, AND THE KNOWN TERMS TO THE SECOND
MEMBER BY ART. 16.

3. UNITE ALL THE TERMS CONTAINING THE UNKNOWN QUANTITY
INTO ONE BY ADDITION, AND PUT THE SECOND MEMBER INTO ITS
SIMPLEST FORM.

4. D1viDE BOTH MEMBERS BY THE comvmcmm‘ OF THE UNKNOWN
QUANTITY.
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I

Dem.—The first step, clearing of fractions, does not destroy the equation,
since both members are multiplied by the same quantity (Ax10M 2).

The second step does not destroy the equation, since it is adding the same
quantity to both members, or subtracting the same guantity from both members
(AxroM 2). .

The third step does not destroy the equation, since it does not change the
value of the members (Ax10M 1).

The fourth step does not destroy the equation, since it is dividing both mem
bers by the same quantity, and thus changes the members alike (Ax10M 2).

Hence, after these several processes, we still have a true equation. But now
the first member is simply the unknown quantity, and the second member is all
known. Thus we have what the unknown gquantity 18 equal to ; 1. e. its value.

21. 8on. 1.—1It must be fixred in the pupil's mind that he can make but two
classes of changes upon an equation : viz., SUCH A8 DO NOT AFFECT THE VALUE
OF THE MEMBERS, Or SUCH A8 AFFECT BOTH MEMBERS EQUALLY. JHvery opera-
tion must be seen to conform to these conditions.

22, Cor. 1.—AU the signs of the terms of both members of an
equation can be changed from + to —,or vice versa, without destroy-
ing the equality, since this is equivalent to multiplying or dividing
by — 1.

23, Schm. 2.—It is not always expedient to perform the several trans-
formations in the same order as given in the rule. The pupil should bear in
mind that the ultimate object is to so transform the equation that the un-

known quantity will stand alone in the first member, taking care that, in
doing it, nothing is done which will destroy the equality of the members,

24, Son. 8.—It often happens that an equation which involves the second
or even higher powers of the unknown quantity is still, virtually, a simple
equation, since these terms destroy each other in the reduction.

SiMPLE EQUATIONS CONTAINING RADICALS.

25, Many equations containing radicals which involve the un-
known quantity, though not primarily appearing as simple equations,
become so after being freed of such radicals.

26. Prob. 2.—7T0 free an equation of radicals.

RULE.—THE COMMON METHOD IS 80 TO TRANSPOSE THE TERMS
THAT THE RADICAL, IF THERE IS BUT ONE, OR THE MORE COMPLEX
RADICAL, IF THERE ARE SEVERAL, SHALL CONSTITUTE ONE MEMBER,
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AND ‘THEN INVOLVE EACH MEMBER OF THE EQUATION TO A POWER
OF THE SAME DEGREE AS THE RADICAL. IF A RADICAL STILL RE-
MAINS, REPEAT THE PROCESS, BEING CAREFUL TO KEEP THE MEM-
BERS IN THE MOST CONDENSED FORM AND LOWEST TERMS.

*  DEM.—That this process frees the equation of the radical which constitutes
one of its members is evident from the fact that a radical quantity is involved
to a power of the same degree as its indicated root by dropping the root sign.

That the process does not destroy the equality of the members is evident #rom
the fact that the like powers of equal quantities are equal. Both members are
increased or decreased alike.

SUMMARY OF PRACTICAL SUGGESTIONS.
27. In attempting to solve a simple equation, always consider,

1. Whether it is best to clear of fractions first.
2. Look out for compound negative terms.

3. If the numerators are polynomials and the denominators mono-
mials, it is often better to separate the fractions into parts.

4. Tt is often expedient, when some of the denominators are mono-
mial or simple, and others polynomial or more comples, to clear of
the most simple first, and after each step see that by transposition,
uniting terms, etc., the equation is kept in as simple a form as pos-
sible.

5. It is sometimes best to transpose and unite some of the terms
before clearing of fractions.

6. Be constantly on the lookout for a factor which can be divided
out of both members of the equation, or for terms which destroy
each other.

7. It sometimes happens that by reducing fractions to mixed num-
bers the terms will unite or destroy each other, especially when there
are several polynomial denominators.

28. WHEN THE EQUATION CONTAINS RADICALS, SBPECIALLY
CONSIDER,

1. If there is but one radical, by causing it to constitute one mem-
ber and the rational terms the other, the equation can be freed by
involving both members to the power denoted by the index of the
radical. :
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.o : . *
2. If there are two radicals and other terms, make the more com-
plex radical constitute one member, alone, before squaring. ~ Such
cases usually require two involutions.

3. If there is a radical denominator, and radicals of a mmlar form
occur in the numerators or constitute other terms, it may be best to
clear of fractions first, either in whole or part.

4. It is sometimes best to rationalize a radical denominator,

ExaMpPLES FOR PRACTICE IN SoLvING SIMPLE EQUATIONS.

1. Solve and verify the following:  (1.) 40—62—16=120—14x.

z—3 z—19 z+3 z

—_20— —5 4) 5 5

z—5 9:z:+20 4212 =z 10+ 17 122 +2
=4—— (6) =%e=t tr ) g~ 135
5z—4 ax—b  a_br br—a a(b +a: ax

(9) 2248 = az + bx + ez (10 2.04 — 0.68y — 0.02y = 0.01.
(11.) 84z — 7.6 = 10 + 2.22.

1 1 N2z—.05
2. Solve (1.) =z T o = wo—as (R) 48z— —5

_ oy THPT—qx _ MT—n __nlqg—p

= 16e+80. (3) THECIT ST, (z=222) (1) -
@be+ad)z _ Bab _ (3bc—ad)z _ Sa(b—a) ( 5a(26—a)y

~ Qabla+d)  3c—d 2abla—b) a?—5% " \""  3¢—d J

( __8ab? +4b’—l2aib ©) 4m (K" —Ba")
3a+b 3a® + ab—ac+be ) 8x

5m(g* —2z) —2:1:) 2K* L g
=Tmp+——4—— ( 28p+5g’) )tz * 7z +Izz =k

2 1-—.1 2—3z bz 2w—3_ =Z= 9
(8‘)—2“?;:**"”?‘3 @) 5 ~1% 9 18 tA

(5) 5 +4b =

(10) 528y~ 2 = 4o - 2= 4= 52
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8. In solving the following be careful to observe the suggestions

in (8‘7): 1) %( _g _%( _E)-{-i( -g- =0. (2). 63;;-4_2

_18—4z 6z + 7 Yz—13 _ 2w+4 =1 z=2
=—gte @)+t gm="3 Wim =
z—5 ®—6
e R R

4. Solve the following, giving special heed to the suggestionsin

z -
(28): (L) V/z—32 =16 —vz. (2) T 3) V=
+V/z=T= ) br—9 . ¥Ba-3 (5) Yat+v'z

1/__' 7 A Bz+3 2
+VYa—Vz=+z (6) V{I+a) +(i—a)z+v{I—a) +(1+a)c
=. (1) V{18+V/[1+V(B+VD)]}=4 (8) V1+V(B+VE)

_ V6z2—2 _ 44/6z—9 24‘-34-324«/37 ;

=2 () Vit iite (10) —qp—g—=16:-8v3

a—vat —aF _ -1 Var—1

+ 38 (11) vl (12)‘/ =

a3) WI—4_1B+ V% (14) Y&+ _ Vot VE
2+4z  40+4z Vaz—vb Vb

(15). ‘\/_—Va——'\/;’—-az_b (16)‘\/77;+4/1Zl:_ _1_‘

We+Va—va —az vVm—ym—y m

7y e VIrEat o, o VA 1-Va—] =4

a+z — v 2z + 2 rtl+az—1

— 1+z+4/2+2° _ V2+a+4/z
(19) va+z + Va—z =0 (20)1”_ e VaTe—
V3z+1+4/3z —t (22) + 1
Victl—+/3z 1/a—z+1/5 va—2z—+a
va

cz

rx[s‘;v]cm of these equations can be more elegantly reduced by the method given on p, 188,
9 A

() e
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APPLICATIONS. L

29, According to the definition (2), Algebra treats of, 1st, The
nature and properties of the Equation ; and 2d, the method of using
it as an instrament for mathematical investigation. -

Having on the preceding pages explained the nature and proper-
ties of the equation, we now give a few examples to illustrate its
utility as an instrument for mathematical investigation.

30. The Algebraic Solution of aproblem consists of two
parts :

1st. The Statement, which consists in expressing by one or
more equations the conditions of the problem.

2d. The Solution of these equations so a8 to find the values of
the unknown quantities in known ones. This process has been
explained, in the case of Simple Equations, in the preceding articles.

31. The Statement of a problem requires some knowledge of the
subject about which the question is asked. Often it requires a great
deal of this kind of knowledge in order to “state a problem.” This
is not Algebra; but itis knowledge which it is more or less important
to have according to the nature of the subject.

. 32. Directions to guide the student in the Statement of Prob-
lems : .

1st. Study the meaning of the problem, so that, {f you had the answer given,
you could prove it, noticing carefully just what operations you would have to
perform upon the answer in proving. This is called, Discovering the relations
between the quantities involved.

2d. Represent the unknown (required) quantities (the answer) by some one or
more of the final letters of the alphabet, as 2, y, 2, or w, and the known quan-
tities by the other letters, or, as given in the problem.

8d. Lastly, by combining the quantities involved, doth known and unknown,
according to the conditions given in the problem (as you would to prove it, if the
answer were known) express these relations in the form of an equation.

33. 8cm.—It is not always ex&cdient to use z to represent the number
sought. The solution is often simplified Dy letting 2 be taken for some
number from which the one sought is readily found, or by letting 2z, 3, or
some multiple of @ stand for the unknown quantity, The latter expedient
is often used to avoid fractions.
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PROBLEMS.

1. A’s age is double B’s, B’s is triple O’s, and the sum of their
ages is 140. Required the age of each.

2. A’s age is m times B’s, B’s is # times (s, and the sum of their
ages is 8. Required the age of each.

3. The sum of two numbers is 48, and their difference 12. What
are the numbers ?

4. The sum of two numbers is s, and their difference d. What
are the numbers ?

5. Having the sum and difference of two numbers given, how do
you find the numbers, arithmetically ?

6. A post is §th in the earth, $ths in the water, and 13 feet in the
air. What is the length of the post ?

7. A post is 1th in the earth, Zths in the water, and a feet in the
air. What is the length of the post ?

8. What fraction is that, whose numerator is less by 3 than its
denominator; and if 3 be taken from the numerator, the value of
the fraction will be 3?

9. Give the general solution of the last; 7.e., the solution when
the numbers are all represented by letters. Then substitute the
above numbers apd find the answer to that special problem.

Sue.—Letting the numerator be a less than the denominator, and = be the
am + bn

fraction after ) is taken from the numerator, the fraction is m;.‘

10. A man sold a horse and chaise for $200; } the price of the
horse was equal to § the pnce of the chaise. Required, the price of
each. Chaise, #120 ; horse, $80.

Generalize and solve the last, and then by substituting the numbers given in
it find the special answers. Treat in like manner the next nine problems,

11. Out of a cask of wine which had leaked away a third part, 21
gallons were afterward drawn, when it was found that one-half re-
mained. How much did the cask hold,? Ans., 1206 galls.

12. A and B can do s piece of work in 12 days, but when A worked
alone he did the same work in 20. How long would it take B to do
the same work ? Anas., 30 days.
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- 13. A cistern can be filled by 3 pipes; by the first in 1§ hours, bj
the second in 2§ hours, and by the third in 5 hours. In whattime
will the cistern be fllled, when all are left open at once ?

14. Four merchants entered into a speculation, for which they
subscribed 4755 dollars; of which B paid three times as much as A ;
C paid as much as A and B; and D paid as much as C and B. What
did each pay ?

15. A and B trade with equal stocks. In the first year A tripled
Lis stock and had #27 to spare; B doubled his stock, and had $153
to spare. Now the amount of both their gains was™five times the
stock of either. What was that ?

16. A and B began to trade with equal sums of money. In the
first year A gained 40 dollars, and B lost 40; but in the second A
lost one-third of what he then had, and B gained a sum less by 40
dollars than twice the sum that A had lost; when it appeared that
B had twice as much money as A. What money did each begin
with ? Ans., 320 dollars.

17. What number is that to which if 1, 5, and 13 be severally
added, the first sumn divided by the second shall equal the sccond
divided by the third ?

18. Divide 49 into two such parts that the greater increased by 6
divided by the less diminished by 11, shall be 4. P

19. A cistern which contains 2400 gallons can be filled in 15
minutes by three pipes, the first of which lets in 10 gallons per
minute, and the second 4 gallons less than the third. How much
passes through each pipe in & minute ?

20. Find & number such that, if from the quotient of the number
increased by 5, divided by the number increased by 1, we subtract
the quotient of 3 diminished by the number, divided by the number
diminished by 2, the remainder shall be 2.

21. Divide a into two such parts, that one may be the 2th part of
the other. )

22. Divide a into two such parts, that the sum of the quotienté
which are obtained by dividing one part by m, and the other by »

m(nb—a) ., n(mb—a)
shall be equal to . The parts are —-————, and e
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23. Letting p represent the principal, ¢ the interest for time ¢, a
the amount, and r the per cent. for a unit of time, produce the fol-
lowing formulm, and give their meaning :

N 100z 100
(1) t=l%; (3.) t=-7ﬁ!; 5) » 1.
. 100 + #r 100 Tota
(2-)“—1"*"—?""10_0-‘: (4) 7’ ( ) 100+t7'

24. In what time will a given principal double, triple, or quadru-
ple itself, at 5% ? at 6%? at Vg ?

25. What is the worth of a note of $500 Nov. 24, 1872, which is
dated Feb. 23d, 1870, bears 12% interest, and is due Jan. 1st, 1875,
money being worth 74 ? Ans., $687.23 +

26. On a sum of money borrowed, annual interest is paid at 5%.
After a time $200 are paid on the principal, and the interest on the
remainder is reduced to 4%. By these changes the annual interest is
lessened one-third. What was the sum borrowed ?

27. An artesian well supplies a manufactory. The consumption
of water goes on each week-day from 3 A to 6 .M. at double the
rate at which the water flows into the well. If the well contained
2250 gallons of water when the consumption began on Monday
morning, and th@well was just emptied at 6 P.M. on the next Thurs-
day evening but one, how many gallons flowed into the well per
hour ?

28. The hind and fore wheels of a carriage have ciréumferences
16 and 14 feet respectively. How far has the carriage advanced
when the fore wheel has made 51 revolutions more than the other?

29. A merchant gains the first year 15% on his capital ; the second
year, 204 on the capital at the close of the first; and the third year,
25% on the capital at the close of the secand; when he finds that he
has cleared $1000.50. Required his capital. Capital, $1380.

30. A man had $2550 to invest. He invested part in certain 3%
stocks, and part in R. R. shares of $25 each, which pay annual divi-
dends of $1.00 per share. The stocks cost him $81 on a hundred,
and the R. R. shares $24 per share; and his income from each source
is the same. How many R. R. shares did he buy?
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SECTION 11,

INDEPENDENT, SIMULTANEOUS, SIMPLE EQUATIONS WITH TWO
UNKNOWN QUANTITIES.

»
DEFINITIONS.

34. Independent Equations are such as express different
conditions, and neither can be reduced to the other.

35. Simultaneous Equations are those which express dif-
ferent conditions of the same problem, and consequently the letters
representing the unknown quantities signify the same things in each.
All the equations of such a group are satlsﬁed by the same values of
the unknown quantities.

36. Elimination is the process of producing from a given
set of simultaneous equations containing two or more unknown
quantities, a new set of equations in which one, at least, of the un-
known quantities shall not appear. The quantity thus disappearing
is said to be eliminated. (The word literally means putting out of
doors. We use it as meaning causing fo disappear.)

37. There are Five Methods of Elitmination, viz, by
Comparison, by Substitution, by Addition or Subtraction, by Unde-
termined Multipliers, and by Division.

ELIMINATION BY COMPARISON,

38. Prob, 1.—Having given two independent, simultaneous,
simple equations between two unknown quantities, to deduce therefrom
by Comparison a new equation containing only one of the unknown
quantities.

RULE.—1st. FIND EXPRESSIONS FOR THE VALUE OF THE BAME
UNKNOWN QUANTITY FROM EACH EQUATION, IN TERMS OF THE
OTHER UNKNOWN QUANTITY AND KNOWN QUANTITIES.

2d. PLACE THESE TWO VALUES EQUAL TO EACH OTHER, AND THE
RESULT WILL BE THE EQUATION SOUGHT.

" DEM.—The first operations being performed according to the rules for simple
equations with one unknown quaatity, need no further demonstration.
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2d. Having formed expressions for the value of the same unknown quantity
in both equations, since the equations are simultaneous this unknown quantity
means the same thing in the two equations, and hence the two expressions for
its value are equal. Q. E. D, »

Sce.—The resulting equation can be solved by the rules already given.

ELIMINATION BY SUBSTITUTION. ¢

39. Prob. 2.—Having given two independent, simultaneous,
simple equations, between two unknown quantities, to deduce there-
Jrom by Substitution a single equation with but one of the unknown
quuantities.

RULE.—1st. FIND FROM ONE OF THE EQUATIONS THE VALUE
OF THE UNKNOWN QUANTITY TO BE ELIMINATED, IN TERMS OF THE
OTHER UNKNOWN QUANTITY AND KNOWN QUANTITIES.

2d. SUBSTITUTE THIS VALUE FOR THE SAME UNKNOWN QUAN-
TITY IN THE OTHER EQUATION.

DeM.—The first process consists in the solution of a simple equation, and is
demonstrated in the same way.

The second process is self-evident, since, the equations being simultaneous,
the letters mean the same thing in both, and it does not destroy the equality of
the members to replace any quantity by its equal. Q. E. D.

ELIMINATION BY ADDITION OR SUBTRACTIOiT.

40. Prob. 3.—Having given two independent, simultaneous,
simple equations between two unknown quantities, to deduce therefrom
by Addition or Subtraction a single equation with but one unknown
quantity.

RULE—1st. REDUCE THE EQUATIONS TO THE FORMS az + by
=m, AND cx + dy = n.

2d. Ir THE COEFFICIENTS OF THE QUANTITY TO BE ELIMINATED
ARE NOT ALIKE IN BOTH EQUATIONS, MAKE THEM S0 BY FINDING
THEIR L. C. M. AND THEN MULTIPLYING EACH EQUATION BY THIS
L. C. M. EXCLUSIVE OF THE FACTOR WHICH THE TERM TO BE
ELIMINATED ALREADY CONTAINS.

8d. IF THE SIGNS OF THE TERMS CONTAINING THE QUANTITY TO
BE ELIMINATED ARE ALIKE IN BOTH EQUATIONS, SUBTRACT ONE
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EQUATION FROM THE OTHER, MEMBER BY MEMBER. IF THESE SIGNS
ARE UNLIKE, ADD TBE EQUATIONS.

DEM.—The first operations are performed according to the rules already given
for clearing of fractions, transposition, and uniting terms, and hence do not viti-
ato the equations. The object of this reduction is to make the two subsequent
steps practicable,

The second step does not vitiate ‘the equations, since in the case of either
eqmmon, both its members are multiplied by the same number,

The third step eliminates the unknown quantity, since, as the terms containing
the quantity to be eliminated have the same numerical value, if they have the
same sign, by subtracting the equations one will destroy the other, and if they
have different signs, by adding the equations they will destroy each other. The
result is a true equation, since, If equals (the two members of one equation) are
added to equals (the two members of the other equation), the sums are equal.
Thus we have a new equation with but one unknown quantity. Q. E. D.

ELiMINATION BY UNDETERMINED MULTIPLIERS.

41. Prob. 4.—Having given two independent, simultaneous,
simple equations between two unknown quantities, to deduce therefrom
by Undetermined Multipliers a single equation with but one unknown
quantity.

RULE—1st. REDUCE THE EQUATIONS TO THE FORMS az + by
=M, AND cz + dy = n.

2d. MULTIPLY ONE OF THE EQUATIONS BY AN UNDETERMINED
FACTOR, AS f, AND FROM THE RESULT SUBTRACT THE OTHER EQUA-
TION, MEMBER BY MEMBER.

3d. IN THE RESULTING EQUATION, PLACE THE COEFFICIENT OF
THE UNKNOWN QUANTITY TO BE ELIMINATED EQUAT TO 0; FROM
THIS EQUATION FIND THE VALUE OF f, AND SUBSTITUTE IT IN THE
OTHER TERMS OF THE EQUATION.

DEM.—[Réason for the first step, same as in the last method.]

Now multiply one of the: equations, as az +Lby = m, by f,and subtract the
otner, member by member, giving (af — ¢}z + (4f — d)y = mf —n. To eliminate

y,put ¥f —~d =0, giving f = "—; This valuc of f substituted in (af —

+ (Of = d)y = mf — n, will cause the term containing y to disappear by making
its coefficient 0, and there will result an equation containing only the anknown
quentity @, and known quantities. Q. E. D,
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Thus, given 82+ Ty=388, and 22+ 4y=20.

Multiply the 1st by f, - - - - - 8 + Uy =887
Subtract the®d, - - - - - . - % + 4y =20
And wehave- - - - - . . . @& —2p + (If — 4)y = 83 — 20.

Putting 7f — 4 =0, f=4. Bubstitating, (3x$—2)r = 88x$~20. Whence,
—fz=—4,orx=4.

In like manner, putiing 8/ —2=0,f=3. And(?7 x § — 4y =88 x §—20-
‘Whence y = 3.

ELiMINATION BY Di1visioN.

42, Prob. 5§.—Having given two independent, simultaneous,
equations of any degree, between two unknown gquantities, to deduce
therefrom by Division a single equation with but one unknown
quantity.

RULE—CLEAR THE EQUATIONS OF FRACTIONS, AND TRANSPOSE
ALL THE TERMS TO ONE MEMBER. TREAT THE POLYNOMIALS THUS
OBTAINED AS IN THE PROCESS FOR FINDING THE HieHEsT CoM-
MON DIVISOR, CONTINUING THE PROCESS UNTIL ONE UNKNOWN
QUANTITY DISAPPEARS FROM THE REMAINDER. PUTTING THIS RE-
MAINDER EQUAL TO 0, WE HAVE THE EQUATION SOUGHT.

DEM.—Since each of the polynomials is equal to 0, any number of times one
subtracted from the other (i. ¢. any remainder) is 0.

ExAMPLES.

[Nore.—The pupil should solve the following by each of the preceding
methods, 8o as to make all familiar, and in each instance notice what method is
most expeditious.]

(L) 22+7y=41, (2) =z+15y=49, (3.) 6z+ 4y=236,

3z +4y=42. 3z+ Ty="1L 3z +16y=>513.
(4.) 292—175=14y, (5.) 188—bz—9y=0, (6.) 5x—4=3y,
87z—56y=497. 132=57 +2y. 10+ 7z—12y=0.
(1) by—21= 2, (8) Ty—3z=139, (9.) 69y—17z= 103,
13z—4y=120. - Rz +by= 91 l4z—13y=~—4L.
z—2 10—z —10
(10-) ——5—- - T = g—-r, ' (11.) abw+ody=2,
y+4_4x+y+13 d—b

3 8 W=V= T
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b :
(12.) 3‘3?; =5z (18) (b+c)(@+c—b)+a(y+a) =
_ ay _ (b+c)?
az+2by_.d. ———‘—(b_c)z = ‘—a;——-
.'l - =y
(14) a+b + 255 ‘Ra, and T = L

362—.05 2.6+.005y .04y+4.1 .079:—-.1

=.8z+

(15) 242+.32%

b 25 3 6
% by Ba_y
3 12 2 3 z—y 1
(16.) 7 -5 =2, and ¥y 5
4 2
2 7 5 ; m . n
(17-) +b_y 5, (18) 57 ;— 19, (19-) poy + a?/ =m +n,
5 3 8 3 n m
=2 2_Z2= Z4+ T =ms 4o,
poe bj 27y 7 z+y w8 +n

[NoTE.—Solve the following by (£2).]

20. Eliminate = between the following: 5z4-y=105 and z+3y
=385; also }(2x+3y)=8—3}r and 11+y=4(Ty—3z); also }(y—2)
—3(10—y)= $(z —10) and }(2z+4) — }(Ry+2) = §(y + 13); also
2% 4+ 6zy=144 and 6zy+30y*=432; also 2% +y3=2728 and 2% —=xy
+y?=124; also a4+a3y+aty? 42y’ +yt=1and 2% +y2=2; also
z+y+2y=34 and 2% +y*=>52.

SOLUTION OF THE LAST.
z4y+zy—34) z? +y*—b2|r+ 34—y
(A+y)z+y—34) (1+y)2* +(L+y)y* —52(1+y)
(14+y)2® +ay—384x
(B4—y)2+(y*—52)(1 +y)
(1+y)B4—y)z+(y*—52)(1 +9)*
(1+y)(34—y)z—(34—y)*
Eguation sought, (34—y)* + (y*—52)(1+y)8=0.
[NoTE.—The equations resulting from the elimination in several of the above

cases are of degrees higher than the first, and hence their resolution is not to
be expected at this stage of the student’s progress.]
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APPLICATIONS.

1. A wine merchant has two kinds of wine, one worth 72 cents a
quart, and the other 40 cents. How much of each must he put in a
mixture of 50 quarts, so that it shall be worth 60 cents a quart?

2. A crew that can pull at the rate of 12 miles an hour down the
stream, finds that it takes twice as long to row a given distance up
stream as down. What is the rate of the current ?

3.-A man sculls a certain distance down a stream which runs at a
rate of 4 miles an hour, in 1 hour and 40 minutes. In returning it
takes him 4 hours and 15 minutes to reach a point 3 miles below his
starting place. How far did he scull down the stream, and at what
rate could he scull in still water?

4. A man puts out $10,000 in two investments. For the first he
gets 5% and for the second 4%. The first yields annually $50 more
than the second. What is each investment ?

[NoTe.—(Generalize the statement and solution of the preceding problems.]

5. What fraction is that whose numerator being doubled and de-
nominator increased by 7, the value becomes §; but the denomina-
tor being doubled, and the numerator increased by 2, the value be-
comes §?

6. There is o number consisting of two digits, which is equal to
four times the sum of those dlglts, and if 18 be added to it, the
digite will be inverted. What is the number?

7. A work is to be printed, so that each page may contain a cer-
tain number of lines, and each line a certain number of letters. If
we wished each page to contain 8 lines more, and each line 4 letters
more, then there would be 224 letters more in each page; but if we
wished to have 2 lines less in & page, and 3 letters less in each line,
then each page would contain 145 letters less. How many lines are
there in each page ? and how many letters in each line?

8. A sum of money put out at simple interest amounted to $5250
in 10 months, and to $5450 in 18 months. What was the principal,
and what the rate ? ‘
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9. In an alloy of silver and copper, -:—z of the whole + p ounces

. 1
was gﬂwrer, and 2% the whole — ¢ ounces was copper. How many

ounces were there of each ?

10. When a is added to the greater of two numbers, it is 7 times
the less, but when & is added to the less, it is # times the greater.
What are the numbers ?

11. When 4 ig added to the greater of two numbers, it is 3} times
the less ; but when 8 is added to the less, it is } the greater. What
are the numbers? Solve by substituting in the results of the pre-
ceding.

12. There is a cistern into which water is admitted by three cocks,
two of which are of exactly the same dimensions. When they are
all open, five-twelfths of the cistern is filled in 4 hours; and if one
of the equal cocks be stopped, seven-ninths of the cistern is filled in
10 hours and 40 minutes. In how many hours would each cock fill
the cistern ?

13. A banker has two kinds of change; there must be @ pieces of
the first to make a crown, and b pieces of the second to make the
same: now a person wishes to have ¢ pieces for a crown. How many
pieces of each kind must the banker give him ?

Ans., a(bb:ac) of the first kind, b(b ) of the second.

14. An ingot of metal which Weighs n pounds loses » pounds when
weighed in water. This ingot is itself composed of two other metals,
which we may call M and M’; now » pounds of M loses ¢ pounds
when weighed in water, and n# pounds of M’loses » pounds when
weighed in water. How much of each metal does the original ingot
contain ?

Ans,, ”_—_._.(:: qp ) poungs of M, 2(;‘1]_-_:91)' pounds of M.
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SECTION IIL

INDEPENDENT, SIMULTANEOUS, SIMPLE EQUATIONS WITH MORE
THAN TWO UNKNOWN QUANTITIES.

43. Prob.—Having given several independent, simultaneous,
simple equations, involving as many unknown quantities as there are
equations, to find the values of the unknown quantities.

RULE~—~COMBINE THE EQUATIONS TWO AND TWO BY EITHER OF
THE METHODS OF ELIMINATION, ELIMINATING BY EACH COMBINA-
TION THE SAME UNKNOWN QUANTITY, THUS PRODUCING A NEW SET
OF EQUATIONS, ONE LESS IN NUMBER, AND CONTAINING AT LEAST
ONE LESS UNKNOWN QUANTITY, COMBINE THIS NEW SET TWO AND
TWO IN LIKE MANNER, ELIMINATING ANOTHER OF THE UNKNOWN
QUANTITIES. REPEAT THE PROCESS UNTIL A SINGLE EQUATION IS
FOUND WITH BUT ONE UNKNOWN QUANTITY. SOLVE THIS EQUATION
AND THEN SUBSTITUTE THE VALUE OF THIS UNKNOWN QUANTITY IN
ONE OF THE NEXT PRECEDING SET OF EQUATIONS, OF WHICH THERE
WILL BE BUT TWO, WITH TWO UNKNOWN QUANTITIES, AND THERE
WILL RESULT AN EQUATION CONTAINING ONLY ONE, AND THAT
ANOTHER OF THE UNKNOWN QUANTITIES, THE VALUE OF WHICH
CAN THEREFORE BE FOUND FROM IT. SUBSTITUTE THE TWO VALUES
NOW FOUND IN ONE OF THE NEXT PRECEDING SET, AND FIND THE
VALUE OF THE REMAINING UNKNOWN QUANTITY IN THIS EQUATION.
CONTINUE THIS PROCESS TILL ALL THE UNENOWN QUANTITIES ARE
DETERMINED.

- DEM.~—1. The combinations of the equations give true equations because they
are all made upon the methods of elimination already demonstrated.

2. That the number of equations can always be reduced to one by this pro,
cess, is evident, since, if we have n equations and combine any one of them with
each of the others, there will be # — 1 new equations. Combining one of these
n —1 new equations with all the rest there will result » —2. Hence n—1
such combinations will produce a single equation; and as one unknown quan-
tity, at lenst, has disappeared from each set, there will be but one left. Q. E. D,

8cm. 1.—If any equation of any set does not contain the quantity we are
seeking to climinate, this equation can be written at once in the next set,
and the remaining equations combined.

Scm. 2—In eliminating any unknown quantity from & particular set of
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equations, any one of the equations may be combined with each of the
others, and the new set thus formed. But some other order may be prefer-
able as giving simpler results.

Scm. 8.—It is sometimes better to find the values of all the unknown
quantities in the same way as the first is found, rather than by substitution.

EXAMPLES.
1. 2 3.
z+y+2=381l, z+ y+ z2=9, Rw+3y+4=29,

z 4+ y—2z2=25,
z—y—2z= 9.

4.

5. 6.
yr+iy+32=02, 2+}y=100,\ z=64; 2__"_;'__?’3’/4.%:8, r=3;
jz+ty+3e=47, y+32=100, ; y="2; +yY—52=2, ¢ y=2;
fotiy+ie=98. o+1o=100.) s=8 2Ty smg | o=

% 8. 9.
v - 2,1_3
z+T—85, ay +br=c :7:+_7/'_z’
z+2_ _ 3 _ ? N
Y+ 3 = 85, cx + az = b, H !’__2,
z+9y_ . 1.1 4
2+ — = 8b. bz +cy:=a. S+, =3
10. 11, 12,
=2 8l 4y +2=0
y+2=2yz 2ty b _, 2+ y+2=0, |
z+2=3xz, §+§=1, (B+e)z+(c+a)y+(a+b)e=0,
T+ y=4ay. §+2=1. bex+ cay +aba=1,

z+3y—38z2=1,
z—4y +82=8.

3x + Ry + 52 =32,
4z + 3y + 22 =25.

18, ayr=a(y2—22—zy) =b(22— 28~ Y2) = 2Y — Y2 -~22).
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14. 15, 16.
3n—2y= 2, B2x—4y+3z+3v—6u=1l, wutv+z+y=10,
bx—"z=11, 8z—5y+2% —4u=11, wu+v+az+z=11,
2z +3y=39, 10y—3z +3u—2v= 2, w+v+y+2=12,
4y +32=41. bz 4+4u+v—22= 8, wu+az+y+z=13,

6u—3v +4z—2%= 6. v+at+y+ri=14
1% z+y+z=a+bd+e, bx+cy+az=cx+ay+bz=a®+b%+cs
T

APPLICATIONS,

1. Three persons, A, B, and C, were talking of their gdineas;
says A to B and C, give me half of yours and I shall have 34; says
B to A and C, give me a third part of yours and I shall have 34;
says C to A and B, give me a fourth part of yours and I shall have
34. How many had each ? Ans., A 10, B 22, C 26.

2. For $8 I can buy 2 lbs. of tea, 101bs. of coffee, and 20 1bs. of
sugar, or 21bs. of tea, 51bs. of coffee, and 30 1bs. of sugar, or 31bs.
of tea, 5 1bs. of coffee, and 10 1bs. of sugar. What are the prices?

3. -A person possesses & certain capital which is invested at a certain
rate per cent. A seocond person has £1000 more capital than the
first and invests it at one per cent. more; thus his income exceeds
that of the first person by £80. A third person has £500 more
capital than the second, and invests it one per cent. more advan-
tageously ; and thus receives £70 more income. Find the capital of
each and the rate of investment. '

4. Find four numbers, such that the first with ﬁalf the rest, the
second with a third the rest, the third with a fourth the rest, and
the fourth with a fifth of the rest shall each be equal to a.

5. A number is represented by 6 digits, of which the left-hand
digit is 1. If the 1 be removed to units place, the others remaining
in the same order as before, the new number is 3 times the original
number. Find the number.

6. A man has £22 14s. in crowns (53.), guineas (21s.), and moidores
(27s.) ; and he finds that if he had a8 many guineas a8 crowns, and
as many crowns a8 gunineas, he would have £36 Gs.; but if he had-
a8 many crowns a8 moidores, and a8 many moidores as crowns, he
would have £45 16s. How many of each has he?
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7. A person has four casks, the second of which being filled from
the first, leaves the first 4 full The third being filled from the
second, leaves it } full; and when the third is emptied into the
fourth, it is found to fill only % of it. But the first will fill the third
and fourth and have fifteen quarts remaining. How many quarts
does each hold ?

8 A, B, 0, and D, engage to do a certain work. A and B can do
it a 12 days, A and D in 15 days,and D and C in 18days. B and C
commence the work together, after 3 days are joined by A, and after
4 days more by D. Then, all working together, they finish it in
2 days. How long would each have required to do the entire work?
-Bolve with one unknown quantity, as well as with four.

9. A person sculling in a thick fog, meets one tug and overtakes
another which is going at the same rate as the former ; show that if
a is the greatest distance to which he can see, and 5, 5’ are the dis-
tances that he sculls between the times of his first seeing and of his

passing the tugs, 2 =;. + %.,
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CHAPTER IL
RATIO, PROPORTION, AND PROGRESSION.

SECTION 1.
RATIO.

44. Ratio is the relative magnitude of one quantity as com-
pared with another of the same kind, and is expressed by the quotient
arising from dividing the first by the second.* The first quantity
named is called the Antfecedent, and the second the Consequent.
Taken together they are called the Zerms of the ratio, or a Couplet.

45. I?wS'tgn of ratio is the colon, :, the common sign of
di<dgien, =-, or the fractional form of mdlcatmg division.

The last form is coming into use quite generally, and is to be preferred.

46. Cor.—A ratio being merely a fraction, or an unexecuted
problem in Division, of which the antecedent is the numerator, or
dividend, and the consequent the denominator, or divisor, any changes
made upon the terms of a ratio produce the same effect upon its value,
as the like changes do upon the value of a fraction, when made upon
it8 corresponding terms. The principal of these are,

1st. If both terms are multiplied, or both divided by the same.
«umber, the value of the ratio i8 NOT CHANGED.

2d. A ratio is MULTIPLIED by multiplying the antecedent, or by
dividing the consequent.

3d. A ratio és DIVIDED by dividing the antecedent, or by multiply-
tng the consequent, ‘

* There is a common notion among us that the French express a ratio by dividing the con-

q by the d while the English exprees it as above. Suchis not the fact.
French, German, and Engiish writers agree in the above definition. In fact, the Germans very
generally use the sign : instead of ; and by all, the two signs are used as exact equivalents.
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4%. A Direct Ratto is the quotient of the antecedent divided
by the consequent, as explamed above, (44). An Indirect or
‘Reciprocal Ratie is the quotient of the consequent divided by
the antecedent, . e., the reciprocal of the direct ratio. 4 ratio is
always WRITTEN a3 a direct ratio,

48, A ratio of Greater Inequality is a ratio which is
greater than unity,as 4 :3. A ratio of Less Inequality is a
ratio which is less than unity, as 3 : 4.

49, A Compound Ratio is the product of the corresponding
terms of several simple ratios. Thus, the compound ratio a: ¥,
c:dym:m, i8 acmn : bdn. This term corresponds to compound frac-
tion. A compound ratio is the same in effect as a compound fraction.

50. A Duplicate Ratio is the ratio of the squares, a tri-
plicate, of the cubes, a subduplicate, of the square roots, and
a subtriplicate, of the cube roofs of two numbers. Thus, a® : 3%,

ad : b8, Va : 45, and va : V5.

ExAMPLES,
1. What is the ratio of 8to 4? of 4t08? of $to §? of 5a®m
to 3am? of a%—yStox—y? offto¢? of Zto 22 off—,—:b——’
n b l—z
to at+b,
1—.::

2: Write the inverse ratio in each case in the last paragraph.

8. Reduce the following to their lowest terms: 85:187, a* — b*
rat — b4, 12(a — x)%: 6(a® — at®).

4. What is the duplicate ratio of 3:5, of ¢:5? What the tripli-
cate? What the subduplicate of 25:16? of 3:7? of m:n? What
the subtriplicate of 729:1728°? of z:y?

5. Which is the greater, the compound ratio of §:§ and 5:4, or
the inverse triplicate ratio of 3:2°?

6. Prove that a ratio of greater inequality is diminished by adding
the same number to both its terms. How is it with a ratio of less
inequality? How with equality ?

7. If 5 gold coins and 30 silver ones are worth as much as 10 go]d
coins and 10 silver ones, what is the ratio of their values?
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8. Prove that a*—2%:a% + 2% > a—z:a+2 Isad+yd:a%4y*
greater, orless, than z* + y%: 2 4+ y?

9. Prove that 4a3— 3a%x — 4ax® + 328 : 3a3 — 20%2 — 3az® + 2
is equal to 4a¢ — 3z : 3e¢ — 2.

10. Prove that, if @ be to y in the duplicate ratio of a to 3, and a
to & in the subduplicate ratio of a + =z to a — g, then will 2z:a

SECTION II.
PROPORTION.

51, Proportion is an equality of ratios, the terms of the ratios
being expressed. The equality is indicated by the ordinary sign of
equality, =, or by the double colon, ::.

Scu.—The pupil should practice writing a proportion in the form -b- = J'
still reading it ‘“aisto bas cistod.” One form should be as familiar as
the other. He must accustom himself to the thought that @ : b :: ¢ : d means

a ¢ ,
F=a and nothing more.

52. The FExtremes (outside terms) of a proportion are the
first and fourth terms. The Means (middle terms) are the second
and third terms.

53. A Mean Proportional between two quantities I8 a
quantity to which either of the other two bears the same ratio that
the mean does to the other of the two.

54. A Third Proportional to two quantities is such a
quantity that the first is to the second as the second is to this third
(proportional).

55, A proportion is taken by Inversfon when the terms of
each ratio are written in inverse order.

56. A proportion is taken by Alternation when the means
are made to change places, or the extremes.

8%7. A proportion is taken by Composition when the sum of
the terms of each ratio is compared with either term of that ratio,
the same order being observed in both ratios; or when the sum of
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the antecedents and the sum of the consequents are compared with
either antecedent and its consequent.

58. If the dzference instead of the swmn be taken in the last defi-
nition, the proport:on is taken by Division.

59. Four quantities are Inversely or Reciprocally Proporti(mal
when the first is to the second as the fourth is to the third, or as the
reciprocal of the third is to the reciprocal of the fourth.

60. A Continued Proportion is a succession of equal
ratios, in which each consequent is the antecedent of the next ratio.
Thusifa:b::b:c:ic:d::d:e, we have a continued proportion.

G1. Prop. 1.—In any proportion the product of the extremes
equuls the product of the means.

DEM.~—Ifa:b::¢:dthen ad =bc. Fora:b::c:d isthesameas g—' =%, which
cleared of fractions becomes ad = bc. Q. E. D.

62. Cor. 1.—The square of a mean proportional equals the pro-
duct of its extremes, and hence a mean proportional itself equals the
square oot of the product of its extremes.

If a:m :: m:d, by the proposition m* = ad. Whence extracting the square
root of both members, m == ¥ad.

63. Coxr. 2—Either extreme of a proportion equals the product
of the means divided by the other extreme; and, in like manner,
either mean equals the product of the extremes divided by the other
mean.

64. Prop. 2.—If the product of two quantities equals the pro-
duct of two others, the two former may be made the extremes, or the
means of a proportion, and the two latter the other terms.

- DEM.—Suppose my = nx. Dividing both members by zy, we have

I3

"
y’
. Yinm

t.e,m:z::n:y. In like manner dividing by mn we have %:
1xim.

S N .
Deduce eaeh.gof, the following forms from the relation my = nz:

;"’lp L

1L m:z::n:y 5. y:z:in:m.
2 m:n: 6 o:m:iiy:n,
8 y:n: 7. n:m:y:2
4. 2 1y i:m:n 8 nryiimia.
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685, Cor.—IF four quantities are in proportion, they are in pro-’
portion by alternation and by inversion.

66. Prop. 3.—1If four quantities are in proportion, the propor-
tion 18 not destroyed by taking equal multiples of

1st. The terms of the same couplet,

2d. The antecedents, ’

3d. The consequents,

4th. AU the terms.

Demonstrate these facts from the nature of a proportion as an equality of
ratios.

67. Scu.—Observe that such changes, and only such, may be made upon
the terms of a proportion without destroying it, as

1st. Do not change the values of the ratios,

2d. Change both ratios alike.

QUERY.—I{f the first term of & proportion be divided by any number, in what
ways may the operation be compensated for so as to preserve the proportion ?

68. Prop. 4.—The products or the quotients of the correspond-
ing terms of two (or more) proportions are proportional to each
other.

Demonstrated on the axioms that equals maultiplied by equals give equal
products, and that equals divided by equals give equal quotients.

69. Cor.—Like powers, or roots, of proportionals are propor-
tional to each other.

How does this torollary grow out of the proposition ?

70. Prop. 8.—1If two proportions have a ratio in one equal to
a ratio in the other, the remaining ratios are equal and may form a
proportion, '

Demonstrated on the axiom that things which are equal to ﬂg’ same thing
are equal to each other. " it

71. Prop. 6.-—-4@1/ proportion may be taken by composition,
or by division, or by both at once, without destroying it.
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DeM.~If a:bi:c:d,

a+b:b:ie+d:d, (1)
We may write by a+biai:o+d:e, (2
compogition, a+cia::b+d:d, (3

a+c:ci:db+d:d. (4
‘By division, we may write the same forms with the — sign instead of the +.

By composition and
division at the same
time, we may write,

a+dia—b:ic+dic—d,
a+cia—ci:b+d:d—d.
These forms may all be verified by representing the ratio of @ to b by r,

whence —g =r,or a =7b, and since the ratio of ¢ to d is the same as that of

atob, ;— =7, 0re¢ = dr, and then substituting in each of the above forms these
values of @ and ¢. Thus, the 1st becomes br+b:5 :: dr+d : d, which ratios aye
equal, since each isr +1, Let the student verify the other forms in the same
way.
QUERIES.—Ifa:d::¢:d,isatd:a::6+d:0? Isa+b:c+d::a—ec:b—d?
72, Cor—1If there be o series of equal ratios in the form of a

continued proportion, the sum of all the antecedents is to the sum of
all the consequents, as any one antecedent is to si8 consegquent.

DeM—~If a:b::¢c:d::6:f::g:h,etc, a+c+e+g+ete.: b+d+f+h+etc.
tia:bore:d,ore:f,org:h, etc. Substitute for a br, for ¢ dr, for e fr, for
g hr, and we have

br+dr+fr+hr+ete : d+d+f+h+ete. 2 br 2 b,
in which the ratios are seen to be equal, since each is .

73. 8cn.—The method pursued in the demonstration of the preceding propo-
sition will be found sufficient in itself to test any proposed trangformation ¢f a
proportion. We will give a fow examples ;

1. Ifa : b :: 0: d, prove as above that ad = be.

Sua.—By substituting as above we have the identity drd = ddr.
2. Ifa:b::c:d, prove as above that a sc::d:d,and b:a::d : c.

3. IfaWnd m:n iz y, prove as above that am : n ::
cx: dy. ' ‘
Sua’s.—Let 2 F=n whence; =y; und.”.'—r', whenoe%:r’ Substitut-

ing for a br, forcdr for m ar', and for .em' Ain the proportion to be tested, it
is shown to be true. -
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4, If}a-—-é:}a+z::b—y:'b+g‘,showthat2z:y::a:b.

::::;.-rﬂndwintemsofaandr,nd!mm:—a}z—;::rﬁndy

in terms of b and »,

Sve’s,~From

3
p+9q

6. Four given numbers are represented by a, 3, ¢, d; what quartity
added to each will make them proportionals?

b Ifa:biipig, ,,:a::".:
fa:b::p: ¢ prove that a® + b aTsiP +q

be — ad
a—b—c+d

7. If four numbers are proportionals, show that there is no num-
ber which, being added to each, will leave the resulting four num-
bers proportionals,

Ans.,

8 Ifa:b::c:d, show that ma:mb::c:d; a:b::me:md; ma:
biime:d; a:mb::c:md; and ma:nb::me: nd.

APPLICATIONS.

[Nore.—~The first five of the following examples should be solved without
converting the proportions into equations.]

1. A merchant having mixed a certain number of gallons of brandy
and water, found that if he had mixed 6 gallons more of each, there
would have been 7 gallons of brandy to every 6 gallons of water,
but, if he had mixed 6 gallons less of each, there would have been
6 gallons of brandy to every 5 gallons of water. How much of each
did he mix ?

SorurioN, #+6:y+6::7:6,andz—6:y—6::6:

Hence c—y:y+6::1:6,andz—y:y—6: 1

Hence y+0:y—6::6:5,0r2y:12::11:1,0ry: 66:,:1:1.

Bubstituting, m+6:72::7:6,orz+6:6::14:1,ora::6::13:1.orz:
-.78.1

2. Find two numbers, such, that their sum, dxﬂ'erenee, and pro-
duct, may be as the numbers s, d, and p, respectively:

SOLUTION, 2+ y:2—y::8:d,anda —y:ay:: dg
Hence w:y::e+d:s—danda:y::de+p:p.
Hence - - de+pipiie+dia—dordoip:i2dis—dore:pi::is—d,

ora:l::?g:c-d.#.c.c=-_—’£,. .
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3. It is required to find a number, such, that the sum of its digits
is to the number itself as 4 to 13; and if the digits be inverted, their
difference will be to the number expressed as 2 to 31.

4. Divide the number 14 into two such parts, that the quotient
of the greater divided by the less shall be to the quotient of the less
divided by the greater, as 16 to 9.

6. Find two numbers whose difference is to the difference of their
squares as = : 7, and whose sum is to the difference of their squares
asa:b .

[NoTE.~In the following, use the proportion more or less, as ia found ex-
pedient. ]

6. The sides of a triangle areas 3 : 4 : 5, and the perimeter is 480
yards: find the sides.

7. A fox makes 4 leaps while a hound makes 3; but two of the
hound’s leaps are equivalent to 3 of the fox’s. What are their relative
rates of running?

8. A courier sets out from Trenton for Washington, and travels
at the rate of 8 miles an hour; two hours after his departure
another courier sets out after him from New York, supposed to be
68 miles distant from Trenton, and travels at the rate of 12 miles an
hour. How far must the second courier travel before he overtakes
the first ?

9. There are two places, 154 miles apart, from which two persons
set out at the same time to meet, one travelling at the rate of 3 miles
in two hours, and the other at the rate of 5 miles in four hours. How
long, and how far, did each travel before they met ?

10. A courier, who travels 60 miles a day, has been dispatched
five days, when a second is sent to overtake him, in order to do
which he must travel 75 miles a dn.y In what time will he overtaké
the former?

11. Two travellers, A and B, set out at the same time from two
different places, C and D; A from C to D, and B from D to C.
When they met, it appeared that A had gone 30 miles more than
B; also, that A can reach D in 4 days,and B can reach O in 9 days.
Required the distance from C to D.

12. A hare, 50 of her leaps before a greyhound, ta.kes 4 leaps to
the greyhound’s 3; but two of the greyhound’s leaps are a8 much a8
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three of the hare’s. How many leaps must the greyhound tuke to
eatch the hare?

13. A runner left this place n days ago, at the rate of a miles
daily. He is pursued by another, at the rate of & miles a day. In
how many days will the second overtake the first

an
Ans., yy-

14. Find the time between 3 and 4 when the hands of a watch’are
opposite each other. When they are at right angles to each other.
When they are together.

15. How. often does the minute hand of a watch pass the hour
hand ? How often at right angles? How often opposite?

16. Do the hands of a watch occupy the three relative positions
of opposite, at right angles, and together between each two hours of
the 12?7 If there are exceptions point them out, and show why they
occur.

17. Before noon, a clock which is too fast, and points to afternoon
time, is put back 5 hours and 40 minutes; and it is observed that
the time before shown is to the true time as 29 to 105. Required
the true time.

18. Two bodies move uniformly around the
circumference of the same circle, which measures
s feet. When they start, one is @ feet before the
other; but the first moves m and the second M
feet in a second. When will these bodies pass
each other the first time, when the second, when
the third, etc., supposing that they do not disturb
each other’s motion ? When will they pass if
the first starts  seconds before the second, and M > m? When if
M < m? When will they pass if the first starts ¢ seconds later than
the second and M >m? When if M < m? When will they meet
if they start at the same time and move toward each other, or over
the distance a, first ? If they move from each other, or over the arc
8 —afirst? When will they meet if the first starts ¢ seconds before
the other, and' they move toward each other, or over the distance a
first? If they move from each other, or over the arc s — & first?
If they move in opposite directions, and the first starts ¢ seconds
later than the second? When they move over the arc a first? When
they move over the arc 8 — o first P ‘




PROGRESSIONS. 118

19. The force of gravitation is inversely as the square of the dis-
tance from the centre of the earth. At the distance 1 from the
centre of the earth this force is expressed by the number 32.16. By
what is it expressed at the distance 60 ? Ans., 0.0089.

20. If the velocity of one body moving around another is propor-
tional to unity divided by the duplicate of the distance, and the
velocxty be represented by v when the distance is r, by what will it
be expressed when the distance is 7 ?

r8y

.Ans., oyl

SECTION IIl.
PROGRESSIONS.

74. A Progression is a serics of terms which increase or de-
crease by a common difference, or by a common multiplier. The
former is called an Arithmetical, and the latter a Qeometrical Pro-
gression. A Progression is Increusing or Decreasing according as
the terms increase or decrease in passing to the right. The terms
Ascending and Descending are used in the same sense as increasing
and decrcasing, respectively. In an Arithmetical Progression the
common difference is added to any one term to produce the next term
to the right. If the progression is decreasing the common difference
is minus. In an increasing Geometrical Progression the constant
multiplier by which each succeeding term to the right is produced
from the preceding is more than unity; and.in a decreasing progres--
sion it is less than unity. This constant multiplier in a Geometrical-
Progression is called the Rafio of the series.

75. The character, .-, is used to separate the terms of an Arith-
metical Progressnon, and the colon, :, for a like purpose in a Geo-
metrical Progression.

ILLUSTRATIONS.

1.-8.-5-7, etc,, etc,, is an increasing Arithmetical Progression with a common
difference 2, or + 2.
15--10--5--0-- — B, etc., etc., is a Decreasing Arithmetical Progression with a
common difference — 5.
6-axd-at?d-axd, etc,etc, is the general form of an Arithmetical
Progression, + d being the common difference.
2:4:8: 16, etc., etc., 18 an increasing Geometrical Progression with ratio 2.
12:4:4: §: %, etc, etc., 18 a Decreasing Geometrical Progression with ratio &.
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a:ar:ar®:ar?:ar, e, etc., is the general form of a Geometrical Progres-
slon, r being the ratio, and greater o less than unity,
according as the series is increasing or decreasing.

76. When three quantities taken in order are in arithmetical pro-
gression, the second is the Arithmetical Mean between the other two,
and i8 equal to half their sum.,

ILL—~If a.-b-.0, b is the arithmetical mean between @ and ¢; and gintb b ~—a
=¢~b, b=Ha + o).

7%7. When three quantities taken in order are in geometrical pro-
gression, the second is the Geometric Mean between the other two,
and is equal to the square root of their product.

Let the student illustrate.

78. There are Five Things to be congidered in any progression;
viz., the first term, the last term, the common difference or the ratio,
the number of terms, and the sum of the series, either three of which
being given the other two can be found, as will appear from the sub-
sequent discussion.

ARITHMETICAL PROGRESSION.

79. Prop. 1.— The formula for finding the nth, or last term of
an Arithmetical Progression ; or, more properly, the formula express-
ing the relation between the first term, the nth term, the common dif-
Jerence, and the number of terms of such a series, is

l=a+4 (n—-1)d,
in which a is the first term, A the common difference, n the number

of terms, and 1 the nth or last term, d being positive or negative
according as the series is increasing or decreasing.

DEM.—According to the notation, the series is
a-a+d.-a+2d--a+8d. a+4d. a+bd etc,ete.
Hence we observe that as each succeeding term is produced by adding the com-
mon difference to the preceding, when we have reached the nth term, we shall
have added the common difference to the first tem n—1 timen ; that is, the nth
term,orl=a + (n—1)d. Q. E.D.

Scr.—As this formula is a simple equation in terms of a, [, n, and d, any
one of them may be found in terms of the other three.
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80. Prop, 2.—The formula for the sum of an Arithmetical
Progression, or expressing the relation between the sum of the series,
the first term, last term, and number of terms, is

e =[2n

8 representing the sum of the series, a the first term, 1 the last term,
and n the number of terms.

DeEmM.—If ! is the last term of the progression, the term before it is / —d, and
the one before that !—2d,etc. Hence,a8 ¢ a+d--a+2d- a+8d - - - - - i re-
presents the serles, !--l—d--I—2d--{—8d - - - - - a represents the same series
reversed. Now the sum of the first series is

s=a+(@+d)+(@+2)+ - - - ¢ —2d)+(@ —d)+1;
and reversed 8=l +(Q —d)+(@ —3d)+ - - - (a+2d)+(a+d)+a.
Adding B=(a+)+(@+0) +(@+)+ - - (@+)+(a+l)+(a+]).

If the number of terms in the series is 7, there will be n terms in this sum, each
+1 ’
of which is (z+7); hence 28 =(@+)n,or s = [%]n Q. E. D,

Sce.—This formula being a simple equation in terms of s, a, I, and 2,
any one of the four can be found in terms of the other three.

81. Cor. 1.—Formulas
1) Il=a+(n-1)d, and
(2) s= a+1 being two equations between
the five quantities, a, 1, n, d, and 8, any two of these flve can be found
tn terms of the other three.
82. CoRr. 2.—The formula for inserting a given number of arith-
metical means between two given extremes is d_—l—«i, tn which m

represents the number of means. From this d, the common differ-
ence, being found, the terma can readily be written.

DEM.~If a ia the first term and ! the last, and there are m terms between,
or m means, there are in all m + 2 terms. Hence, substituting in the formula

l—a+(n-1)d,foru,m+2,weluve I=a+(m+1)d. Fromthmd_mu. Q. B D
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83. FORMULZE IN ARITHMETICAL PROGRESSION.

[It will afford a good exercise for the student to solve the following cases on
review, after hdiving gone through Quadratics; though no importance need be

attached to remembering the results, as the fundamental formulas

(1) l=a+(n—1)d, and (2) s= [’—’—;f—’]n
are sufficient to resolve all cases.]

NUMBER. GIVEN. REQUIRED, FORMULAS. .
1. a, d, n l=a+n-1)d, -
e d 8 t=—1d£4/{2d8 + (a—1d)?},
8. a, =n, 14 l= ?.S_ —a,
n
4 4 n 8 (=8, @13
n P
-8, a, , n S=§n{2a+(n—-—1)d},
l+a 1*—a?
6. a, , 1 =g+ og
8 n
a, =, ! S=(+ 0):-3 ,
8. d =, 1 S=jn{2—(n—1)d}.
9. d n 1 a=i—(n—1)d,
10. d, n 8 a=S_(r=Dad
a n 2
11 , I, B a=4d+ 4/(0F1d)* =245,
12. n, I 8 a=2",
l—a
13. a, n, 1! d =51
2(8—an),
14, a, n, 8 g =m
1t —a®
15. a, I, 8 d =35I
2(nl—8)
16. n, l, 8 = n(n--l) .
I—a
17. a d, 1 n=—g+ 1,
—d)® +8d8—~2a+d
18. e d, 8 n 4/ Ra d)M ,
L 28
19. e, I, B ‘n-—-i-;-a
21+ d)t —8dB
2, 4 4 8 n_ﬂ+dﬂ:4\/(9d+d) :
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. ExAMPLES.
1. Find the 21st term of 3--7--11 -+ etc., and the sum _of these
terms. :
2. Find the 24th term of ¥:-5--3 -+ etc, and the sum of these
terms,
3o Find the nth term of }.-§..4.. etc, and the sum of the =
terms.

4. Find the nth term of

of the n terms.

?7'_-_1 . 73':—_2 . n__.é . etc., and the sum
n n n

5. Ingert four arithmetical means between 193 and 443.

6. Prove that the sum of % terms of 1--3-5-- 7+ etc., is to the
sum of m terms as n® : m2.

7. What is the first term of an arithmetical progression whose
59th term is —2}, and 60th —1§? Whose 2d term is }, and 55th 5.8?

8. How many terms in the progression whose common differ-
ence is 3, first term 5, and last term 302 ?

"9, Insert three arithmetical means between m and 7.

10. Produce the formula for inserting m arithmetical means be-
tween a and b, viz,

am+b am—. , ~. vie v M une Tw

m+1 m+1 ‘m+1  m+1

11. If a body fulling to the earth descends @ feet the first second,
3a the second, 5a the third, and so on, how far will it full during the
tth second ? Ans., (2t — 1)a.

12. If o body falling to the carth descends a feet the first second,
3a the second, 5@ the third, and so on, how far will it fall in ¢
seconds ?

GEOMETRICAL PROGRESSION.

84, Prop. 1.—The formula for finding the nth, or last term
of a geometrical progression; or, more properly, the formula ex-
pressing the relation between the first term, the nth tern, the ratio,
and the number of terms of such a series, is 1 =ar*"?, in which1is
the last, or nth term, a the first term, v the ratio, and n the number of
terms.
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DEM.—Letting a represent the first term and 7 the ratio, the series is
a:ar:ar®:ar®:ar':etc. Whence it appears that eny term consists of the
first term multiplied into the ratio raised to a power whose exponent is one
less than the number of the term. Therefore the nth term,or ! = ar-'. Q.E.D.

85. Prop. 2.—The formula for the sum of a geometrical pro-
gression, or expressing the relation between the sumn of the series, the
JSirst term, the ratio, and the number of terms is

_ar"—a

T r—-1’
in which 8 represents the sum, a the first term, r the ratio, and n the
number of termas.

DEM.—The sum of the series being found by a.ddiné all its terms, we have,
8=a+ar + ar* + ar® + - -ar*-? + ar*-? + ar*-?, and multiplying by 7,

rs=__ ar+ar'+ar’+--ar*-* + ar*-? + ar*~' + ar», Subtracting,
r8—8=ar»—a, or
ar—a
(r—1)=ar —a, and c=~;—-r. Q. E. D.

86. Cor. 1.—Formulas
1) 1 =ar-, and
ar’ — a
@ =73
tween the five quantities, 8, 1, v, n, and 8, are sufficient to determine
any TWO of them when the others are given.
8%7. Cor. 2.—8ince 1 = ar"!, Ir = ar®, which substituted in ()
, Ir — s . .
gives 8 = : f ; which formula is often convenient.
88. Con. 3.—The formula for inserting m geometrical means

m+1
between 8 andlisr = 1/‘1;
89. Coxr. 4—The formula for the sum of an infinite decreasing

being two egquations be-

.

. . . a
geometrical progression is 8 = i—r

Dem.—8ince in a decreasing progression the ratio is less than unity, the last
term, ar~-!, is also less than the first term, and numerator and denominator of .

the value of s, l:—' (1'. become negative. Hence it is well enough to write the
formula for the sum of such a series s = oo lr' that is, change the signs of

l—17r
both terms of the fraction. Now, if the terms of a series are constantly decreas-
ing, and the number of terms is infinite, we can fix no value, however small,
which will not be greater than the last, or than some term which may be
reached and passed. Hence we are compelled to call the last term of such &
‘ - R a
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90, GEOMETRICAL FORMULZE.

[In a review, qf¥er the puptl has been through the book, it will be & good exer-
cise for him to deduce the following formulas from the two fundamental ones.
It is not necessary to memorize these.] .

NU:!IB. GIVEN. REQUIRED. TORNMULX.
1. a T, n P =ar—,
2. a, 7 8 =2t (" — 18
8. a, n, 8 ! 18— zyv-' a8 —ap-1=0,
4. r, =n, 8 PR ol
=t
_am =1
5. a T, N S“"r———l y
r—a
6. a 1, I 8= -
S A J—
7 a, n, ! B= ;}_/,l .:‘_/_
Vi-"va
m —~1
8. r n, 1 S= g
9. rom 1 a= F’"l."’
10. r, n, 8 a (_r_:_}%i
11. r, I, 8 a=rl~ (r—1)8,
12. n, I 8 aB—ay-! =S — =0
18. a =n, 1 Pr= Y : B
a
14, a n 8 m—Sp B =2,
r g a
—a
15. a ¢ 8 r=g—7
S -3 l —
16. n I, B "-§5=7 +tg=0
17. o v 1 n= ME:—:E'L‘-' +1,
O _ s =18]-tya,
i ¢ ] » n llog w
: —loga
19. a I} 8 Z(s;;[h‘ la(y( 1);])4.1
) = P -
20. r 4 B T
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EXAMPLES, ‘
1. In a geometrical progression the ﬁrst term ig 3, the ratio 5, and ’
the number of terms 7. What is the last term ? What the sum ?

2. Insert 5 geometrical means between 2 and 1458.

8. Find the 11th term of 4 : 4 : } : etc, and the sum of the
11 terms.

4. Find the 7th termof — § : § : — } : etc.,, and the sum of the 7
terms.

5. Insert 4 geometrical means between § and 243,

6. Find the sum of 3: }: g :etc, to infinity. Alsoof §: —%
: ete., to infinity. Also of .54, Also of .836.

7. Suppose a body to move eternally in this manner; viz., 20
miles the first minute, 19 miles the second minute, 184 the third,
and so on in geometrical progression. What is the utmost distance
it can reach ? Ans., 400 miles.

8. What is the distance p.xssed through by a ball, before it comes
to rest, which falls from the height of 50 feet, and at every fall
rebounds half the distance ? Ans., 150 feet.

9. In the preceding problem, suppose the body fulls 164 feet the
first second, 3 times as far the next second, and 5 times as fur the
third second, and so on, how long will it be before it comes to rest ?

Ans., £%V579(4+34/2) = 10.27657 + seconds.
10. Find the sum of the following series:

$—3+§—# + etc, to n terms.
1+4+§++ etc, to 10 terms.  Also to infinity.
14 +.5+ etc., to 12 terms. Also to infinity.

11. To find what each payment must be in order to discharge a
given principal and interest in a given number of equal payments at
equal intervals of time.

SoLuTION.~Let p represent the principal, » the rate per cent., ¢ one of the

‘equal intervals of time, # the number of payments (i. e., n¢ is the whole time),
and z one of the payments.

There will be as many solutions as there are different methods of computing
interest on notes upon which partial payments have been made.

1at. By the United BStates Court Rule—~As the payinents must exceed the
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interest in order to discharge the principal, this rule requires that we find the

amount of p, for time £, at » per cent. This is done by multiplying by 1 + — 100

and gives p(l + 11‘;% . From this subtracting the payment a,the new prin-

cipal is p(l + 1’:(-)) —z.  Again, finding the amount of this for another period
of time, ¢, and subtracting the second payment,
AN rt
p(l + % z (1 + 100 z.
In like manner, after the third payment there remains
)~ #(1+ ) = =(1+ )
p(1+1'66) a:1+1.6.0 z1+m a.

After the 4th payment, the remainder is

3 2
1+ 70) - 1_"3..(1 _’1)_(1 MY es,
p(1+55) - 2(1+ ) - = 1) T Ut 100
Finally, after the nth payment, wo have
n—2
1+.72) (1 il N ( —_ e .. (1 ud
21+ 555)~ =(t + g ”“’100 Ut 1w
rt
- 2 )—2=0,
m(l + 106 0
Whence
7t
e (1 + {5
rt \* "’------(1—&“_‘
e (14 g) + (4 )+ (14 + 106
This denominator being the sum of a geometrical progression whose first term
1
(1+5 100

is 1, ratio (1 + .1%% , and number of terms 7, its sum is

(1 mo)
(1 A
2d. By the Vermont Rule.~The amount of the principal for the whole time

isp(l-i—%‘ .

100

Hence z =
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The amount of the 1st paymentis . - - - . - - - a-[l + i%%(n - 1)].
] « « 2d s s e e e e . _tt_ —
w[l + T 2)],
“ « “ 8d S e et e e e 1 1‘_ -8 ] )
a:[ + T 00(n )
etc., ete, 0000 - - - - L - - - ete.
« “« L e . e e a ~ “ .
The nth payment (with no interest)is - - - - - . - . .
The sum of the amounts of these payments is
" "
—_ - -2 -8 ----- B
m+1wz[(n D+n—-2)+(n-3) 1}

The series in the brackets being an arithmetical progression whose first torm
is (n — 1), common difference — 1, last term 1, and number of terms (r — 1), its

sum is (" gl)n Hence the sum of the payments is n2 + -l%-oz (" ;' l)n,

nrt
100 ‘”””]
or a:[n + But by the condition this sum equals the amount of
the principal ; consequently
e, (1 4 nrt
z[n.'.&)_(jl]— (1+nrt .’nd c—u
2 =P 100/ =

nrt,
25 + wo(n 1)
ScH.—If the payments are made annually, ¢ =1. And letting »' = 1_;_0,
f. &., letting the rate per cent. be expressed decimally, the formulas become,
_prErr
By the U. 5. Rule, v
— _20(1 +7'n)
By the Vermont Rule, = Sng A1)

12. What must be the annual payment in order to discharge a note
of 85000, bearing interest at 104 per annum, in 5 equal payments?

Amns., By the U. 8. Rule, $1318.99 within a half cent.
By the Vermont Rule, $1250.

QUERY.—What occasions the great disparity between the payments required
by the different rules?
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SECTION IV.
VARIATION.

91. Variation is a term applied to the consideration of quan-
titdes 8o related to each other that any change in one makes the
others change in the same ratio, direct or inverse.

One quantity varies directly as another, when any change in the
latter makes the former change in the same (direct) ratio.

One quantity varies ¢nversely as another, when any change in the
latter makes the former change in the corresponding ‘nverse ratio.

Irr’s.—The amount earned by a laborer in a given time varies directly as his
daily wages. The time required to earn a given amount varies inversely as the
daily wages.

92. One quantity varies jointly as two others, when any change in
the product of the latter two makes the former change in the same
ratio as this product.

ILL.—The amount a laborer receives varies jointly as his daily wages and the
time of service.

93. One quantity varies directly as a second and inversely as a
third, when it varies as the quotient of the second divided by the
third.

ILL.—The time required to earn any amount varies directly as the amount,
and Znversely as the daily wages.

94, The Sign of variation is «.

IrnL—If ¢ varies directly as y, we write z o y, and read “ = varies as .” Itz
varies tnversely as y, we write 2 o -1—, and read “ o varies inversely as . If
varies jointly as y and z, we write o« yz, and read “ z varies jointly as y and 2.”

1t « varies directly as y and inversely as 2z, we write 2 « %, and read “ z varies
directly as y, and inversely as 2.”

95. Prop.—Variation may always be expressed in the form of
proportion.

DeM.—1st. The expression z « y signifies that if @ is doubled y is doubled,
if o is divided y is divided by the same number, etc.; ¢. ¢., that the ratio of = to

¥ is constant. Let m be this ratio, so that :7 =m. Therefored:y ::m:1,
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2d. The expression @ o ;11- signifies that if y is multiplied by any number, 2 is

divided by the same, and if y is divided by any number 2 is multiplied by the
same. Hencethe product of # and y is constant. Let this product be m. Then
zy =m,or z: li:m:y.

8d. 2 « yz signifies that the ratio of z to yz is constant. Let this be m. Then
=m,orz:ye::m:l,ore:y::me:l,orz:e::my:l,orz:y::2:~

e

4th, 2z« < signlﬁes that the ratio of z to 2 ” is constant. Let this be m. Then

2: %::m:l, orz:yiim:e

ExXERCISES.

1. If 2 « y, and y « 2, show that 2 « =

DeEM.—If z « g, the ratio of = to y is constant. Let this ratio be m. Then
2=my. In like manner let » be the rati6 of y to 2. Then y = nz. Hence
@ = mnz. That is, the ratio of @ to 2z is constant, or  « 2.

2Ifzr « -1!/—, and y o:}, show that z « z.

Sve’s.—We may writex = %‘, and y = -;3. Hence z = :L-'fz. That is, the ratio

of z to z is constant, or & « 2.

3. Ifz xzand y « —i—, show that z oz-;-.

Soos. s=me, y=" ca="" orzal
2 Yy Y

LIz « y, show thutfr— « z,and 2« yn .
5. If z « y, and 2z « u, show that zz « yu, and = oz%
6. If 2 « y, and y* « 22, how does z vary in respect to 2?
7. If z « y, and forz =8, y =4, what is the value of y for
x=20°?
SOLUTION.—Since 2 « g, and for ¢ = 8, y = 4, the ratio of  to y is 2. That

is,z_;z. Hence for z = 20, we hnve%qzz,oryzlo.

8 Ifz « 51/—, and for z = 6, y = 2, what is the value of z fory = 3?

Sve. z:-}i 2t 8:%. Hence for y =8, 2==4. Or we may reason tlu;s, in

changing from 2 to 8, y increases } times. Then, ns & changes in the reciprocal
ratio, 2z = § of 6 = 4.
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9. If a + b a — b, prove that a? + 2% ab.
10. If y=p + ¢, in which p x z and qm%; and if when z=1,
#=06; and when 2 =2, y = 5; prove thaty:%z-l— ;-—:’

11. The area of a triangle equals half the product of the base and
altitude. Show that if the base is constant the area varies as the
alsitude; if the altitude is constant the area varies as the base ; and
if the area is constant the altitude and base vary inversely.

12. The volume of a pyramid varies jointly as its base and alti-
tude. A pyramid whose base is 9 feet square, and height 10 feet,
contains 10 cubic yards, What must be the height of a pyramid
with a base 3 feet square in order that it may contain 2 cubic yards?

13. Given that s o ¢%, when fis constant; and 8 « f, when ¢ is
constant ; also, 2s = f, when £=1. Find the equation between f, s,
and 7. .

Sua.—The first two conditions are cquivalent to saying that s varies jointly as
t® and f, 1. e. 8 « fi?; since in this expression if f is constant s o ¢%, and if ¢ is
constant 8 o f.

SECTION V.
HARMONIC PROPORTION AND PROGRESSION.

96. Three quantities are in Harmonic Proportion when the dif-
ference between the first and second is to the difference between the
second and third (the differences being taken in the smme order) as
the first is to the third.

Irn. 6,4,and 3 are in harmonic proportion,since 6 —4:4— 3::6:8. If q, 0,
¢ are in harmonic proportion,a —bd:b—c¢::a:ec.

9%. DEr—~When three quantities taken in order are in har-
monic proportion, the second is the Harmonic Mean between the
other two.

-

98, Prop.—If three quantities are in harmonic proportion, their
reciprocals are in arithmetical proportion.

Dm-—If @, b, ¢ are in harmonic proportion,a —-b:b—c:i:a:¢ and
11 1 .. 1 1 1
ac - bo = ab-—ac Dividing by ade, we have -—_Ez?—'b"“f"?"?"?‘
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99, Der—The reciprocals of the terms of an arithmetical pro-
gression form what is called a Harmonic Progression.

Iut,—Thus a8 1,9, 8,4, 5, 8 1s an arithmetical progression, 1, 1, 3. 5. 5
is & harmonic progression. Also it @, , ¢, d, etc., constitute a harmonic progres-

;11—. —lb-, —t—, %, etc., constitute an arithmetical progression.

sion,

100. Bor.—The term Harmonic is applied to such a series, since, if stripgs
of the same size, substance, and tension, be taken of the lengths 1, }, 4, 4, %, ¢,
any two of them vibrating together produce harmony of sound,

ExXERCISES,
1. If a, b, ¢, d are in harmonic progression, show that ad: cd ::
a—b:c—d.

Sve’s. Hencel——-———l,orard—bcd=abo-—abd.

1101
b ¢ d b a~d ¢

3
i

2. If @, b, ¢ are in harmonic proportion, show that & (the harmonic

2ac

a+c

mean) =

8. Show that the geometric mean between two numbers is a geo-
metric mean between their arithmetic and harmonic means.

4. To insert » harmonic means between ¢ and .

8ve.—First find the form of the terms for n arithmetical means between

1 1 . abn +1) abn + 1)
;lnd-b-. See (82). The harmonic series is @, mia  mesay "
an+1), .

an+d

5. If a and b are the first two terms of a harmonic progression,

) ab '
show that the nth term is a(n — 1) — b(n — 2)

6. Insert 3 harmonic means between { and .

Sca.—There is no method known for finding the sum of a harmonic
series.
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CHAPTER III
QUADRATIC EQUATIONS.

SECTION I
PURE QUADRATICS.

101. A Quadratic Equation is an equation of the second
degree (6, 8).

102. Quadratic Equations are distingunished as Pure (called also
Incomplete), and Affected (called also Complete).

103. 4 Pure Quadratic Equation is an equation which
containg no power of the unknown quantity but the second; as
az® + b= cd, z% — 3b = 102.

104. An Affected Quadratic Equation is an equation
which contains terms of the second degree and also of the first, with
respect to the nunknown quantity or quantities; as z® — 42 =12,
bay — z — y® = 16a, mxy + y =>.

105. A Root of an equation is a quantity which substituted for
the unknown quantity satisfies the equation.

106. Prob.— To solve a Pure Quadratic Egquation.

RULE.—TRANSPOSE ALL THE TERMS CONTAINING THE UNENOWN
QUANTITY INTO THE FIRST MEMBER, AND UNITE THEM INTO ONE,
CLEARING OF FRACTIONS IF NECESSARY. TRANSPOSE THE KNOWN
TERMS INTO THE SECOND MEMBER. DIVIDE BY THE COEFFICIENT OF
THE UNKENOWN QUANTITY. FINALLY, EXTRACT THE SQUARE ROOT
OF BOTH MEMBERS.

Dmt.-:Acoording to the definition of & Pure Quadratic, all the terms contain-
ing the unknown quantity contain its square. Hence they can be transposed
and united into one by adding with reference to the square of the unknown
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quantity. That transposition, and division of both members by the same guan-
tity, do not destroy tho equality has already been proved. Extracting the square
root of the first member gives the first power of the unknown quantity, ¢. . the
quantity itself. And taking the square root of both members does not destroy
the equation, since like roots of equal quantities are equal.

107. Cor. 1.—Every Pure Quadratic Eguation has two roots
numerically equal but with opposite signs.

For every such equation, as the process of solution shows, can be reduced to
the form z® = a (a representing any quantity whatever). Whence, extracting
the root, we have = + ¥ 4 ; as the square root of & quantity is both +, and
— (203, PAxrT I).

108, Cor. 2—The roots of a Pure Quadratic Equation may
both be imaginary, and BOTH will be if ONE is.

For if after having transposed and reduced to the form o = @, the second
member i negative, a8 2’ = — a, extracting the square root gives z = + V=a,
and z = — ¥ —g, both imaginary.

ExAMPLES.

1. 5323 —18z +65=(32—3)3. R, ba® —9=2z% 4 €6.
a at -z =z 45 57____
8. zt == 4. 2t +3 422 —5"

1 1 va 22 —12 a2®—4
5. e =+ —— — = —, 6. —-—'3—= i
Va=z+va Vatz—va =
7. 2®—az+b=az(z—1). 8. 84327 =5+2a%.

a® a® R+ 1
9- V;—i"‘ b'_1/;£i—b’—b' 10. m——g—:z.

11 12+ 4(2® +12)=(2—2)(2+2)~16. 12 2V/6+2*=1+4%

Ntz — V2 3
13. az+1+4/atz ..}ba: 14, OFETHV20z+27 =5
ar+1—+/a%z% —1 a+2—A/3az+ 2
APPLICATIONS.

1. Find two numbers which shall be to each other as 3 to 5, and
the difference of whose squares shall be 256.
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2. Find a number such that if the square root of the difference
between the square of the number and a?, be successively subtracted
from and added to a, the difference of the reciprocals of these results
shall be equal to & divided by the square of the number.

3. Find three numbers which shall be to each other as m, 5, and
2, and the sum of whose squares shall be s.

4. An army was drawn up with 5 more men in file than in rank,
but when the form was changed so that there were 845 more in
rank, there were but 5 ranks. How many men were there in the
army ?

5. From two towns, 7 miles asunder, two persons, A and B, set
out at the same time, and met each other, after travelling as many
days as are equal to the difference of miles they travelled per day,
when it appeared that A had travelled #» miles. How many miles
did each travel per day?

6. For comparatively small distances above the earth’s surface the
distances through which bodies fall under the influence of gravity
are as the squares of the times. Thus, if one body is falling 2
seconds and another 3, the distances fallen through areas4 : 9. A
body falls 4 times as far in 2 seconds as in 1, and 9 times as far in 3
seconds. These facts are learned both by observation and theoret--
ically. It is also observed that a body falls 164 feet in 1 second.
How long is a body in falling 500 feet? One mile (5280 ft.)? Five-
miles?

%. The mass of the earth is to the mass of the sun as 1: 354936, .
and attraction varies directly as the mass and inversely as the square
of the distance. The distance between the earth’s centre and sun’s.
centre being 91,430,000 miles, find the point between the earth and.
sun where the attraction of the earth is equal to that of the sun. The
earth’s radius being 3,962 miles, where is this point sitnated with
reference to the earth’s surface ?

8. A certain sum of money is lent at 5% per aunum. If we multiply
the number of dollars in the principal by the number of dollars in
the interest for 3 months, the product is 720, What is the sum lent ¢

9. The intensity of two lights, A and B, is as 7 : 17, and their dis-
tance apart 132 feet. Where in the line of the lights are the points
of equal illumination, assuming that the intensity varies inversely
a3 the square of the distance P
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10. The loudness of one church bell is three times that of another.
Now, supposing the strength of sound to be inversely as the square
of the distance, at what place on the line of the two will the bells be
equally well heard, the distance between them being a ?

SECTION I
AFFECTED QUADRATICS.

109. An Affected Quadratic equation is an equation which
contains terms of the second degree and also of the first with respect
D 2
to the unknown quantity. 2% — 3z =12, 42 + 3a2® = éﬂ%—%—z-,
3,2
and a_b_.a,:_ — 4az + 3b® =0 are affected quadratic equations.

110. Prob.— T solve an Affected Quadratic Equeation.

RULE.—1. REDUCE THE EQUATION TO THE FORM 2% + az =},
THE CHARACTERISTICS OF WHICH ARE, THAT THE FIRST MEMBER CON-
SISTS OF TWO TERMS, THE FIRST OF WHICH IS POSITIVE AND SIMPLY
THE SQUARE OF THE UNKNOWN QUANTITY, ITS COEFFICIENT BEING
UNITY, WHILE THE SECOND HAS THE FIRST POWER OF THE UNKNOWN
QUANTITY, WITH ANY COEFFICIENT (@) POSITIVE OR NEGATIVE,
INTEGRAL OR FRACTIONAL; AND THE SECOND MEMBER CONSISTS OF
KNOWN TERMS ().

2. ADD THE SQUARE OF HALF THE COEFFICIENT OF THE SECOND
TERM TO BOTH MEMBERS OF THE EQUATION. :

3. EXTRACT THE S8QUARE ROOT OF EACH MEMBER, THUS PRODUCING
A SIMPLE EQUATION FROM WHICH THE VALUE OF THE UNKNOWN
QUANTITY I8 FOUND BY SIMPLE TRANSPOSITION.

DEM.—By definition an affected quadratic equation contains but three kinds
of terms, viz: terms containing the square of the unknown quantity, terms con-
taining the first power of the unknown quantity, and knotwn terms. Hence each
of the three kinds of terms may, by clearing of fractions, transposition, and
uniting, as the particular example may require, be united into one, and the
results arranged in the order given. If, then, the first term, 1. ¢. the one con-
taining the square of the unknown quantity, has a coeficient ather than unity,
or is negative, its coefficient can be rendered unity or positive without destroy-
ing the equation by dividing both the members by whatever coefficient this term
may chance to have after the first reductions. The equation will then take the
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form 2% + az = +b. Now adding (g)'to the first member makes it a perfect

square (the square of 2 & g) , 8ince a trinomial is & perfect square when one of

its terms (the middle one, az, in this case) is £ twice the product of the square
roots of the other two, these two being both positive (116, Pant 1), But, if we
add the square of half the coeflicient of the second term to the first member to
make it & complete square, we must add it to the second member to preserve the
equality of the members. Having extracted the square root of each member,
thgse roots are equal, since like roots of equals are equal. Now, since the first

2
term of the trinomial square is 2?, and the last (%) does not contain z, its

square root is a binomial consisting of # + the square root of its third term, or
half the coefficient of the middle term, and hence a known quantity, The
square root of the second member can be taken exactly, approximately, or indi-
cated, as the case may be. Finally, as the first term of this resulting equation
is simply the unknown quantity, its value is found by transposing the second
term.

ScH. 1.—This process of adding the square of half the coefficient of the
first power of the unknown quantity to the first member, in order to make
it a perfect square, is called CoMPLETING THE SBQUARE. There are a variety
of other ways of completing the square of an affected quadratic, some of
which will be given as we proceed; but this is the most important. This
method will solve all cases: others are mere matters of convenience, in
special cases.

111. CoR. 1.—An affected quadratic equation has two roots.
These roots may both be positive, both be negative, or one positive and
the other negatina. They are both real, or both imaginary.

DEM.—Let 2° + pz = ¢ be any affected quadratic equation reduced to the form
for completing the square. In this form p and ¢ may be either positive or

negative, integral or fractional. Solving this equation we have ¢ = -—%’

9
+ 4 % + ¢. We will now observe what different forms this expression can

take, depending upon the signs and relative values of p and ¢.
1st. When p and q are both positive. The signs will then stand as given ; ¢.e,,

. J 1/&' i ‘/p' ? |/—-—,,-
e= 2:!: T+ e Now,itmevldenttbgt T+q>2' for T+q

s the square root of something more than %’ 'Hence. a8 §< %'+q,

P » a ) p_ /7 ,
-gt —4-+qispopstwc, but—g— 4+qismgatm,iorbothpsm

are negative. Moreover the negative root is numerically greater than the
positive, since the former 1s the numetical sim of the two parts, and the latter
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the numerical difference. ... When p and ¢ are both + in the given form, one
root is positive and the other megative, and the negative root is numerically
greater than the positive one.

2d. When p is negative and q positive. We then have & = — — (~p)~.+q

=-§i‘/ %4-;. Hwe,taketh.eplusl‘aolthemdiul,‘c is posltive ; butif

wo take the — sign, z is negative, since T +q> g Moreover, the positive

root is numerically the greater. ... When p is negative and ¢ positive, one root
is positive and the other negative ; but the positive root is numerically greater
than the negative.

— ' —n)?
8d. When p and q are beth negative. We then have o= — Tpi 1% (——{-)— +(—q)

3
_!ii‘/ T Intlnei!p >q V%—qisreal,andns itialessthnn%,

3
both values are positive, If {-— =q % — ¢ =0 and there is but one value
of z, and this is positive. (It is customary to call this two egual positive roots
for the sake of analogy, and for other reagons which cannot now be appreciated
] s
by the pupil) If -1)4- <gq, ‘/ % —q becomes the square root of a negative
quantity and hence imaginary.

2
4th. When p is positive and q negati Wethenhnvez:-—-gi Li.._q,

t
As before, this gives two real roots when ¢ < % ‘When this is the case both

'
roots are negative. [Let the pupil show how this is seen.] When ¢ = %, the

. .
roots are equal and negative; ¢. e, there is but one. When ’—i—- < g both roots
are imaginary,

112, CoRr. 2.—An affected gquadratic being reduced to the jform
x3 4 px = q, the value of x can always be written out without taking
the intermediate steps of adding the square of half the coefficient of
the second term, extracting the root, and transposing. Thke root in
such a case is half the coefficient of the second term taken with the
opposite sign, = the square root of the sum of the sguars of this
half coefficient, and the known term of the equation. This is observed

directly from the form x = — I_’ ‘ / -2-: + q,aud‘m.an in detail
in the demonstration of the pﬁcedmg ooroﬂ?ary.
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113, Cor. 3.— Upon the principle that the middle term of a tri-
nomial square is twice the product of the square roots of the other
two, we can often complete the square more advantageously than by
the regular rule.

Thus having 4a*— 12z = 16. Since 42* is a perfect square, and 12z is divis-
ible by twice the square root of 4z*, i. ¢. by 4z, we see that the wanting third
texm is 3%, or 9. Adding this to both members, we have 4z*— 1%z + 9 = 25.

Again, if the coefficient of 2* is not a perfect square, it can be rendered such
by multiplying by itself (or often by some other factor). If then the second
term (the termin z) is not divisible by twice the square root of this first term, we
may multiply both members of the equation by 4, and the first term will still
be a perfect square, and the second term divisible by twice its square root.

114, Scu, 2.—The method of ART. 110 is perfectly general, and will
solve all cases ; but some may prefer the more elegant methods indicated in
(113), in special cascs. Some illustrations of these methods are given in
the examples following.

ExaMPLES,
1. 2% — 62=16, 2. 3z% = 24z —36. 3. 2t — dax="Tas.
4 2%~ Vx +2=10. 5. 322+ 135=122. 6. 2%+ (¢—1)z=a.
z 3 z-—l 4z z—" wtzx® 2ax b
. — =1 2+ 3 8. e 7—2——-z+3_2. 9, 5 ——c-+ =0.

10. Solve 9z% +122=32, 72®— 14z = — 5§, and 322 —13z=10,
by Art. 113.

Sua’s.—Dividing 12z by 24/922, or 6z, we have 2 as the square root of the
third term. Hence 9z® + 12z + 4 = 86, is the equation with the square com-
pleted.

7a* — 14x = — B%, becomes, by multiplying by 7, 492%— 082 = — 40. Henoe,
completing the equare as in the last, 492~ 08z + 49 = 0. :

8z¢— 182 == 10, multiplied by 8 and by 4 becomes 862* — 136z = 120. Hence,
completing the square as before, 362 — 1562 + (18)'—

[Note.—8olve the following by any of the preceding methods, tooording to
tante or expediency]

11. (2z+3) x (3z+T¥=12. 12, 82 +22=88.
18, % (L +B%a%)=8(2a%s +b). 14 5zt —024%f=0,
15. 34/ 112 —8z2=19+4/3z+ 7. 16. 7zt ~1lz=6.
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17. (z-c)vzi—(a—b)fez:a 18. 328 4+ z=11.
5(31:—-1) 2+ 42 —ab
19. =34z Lrve —6 %
1+5vz ’\/— 20. s—Vzi—at &
21 Vitz  1—=z 2 z—vz+1_5
1+4/1+2 1—4/1—2z ctvzdl I«
a—2b a® 90 90 Py
23. b —_—+1)( ) =% —a U ——— L0,
Py P 2
25. V4+V2x For=—. 26. 21/’+Vz_5
42 z+a  x—2a__
e sHVFT—D_
29. 2V/z+ 4/ 42+ /T2 +2=1. 80 o= A
31. P B VN S
ot +o¥ (ab3) ¥+ (a20) ¥

SECTION III.

EQUATIONS OF OTHER DEGREES WHICH MAY BE SOLVED AS
QUADRATICS.

115. Prop. 1—Any Pure E’quazion (i. e., one containing the
unknown gquantity affected with but one exponent) can be solved in
a manner eimilar to a Pure Quadram

DEM.—In any such equstion we can ﬂnd the value of the uiknown quantity
affected by its exponent, as if it wéré a simple equation. If then the unknown
quantity is affected with & positive integral exponent it can be freed of it by
evolution; if m«xpenem he apos!tive fraction it ean be freed of it by extract-
. ing the root indicated by ihé numerator of the exponent, and involving this root

to the poweridicsted iy ‘the denominator, 1f the exponent of the unknown
“quantity is négative ) +#ah be rendered positive by multiplying the equation by
the unknows quatiify with a numerically equal positive exponent. Q. B. D.
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116. Prop. 2,—Any equation containing one unknown gquan-
tity affected with only two different exponents, one of which is twice
the other, can be solved as an Affected Quadratic.

DEM.—Let m represent any number, positive or negative, integral or frac-
tional ; then the two exponents will be represented by m and 2m; and the
equation can be reduced to the form &* + pem = ¢g. Now let y = 2=, and y*=2m,

wh.atever m may be. Bubstituting we have y®+ py =g, whence y=—-§

1
: 3 ™
:t1/—fl’:+q. But y = 2™; herwez:(—g:y% + q) . QE D

117. Prop. 3.—Equations may frequently be put in the form
of a quadratic by a judicious grouping of terms containing the
unknown quantity, so that one group shall be the square root of the
other.

DeM.—This proposition will be established by a few examples, as it is not a
general truth, but only points out a special method.

118. Cor—THE FORM OF THE COMPOUND TERM may sometimes
be found by transposing all the terms to the first member, arranging
them with reference to the unknown gquantity, and extracting the
square root. In trying this expedient, if° the highest exponent is
not even it must be made so by multiplying the equation by the
unknown quantity. In like manner the coefficient of this term is
to be made a perfect square. When the process of extracting the
root terminates, if the root found can be detected as a part, or factor,
or fuctor of a part of the remainder, the root may be the polynomial
term.

119. Prop. 4.— When an eguation is reduced to the form
x® 4+ Ax*~! + Bx*~* + Ox*~*-- -+ L= 0, the roots with their signs
changed are factors of the absolute (known) term L.

DEmM.—1st. The equation being in this form, if @ is a root, the equation is
divisible by # —a, For, suppose upon trial 2 —a goes into the polynomial
" + Azr—'+,etc., Q times with a remainder R, (Q represents any series of
terms which may arise from such a division, and R, any remainder.) Now, since
the quotient multiplied by the divisor, + the remainder, equals the dividend, we
have —a)Q+ R=2" + Az»—! + Be*—? + C2*—*-..-. + L. But this polyno-
misl = 0. Hence (+ —a)Q + R=0. Now, by hypothesis a is a root, and conse-
quently @ — ¢ =0. Whence R = 0, or there is no remainder. .

. 2. ¥ now x—a exactly divides a® +Az‘“‘+nr-'+(h'-'...+L '
must exactly divide L, as readily appears from considering the process of
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division. Hence — @ Is & factor of L, a being » reot of the equation,
Q. B D.

120. Many equations of other degrees than the second, and
which do not fall under the preceding cases, may still be solved as
quadratics by means of Special Artifices. For these'artifices the
student must depend upon his own ingenuity, after having studied
some examples as specimens. These methods are so restricted
and special that it is not expedient to classify them; in fdct,
every expert algebraist is constantly developmg new ones. See
Ex’s. 47-57. The following principle is often of service in such

solutions:

121. Prop. 5.—When an equation can be put in such a form
that the product of any number of factors equals 0, the equation is
satisfied by putting any one of these factors equal to 0.

DEM.—This scarcely needs demonstration, but will appear evident if we
congider guch an expression a8 (z* + 1) (2* — 2 + 1) (z — 1) =0. Now, on the
hypothesis that any factor, as 2? + 1, is 0, the equation is satisfied.* So also, if
' — 2® + 1= 0, the equation is satisfied, etc.

122, 8cu.—Ability to recognize a factor in a polynomial is of prime sm-
portance in the solution of such equations. Ieuthagmndkeytodw‘iwlt
solutions.

EXAMPLES.
1. 2¢ =81, 2. x5 = 32. 3. 23 =m.
FRpY, JRPLY 5 4 =1331 6 yl=14

1. zE=b. 8.:2:'}+1/_2.=— 2 .
xi—\/:z—

102 yar=p 1l ad—ob=56. 12 e + bl =

9. 24 + 428 =12,

13 o —2of=8 1ot at=me 15 ot +8t-22=0
, - 5

16. aat — gt —c=o. 17, ob 4 2 =34

2xi‘ .

* In strictness we should add “ since thls hypothesis cannot render any othar fastor o,



HIGHER EQUATIONS SOLVED A8 QUADRATICS. 187
: PV , . _
18. 8z ¥/ +;7;=16. 19. 28 — 2 + 64/2% — 2z + b = 11.*

20. z + 16 — 7"Vz + 16 = 10 — 44/ + 16,
2L 2® — 2z + 64/2* — bz + 6 = }(3z + 33).

‘/ 1
2% Az +12 + 47+ 12=6. 23. w—-—+ 1—1=x-

% 1+Y1-2=¢1+% . m'+—+2( +_ _}i?,

26. 228 — 2z + 24/ 22% — Tz + 6 = bz — 6.

2 VA t2)p— vV{I—2)7 =yI—at
28. 24 — 82® + 202% — 52 + 36 = 126. ,

SOLUTION.—See (I118). Transposing 126, and extracting the square
root; when we have the two terms * — 4z of the roof, we have a
remainder 13z* — 52 — 90. We now notice that, if we call 4 the next term
of the root, the next remainder will be 5z%— 20z —106, which we may
write 5(z* — 4¢ + 4) — 126. Hence our equation may be put in the form
(@ — 4x + 4)* + 5(z* — 4z + 4) = 126.

29. 24— 623 +52% +122=60. 30. 3 —62% +11z=6.
31. 4zt + g = 4% +33. 32. 3 +529 +3z-9=0.

33. 28 —6at +13z—10=0, 34, 23 —132% + 49z —45=0,
85. 23 +82% 4+ 172+10=0. 36. 28 —202* + 1982 —360==0.
37. 23 —152* + 74z —120=0. 88. ot + 229 —32? — 4z +4=0,

#gt 921+ 54+8Ve? —2 +5=16. Putting 2*— 2z + 5=y*, y*+ 6y =16.
Such eubstitation is not absolutely necessary, as we may treat 2% — 22 + § as the waknown
quantity without substituting, Solve the mllowiug in like manner.

# Dividing by T35, we have 4 :” "‘”” =1. Then, malitplying by

Y e T 10 /058 /(- VI

3nyummmudtouy+lor—1 or + or — 8, as roots, 'l'heeqwionhdm-lbh
byo~1,andz+8,
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39, 2¢—1023 4 352% —502424=0. 40, 26 —428 4 82% —82 =21.
41, 7t —223—2562% +262=—120. 42. 3z¢ +1323—1172=243.

z 30 Itje
43. U T 5 zz' + 13
_ 12484z -
U oo=—— Put vz =y. .

SPECIAL EXPEDIENTS.

45. Tofind therootsof 22 =1, 23 ==k1, z¢ =1, 28 =1,
==l and z8 ===1.

Sva’'s. 2®° —1=0. Factoring (z—1) @*+2*+2*+24+1)=0. . .z=1,

and also 24 + 23 +z*+ 2+ 1 =0. Dividing by 2%, z’+z+1+%+{_—,=0,or

3
c‘+2+—1-+z+1=1,or :z+1 + z+-1- =1
z?* z z z

1426
46. To find the roots of TFas = a
Sve’s. 1+ 2¢ = a(l + 2)* = a(l + 4z + 62® + 42 + 2*). Whence, dividing

by 2* and arranging terms, z'+51; 4a ( 1)_ =

V1 + 2%
—x+v1+a:'

8ue’s.—This can be cleared of fractions, and then of radicals, in the ordinary
way. But the following expedient will be found elegant in this case, and

convenient in many. Dividing by 2¢, treating the resulting equation as a

. . 1—2z —-b 142 —2
rtion, and taking it by division, we have —— O ot =T
propo B it by T T at axb 1T+2f

a—b\* % a— Db\t 4ab
= { —— ——1 e (—— = — b; -
(a+b Rk vk (a+b = @ xpy Takingthis again by com
. . (1+2)°_(a+5*+4ab _ (a—b)*" +8ad
pogition and division, we obtain(l,__z),_(a_’_b),_m— @—b¢ =, OF
1+z \’(u-—b)“+841b
iz a—b

_Y@=b"+8ab~(a—?)
Y{a—0b)f + 8ab + (a — b)

47. To solve ——— + o

Agsin, by division and composition, we obtain
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»

48.Tosolve(1+z+x')’—-a+1

(1 + z* + a¢).

Sua’s—Dividing by 1 +2+2% 1+2+2 =“L;_":_%(1—z+z’).or ltz+2

12420
=2+l . 1+a
Ta-1"" "8

49, To solve a = ¢ + (1 — z)*.

Bua’s.—Since (1—2)* = (z—1)', we may write ¢ = (@ — } + §)* + (z — § — $)*
Now put ¢ — } =y, substitute and expand.

50. Tosolve‘/z—-- - 1/1 _;;:z !

Sua’s.—Dividing by 4/1— 2, 4/z+1 —1=3/—:;? . Squaring, ote., 24/Z+1

1 Y .
=1+3+2 Sqming.etc'.ngain'(”"i) _2(”—5)':‘1'
51. Solvez'-—x+3m=g+m

9
—_ =B =gz -2
52. Solve Tzt 5—a—z

2 2
53. Solve “_.i_@_i'__"i. =2
—ar + 2 k4

x' — a?
/Zc+ z% —a?
1+ a8 13
—_—2t = 4). —— = —,
55. Solve 2zv' 1 —x a(l + z¢). Also T+ =2
56. Solve 623 —52% + 2 =0. Also 283 + 2% — 4z —4 = 0.

54. Solve =

= V7% —a? (Va? + az — V2 —ar)

5%. Solve 828 4+ 162 =9. Also 3% 4 8z¢ — 82% = 3.

Sua.—The solutions of the last four depend upon the recognition of a com-
mon factor.



SECTION IV.

SIMULTANEOUS EQUATIONS OF THE SECOND DEGREE BETWEEN
TWO UNENOWN QUANTITIES.

123. Prop. 1.—Two equations between two unkwown quanti-
ties, one of the second degree and the other of the first, moy olways
be solved as a quadratic. :

DEM.—The general form of & Quadratic Eguation between two unknown

quantities is
ar® + bry+ ey +de + ey +f=0,

since in every such equation all the terms in z°® can be collected into one, and its
coefficient represented by @ ; all those in ay can also be collected into one, and
its coefficient represented by b, etc., etc.

The general form of an equation of the First Degree between two variables is
' az+ by +c¢ =0.

Now, from the latter 2 =

U .
-%,———g , which substituted in the former gives

no term containing a higher power of y than the second, and hence the resulting
equation is a quadratic. Q. E. D. .

124, Prop. 2.—In general, the solution of two quadratics
between two unknown gquantities, requires the solution of a bigua-
dratic ; that i8, an equation of the fourth degree.

DEM.—~Two General Equations between two unknown quantities have the
forms
) az’ + bey +cy* + dz + ey + £ =0, and

®) a4+ boy+ey+dz+ey+f =0.
_ _+d by+df cy'+ey+S
From (1), 2 = — rY :l:V v p .

Now, to substitute this value of 2 in equation (2), it must be squared, and
algo, in another term, multiplied by p, either of which operations produces
rational terms containing z*, and a radical of the second degree. Then, to free
the resulting equation of radicals will require the squaring of terms containing
¢*, which will give terms in y*, s well as other terms, Q. E.D.

125, Der—A4 Homo{;e;nemia Fquation is one in which
each term contains the same number of factors of the unknown
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quantities. 22% — 32y — y* = 16 is homogeneous. 32 — 2y + y*
= 10 is not homogeneous.

126. Prop. 3.—Two Homogeneous Quadratic Hguations be-
tween two unknown quantities can always be solved by the method
of quadratics, by substituting for one of the unknown quantities the
product of a new unknown quantity into the other.

Det.—The truth of this proposition will be more readily apprehended by
means of & particular example. Take the two homogeneous equations z?
—ey+y*=21,and y* — 2y + 16=0. Let 2= vy, v being & new unknown
quantity, called an auxiliary, whose value is to be determined. Substituting in
he given equations, we have v*y* — vy® + y* =21, and * — 2vp* = — 15. From

2L andyi= %li ;- Equating these values of 4",

2 —
these we find y - e O
21 15

P s kv & whence 420 — 21 = 150* — 150 + 15. This latter equation

is an affected quadratic, which solved for o, gives v = 8, and .. Knowing the

values of » we readily determine those of y from y*.. 18 —1 and find y

=+ 4/3whenv=38,and y = + 5 when o =4. Finally as ¢ = vy, its values
are z = + 34/8,and % 4.

By observing the substitution of oy for 2 in this solution, it is seen that it
brings the square of y in every term containing the unknown quantities, in each
equation, and hence enables us to find two values of %* in terms of ». It is easy
to see that this will be the case in any homogeneous quadratic with two
unknown quantities, for we have in fact, in the first of the given equations, all
the variety of terms which such an equation can contain. Again, that the equa-
tion in » will not be higher than the second degree is evident, since the values of
¢* consist of known quantities for numerators, and can have denominators of
only the second, or second and first degrees with reference to . Whence » can
always be determined by the method of quadratics; and being determined, the
value of y is obtained from a pure quadratic (y* = 15 in this case), and that

20 —
of & from a simple equation (z = vy in this case),

127%. Prop. 4.— When the unknown guantities are similarly
involved in two quadratic, or even higher equations, the solution can
often be effected as a quadratic, by substituting for one of the un-
known quantities the sum of two others, and for the other unknown
quantity the difference of these new gquantities. -

As this is.only a special expedient, and not a general principle, its truth will

bem&uﬁehnﬂsevﬁmthythewluﬂmohhwmlu Bee Ex's. 13,
14,18 -
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ExAMPLES.

t—Ray—yt=1,
Z+y=2,

V2% —8xy=159,
bz + 2y=".

z+y=4,

L

z% +y* =65,
zy=28.

©

1 1 4>
2y
z% + 2y + 4y =6,
32 +8y?=14.

{ s
¥ {
| X
{ x4+ 2y42Yr="14, g {x’+xy—12
A %
z z
! 3

z® +zy=15,

5 zy~y*= 2

=

Rzt + 2y + y2="3. zy+ut=2
..43/’—9
2y +2y*=3.

z% +y® +1=3azy,
2(zy +4)=38y*.

2% —22y—y*=31,
z® + 22y —y*=101.

10.

©

2% + 2y +y* =52,

Ty —x*=8. 12.

11,

4(z+y)=3xy,
z+y+2% +y*=26.

z* +yt =4z,

14.
z—y =tzy.

13.
15 { zy(z+y)=30,

Clad y3=35.
806.—The last three are readily solved by (127). Thus, inthe 15th, putting

¢ =¢ + o, and y = 2 — 7, the equations become 2z*— 20%z = 80, and 2z*+ 6v's
=83,

z+y  T—
16, z_z x+§ ? 1 {z+y—x/xy—_—7, 18 {x‘— y‘:: 8,
28 + =20, z% +y® +xy=133. 24—yt =14560.

SPECIAL SOLUTIONS.

19. y*— 4oy + 2028 + 3y — 642=0, 5y®— 38zy 4 2*— 1%y
+ 1056z = 0.
Sue.—Add 4 times the first to the second.

* Two %omogeneous quadratics can alwaye be solved by (196), but special expedients are often
more elegant, In this case by adding twice the recond to the firet, and extracting the square
root, we have ®+y =11 Subiractifig twice the second from the first, and m the
square root, we have - § = 3.

[N



SIMULTANBOUS QUADBATIO EQUATIONS. 148

0. z+y=2at, 3y —z=ys
Sve.—Subtract the first from the second.

—_— = x =5 =
Lo {2 Y ) vy om. oy b
._..y'=8. x +y =65 x‘.',.yl:sz.
Sua's.~To solve the 28d, square the first, writing the result * + y* =16
~ 22y, and square again. Then for 2* 4+ y* substitute 82.
]
24. To solve z — y = 3, and 2® — y® = 3093.
Sva’s.—Divide the second by the first, and proceed in a manner similar to
hat given for the last.
25. To solve 2® —zy + y* =Y, and x4 + 22y® + y¢ = 133,
Sua.—Divide the second by the first.

26. To solve (3 - a:_i-;]-y—y). + (3 + ;9—!:/7>, =82, and zy = 2.

B2+ 8y
-y

8Ua’s.—Writo the first (3:::”)'+ ( ) 82; sndput 2=¥ — o,

z+y
Vhence 90’+1%=82.

27. Tosolve #® + y (zy ~1) =0, and y3 — z (zy + 1) = 0.
Sua’s,—Write ¢* +a'y® — 2y =0, and y* — 2% — 2y =0, and subtract the
econd from the ﬁmt Whence 2* — y* + 22%* = 0, or 2* +22%° +y* = 2*, and

eyt = ,‘/'y', or == ‘\/\/2—- 1. From the given equations we get -1—_’_-?—1/-

oy
=§. Hence —8 24/2, or ay = §4/3.
28. Given zy = a(z + y), 22 = b(x + 2), and yz = c(y + 2).
Sue.—These are readily put into the forms _1__}_+1' 1 1+1 d1=!'-
a z' b ! 6 8
.
¥y
29. Given (7 +y+2) =18, y(z+y+z) =12, and z(z+y+2) =6
2y 4
30. Gwenwyz_-is,y 12, nd-—_.§. | |
8L Givenz + y+2=6, 42+ y=2¢, and2® + y* + 22 =14 .

! : Gwen W/ -Q-:y' + 2y = 26, and s— £='2%
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z+y
y+10z+y

34. Given y(2* + y*) = 4(z + ¥)%, and 2y = 4(z + ).

83. Givenx+y=10,and1/§+1/é=
Y z

36. Given ¥z — vy = 24/zy, and « + y = 20. ,
37, Given V2% + y* + 4/a® — y® = 2y, and z¢ —yb =at.

38. Given ,‘/E + 1/2 1/ + 1, and vz%y + Vay® =18,
zy

39. Given vz +y + 2,\/—7_——_2(93——1) g 2 Y0 _ 34
vz —y zy ~ 15°

33. Given P =Y, and xy‘i =3

!/—4=2y§z&. :ti-!-y =2z. ?-‘*y'z’=2y’.

APPLICATIONS.

1. The plate of a looking-glass is 18 inches by 12, and it is to be
surrounded by a plain frame of uniform width, and of surface equal
to that of the glass. Required the width of the frame,

2. A person bought some fine sheep for $360, and found that if he
had bought 6 more for the same money, he would have paid #5 less
for each. How many did he buy, and what was the price of each ?

8. A traveller sets ont for a certain place, and travels one mile the
first day, two the second, three the third, and so on: in 5 days after-
ward another sets out, and travels 12 miles a day. How long and
how far must he travel before they will come together ?

4. Divide the number 48 into two such parts that their product
may be 432.

8. Divide the number 24 into two such parte that their product
may be equal to 35 times their difference.

6. For a journey of 108 miles, 6 hours less would have sufficed,
had the traveller gone 3 miles an hour fuster.. At what rate d;d he
travel ?
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7 The fore wheel of a coach makes 6 revolutions more than the
hind wheel in going 120 yards; but, if the circumference of each
wheel be increased by 1 yard, the fore wheel will make only 4 revo-
lutions more than the hind wheel in the 120 yards. What is the cir-
cumference of each wheel ?

8. The product of two numbers is p; and the difference of _ﬁheir
cules is equal to m times the cube of their difference. Find the
numbers.

9. Find two numbers whose product is equal to the difference of
their sqnares, and the sum of their squares equal to the difference of
their cubes.

10. There are 4 numbers in arithmetical progression. The sum of
the extremes is 8; and the product of the means is 15. What are
the numbers ?

Sue.—In solving examples involving several quantities in arithmetical pro
gression, it is usually expedient to, represent the middle one of the series, when
the number of terms is odd, by x, and let ¥ be the common difference. If the
number of terms is even, represent the two middle terms by z —y,and z + g,
making the common difference 2y.

11. Five persons undertake to reap a field of 87 acres. The five
terms of an arithmetical progression, whose sum is 20, will express
the times in which they can severally reap an acre, and they all
together can finish the job in 60 days. In how many days can each,.
separately, reap an acre ?

12. There are three numbers in geometrical progression, the sum:
of the first and second of which is 9, and the sum of the first and
third is 15. Required the numbers.

8uc’s.—In solving examples involving several quantities in geometrical pro-
gression, it is sometimes expedicnt to represent the first by 2, and the ratio by y,.
go that the numbers will be z, 2y, 23", etc. In other cases it is expedient, if the -
number of numbers sought is odd, to make zy the middle term of the series and’

s
%the matio. Thus 5 terms will be represented %" 23, ay, o, y; . When the-
number of numbers sought is even, it is sometimes expedient to represent the-

two means by 2 and y, and the ratio by % Thus 4 terms become %’. AR !5"'

10 .

13”&‘11&9 are three numbers in geometrical progression whose

.
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14. The sum of the first and second of four numbers in geometn-
cal progression is 15, and the sum of the third and fourth is 60.
- Required the numbers.

15. There are three numbers in geometrical progression, whose
product is 64, and sum 14. What are the numbers?

16. It is required to find four numbers in arithmetical progression,
such that if they are increased by 2, 4, 8, and 15 respectively, ‘ihe
sums shall be in geometrical progression.

17. Tt is required to find four numbers in geometrical progression
such, that their sum shall be 15, and the sum of their squares 85.

18. The sum of 700 dollars was divided among four persons, A, B,
C, and D, whose shares were in geometrical progression; and the
difference between the greatest and least, was to the difference be-
tween the two means, as 37 to 12. What were the several shares ?

19. The sum of three numbers in harmonical proportion is 191,
and the product of the first and third is 4032 ; required the numbers.

20. The 2d and 6th terms of a geometrical progression are respec-
tively 21 and 1701. What is the first term, and what the ratio ?

21. A and B travel on the same road, at the same rate, and in the
same direction. When A is 50 miles from the town D, he overtakes
another traveller who goes at the rate of 3 miles in 2 hours; and
two hours after, he meets a second traveller who goes at the rate of
9 miles in 4 hours. B overtakes the first traveller 45 miles from D,
and meets the second 40 minutes before he (B) reaches the 31st mile-
stone from D. How far are A and B apart ?

22. The joint stock of two partners, A and B, was $2080. A's
money was in trade 9 months, and B’s 6 months, when they shared
stock and gain, A receiving $1140 and B $1260. What was each
man’s stock ?

28. There is a number consisting of three digits, the first of which
i to the second as the second is to the third; the number itself is
to the sum of its digits as 124 to 7; and if 594 be added to it the
digits will be inverted. What is the number ?

24. A person has $1300, which he divides into two portions, and
loans at different rates of interest, 8o that the two portions produce
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' *
equal returns.’ If the first portion had been loaned at the second
rate of interest, it would have produced #36, and if the secand por-
tion had been loaned at the first rate of interest, it would have pro-
duced $49. Required the rates of interest.

25. A person traveling from a certain place, goes 1 mile the first day,
2 the second, 8 the third, and 2o on; and in six days after, another
sete-out from the same place to overtake him, and travels uniformly
15 miles a day. How many days must elapse after the second starts
before they come together ?
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CHAPTER IV,
INEQUALITIES.

128. An Inequality is an cxpression in mathematical sym-
bols, of inequality between two numbers or sets of numbers.

ILL.—~Thus a > b (read “a greater than ”)is an ineqnuiity; algo gtz — 8
<5+ 2 (read “a*z — 8 less than § + 2”). (8ee PArT I, £3.)

129. Fundamental Principle.—In comparing two posi-
tive numbers, that is called the greater which is numerically so.
Thus 5 > 3. But, in comparing two negative numbers, that is
called the greater which is numerically the less. Thue — 5 < — 3.
Of course any negative number is less than any positive number. In
general, we call @ > & when ¢ — & is positive, and @ < b when a — b
is negative.

130. The part of an inequality at the left of the sign >, or <,
is called the first member, and the part at the right, the second mem-
ber of the inequality.

131. For the purposes of mathematical investigation, inequali-
ties are subjected to the same transformations as equations, but with
certain characteristic differences in the results, which will be pointed
out in the following propositions.

132, If, in transforming an inequality, the same member that
was the greater before the transformation is the greater after, the
inequality is said to continue to exist in the same sense ; but, if the
transformation changes the general relation of the members, so that
the member which was the greafer before the transformation is the
less after, the inequality is said to exist in an opposite sense in the
two inequalities.

133, Prop.—The sense in which an inequality exists is not
changed,

1st. By adding equals to both members, or subtracting equals from
both ;
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24. By mzduplymg or dividing the members by equal positive
numbers ;

3d. By adding or multiplying the corresponding members of two
inequalities which exist in the same sense, if all the members are
essentially positive ;

‘4th. By raising both members to any power whose index is an odd
nunber ;

5th. By raising both members to any power, if both members are
essentially positive 5

6th. By extracting the same root of both members, if when the de-
gree of the root is even, only the positive roots be compared.

In1. and DEM.—The 1st is, in gencral, an axiom. Thus if a > b, it is evi-
dentthat e £ ¢ > b+ ¢. When ¢ > a, a — ¢ is negative, but since b < @, b—e¢
is also negative and numerically greater than « — c. Therefore; in this case,
a—c>b—c (129).

2d. This is wholly axiomatie. If a > b it is evident that ma > mb, and that
a b

m” m’

8d. This, too, is an axiom. If @ > b, and ¢ > d, @, b, ¢, and d being each +,
it is evident that @ + ¢ > b + d; and that ac > bd.

4th. This becomes evident by considering that if @ > b, raising both members
to any power whose degree is odd will leave the signs of the members as at the
first, and also the sense of the numerical inequality the same.

5th. This appears from the fact that neither the signs nor the sense of the
numerical inequality of the members is changed by the process.

6th. This {s evident from the fact that the greater number has the gmtaer
root, if only positive roots are Sonsidered. -

134. Prop.— The sense in which an inequality exists is chtmyad,
1st. By changing the signs of both members ;
2d. By multiplying or dividing both members by the same negative

e | By raising Both members to the same even power, if the members
ave both negative in the first instance ; !
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4th, .By ocomparing the negative even roots (the mmbcn, " tbe}!nt
instance, being both essentially positive). .

ILL. and DEM.—The first is evident,since if a> 0, —a < ~1b
That ig, of two negative quantities the numerically grester is really the less.

2d. These operations do not change the numerical relation of the members,
but ‘do change the signs of the members ; hence it falls under the preceding.

8d. and 4th. Essentially the same reasoning as in the last. .

EXERCISES.

1. When a and 2 are unequal, show that a% + 3% >2ab.

SoLUTION.—Let @ > b; whence a—b>0, or a*—2ab+b%>0, or at +52>2abd.
Similarly if @ < 0. .

2. Prove that the arithmetical mean between two quantities is,
in general, greater than the geometrical. How if the quantities are
eqnal ?

3. If a, &, ¢, are such that the sum of any two is greater than the
third, show that a% + 8% + c® <2(ab + ac + be).

4. If a®+ 0%+ c®=1, and m®+ n®+ r2=1, show that am +on
+er<l Howifa=b=c=m=n=r?

5. Show that, in general, (a+b—c)%+ (¢+c—b8)*+ (b + c—a)®
How if a=b=c?

6. Which is greater, 228 or z +1? '

‘Borvrion.—1lst. If z>1, 2'>1(%), 2°>2(}); but w>ez +1(D)
-1

If @ <1, a similar process shows 2z°< z + 1

% From 52—6<3s+8, and 2 +1<3z—3, show that z
may have any value between 7 and 4; 1.6, that the limiting values
are 7 and 4.

8. What are the limiting values of 2 determined from the con-
ditions 32 —2 > jz —4, and §—fx<8—!

9. The double of a number diminished by b5 is greatep thu
and triple of the number diminished by 7 is less than fis, @6«
mcreasjd by 13. 'What numbers will satisfy the conditions?

-




PART IIL

AN ADVANCED COURSE IN
ALGEBRA.

CHAPTER L
INFINITESIMAL ANALYSIS.

SECTION I
DIFFERENTIATION.

135 In certain classes of problems and discussions the quantities
involved are distinguished as Constant and Variable.

136. A Constant quantity is one which maintains the same
value throughout the same discussion, and is represented in the
notation by one of the leading letters of the alphabet. :

137%7. Variable quantities are such as may assume in the aania
discussion any value within certain limjts determined by the nature
of the problem, and are represented by the final letters of tbq
alphabet.

Irp.—If 2 is the radius of a circle and y is its area, y = 7*, as we le
Geometry, 7 being ebout 8.1416, Now if 2, the radius, varies, y, the. exen; will -
vary; but # remains the same for all values of z and y. In this, eupw md ¥
are the variables, and 7z is & constant,

n, if y is the distance a body falls in time z, it is evident M the grester

o is, ﬁho greateriny, i. e, that as o varies y varies. We learn from Physics that

* - for comparatively small distances above the surface of the earth,
5 pasion v—leﬂ,w'.mandymthenriables,ndlcﬁsa-mmm.

ﬂm, suppose we have y* = 2B2®. —-M’—B,u an exprossed relstion

m % and y, and that this is the only relition whicli'is required to -exist

o
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between them ; it is evident that we may give values to @ at pléaewrs, and thus
obtain corresponding values for y. Thus if @=1, y =+ Y17, it 2=2, g
= + 188, etc., ete. In such a case « and y are called variables. But we'hotice
that if we give to < such a value as to make 32* + 5> 252 (as, for example, §,
1, ete), y will be imaginary. This is the kind of limitation referred to in our
definition of variables,*

188, Bca.—The pupil needs to guard against the notion that the terms
eonstant and variable are synonyms for known and unknown, and the morq 8o
as the notation might lead him into this error. The quantities he has been
accustomed to consider in Arithmetic and Elementary Algebra have all been
constant. The distinction here made is 8 new one to him, and pertains to a
new class of problems and discussions.

139. A Function is a quantity, or s mathematical expression,
conceived as depending for its value upon some other quantity or
quantitics.

ILL.—~A man’s wages for a given time is a function of the amount received per
day, or, in general, his wages is a function of the time he works and the amount
he receives per day. In the expreasion y = 1622 (13%), second illustration,
¥ is & fanction of &, ¢. ¢., the space fallen through is a function of the time. The
expression 2az* — 8z + b, or any expression containing z, may be spoken of as
& fanction of z.

Z40. When we wish to indicate that one variable, as y, is a func-
tion of another, as , and do not care to be more specific, we write
y = f(z), and read “y equals (or is) a function of 2.” T'his means
. mothing more than that y is equal to some expression containing the

variable #, and which may contain any constants. If we wish to
- indicate several different expressions cach of which contains z, we
- write f{x), @(x), or f'(x), ctc., and read “the f function of 2,” «the
. @ fanetion of 2,” or “ the £’ function of «.”

by Irp.—The expression f(7) may stand for #® — 2 + 5, or for 8a’® — x*), or for
Luy expression containing # combined in any way with itself or with constants.
“@But {n the same discussion f(r) will mean the same thing throughout. So again,

. 3¢ In & particular discussion we have a certain expression containing 2 (¢. g.,
) az' « a@ + 2ab), it may be represented by f(z), while some other function of @

, {e. p., 5(a* ~ a®) + 22*) might be represented by f'(x), or ¢(a).

~ 141. In equations expressing the relation hetween two variables,
"a8 in y? = 323 — 29, it is customary to epeak of one of the variables,
o 9, 88 a funetion of the other z. Moreover, it is convenient to think

"y

» m Hmits of thh vnlu.mo do net permis the Interpeeistion of jmaginnvies 48 o 4+
b with the restricted view taken of the
M w be undar eonlldmuou,
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of x as varying and ‘thus producing change in y. When so con-
sidered, # is called the Jndependent and y the Dependent variable.
Or we may speak of y a8 a function of the variable .

142, An Infinitesimal is a quantity conceived under such
a form, or law, as to be necessarily less than any assignable quantity.

Infinitesimals are the increments by which continuous number, or
quantity (8), may be conceived to change value, or grow.

ILL.—7%me affords a good illustration of continuous quantity, or number,
Thus a period of time, as § hours, increases, or grows, to another period, as 7
hours, by infinitesimal increments, 4. e., not by hours, minutes, or even seconds,
but by elements which are less than any assignable quantity. In this way we
may conceive any continuous, wariable quantity to chango value, or grow, by
infinitesimal increments.

143, Consecutive Values of a function, or variable, are
values which differ from cach other by less than any assignable
quantity, 7. e, by an infinitesimal part of either.

144. A Differential of a function, or variable, is the differ-
ence between two consecutive states of the function, or variable. It
15 the same as an infinitesimal.

It —Resuming the illustration y =16 4a® (137), let  be thought of ap
some particular period of time (a8 6 seconds), and y as the distance through
which the body falls in that time. Also, let 2’ represent a period of time infini-
tesimally grester than x,and g’ thedistance through which the body falls in time
&’. Then r and @' are consecutive values of 7, and ¥ and y' arc consecutive
values of . Again, the difference hetween r and &', a8 2' — z, is a differential

of the variable z, and y'— y is a differentinl of the function y.

145. Notation.—A differential of 7 is expressed by writing the»
letter d before z, thus dr. Also, dy means, and is read « differans
tial 9"

CAUTION.—Do not read dr by naming the letters as you do ar; but resild

“ differential £.” The d is not a factor, but an abbreviation for the woird difffers
ential.

146. To Differentiate n function is to find an expression
he increment of the function due to an infinitesimal increment
Whble ; or it is the process' of Snding the maiation between

sopl increment of the variable and the arresponding
¥ the function. .
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Ty ;
RULES FOR DIFFERENTIATING.

147. RULE 1.~To DIFFERENTIATE A SINGLE VARIABLE, SIM-
PLY WRITE THE LETTER d BEFORE IT. .

This is merely doing what the notation requires. Thusif @ and «' are conse-
cutive states of the variable 2, {.¢., if 2' is what » becomes when it has taken an
infinitesimal increment, &' — z is the differential of @, and is to be writtendz, In
like manner, y'~ y is to be written dy, y' and y being consecutive values, ¢

.

148. RULE 2, —CONSTANT FACTORS OR DIVISORS APPEAR IN
THE DIFFERENTIAL THE SAME AS IN THE FUNCTION.

DeM.—Let us take the function y = az, in which a is any constant, integral
or fractional. Let 2 take an infinitesimal increment da, becoming » + dr; and
let dy be the corresponding * increment of y, so that when @ becomes z + dz, ¥
becomes y + dy. We then have

1st state of the function - - - - - - . - - y=as;
24, or consecutive state - - - - - - . y+dy=a@+ dr) =ar+ adr.
Subtracting the 1st from the2d . - - . . . dy = adz,

which result being the difference between two consecutive states of the function,
ip its differential (Z44). Now a appears in the differential just as it was in the

funetion. This would evidently be the same if a were a fraction, as ;1‘ We

should then have, in like manner, dy =;:.dz a8 the differential of y= ;1’-11.
Q. E D,

149. RULE 3—~CONSTANT TERMS DISAPPEAR IN DIFFEREN-
TIATING ; OR THE DIFFERENTIAL OF A CONSTANT I8 0.

-

Dex.—Let us take the function y =az + b, in which @ and b are constant.
Let 2 take an infinitesimal increment and become x + dz; and let dy be the
{ncspent which y takes in consequence of this change in z, so thut when
becomes @ + dr, y becomes y + dy. We then have

1t state of the function - - . . . - . y=az +b;
24, or ponsecutive state - - . - y+dy=a@+dr) +d=av+adr+ b
Subtracting the 1st fromthe2d - . . - dy s ade,

which being the difference between two consecutive states of the fumsion, Ia ite
differentinl (1 Kowﬁmnthiudiﬁuw the constant b has dissp
We may also iy that an.s coniiiut retsiss 1o same valua, tiuibe 3§

(LR ‘ U O
* The word * contmnporsmecas * 18 ofen usod ie thie mu'ui.m. et

L]



DIFFERENTIATION, 158

*
ence botween iid. conssentive states (properly it has no consecutive states).
Hence the diffsrendial of a constant may be spoken of (though with some lati-
tade)as 0. Q. X, D,

150, RULE 4—To DIFFERENTIATE THE ALGEBRAIC SUM OF
SEVERAL VARIABLES, DIFFERENTIATE EACH TERM BEPARATELY AND
CONNECT THE DIFFERENTIALS WITH THE SAME SIGNS AS THE TERMS.

DiM.~—Let % =2+ y — 2, u representing the algebraic sum of the variables
z,y,and —z. Then is du = dz + dy — dz. For let dz, dy,and dz be infinitesimal
increments of 2, y, and 2; and let du be the increment which u takes in conse-
quence of the infinitesimal changes in 2, y, and 2. We then have

1st state of the function - - - - - - - - U=z +y—=e;

2d, or consecutive state - - - - - w +du=c+de+y+ dy—(e+ ds),
Or - - « = = - = o = o o« o c utdu=2+dr+y+dy—e—de
Subtracting the st state fromthe2d - - - du=dr +dy—ds. Q. E. D.

151. RULE 5—THE DIFFERCNTIAL OF THE PRODUCT OF TWO
VARIABLES IS THE DIFFERENTIAL OF THE FIRST INTO THE SECOND,
PLUS THE DIFFERENTIAL OF THE SECOND INTO THE FIRST.

DEM.—Let u =zy be the first state of the function. The consecutive state Is
U+ du= (& + de)(y + dy) = 2y + ydz + zdy + do dy. Subtracting the 1st state
from the consecutive state we have thé differential, t. e., du = ydz + zdy + dz dy.
But, as de-dy is the product of two infinitesimals, it is infinitely less than the
other terms (ydr and ady), and hence, having no value as compared with them, is
to be dropped.* Therefore du = ydz + 2dy. Q. E. D.

152. RULE 6~THE DIFFERENTIAL OF THE PRODUCT OF SEV-
ERAL VARTABLES 18 THE SUM OF THE PRODUCTS OF THE DIFFER~
ENTIAL OF EACH INTO THE PRODUCT OF ALL THE OTHERS.

DeM.—Let u = ayz; then du = yedz + 22dy + azyds. For tho 1st state
function is « = ayz, and the 2d, or consecutive state, u + du = (r + dx)('w

(z + da), mu+dn=m+ysh+ndy+myd:+mdyds+w
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+ dadyds. Subtracting, and dropping all infinitesimals ow:nu (8o
preceding rule and foot-note), we have du = yzdr + avedy + b .

In a similar mauner the rule can be demonstrated for any number of varia-
bles. Q@ E. D.

Y. 153. RULE '"7~~THE DIFFERENTIAL OF A FRACTION HAVING
A VARIABLE NUMERATOR AND DENOMINATOR IS THE DIFFEREN-
TIAL OF THE NUMERATOR MULTIPLIED BY THE DENOMINAYOR,
MINUS THE DIFFERENTIAL OF THE DENOMINATOR MULTIPLIED BY
THE NUMERATOR, DIVIDED BY THE SQUARE OF THE DENOMINATOR.

DeM —Let w = ;; then is du = yi:-; Tr—di/ . For, clearing of fractions,
yut =7z Differentiating this by Rule 5th, we have wdy + ydu = dz. BSubsti-
tuting for wu its value ;-, this becomes 3':_1/ + ydu = dz. Finding the value of
du, we have du = ’/(IT; 2y Q E.D.

154. Con.—The differential of a fraction having a constant

" mmserator and a variable denominator is the product of the numera-

tor with its sign changed into the diffirential of the denominator, di-
wéded by the square of the denominator.

Let u= ;. Differentiating this by the rule and calling the differential of

tho copstant (a) 0, we have du = (-)—-;I—f—@ = :—y-ﬂ.@ Q E. D
255, 8ca.—If the numerator is variable and the den or constant,

it falls under Rule 2.
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-
Now from g =: g se have y*~2 ==z » . BSubstituting this in the last it be-

-

i mn—m

Ld
comes ns * dy = mam—'dr; whence dy = 22" """~ dz = -'}a::"dz. Q. E. D,

8d. When the exponent {8 negative Let y = a—*, n being integral or
fractional ; then dy = — #x—-1dz. For y=o" = ;t—, which differentiated by

-1
Rule 3, Cor., gives dy = — nZ ,-z._d? = — nz~*-de. Q.E.D.

"EXAMPLES,
1. Differentiate y = 32°* — 2z + 4.

SoLUuTION.—The result is dy = 6rde — 2dz. Which is thus obtained: By’
Rule 1, the differential of y is dy To differentiate the second member we dif-
ferentiate each term separately according to Rule 4. In differentiating 82%, we
observe that the factor 8 18 retained in the differential, Rule 2, and the differen-
tial of 2% 18, by Rule 8, 2zdr Hence, the diffcrential of 8¢ is 6zdz The differ-
entinl of — 2v is — 2dz. By Rule 3, the constant 4 disappears from the differen-

tinl, or its diffmemidal ie 0.

2. Differentiate g = 2a2* + 4a2® —x + m.
Result, dy = 4azxdz +12a2'dz — da.

3. Differentiate y = 552" — 302* + 4x.
4. Differentiate y = 42* + B2* + COx'

1587, 8ca.—It is desirable that the pupil not only become expert in writ-
ing out the differentials of such expressions as the above, but that he know
what the operstion signifies, Thus, suppose we have the equation y = 5a.
This expresses & relation between z and y. Now, if @ changes value, y must
change also in order to keep the equation true. In this simple case it is easy
to see that y must change 5 times as fast as z in order to keep the equation
true. ‘Thie is what differentiation shows. Thus, differentiating, we have dy
= bds. 'That is, if » takes an infinitesimal increment, y takes an i ]
mal increment equal to 5 times that which @ takes; or, it other wi
increases 5 times as fast as @,
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5. Differentiate y =2 — &', and explain the significance of the
result as above. Result, dy= (8a* — 32%)dz.

‘4

6. In order to keep the relation !l& 82 true a8  varies, how
must y vary in relation to z? What is the relative rate of change
whenz=4? Whenz=2? Whenz=1? {Whenz=4? When
z=¢t
# Answers. When 2 = 4, y increases 12 times as fast as z. When
# = §, y inoveases at the same rate as z. In general y increases 3z
times a8 fast as z.  When = is less than §, y increases slower than .

. . . _ 2 _2—1
T to 12. Differentiate the following: u_.gi, ° = 7 T ;

'y--m} u=2z'y+6z; y=a'~32+4*~2'+1; and
y=j' —§2* + 2
. 18 1o 17. Differentiate y=(a® +22)¢ ; y--(a+a:')’, _0/"'(3:&:-—2)‘i
'y a”s'(s —gt)-%; and y = (1 + 2)7F,

m;-sm examples should be solved by considering the entire quantity

within the parenthesis a8 the variable This is evidently admissible, since any
expression which contains & variable is variable when taken as & whole. Thus

to differentiste y = (@ + az')*, ‘we take the continued product of the exponent (§),
the varisble (g + 2*) with ita exponent diminished by 1,s. ¢, (a + 2*) V], and
" the differentisl of the variable (i o, the differential of a + e*, which is &2da).

This givea us dy = §(a + a’)"*ﬂm,wdy::gw(a + w‘)‘*dz: dodo

—

8V‘o+c‘

ifferentiate —L—; Lt s o1 . _p 2
lﬁﬂoﬁanlﬂemnhatel_’_z, a +‘ﬂh a+zp m(1+z)5
"

- 2y
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SECTION II.
INDETERMINATE COEFFICIENTS,

158. Indeterminate Coefficients are cocfficients assumed
in the demonstration of a theorem or the solution of a problem,
whose values are not known at the outset, but are to be determined
by subsequent processes.

159. Prop.~If A + Bx + Cx*+ Dx* + ete. = A'+B'x + U'x*
+ D's’4 ete,, in which x is a variable® and the co¢fficients A, B,
A', B, ete. are constants, the coefficients of the like powers of x are
equul to each other. That is, A = A’ (these being the cogfficients af x°),
B=B, C=0,ee
DEev —8ince theequation is true for any valueof 2, it is true for z=0.
tuting this value, we haveA=4'. Now as A and A’ are constant,they ha
sume values whatever the value assigned toz Hence for any value of z, A =¥ 4",
Again, dropping 4 and A’, we have Bz + Or*+ Dz®+ etc. = B'z 4 ("2%+ I'z?
+ etc, which is trae for any value of # Dividing by #, we obtain B+ Co-+ Da®
'+ ete.=B + 'z + D'z*+ etc, likewise true for any value of #. Making ¢ =0,
B = B',as before. In this manner we may proceed, and show that s (',
D=D,etc. @ E. D,

160. Cor—If A + Bx + Ox' + Dx* + ete. =0, s true jfor ail
values of x, each of the coefficients A, B, C, etc,, is 0,

For we may write A + Br 4 Ce*+ D2+ Hr'+ Fr®+ ete.=0 + 0z + 0o
+ 02° 4 Ox¢+ 09° 4 eto, Whence by the proposition 4 =0, B=0, 0= 0, ete-

DEVELOPNEXT é; ‘FUNCTIONS BY MEANS OoF INDETERMINASE
CORFFICIENTS,
261. A Function is ssid o be Developed when the idiiited
operations are performeds or, more propilﬂy, when it is tranafortaed
into an equivalent series of terms following some general law.

| Imdeo-Division wtacie 4 seeihal of, developiag sooifililinn of funesioss.
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Thus y= wﬁenmmpedbymvhml»my-l+-+d'+o’+m

The bmomial formnh (CourLrTE ScHOOL ALGEBRA, 195, or 168 of this
treatise) is & formula for developing a binomial. Thus y = (a + 2)° when devel-
oped becomes y = a® + Sa‘z+ 104’2t 4106+ Saz* + 2. The subject is one
of great importance in mathematics, and the method of Indeterminate Coeffi-
cients forms the basis of most that is valuablo upon it.

ExAMPLES,
1. Develop ———— 1 o z, into a series by the method of Indeterminate
Coefficients.
SoLUTION.—Assume ———— 1+ 213 ,.. = A + Bz + (a*+ Dz*+ Ez‘+ etc. Clearing
of fractions,
1l—-¢=A+DB|2+C |2*+D | 2*+E | a*+ ete.
+4| +B| +C| +D| +etc
+4| +B| +C| 4+ et

Equating the coeficients of the corresponding powers of # by (159), we have
the following equations from which to find the values ot 4, B, C, D, etc.:
A=1; A+B=—~1; A4+B+(C=0; B+0+D=0; C+D+E=0. Solving
thowe, wo have A=1, B=—2, C=1, D=1, and E= -3,

Buibatituting these in the assumed development, we have

1
1+z+m’

This oan resdily be verified by actual division

e =1 2242 27— Q04 4 ete.

2. Develop, or expand into & series (a'— z’)* by means of Inde-
terminate Coefficients.

S0LUTION —~Aseume
(0*= )= A4 Bo 4 Co® 4 Dod o Bt 4 Fic® - Gob - st
qurlng both members and expanding (a*—at)?, we bave

302t —2t = A3+ A Biz 4 A C2t + A Dja + A + AP (2% + A G2t +ete,

1t +AB +B' +BC| +BD| +BE, +BF| +etc

1»‘, +Bo +0* | +0D +% +ete,

%y -hBD ::gD +GE +ete,

P e, + +-otc,
e " AAN, +BF ote.

+AG| ete,
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s'AI+BE+esD)a=o, whende F=0; m&a\ Tike G=3 w, ete. (Ifthe -

mmﬂmm“wwm carried farther, each of the succeeding co-
efficienitawould be equitéd with 0 aa there are no terms in the first member contain-
!nghlgherpowatﬂhmthe&h‘) Substituting the values of A, B C, D, etc,es

now found, we h;ve (a'—n')i—a'—éaa‘-l- l:: -1-%, + eto,

8.»Expand, or develop (1— ')} by means of Indetermlna.te Coeffi-

o )
cients, Also —-z_a—;, ‘,——d——,‘ snd © 1 -

Sua.—To expand the last, put the expression equal t6 the usnal aerlea,aquub ‘
both members, and then clear of fractions. !

162, Sca.—In using the method of Indeterminate Coefficients, as the
series A + By + Ce*+ etc., is merely hypothetical at the outset, we mus$
carefully observe whether the subsequent processes develop any inconsist
ency. For example, perhaps a particular expression will not develop inthe
form assumed. If so, some inconsistency will appear in the process.’

were we to attempt to develop P 2 3 by assuming ~—£~— =4 + Bn+

+ Dz?+ ete., we should find, after clearmg of frachons, that the ﬂrlt mem- )
ber had only the term 2, which is 22°; and as there would be no correspond- .
¢ ing term in the second member, we should have to write 2 =0; which is. .
absurd. In genepal, we observe that, when we equate the coetﬁqlaut&, the .
second, or assumed member, must have a term containing as low a power of .
the variable as the lowest in the first member. This may be necured m-
by putting the expression to be developed into a proper form befm ABEUE
ing the series, or by assuming a series of proper form. 'l'hu;, in the'sbuve.

2 1 2
case, we inay write for T i and then dwulbpr—— by,
assuming 1—-2— = 4 4 Br + Cz*+D2® + otc., and finally mult:plylng
-1— ; or it may be dewlpped by sssuming ———sj e R
+ Bzt ote.

4 Expmd g ‘m:' *2 by the, method -of Indetermum




162 . ADVANCED OOURSE IN ALGRDRA. .

DEcoxPoSITION OF FRACTIONS BY MEANS OF INDETERMINATE
CoOEFFICIENTS. ‘
163, For certain purposes, especially in the Integral Calculus,
it is often necessary to decompose a fraction into partial fractions.
There are three principal cases.

CaSE 1.—M fraction which is a function of a single vario-
ble, whose numerator 18 of lower dimensions than its denominator,
and whose denominator i resolvable into n REAL and UNEQUAL fac-
tors of the first degree, can be decomposed into n partial fractions of
; A c
the Jorm S ts¥btxge © T T T T i+
X+C « ~ - - = X+n bcing the factors of the denominator,

B Y N

, X+8,x+Db,

 Dru—Assume 12" = B, O ,
@) z+a  T+b  w+e T+n

wbieh Az is of lower dimensions} than @fz), and @@)= (2 + @) (@ + b)(x + ¢)
A
mam e (+n).} Reducing the partial fmctxonsm s
!urms having a common denominator, this denominator will be the product of all
‘ﬁle denominators @ + a, 2 + b, z + ¢, etc., and hence will be @(z), and each
numerator will contain one less of these factors than the common denominator,
and hence will be of the (n — 1)th degree, the deneminator being of the nth de.
gree.§ Then, as the denominators of both members will be equal, the pumera-
tors will also be equal. Placing them 80, we can find the values of the indeter-
minste coefficients 4, B, C, etc., by the principle in (159). The necessity for
having /(z) of lower dimensions than @) is the seme as is pointed out in (162).
Thus, it Az) contained & term like 52° while ¢(2) contained none higher than
2%, we should be required to write 5 = 0, ag there would be no term in the sec-
ond member having an 2° in it. Finally, having obtained the values of 4, B, (,

eto, we can substitute them in ——— 4 B :-g—;, etc,, and have thw'

z+a' z+d’
%ﬂ fractions sought,

, ete, to

" m CASE 2.—A fraction which is a function of a #ingle varia-
Ble, shose numerator is of lower dimensions than its denominator,
and. stkam denaminator is vesolvable into n REAL and EQUAL faciors
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ofthcﬁmAm odnl;;dmmdmtonpmﬁamomofths

J Grw Y Era +(x+a)"’ Tt T T xyw
x+a being ons of the equal factors of the denominator.
Ju_ 4 B g N
Dex—Assume —o =0 T erar @y T T 5t

in which flz) is of lower dimensions than @(z), and @(z) = (r + «)*. Reducing
tho Mrtial fractions to forms having the common denomunator ( + a)* (5. 6. @),
«nd placing the numerators of the members equal, we nd that the second mem-
Ler i3 rot of lower dimensions with respect to the vanable 2, tLau the first mem-

ber, since the numerator of the fraction J—f‘—‘ will contain the highest power of
z of any of the terms, and this will have no higher power than #*, a8 (z +a)*?
is the factor by which the terms of the fraction ;i!a will be multiplied in the re-

duction Hence, we can find the values of A, B, () etc., by (159), and these
substituted in the assumed scries will give the required partial fractions.

— 1606. Casc 3—A fraction which is a function of a single veria-
ble, 1hose numerator is of lower dimensions than its denominator,
and whose denominator is resolvable into n REAL und equnl QUADs
RATIC fuctors, can be decomposed into n vartinl fractions of the form

Ax + B vx + D Ex+ F
Gro+bvF T [Gra=-v * G+ oF
- e e e ??E}E‘B—” (x + 8)' + b* being one of the equal
Jactors cf the denominator.

DeM.—Assume
:) Az + B Ce+ D Er4+ F

o) " [Grar +0F T @ra s T TTrap e bips "
Mr+ N .

(z + a)® + &'
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A,
%
cases, the formé oY the assumed partial fractions must be made to correspond.

3 __ Rt
Thus were 1t required to decompose z(z:—-b;l +i§,(;f el the assumed par-
A 4 D E o+ @
tial fractions would be Ttapt Grap + @ray tars?t @+ o
Hr+1I
o'+ ot

ExAMPLES.
¢ — 2
1. Decompose P to partial fractions.
-2 A B [
SOLUTION —Assume eyl + i—= + 172’ #,1—x,and 1 + 7 being

the unequal factors of z — z? (115, 117) Bringing the terms of the second
member to a common denominator, we have

2*—2 _ A—Ax*+ Br+ Br* 4+ (v —Cz*

z—2z (1 — z)(1 + 2)
Hence 2* —2=A + (B+ Ox + (B— A — (")2*, from which we get A = —2,
B+C=08nd B—~A4A—C=1 Solving these equations we find 4 = — 2,

= ~4,and C=} These values inserted in the assumed forms give
z*—3 -2 ¥ ¥ 2 1 1

=z 7 i-2ti+z it P 7§ )

2 to 6. Decompose the following _z+3 . 5(—2 %15;

2 —z—2
z+1 . 3r—5 . and x?
22— +12° ¥ — 6z + 8’ 2+ 62 + 11z + 6°

Svue —In case the factors of the denominator are not readily discerned, place
the denominator equal to 0 and resolve the equation Thus the last example
gives 2* + 62* + 112+ 6 =0 From which we have ¢ = —1, ~ 2, and — 8
{119), and the factorsarez + 1,z + 2,and ¢ + 8

P

37— Tx+86, R+3x+2*
(z—1)* > oy v T P

1 1, 1
:?Tll P +a) F—1’ sund @ =2+ B

+3. 8- - 1Q¢’ 152° + 29'—-8
12 to 18, W ﬁ?— 1)
*t

r—z-+1,
Mz + 1)’ z‘-- 1! W > w’-- (a+b)z+u3’ ‘“‘d

% to 11. Decompose the fractions

-
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SECTION III.
THE BINOMIAL FORMULA.

168. Theorem.—Letting x und y represent any guantities
whatever (i e. be variables) and m any constant,

(v +g)" = + ma™y + m(m‘)—l_) o m(m—])(m:i) =y

B B
m(m — 1) (m — 2) (m — 8)
+ E‘ 2~ y* + ete.
DEM.—~We may write (r+y)™ = 2™ (1 +’E’)~. Now put g = ¢ and assume
(1+2m=A+ Bz + (2" + D2* 4 Ez* + F¥* + ete, 1

in which 4, B, C, etc., are indeterminate coefficients independent of 2 (i. e. con-
stants), and are to be determined. To determine these coefficients we proceed
as follows :
Differentiating (1), we bave
m(1+2)*Yde=Bdz+2Cedz+3Dz*dz+4 Ez*dz+5 Fdz+ ete.

Dividing by de, we have .
m(1+2p—t=B+2(% + 3Dz + 4B+ 55 + etc. ©
Differentiating (2) and dividing by de, we have
m(m~1Y1+ey*2=20+2.80z2+3 4E:*+4.5F+ ete, @)
Differentiating (8) and dividing by dz, we have
m(m—1m—B 1+2)*3=2.8D +2-3.482+8.4-5Ff+ ete. )
Differentiating (4) and dividing by dz, we have
wmim—1Xm—2)Ym—8)1+e)y*~4=2.8-4E+2.8.4.5Fe + eto.

Differentiating (5) pd dividing by de, we have
o(m— 1K~ m—BYm—4)1+e)**=0 . 8. 4.56F+ ete, “&

8.
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dents 4, B, 0, ;tc., are constants, §. ¢:, have the same values for one valuetof s
ap for another, if we can determine thelr values for one value of s, thesegnill
be their values in all cases. Now, making #=0, we have from (1) A=1; from

(2), B=m ; from (8), C = M"EI) (the factor 1 being introduced into the de-

; from (5),

nominator for the sake of symmetry); from (4), D = m___(m-—lg( 22

m(m—1)(m—2)m—8)m—4)

= m_____~—(m-—1)(ﬂ;—2)(m =9 from (6), F'= ————-———E. — ==

These values substituted in (1) give
m(m —1) + m(m — 1)}(m — 2)_,+ m(m—1Ym—2)m—8) ,
B B i ’
m(m —1)m —-'.",_)(m —3)m —4)) + ete.
i
Finally, replacing ¢ by its vnlne v , we have
m(m — l)y + m(m — 1)(m — 2) y*

A+ =1+mz+

@E4y)™ =2~ (1+—) =™ {1+m

B e 13 z
m(m — 1Y m — 2{m —3) y* m(m — 1)(m — 2(m — B)(m — 4) y* )
-+ l‘_‘ 20 + B 2 + ¢te {
m(m—1) mim—1}m—2) _ . , m(m~—1)(m—2)(m—3)
=2™ 4 mely - —— B ——— "=+ 1B =3y + Ty
po—" _‘_m(m--1)(m-Lz':{(m---3)(m—4)_v "+ ete.

269. Cor. 1.—T%e nth, or general term of the series is
mm =1y (= 2) =« - - (m—n+ 2)

n—1

For we observe that the last factor in the numerator of the coefficient of any

particular term is m — the number of the term less 2, 4. e., for the nth term,

m — (p—2),0r m —n + 2, and the last factor in the denominator 1s the number

f the term - 1,4, e., for the ath term,n — 1. The exponent of 2 in any par-

term is m — the number of the term less 1, . &., for the xth term,

m-4{n —1),orm — n+ 1; and the exponent of gy in sny term s one leas than
the pamber of the term, i. e., for the nth term, n — 1.

290, Drr.—In a series the Scale of Relation is the relation
which exists between any tetm or set of terms and the next term or
set of terms.

> wolation n My W seriet ic

171, Cor. Wﬂe g M
medsipliod By ik W

z»—-ﬂy.—l.

(m+1_1); MJ’“

{n + 1)k Yorm, !
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This is readily seen by inapecting the series, or by writing the (1 + 1)th term
and dividing it by the nth. Thus, substituting in the general term as given
mim—1) (m—2) Iz e D) the
{n+1)th term. This divided by the nth, or preceding term,* gives montly

n @
(m+1 1) y

above, n + 1 for n, we have

’

D

ExAMPLES.
1 to 6. Expand the following: (¢ —8)%; (z—y)7; (a—2)*;
ML+2)t; 1—9)°¢5 Q-9
7to11. Expaud (z+ )" (z—9)° (a—=z)";
1 (
z+y’

1 -
(a+ )¢’

or (z+ y)!.

L]

[Nore —For practical suggestions 1n the use of this theorem, see COMPLETE
ScHOOL ALGEBRA, pages 148-154, or PART I of tlus volume, pages 58, 50.]

12. Expand (a + )% by using the scale of relation.

SorurioN —The scale of relation (m:—_l_l)z becomes in this ecase
(%;—1‘.— 1){:-' . Now the first term 1s a®. To obtain the next » =1, whenoe
the scale of relation 8; Multiplying a® by this scale of relation, we fiad the
pecond term Ba‘z. For the next the scale of relation is 2%. Hence the 84
term is 10az¢®. For the next the scale of relation is z, giving for the 4th

term 10at2?. For the 5th term the scale of relation is (g—l)‘-’- or }; N
giving for this term Saz*. For the 6th term the scale of rolation eq,
('E - 1)— or i , giving @®. For the 7th term the scale of relation is ( § ...l g

or0 KHence f.he series terminates

18, Expand (m — #)~* by using the soale of relation, sui “
by the general formnla.

iett. it b @yl (x—-s)* @+ot,

.x'.ﬁ

o " umm IS duriatis il the faota¥s of
A 0~ n+1, 08 the Maetor mmﬂmmu LY V5]
, ,mw‘wﬁm L, :

W 7
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18 t020. Expand (a* — 2%)¥; (82 — 2%)~*; (a* + ch)e.

Sue’s —In cases in which the terms of the binomial are not single letters o)
figures, 1t will be best to substitute single letters, expand and then replace the

values Thus, to expand (z*— )'i,put z’=y, and 8a = b, and expand (y—b) +
and 1in this expansion restore the values of y and  In like manner the for
mula may be apphed to any polynommal Thus, to expand (1 — 2%+ 8)®, put
(1 —2*) =¢, and 8y = u, expand (¢ + w)*, and then restore the values

21. Expand ——.—Z——_— into a series.
V6% — o2zt
Sue's ——o-— = a(b®—c*z?) *. Put y*=wv, and c*2*=y, and expanc
Vit—cir?

{v— y)'*, etc The result is

a 2 18 20 185 1857
Vot —aigt {+ib‘+24 WYy T e eTEaes v

y ete }
r
22. What is the 4th term of the development of (a%+ z)ii
(See 169.)
+ Bua —The general term is mm—1 ---(m—n+2) z"'"'*‘y""' In thu

F=1

case m=4, n=4, z=a®, y=r¢ Whence the 4th term 1a

eaﬁ

23, What is the 7th term of (a®—2%)¥? The 10th term?

SECTION IV.
LOGARITHMS

172. A Logarithm is the exponent by which a fixed number
is to be affected in order to produce any required number. The
fixed number is called the Base of the System.,

Iru~Let the Base be 3 then the logamthm of 9is 2, of 27,8, of 81, 4;

of 15688, 9; for 8*=9, 8’= 81;1“3’::%; , it @4 is the
base, the logarithum '& o4t, or Bbteu; e, . or 3 in fhe
" exponent by whidh ‘base, it 1o be affected i order to produce thin sk

 ber8. Bo, also, 64 beisig the Dane, },or 588+ is the logarithm of 4, aiwoe 84¥,
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or 64730 =4; {, ¢, {, or 8884 is the exponent by which 64, the base, is to be
affected in order to produce the number 4. Once more, since 64", or 64:666+=18,
§, or 806+ is the logarithm of 16, if the base is 64. Finally,84 %, or 64—
=4, 0r.125; hence —4, or —.5 is the logarithm of }, or .125, when the base is
64. Inlike manner, with the same base, —1, or —.8384- is the logarithm of %,
or .25,

15 3. Cor—Since any number with 0 Jor its exponent is 1, the
logarithm of 1 is 0, in all systems. Thus 10°=1, whence O is the
logarithm of 1, in a system in whick the base is 10.

174, A System of Logarithms is a scheme by which all
numbers can be represented, cither exactly or approximately, by
exponents by which a fixed number (the base) can be affected.

175, There are Two Systems of Logarithms in common use,
called, respectively, the Briggean or Common System, and the Na-
pierian or Hyperbolic System* The base of the former is 10, and of
the latter 2.71828+. In the present treatise we shall confine our
attention to systems whose bases arc greater than 1.

276. Cor. 1.—Neither 1 nor any negative number can be used
as the base of* a system of logarithwms,

For all numbers cannot be represented either exactly or approximately by ex-
ponents of such numbers. Thus with 1 as a base we can reprerent no other
number than 1 by its exponents, for 1 with any exponent is 1. Moreover, with a
negative Lase the logarithms which were odd numbers would represent negative
numbers, and those which were even numbers would represent positive numbers,
For example, with —2 as a base, 8 might be considered as the logarithm of —8,
since (—2)*= — 8; but no number could be found as a logarithm to correspond
to 8(s. e. +8), since —2 cannot be affected with any exponent which will pro-
duce 8.

177. One of the most important nses of logarithms is to facilitate
the multiplication, division, involution, and the extraction of roots
of large numbers. These processes are performed upon the following
principles:

178. Prop. 1,—The logarithm of the product of two numbers
8 the sumn of their logarithma, %

Dru Lot o be the bage of the system. Lot m and 7 be any two n
whiose Jogarithane arw.and p vespectively. Then by definition a%=m, and a¥is.
Lk oy I %

uiIng Jm;@nmmuumrmmmdu;‘immum

e whvies 1n common nse. Naplerian logarithms ave ueoally fmplied in ghatract maths-
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qﬁ‘
Nn!tlplying the correaponding membem of ﬂbn tquaﬂons togezlm' wo have
a@*tv=mn. Whence z+y is the Iogmth of mn. Q E.D.

I179. Prop. 2.—The logarithm of the quotient of two numbers
i the logarithm of the dividend minus the logarithm of the divieor.

DeM.—Let a be the base of the system, and m and n any two numbers whose
logarithms are, respectively, z, and y. Then by definition we have ar=m,
h

and a? =n. Dividing, we have aH:%. Whence z—y is the logarithm

o™ E. D,
w YGED

180. Prop. 3.—The logarithm of a power of a number és the
logarithm of the number multiplied by the tndex of the power.
<+ DEM.—Let a be the base, and  the logarithm of m. Then a*=m ; and raising

both to any power, as tho zth, we have a**=m+. Whence ¢ is the logarithm of
the zth power of m. Q. E. D

181. Prop. 4.—The logarithm of ‘any root of a number is the
logarithm of 'the number divided by the number expressing the degree
of the root.

DeM.—Let a be the base, and « the logarithm of m. Then a*=m. Ex.
‘:___ L/ @ . . »
tracting the #th root we have a*=4/m. Whence s the logarithm of 4/m.
Q. = D.

182. It is evident that in any system, the loganthms of most
numbers will not'ma expressed in integers. Thus in the common
system the logarithm of 100 is 2, and of 1000 3; hence the ]oga-
rithm' of any numbel between 100 and 1000 is between 2 and 3, i. e
2 and some fraction. This fraction is usually written as a.decimal

“ fraction, and, as we shall see more clearly hereafter, can in general be
expmsed only approximately.

183. The Integral Part of a logarithm is called the Charactcr
istic, and the decimal part the Mantissa.

13‘4; Prop.—The Mantissa of the logarithm of a &czmalfrac-
#92:, or of a mized numb:r, is the same as the mantma qf‘ the num-

" *Usually, !n
gystem 18 to
reterred to.
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DEM.—It will be found hereafter that log 2845672=6.454185. Now this
means that 10°-454185-2845672, Dividing by 10 succeesively we have

105-484185 — 984567.2, or log 2845672 = 5.4564185,
10448105 . 9845672, or log 28456.72 = 4.454185,
10%-454138 .- 2845673, or log 2845672 = 8.454185,

107454185 — 2845072, or log 2845672 = 2.454185,
101454185 — 2845072, or log 2845672 = 1.454185,
100454185 == 2845672, or log 2.845672 = 0.454165.

Now..i! we continue the operation of division, only writing 0.454185 —1,
1.454185, meaning by this that the characteristic is negative and the mantissa
positive, and the subtraction not performed, we have

107-454186 — 9845672, or log .2845072 = 1.454185,

108454185 — (02845672, or log .02845672 = 2 454183,

107454188 — (02845072, or log .002845672 = 3.454180,
etc.,etc Q. E.D.

185. Cor. 1.—The characteristic of the logarithm of an integral
number, or of a@ mixed integral and decimal fractional number, is oné
less than the number of integral places in the nuinber.

The characteristic of the logarithm of a number entirely decimaul
Jractional is negative and nwinerically one greater than the number
af" 0’s immediately following the decimal point.

Thus the characteristic of the logarithm of any number between 1 and 10
is 0, between 10 and 100 1, between 100 and 1000 2, ete. Or let it be asked,
“ What is the characteristic of the logarithm of 5126?” Now this number lies
between 1000 and 10000, hence its logarithm lies between 8 and 4, and is, there-
fore, 8 and some fraction.

Again, a8 to the numerical value of the characteristic of the logarithm of a
number wholly decimal fractional, consider that 10— = }3=11; 10-2 =1}5=.01;
10-3= 1¢4n = .001. Thus it appears that any number between 1 and .1, 1. ¢., any
number expressed by a decimal fraction having a significant figure in tenth’s
place, as 2504, 846, .1205, etc, will have its logarithm between 0 (the logarithm
of 1) and —1 (the logarithm of .1). Hence such a logarithm will be —1 4 soms
fraction (the mantissa). In like manner, any number between .1 and .01, 4. @,
any decimel fraction whose first significant figure is in 100th’s place, as 02008,
0956, 01208, etc., will have for its logarithm —2 <+ some fraction.

188, Cor. 2.—The common logarithm of 0 is — . ¢

Sinoe & number less than unity has & negative characteristic, and this char-
actaristic increases numerically as the number decreases, when the n%
decrosses to 0, the logerithaa increases n ; to . Henco log O0=—

; , log 1221, log ,01=2, log 001 =B} 1ol "'Wetce when the
S 9's Yecoumes infinite, and the number % we have log 0
**“b +
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COMPUTATION OF LOGARITHMS. .

18%. The Modulus of a gystem of logarithms is.a constant
factor which depends upon the base of the system and characterizes
the system.

188. Prop.—The differential of the logarithm of a number is
the differential of the number multiplied by the modulus of the system,
divided by the number ;

Or, in the Napierian system, the modulus being 1, the differential
of the logarithm of @ number is the differential of the number divided
by the number.

DEM —Let 2 represent any number, ¢ ¢ be a variable, and n be a constant
such that y=z* Then log y=n log © (180) Differentiating y=x', we have
dy=na"—'dz, whence

day

= __ 9 _dy _y
n—z"-‘dz—ﬂ;_ud‘t_ dr @

z 2 2

{

Aguin, whatever the differentials of log 7 and log = are, n being a constant
factor, we shall have the differential of log ¥ equal to 2 tunes the differential of
log @, which may be written

d(log y)=n d(log r), whence n = aog ¥) )

(iog 2)

d(log y)

Now equating the values of n as represented in (1) and (2), we have dulog @)

d

==-Ez”— ‘Whence d(log ) bears the same ratio to i:’, as d(log z) does to ‘-:E Let

E
m be this ratio  Then d(log ="'_:1, and d(log 2)="4

‘We are now to show that m is constant and depends on the base of the
system.
To do this, take y=2z+', from which we can find as above n'=
4
a-g;-. Now as m is the ratio of dlog ) to :;‘!, 1t is also the ratio of d(log ¢) to

d(log y)
d(log ¢)

[ ]
l
5'.‘, .mmogw, Pl v pee that in axty owf €he pame ratio ¢xints be-

tween the differeiviil 't the Togwetthm of a numbey il the atff
number dividel by the number. Therefore m is a constant factor. AROS i
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That m depends upon the base of the system is evident, since in a system of
logarithma the only quantities involved are the number, its logarithm, and the
base, Of these the two former are variables; whence, as the bage is the only
constant invo}ved in the scheme, m is a function of the base.*

189. Prob.—1o produce the logarithmic series.

SoLuTioN.—The logarithmic series, which is the foundation of the usual
methdl of computing logarithms, and of much of the theory of logarithms, is
the development of log (1 + ). To develop log (1 + a), assume

log(1 +2) =A4 + Bz + Ce* + D2® + Ea* + Fz® + etc,, 1)
in which x is a variable, and 4, B, C, etc., are constanta.

Difterentiating (1), we have
mArt _ Bde + 20zdz + 8Datdz + AKy'ds + 5Hitdz + ete.

1+
Dividing by dw,
Tﬁﬁ = B + 20z + 3Dz* + 4Ex® + 5Fr* + ete. @)
Differentiating (2), and dividing by dx, we have
—m. Y =20+92 8Dz +8 4K + 4.58° + ete. ®
i+ar
Differentiating (3),and dividing by 2 and by dr, we have
m(_l_m=8D+3 4Er + 2 8 BFr® + etc, “)
Differentiating (4), and dividing by 8 and d.r, we have
[ — 5 tc.
m(l+“‘ 4K + 4 5Fr + etc )
Differentiating (5), and dividing by 4 and d, we have
1 _
m e 5F + etct . ()

We have now gone far enough to enable us to determine the coefficients A,
B, C, D, E, and F, and these will probably reveal the law of the series.

As all the above equations are to be true for all values of z, and as the ool
cients A4, B, C, eto,, are constant, . ¢., have the same valnes for one value of ® ag
for another, if we can determine their values for one valne of z, these will be
their values in all cases, Now, making @ == 0, we have, from (1), 4 =log 1= 0;

* What the relation of the mgdulus to the base 1s, we &te not now concernsd to knowy ¥,
Wil be deterimined herester. A ¢ N
uaber 1 1+ 0t} Seonms Shifrential lsuM\”dlﬂbWi+cdmw
e 1 2. . L
g ihe sindutt Wil chserve what forms the sucobeding e 1 $iite wud the othar
woud Bave. , Thus hete wo ehould have 57+ .66 + 9+8. it dywtc,




mmvm ommn m“mm&

M@)»B m; 1NM(3L0=~§M.!IW($).D ym; from (), B= —~im;
. tvom (6), F_.im. Thewe valwes substituted in (1) glve
log(l+2)= m@:—£+8 ‘+f-etc),

the law of which is evident. This is the Logarithmic Serics, and should be fixed
in memory.

ScH.—The Napierinn system of logarithms is characterized by the modu-
lus being 1 (m =1). Hence the Napierian logarithmio series is

g 3 4 5
103(1+-’0)=9’-% +%-—%+‘%—etc

-

190. Con. 1.—The logarithms of the same number in different
systems are to each other as the moduli of those systems.

This is evident from the general logarithmic series. Thus the logarithm of
1 + @ in a aystem whose modulus is m, is expressed

loge (1 + 2)* = m(z — -:+——— +-5:—etc.);

and the logarithm of the same number in & system whose modulus is ' is ex-
pressed

logal 4 @)* = m’(a;-_g_ +“’; ‘: + _5_— etc.).

Now, as the number (1 + z) is, by hypothesis, the same in both cases, z is the
same. Hence, dividing one equation by the other, we have

logm (1 +2) _ m
TogmdI + ) —

191, Cor. 2.—Having the logarithm of & number in the Napierian
8ystem, we have but to multiply it by the modulus of any other system
to obtain the logarithm qf the same number in the latter system.

. Or, the logarithm of a number in any system divided by the loga-
vithm of the same number in the Napierian system, gives the modulus
of ‘the former system. -

', 192. Prob.—To adapt the Napierian logarithmic series to nu~
ma'lcal computation so that €t can be conveniently used for computing
the logarithma of numbers.

S0L.—That log(1 +z)_w-%' + T; z +‘-‘§ + ete,, hm!nlprmﬁu-
‘Sl form for computing the logarithums of numbers will be evident it we p,ka‘
the attempt, Thm,mppowwemwcm of 8. . Making.
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2t 23 g+ 28
@ =29, we have log(1+2)=log8=3—-2-+—§--~z+—5— — etc,, & series

in which the terms are growing larger and larger (a diverging series).

We wish o series in which the terms will grow smaller as we extend
it (a converguig series). Then the farther we extend the series, the more
nearly shall we approximate the logarithm sought To obtain such a series,
substitute —z forz in the Napierian logarithmic senes, and we have

logl—d)=—2—% % -1 T ote.
»
Subtracting this from the former serios, we have
log (1+2) —log (1—2) =log (1 k) R 2z + 323 + 328 +427 + ete).

1 1 22+2 2
Now P“t $= gy Whenoe lie=l+grg =513 1-2=gy o
: i ; = 1_:_'5, Hence, as log (T) = log (1+2) — log ¢, substituting, and trans-
posing,

1 1 1 1
log (1+2) =1log z+2(2—z—+—i + 3(22+1),+5(2z+1), + @1y +etc). (4)
This series converges quite rapidly, especially for large values of 2, and is

convenient for use in computing logarithms.

193, Prob.—Tocompute the Napierian logarithmas of the natural
numbers 1, 2, 3, 4, etc,, ad libitum.

SorUTION —In the first place we remark that it is only necessary to compute
the logarithms of prime numbers, since the logarithm of a composite number
is equal to the sum of the logamthms of ite factors (17'8).

Therefore beginning with 1, we know that log 1= 0 (173).
To compute the logarithm of 2, make z=1, in series (A),and we havelog (1+1)

—logl=1log?2= 2(3 +3 3,+513.+713.,+013,+ nl 3t ig gn s 8""""‘)'
The numerical operations are conveniently performed as follows :
8 ; 200000000
9 | .666066067 | 1| 66666667*
9| .07407407 | 8 | 02469136
9| 00823045 | 5 | .00164600
9| 00001449 | 7 | .00018064 .
9 | .00010161 | 9 | .00001129
9 [ .00001120 | 11 | .D6000103
9 | .00000125 | 18 | 00000009

00000014 | 15 | .00000001
F o log 2 == 00814718 %
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Becond. To find log 3, make ¢ = 2, whence

11 1 1 1
log 8 =1log 2+9(g+§f—5—5+m+m+m+ Otc-).

Computation. 5 | 2.00000000

25 | 40000000 | 1

25 | 01600000 | 8

25 | 00004000 | 5

25 | .00002560 | 7 -
00000102 ! 9

40546510
log 2 = .60314718 '

.~ log 8 = 1.09861228

Third. Tofindlog4 Log4=2Ilog2 =2 x .69314718 = 1.38620436
Fourth. To find log 5. Let z =4, whence
1 1 1 1
log 5 =log 4 + 2(6 tggtyptagt etc.).

Computation. 9 | 2.00000000

81 | 22222222 | 1| .22222222
81 | .00274348 | 3 | .00091449
81| .00003387 | 5 | .00000677
00000042 | 7 | .00000006
22314854

log 4 = 1.38620430
.. log 5 = 1.600438790

In like manner we may proceed to compute the logarithms of the prime num.
bers from the formule, and obtain those of the composite numbers on the prin-
ciple that the logarithm of the product equals the sum of the logarithms of the
factors.

Thus, the Napierian logarithm of the base of the common system, 10, = log 5
- log 2 = 2,80258508.

194, Prop.— The modulus of the common system is 43420448 +,

Dex.—Bince the logarithm of & number, in any system, divided by the Na-
plerian logarithm of the same number is equal t¥fhe modulus of that system
(191), we have ‘

%aﬂdﬂuam'm “
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But com. log 10 =1, and Nap. log 10 = 2.30258508, as* found above. Hence,

1 43008

Modulus of common system = 550358508

TABLES OF LOGARITHMS.

195. As one of the most important uses of logarithms is to
facilitate the performance of multiplication, division, involution, and
evolution, when the numbers are large, according to (178-181),
it is neccessary to have at hand a table containing the logarithms
of numbers. Such a table of common logarithms is usually found
in treatises on trigonometry and on surveying, or in a separate
volume of tables.* These tables usually contain the common loga-
rithms of numbers from 1 to 10000, with provision for ascertaining
therefrom the logarithms of other numbers with sufficient accuracy
for practical purposes. Four pages of such a table will be found
at the close of this volume.

196, Prob.—To find the logarithm of a number from the table.

SoLuTION.—The logarithm of any number from 1 to 100 inclusive can be
taken directly from the first page of the table. Thus log 2 = 0.301080, and
log 21 = 1.322219.¢

To find the logarithm of any number from 100 to 999 inclusive, look for the
number in the column headed N, and opposite the number in the first column at
the right is the mantissa of the Jogarithm., The characteristic is known by
(1885). Thus log 182 = 2.260071 ; log 135 = 2.130334.

To find the logarithm of any number represented by 4 figures, find the first 3
left-hand figures in column N, and opposite this at the right in the column whick
has the fourth figure at its head, will be found the last four figures of the man-
tissa. The other two figures of the mantissa will be found in the 0 column, oppo-

* Mathematicians and practical computers generally use more complete and extended tables.
than thoee found in connection with such elementary treatises, The common tables give five
places of decimals in the mantissa, Those in connection with this serics give six, Callet's
tables edited by Ilasler are standard eight-place logarithms. Vega’s tables are among the bert.
Dr. Bremiker's edition, translated by Prof. Fischer, is a favorite. KEOhler's edition of Vega's
contalne Gaussian logarithms. Veogn's tables are seven-place. Ten-place logarithms are necos
sary for the moro accurate astronomical calculations, Prof. J. Mills Peirce, of Harvard, bas re-
cently femned an elegant littie fdio edition of 1ables containing among other things & tavle of
threequiice logarithms which is very tonvenient for most nses.

pago is really & y, #ince nothing ran he found from 1t which canuot be fonnd

aase from the succenrding part of the table, Thue, the maudirea of log R i¢ tha same
e 80 mantiesa of log 800 ; and the mantises of log 31 is the rame us that of oy 810,
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site the first three figures of the number or just above, unless heavy dots have
been passed or reached in running across the page to the right, in which case the
first two figures of the mantissa will be found in the 0 column just delow the
number. The places of the heavy dots must be supplied with 0's. The charac-
teristic is determined by (£85). Thus log 1816=38.118256 ; log 2042=8.810056 ;
log 1868 = 8.271877.

To find the logarithm of a number represented by more than 4 figures. Let
it be required to find the logarithm of 1934261. Finding the mantissa correspond.
ing to the first four figures (1934) as before, we find it to be .286456. Now in the
same horizontal line and in the column marked D, we find 225, which is called
the Tabular Difference. This is the difference between the logarithms of two
consecutive numbers at this point in the table. Thus 225 (millionths) is the
difference between the logarithms of 1984 and 1935, or, as we are using it,
between the logarithma of 1934000 and 1935000, which differences are the same.
Now, assuming that, if an increase of 1000 in the number makes an increase of
225 (millionths) in the logarithm, an increase of 261 in the number will make an
increase of iftk, or, 261, of 225 (millionths) in the logarithm,* we bhave .261

x 225 (millionths) = 59 (millionths), omitting lower orders, as the amount to be

added to the logarithm of 1984000 to produce the logarithm of 1934261. Adding
this and writing the characteristic (185) we have log 1934261 = 6.286515. In
like manner the logarithm of any other number expressed by more than four
figures may be found.

197. Berm.—As the mantissa of a mixed integral and decimal frgctional
number, or of a number entirely decimal fractional, is the same as that of an
integral number cxpressed by the same figurcs (184), we can find the man-
tissa of the logarithm of such a number as if the number were wholly inte-
grel, and determine the characteristic by (185).

198. Prob.—To find the number corresponding to a given
Mgarithm.
BoLUTION.—Let it be required to find the number corresponding to the log-
arithm 4.284567. Looking in the table for the next lces mantissa, we find 284517,
the namber corresponding to which is 1716 (no account being taken as to
whether it s integral, fractional, or mixed ; as in any case, the fignres will be the
samse). Now, from the fabwlar difference, in column D, we find that an increase
of 233 (millionthe) upon this logarithm, would make an increase of 1 in the
mumber, making it 1717. But the given logarithm is only 50 greater than the
logarithm of 1716; hence, it is assumed (though only approximately correct)
that the increase of the number is 5ot 1, or 1076 +. This added (the figures
annexed) to 1718, gives 17161976 +. The chargcteristic of the given logarithm
‘being 4, the number lies between the 4th and §th powers of 10, and hence has §
integral places. .. 4284567 = Jog 17161.978 +. In like manner the number
worresponding to sy logarithm can be found. s

"

* This assumption, though not strictly correct, is suficlently acomtate for all ardimgey
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199, Prop.—The Napierian base is 2.718281828. o

Deu.—Let e represent the base of the Napierian system, Then by )N
com. log ¢ . Nup. log e .. 48429448 . 1.
But the logarithm of the base of a system, taken in that system is 1, since
@' =a. ence, Nap. log ¢ =1, and com log ¢= 43420448. Now finding from
& table of common logarithms the number corresponding to the logarithm
.48329448, we have ¢ = 2.718281828,

ExAMPLES.

1. If 3 were the base of a system of logarithms, what would he the
logarithm of 817 Of 729? If 5 were the base, of what number would
3 be the logarithm? Of what 2? Of what 42

2. If 2 were the base, what would be the logarithm of +? Of §?
OF ¢4 ?

3. If 16 were the base, of what number would .5 be the logarithm P
Of what .25 ?

4. In the common system we find that log 156=R2.193125. Show
3186
that this signifies that 10H3 A =156.

5. Log 1955=3.291147. To what power does this indicate that
10 is to be raised, and what root extracted to make 1955 ?

6. Find from the tuble at the close of the volume what root of
what power of 10 equals 2593.

7. Multiply 1482 by 136 by means of logarithms, using the M
at the close of the volume. (Sce 778.)

8. Perform the following operations by means of logarithms:
1108 x 1879; 2769 - 187; 1513 x 1.8476; 257.16 + 18.5134;
126 < 6.1413; .1123% x .00126; (1278.6)'; {T183%)"%

9. Perform the following operations by means of logarithms: /3
to 5 places of decimals; /5 to 3 placps of decimals; 4/2341564273
to two places of decimals; 4/3015618 to 4 places of decimala.

10. Perform the following operations by means of logarithms:
/D134 to 4 places of decimals; 4/03125 to 5 places of decimals*
/TO0RYE7 to 5 places of decimals.

WM £1984:=3.,001815, Now to divide this by 8, we have to remember
Sk the characteristic alone is negative, 4. ¢. that 2.001815 = = 8- 001815, ot
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—1.908685, which is all negative. Dividing this by 8, we have —.8686228, or
0—.636828=1.363772. But a more convenient way to effect the division Is to
write £.091815 = 8 + 1.091815, and dividing the latter by three wo obtain

1.868772, in which the characteristic alone is negative, thus conforming to the
tables,

To divide 13.341652 by 4, we write for 13.341652, —16+8.841652, and dividing
the latter obtain 4.885418.

L 4

11. Divide as above 11.348256 by 3; 1%.135421 by 5; 1.341263
by 6.

12. Given the following to compute . by logarithms:

201.56:134.201::18.6564: x; 2350.64:.212::1.1123 : z;
z:234.008::15.738: 200.56; 123:2::2.01:.08.
23
13. Having y = =0 o express the equivalent operations

1+x
in logarithms.

Sva's. y= Y(@—2)(@+a)+1+2). .. logy=i[log(a —a)+log (a+2)
~log (1+x)].

1]
14. Given y=z§(1—z”)* to express the equivalent operations in

logarithms. Also y = 1/;’3’ Also y = 4 /=0 = ) (s —r)
3 s ———

s

Also y:J_‘.%ff. Also y=,‘7”:p. Also given ‘—Z—::

&/m¥—r®:y to express log y.
15, Differentiate y = log(a® —2%).

ey

Sva's—~Write y = log (2 + 2) + log (¢ — 7). Then differentiating, we have

) £ %)
=7 pror Rty Or differentiating without factoring, we have dy = d(:, __;:—)

== A When reduced the results are the same, but the former is usually

the more elegant method.
16. Differentiate the following: y=1log (1 —2); ¥y = log az;
y.—.—logz’;y:logi;y.—:long-f—z. '

\

*® This form signifies that o8 -2 e to e differentisted. The opération is only indicated, wot
Paxformod.
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8U0's.—Romémber that log 4° =3 log z; and also that log 4/TF 2=
tlog (1 +2).

17. Find from the table at the close of the volume that Nap. log
1564="7.3550018. Find in like manner the Napierian logarithms of
5, 120, and 2154372,

18. Knowing that the Napierian logarithm of 22 is 3.0910428, how
wguld you find the common logarithm of 23 from the logarithmic
series (192)°?

19, The common logarithm of 25 is 1.39794. What is the modu-
lus, and what the base of a system which makes the logarithm of
%5 2142857

QuErYy.—How do you see at a glance that the required base is a little less
than 5°?

—_———————
N
SECTION V.
S8UCCESSIVE DIFFERENTIATION, AND DIFFERENTIAL
COEFFICIENTS.

200. Prop.—Differentials, though infinitesimals, are not nsses-
sarily equal to each other.

DEM.—Thus, let y=22°. Then dy=06r*dr Now, for all finite values of 2,
dy is an infinitesimal, since no finite number of times the infinitesimal o

can meke a finite quantity, and dy is 6r® times dr. But for r=1, dy is 6 times
dz ; for 2=2, dy 18 24 times dz; for =3, dy is 54 times dz.

201. Cor.— When y=1£(x), dy is generally a variable, and hensce
can be differentiated as any other variable.

202. NoraTioN.—The differential of dy is written d°y, and resd
“gecond differential of y.” The differential of @y is written d%, and
read “third differential of 3,” etc. The superiors 2 and 3 in snch
cases are not of the nature of exponents, as the d is not a symbol of
number. '

203, In differentiating y=7(z) suocessively, it is customary to
regard dr as constant. This is conceiving # to change (gvew) by

tfinitesimal increments, and thenoe ascertaining how y varies.
To “gemeral, y will not vary by equal increments when z does, as
sppesrs from the demonstration above. '

&
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204. A Second Differential is the differende between two
conseoutive states of a first differential—A4 Third Differential
is the difference between two consecutive atatee of a second differ-
ential, etc.

ILL.—In the function y=223,if z passes to the next state, we have dy==0z*dz.
Now dy, though an infinitesimal, is still a variable, for it is equal to 6dx times
«*, and 2 is a variable, Hence if  takes an infinitesimal increment, dy will pass
to a consecutive state. In other words, we can differentiate dy=6dz 2*, Jus&as
we could u = mr?, dy being a variable function, 6dz a constant factor, and « the
variable. Representing tho differential of dy by d*y, we have d*y = 6dr 2adr,
or d*y=122dz*, dz* being the square of dz, not tho differential of 2*. To indi-
cate the latter we would write d(s?).

ExAMPLES.

1. Given y = 32* — 22° to find the third differential of y, or &.
Bor.uTioN.—Differentiating y=32°—22%, we have dy=1br*dz—4edr Now,
regarding dr as constant, and differentiating again, we have diy=00z‘dx?
—4drt* Differentiating again in like manner, we obtain d?y=180z*dz?, the
second term disappearing, since 4dz?® 18 constant.
2. Given y = 22* — 3» + 5 to find the second differential of y,
1. 6. d’y.
8. Given y = (z — a)® to find the third differential of y.
Sva’s. dy=3(x—a)*dr, d*y=6(x—a)dz?, d*y=06dz?.
4. Given y = Ax + B2 + Cx* + D24, to find the 4th differential
of y, 4, B, C, und D, being constant. diy=14-3 "2 Dd,
5. Differentiate y = A + Bz + O2* + Da® + Ex* + Fa* + ete, 5
times in succession.
8. Differentiate y = (z — 1)(x — 2)(x — 3)(z — 4) twice in suc-
pession without expanding.
Bua's. dy = (z—2) (—3) (z—4) dz + (z—1) (z—8) (z—4) dz+(z—1) (z—2) (x—4)
dz+(z—1) (z—2) (z—8)dz.
=[@—2) (¢—8) (¥~4) + (—1) (x—8) (x—4) + (z—1) (2—2) (#—4)
+—1) (@~ (@-B)dz. 4
dty = [(@—8) (t—4) dz-+(@—2) (z—4) do + (@-9) (z—8) dz + (x—8) (w—4) dz + (z—1)
(@—4) dz+ (z—1) (@—~8) dz + (@~} (#—4) dr+(2—1) (v—4) do+(2—1) (£—2)
80 4+ (@—2) (2—3) dz-+(2—1) (3~8) do+(z—1) (z—2)dz]da.

* To differentiate 13axtde, calling dx constant, we may write 15de x¢. Now 18d: is oom-
Mint. Hence differentiating 24, we have d2%dz, which mualtipiied by the constant 15d, M [ ]
sbove, 602%dz*. The da® is * the square of 42, not e differentisl of 2*

N
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={(2—38) (z—14) + (x—2) (@—4) + (¢—2)(z—8) + (@—8) (3—4) + (z—1) (z—4)
+ (#—1) (@--8) + (2—2) (z—4) + (z—1) (z—14) + (z—1) (@—2) + (@—2) (z—3)
+ (@—1)(#—8) + (@—1) (x—Q)]d*.

7. As above, differentiate y = (z — a)(z — 3)(x — ¢) twice in suc-
eession without expanding.

. DIrFERENTIAL COEFFICIENTS,

205, The First Differential Coefficient is the ratio of
the differential of s function to the differential of its variable. Thus,

if y=f(x), and dy=f'(z)dz, % = f'(z), and % , or its equivalent
{'(x), is the first differential coeflicient of g, or f(z)

ILL.—The meaning of this is simple. Thus, if y = 224, — = 823 ; that is, if

2 takes an infinitesimal increment dr, y takes an inﬁuitesimal increment dy,
which is to dr, as 82 18 to 1, or the ratio of #fy to dz is 87%. In still other words,
y increases 8r® times as fast as 2. The reason for calling this a differential
coefficient, is that it is the coefflcéent by which the increment (dz) of the variable
must be multiplied to give the increment (dy) of the function.

206. The Second Differential Coefficient is the ratio of
the second differential of a function to the square of the differential
of the vu.ria.ble. Thus, if y=f(x), dy=f'(x)dz, and d°y=f"(z)d=",

f ”(x), or its equivalent f"'(.r), is the second differential coef-

ﬁclent of y, or f(:r). In like manner Third, Fourth, etc., differential
coefticients arc the ratios respectively of the third, fourth, ete., dif-
ferentials of a function, to the cube, fourth power, etc, of the dif-
ferential of the variable. Thus, if y=f (), dy=f'(x)dx, Py=f"(z)da?
By=f""(r)ds% and dly=f"(z)dx!, the successive differential coefli~

cients are %Y —f (=), d‘y—f "(x), dsy—f "'(x), an d‘u=f @), !

ILL.—Too much pains cannot be taken by the student in order to get a clear
conception of the meaning of the vagious symbols f(z), £'(z), £'(2), /' (@), ete.

d‘y‘
.,

To illustrate, suppose we have y=2r*—23-+6, whencod = 82— " G

* To produce the successive differential coeficients we may produce the corresponding suc-
oesulve differentials as In the proceding examples, or wo may proceed thus: "'aw—w can

romembering that dy ls variable and ¢ constant, and 1 pm Y wsarin
M men geﬂaﬂ—u ’
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= 2dr*—6e, g;, = 4826, and & T 18, Now in this case y =f(2), 4. &, y is
function of ' ; so 9y is also a function of r, being equal to 8z*~—8z2; but, as it

de
is not the samme function of z that y is, we call it the f prime function, and write

a --f (). Inlike manner aty

d.z' = f"(z) means that —5 'y

g ¥ is some function of z,

but a different one from either y, ori—‘: . It may beobserved that, in this ezanple,

g;{ is not a function of z, and hence the inquiry arises as to the propriety of the
4.
notation 33!{ =1 (). It must be remembered that this form of notation is the

general form, and it is the general fact thaf w & function of z, though in
special cascs it may not be.

ExAMPLES.

1. Produce the 1st, 2d, 8d, and 4th differential coefficients of
y=2"—32+2—10.

OPERATION. dy = 5z*dw — 92%dr + dx, whence ﬂ’ =b6z* —92% + 1. Differ

l
entiating the latter * fiu = 202’dz — 18rdz, whence %z’

1
dmemntmtmg, = (60z* — 18)dz, whence Z’F =602® — 18. Finally, d_z’_f
=1202.

R. If y=>52"—3x, what is the ratio of the increase of y to that of z,
in general? What is it when 2=1? When 2=2? When 2=3?

Ans. In general, y increases 10r—3 times as fast as 2. When
=z}, y i8 increasing 7 times as fast as 2. 'When =2, y is increas-
ln; 1% times as fast as 2.

8. If y=2*+2+*—2+ 10, what is the ratio of the 3d differential of
y to the cube of the differential of ? What is it when 2=17?
When =47 When 2=%? What is the name of this ratio?

4. If y=(a+z)™, what is the 1st differential cocflicient of the func-
tion? What the 24? What the 3d? What the 6th? What
the 11th?

= 20x® — {82 Again

g.} = m(m—1)(n=2)(m—8)(m—)(a+a)h

ll

¢ See foot-nots on precoding page.

O
t?l

1
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5. Produce the first 5 successive differential coefficients of
y=A+Bz+ C*+ Da*+ Ert+ Fr + G’

207. 8cu.—The successive differential cocfficients of a function of the
form A+ Bz+Cxt +De®+ etc., or an4 Aan—1 4 Ban—? 4 ete., are readily writ-
ten by inspection. Thus, call #¢ —2z’+52* +-z—12, f(x). Let f'(z) mean the
first differential coefficient, f'(2) the second, f "(2) the third, etc. We have

. J(r) = a¢ — 24 4 B2° +r — 12,
S(2) = 42° — 62® + 102 + 1.
F(x) = 122% — 12¢ + 10.
I (@) = 242 — 12,
@) = 24.
S¥(r) =0. Here the processes terminate.

Each of the above is produced from the preceding by multiplying the
coeflicient of 2 in each term by the exponent of z in that term and diminish-
ing the exponent by 1.

G. According to the method indicated in the last scholium. write
out the successive differential coefficients of the function 2.5+ 32
—b2*+10. Also of 22—30"+2"  Also of 342z —4x*+ 345

SECTION VI
TAYLOR'S FORMULA.

208. Der—Taylor’s Formula is a formula for developing
a function of the sum of two variables in terms of the ascending
powers of one of the variables, and finite coefficients which depend
upon the other variable, the form of the function, and ifs constants,

209. Der—If u=f(z + y), 1. ¢, if « is a function of the sum
of the two variables  and g, and we differentiate as though one of
the variables, as @ or y, was constant, the differential coefficients thus
formed are called Partial Differential Coefficients. The
partial differential coefficients of u, when 2 is considered variable

du du dv du
&' & AP a o

W i8 considered variable and z constant, we write the coeffi-
' din du du
T W

and y constant, are repregented thus:

N
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210. Lemma.—If u=f(x + ), the partial differential coeff-

\ du du
cients and & are equal.

DeM.—Having v =fz+y), if 2 take an increment, we have u + d,u*
=fe+dr+y)=fl@+y)+dz]; whence du=[[@z+y)+d]—fz+y),
pince a differential is the difference between two consecutive states of the func-
tion. Again, if y take an increment, we have u + dyu =Sz +y + dy)
=f[(®+ )+ dy]; whence dyu=f[(£ + ) + dy] — flz + y). Now the form of
the values of d:u and d,u, as regards the way in which z and y are involved, is
the same ; hence, if it were not for dz and dy, they would be absolutely equal.
Passing to the differential coefficients by dividing the first by dz and the sccond

du _ fl(z+9)+dr]—flr+y) du __ fle+y)+dyl=Nr+y)
by dy, we have F i Fr , and o= @y .
Bat, in differentiating, the diffcrential of the variable enters into every term;
hence f[(z + y) + dr] — flz + ¥), as it would appear in application, would have
& drin each term which would be cancelled by the dz in the denominator in the

coefficient, nnd i would be independent of dr. In like manner ZZ is independ-

ent of dy. Henoo, finally, as these values of the partial differential coefficients
are simply functions of (¢ + ¥), of the same form, and not involving dz or dy,
they are equal. Q. E. D.

ILL—To make this clear, let % = (z+%)*. Then d:u = 3(z +y)*dr, or
=3 +y)®. Again, dyu =3(z + y)'dy, or Zg = 82+ y)*. Hence we see that

du du du 1 du 1

az E. So, again, it v =log (x+ ) r i ﬁ-—y , and Zi}} = -i?_-_i-_y, hence
du _ du

dz ~ dy’

211. Prob.—To produce Tuylors Formula.

SoLuTioN.—Let » = flz + y) be the function to be developed. It is proposed
to discover the law of the development when the function can be developed in

tlte form
u=Lfz +y) = A + By + Cy* + Dy* + By* + etc,, )
in which A, B, 0, etc., are independent of y, and dependent on z, the form of the
function, &nd its constants.
Supposing ¢ constant and differentiating with reference to y as variable, re.
membering that, as 4, B, C, etc,, are functions of 2, and not ol’ ¥, they will be
considered constant, we have

j;‘ B +20y + 8Dy* + 4 Hy® + ete. i ®




’ TAYLOR'S FORMULA. 187

Again, differentiating (1) with respect to 2, y being supposed constant, and re-
membering that 4, B, C, etc., are !unctions of 2, we lmve

l
Hence by (210)
B+20y +3Dy* + 4Fy?, etc. = d_4 + 4B y + d—oy' + 'wy‘+ etc. (4)

Now, by the theory of indeterminate coefficients, the coefficients of the like
powers of y are equal, and we have

dA dB ac dD
=, W=-—, D=, = ==, et
B=% V=g w =g o

But as (1) is true for all values of y, we may make y=0; whence
A =f(x)='; letting u' represent the value of the function u, when y =0.
Now, as 4 is independent of g, it will have the same value for one value of y as
for another; hence A = f(r) = u' is the general valuc of 4.

d o
Again, B = :i:; But as 4 = %', a function of 2, d4 = du/, nndB:—d—l;-.
' l
In like manner 20:%. But as B=(—;:, dB=d d'c) dd.c , and
o 18
2dze*’
dac du' 1d 1 a*w
= = )= = D= 2%,
So, als0, as 8D dz,mddc (7 ) =30 B o

Bimilarly we find & =

l_ d.z +» and the law of tho series is apparent.

Finally, substituting the valucs of 4, B, C, ete, in (1), we obtain

2 30! 4
u=f(:c+y)—u+-"y duy d*u' y* duy

dc 11 dzt @_ MTE v Ei+etc, ®)

which is Taylor's Formuls.
212, Sca—Taylor's Formula develops % = f (z + y) into a series in
which the flrst term is the value of the function when y = 0; the second

term is the first differential coeflicient of the function when y = 0, into y;
the third term is the second differemtisl coefficient of the function when

! 3
y =0, into ’é; etc., etc.

As o' hf(z+y)wheny 0, we may write f (¥) for v/, a.ndtor ,f(z) for

dd—:p @ !or . J'"'(@); etc., as before explained. The formula thw

vy
comhs
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v=f@+)) =@+ 1@ L+ @b +"@ % + @Y + ote. (@)
T+ @ @ T+ o

This is a very important method of writing Taylors l%ormnh, and should be
clearly understood, and firmly fixed in memory.

EXAMPLES. N
1. Develop (z+y)® by Taylor’s Formula. ®
SoLuTION.—~Putting % = (z+y)*, we have u' =2, % = 524, %::— = 0,
o -— 2 ﬂ = 12 ﬂ — i i
= 00+, i 1202, and = 120. Here the coeflicients terminate, as

the differential of a constant is 0.
Substituting these values in (5) (21 1), or (8) (212), we have
%= (r+y)°" = 2°+ br'y + 10z°y* + 102%y3 + Bay* + y°.

The same as by the Binomial Formula.

2. Develop (z—y)" by Taylor’s Formula, and compare the result
with that obtained by means of the Binomial Formula. Also (z+ _y)*.
Also (z—y)~*. Also (z+ y)—g.

3, Show that

y®
u=1log (z+y) =logz + :

y_ ¥ vy
T et T3 T g et

4. Develop (r+y)™ by Taylor's Formula, thus deducing the Bi-
nomial Formula.

213, Taylor’s Formula is much used for developing a function
of a gingle variable ufter the variuble has taken au increment.  When
80 used the increment may be couccived as finite or infinitesimal,
only so that it be regarded as a variable.

Ex. 1. Given y = 23— 22 + 5z — 11, to find y', which represents
the value of the function after # has taken the increment Z.

SovuTioN.—In the function as given, we have y = f(%), and are to develop
y'=J(x+ %). By Taylor's Formula we have

T L L e
V=Vttt s Yo § T a0
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% =12, aud subgequent differential coefficients 0. Substituting these values

in the tormula, we obtain i e »
y’=(2:c'—a:’+5z—11)+(6:¢:’—2-‘c+5)h+(12m—2)-5+(12)2—--8 :

= 32 —2* + bz —11 + (828 — 22+ B)h (B2 —1)k2+ 250,
This result is edsily verified by substituting z+% for & in the value of y, a8
given ingthe example. Thus,
—2(:c+h,)'—(a:+h)’+5(a:+h)—11
a result which will reduce to the same form as the other.

2. Given y=325—2z%, to develop y’, the value of ¥y when z takes
the increment A.

SECTION VIIL
INDETERMINATE EQUATIONS,

214. An Indeterminate Equation between two quan-
tities, a8 # and y, is an equation which expresses the only relation
which is required to exist between the two quantities.

ILL.—Suppose we have 2r+3y="1, and tlmt this is the only relation which is
required to exist between « and y. Then is 2z + 8y="7 an indeterminate equa-

tion. 8o also, if ; —b=cy is the only relation required to exist between 2 and ¥,

this is an indeterminate equation. In like manner y*=2z*®— 8z is an in.
determinate equation if it expresses the only relation which is fequired to exist
between z and y.

The propriety of the term ¢ndeterminate is scen if we observe that such an
equation does not fix the values of x and y, but only their relation. Thus, in the
equation 22 + 8y =7, 2 may be 2, and y 1, and the equation be satisfied. So @
may be 8, and y 4, and the equation be satisfied. In fact, any valuc may he
assigned to one of the quantities and a corresponding value found for the other.
Hence the equation does not determine the values of the quantities. |

215, An equation between three quattities is indeterminate if it
expresset the only required relation between the quantities, or if
there is but one other relation required to exist.

‘B —Thus, if 82 + 8y~B2=10 is the only relation which is required to exiat
‘ ,yand ¢, it 1s evident that the equation does not determine particular,
ot @, y, and e, So also i, in addition to the relation expresssd

tt 1s required. that 2 shall equal Gy, or 2m:=0y, these two
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equations will not fix the values of z, y, und z. For it 2r:=6y, the forme:
equation becomes 9y—5z=10, which may be satisfied for any valudlof ¢, and
a corresponding value of y, as shown above.

216. In general, if there are » quantities involved in any
number of equations less than #, and these are the only relations
required to exist between the quantltles, the equations are in-
determinate. )

217%7. In indeterminate equations the quantities between which
the relation or relations are expressed are.properly variables, 1. e.
they are capable of having any and all values.*

ILL.—Thus in the indeterminate equation by — 8z =12, any value may be
assigned to @, and a corresponding value found for y; or any value may be
asgigned to g, and a corresponding value found for .

218. There are, however, many classes of problems which give
rise to equations which are called indeterminate, although they are
not absolutely so: in such problems there is some other condition
imposed than the one expressed by the equation, but which con-
dition is not of such a character as to give rise to an independent,
simultaneous equation. Such an equation may have a number of
values for the variables, or unknown quantities, involved, but not an
unlimited number.

Invn.—Let it be required to find the positive, integral values of 2 and y whicl
will satisfy the equation 2z +8y = 85. Now, if 2z + 8y = 35 were the only rela
tion required to exist between z and g, there would be an infinite number of
values of each which would satisfy the equation, as shown above. But there it
the added condition that z and y shall be positive integers. This greatly re.
stricts the number of values, but does not furnish another equation between 2
and y. We may usually solve such a problem by simple inspection. Thus, in
' 85 — 2z

8

thia case, we have y = . Now, trying the integral values of z till 22 be

comes greater than 85, 7. ¢. till z = 18, we can determine what integral values
of # give positive integral values for y. For #2=1, y=11. For o=2
y =10} ; hence 2 =2 is to be rejected. For 2 =238, y = 9%, and ¢ =3 is to be
rejected. Forz =4,y =9; hence # =4 and y = 9 are admissible, etc.

[NoTe.—This subject is not of sufficient importance to justify our going intc
a general discussion of it. We shall content ourselves with a few practical
examples concerning simple indeterminate equations between two or three
quantities, and these restricted to positive tntegral solutions. The chief thing of
tmportance is thad m student wmprehmd the nature of an mdmrmmm zgua-
tum ] ‘

* This Mment requires e to mmﬁ:‘mm valacs,
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ExAMPLES.

1. What positive, integral values of 2 and y will satisfy the equa-
tion bz + Ty=%

-y _ 4-—2y

5 =Yt =

to make  positive we must have Ty<20; and as y is to be an integer it can

2(2 Y Now

SOLUTION.—We may write @ = 20 =5y 5

only ha¥vo values less than 5. Again, to render 2 integral 2;;1/ must be integral,

or 0. Finally, a8 no value .for y less than 5 will render ?_‘g_i’l integral or 0, ex-
cept y=2, this is the only value of ¥ which fulfills the conditions. Hence the

answer is y=2, v=38.

2. What positive, integral values of z and y will satisfy the equa-
tion 11x—17y=>5?

SOLUTION.—We have 2 = ~¥+0 _, | 04+8

11 =y -+ T From this we see that any pos-

itive value of y which will render yl i +5 integral, will meet the conditions. Put

6y+5 11m—-5 m—1

i =™ (an integer) ; whence y = — T =m +5 < To make this value

1 must be integral. Put —"L‘}:-l- =24 (an integer); whence m
=0s+1. Now any positive integral value for s will fulfill the conditions. Thus,
put 8=0;% whencem=1, y=1,and @ =2. Again, puts=1; whencem =171,
y=12,and 2=19. Fors=2, m=18, y=283, and r=86, etc. Hence there is an
infinite number of positive, integral values of # and y which satisfy the equation.

ofy integra.l

8. What positive, integral values of = and y will satlsfy the equa-
tion 21z +17y=2000?

Suos. o= 20001 yis <118, - Againz = 00017y g5 S=17y ,
21 21 21
517y _ . _ 5—4m 5—dm
am:i 3 =M om is negative. and y= —m+ o ‘Whence U] =g,
and m 5—17' =1-~4s+ 1= 4 . .. 818 +, and any value of 8 which renders

1;-‘3 ,00r inﬁegml, a.na gives y < 118, will meet the conditions.

8= l,givsm=— 8, y= 4dandex=092
8= 5 “ m=-—2, y= 2B5ondz="75"
8=9, “ m=—87, y= 46and 2 =08.
8=13, “ m= 04, y= 67ando=141..
e=17, * m=~"7, y= 88ando=2% :
2=21, “ m=-~88 y=1Wande= 7 ~ . . =

# 0 1s considered an integor,
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Since any greater value of & makes y > 118, these are all the values of zand
which fulfill the conditions.

- 4. Find the positive, integral values of  and y which satisfy the
following:

() bz + 1ly = 254; (9) Tz + 18y = 11;

(¢) 9z + 13y = 2000; (d) 17z = 542 — 11y;

(e) 11z + 35y = 500; (f) 192 — 117y = 11:

(9) 117z — 128y = 95; (k) 392 + 20y = 650;

(1) bzx 9y= 40; (k) bz + 9y = 37.
APPLICATIONS.

1. In how many ways can I pay a debt of &2 with 3-cent and
B-cent pieces ?
Sve’s.—Let 2 = the number of 3-cent picces and y = the number of 5-cent

pleces required. Then we are to determine in how many ways the equation
84+ 5y="200 can be satiefied for positive, integral values of 2 and y.

‘We find it to be in 18 ways, as follows :
19 2225|2881 87
60 55 80l25l20l15

This means that 1 5-cent plece and 65 3-cent pleces will pay the debt, or 4
b-cent and 60 3-cent, or 7 5-cent and 55 8-cent, etc.

2. A man hands his grocer $5 and tells him to put up the worth
of it in 1l-cent and 3-cent sugars. Can the grocer do it in even
pounds? If s0,in how many ways? What is the greatest number
of pounds of the poorer sugar that he can use? What the least

3. In how many ways can a dcbt of £50 be discharged with guineas
and 8-ghilling pieces? Ans., Not at all,

4. If my creditor has only 3-shilling pieces and I only guineas, can
he so make change with me that I can pay him £50? Can I pay him
£201? In how many different ways? What is the least number of
guineas and 3-shilling pieces? How is it if I have crowns instead of
guineas? How if I have guineas and my creditor crowns? How if
I have crowns'and my creditor pounds ?

8, In how ma.ny ways can u debt of £1000 be paxd in crowns and
gumeas? ‘

i) -—Having obtui.ned a few;of the pqpuible ulw of v and 7, tbp 1

) become evident,
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-~ 219. Ixnmnnm.xm Eqwumrs BETWEEN THREE QUANTITIES.
1. Wluu; ave the positive integral values of z, y, and z which
satisfy 8z-5y + T2=100 ?

SOLUTION.—We have 2 = -12.:—3—”—-—7! ; whence as 1 is the least value that y

or ¢ can have, z cannot be greater than 20. Alsoy::m.:-?"h-

100—5y—3=z
7

; whence g

cannot be greater than 18, Alsoe=
than 14.*

; whence ¢ cannot be greater

100—51/--75 1—2y—s Hence 1—-2y—s

8 3
integer. Put 1—28’,_’ =m; whence y= —m + 1—'2_'". From this we see

Write z =

=88—y—2+ must be an

that m is negative,

Let us now proceed to examine in succession for 2=1, =2, 8=8, etc.

For 2=1.—For this value of 2, =81 —y— 2”, andy= —m— %‘ From the

£l
latter we see that m must be an even negative number; and from the former,,
that y must be a multiple of 8. Hence the following computation :

For m = 0, y= 0, which is inadmissible.
Form=— 2, y= 8, and 2=26.
Form=— 4, y= 6, and 2=21.
Form=-— 6, y= 9, and 2=16.
Form=-— 8, y=12, and #=11.
For m=—10, y=15, and 2= 6.
Form=~—12, y=18, and z= 1.

Since the values of z decrease as m increases numerically, and 1 ia the least
admissible value of z, we have nll the values of y and @ which correspond to-
g=1

Fon #==23—For this walue of s, m=28.-y+2(18_y), and y= ~m

- '1—;—'2 . From the latter we see that m must be a negative odd number ;:
and from the iormer, that ¥ must be 1, or a unit more then a multiple of. & .
Hence thie following computation : ) )
Form=~ 1, y= 1, and 2 = 27.
Frm=— 8 y= 4, and 2=23,
Form=~—~ 8, y= 7, and 2==17. -
Form=— 7, y=10, and z=13.
- ' Form=~— 9 y=18, and 2= V. :
.o Form==11, y=16, sand 2= 2.
Henow, %md; the values of y and @ which correspond to e=2, -

"Oumuq the qisntities need not come up to these Hmits.
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" The other values are a8 follows:

= {06 lssl 8] el ke P M A
=5 {420 |15l 10l 315 == 0l | il
=] 421 e
= {15521 s=10{3%5 |
e=11{¥=1 | 4| e=13{ ¥=2

2. What positive, integral values of z, y, and z satisfy 17z + 19y
+ 21z2=4007?

Sua.—There are 10 sets of values.

8. What positive, mtegtal values of z, y, and z satisfy 5z + 7y
+ 112 =224?

4. What positive, integral values of z, y, and z satisfy Gz + 8y
+b62=12? Also R + 3y + 5z2=41?

220. If the conditions of a problem furnish less equations than
unknown quantities, the problem is indeferminate, and in genera:
can have an infinite number of solntions. But if the solution be
limited to positive, integral values, it can be effected as above. Thus,
if there are two equations and three unknown -quantities, one of
the unknown quantities can be eliminated and the resulting equation
golved as heretofore. In like manner if there are three equations
and four unknown quantities, a single equation between two may be
found and solved ; or if four unknown quantities and but two equa.
tions, a single equation between three mnknown quantities may be
found and golved.

ExaMPLES,
1. Given 2 + By + 37 = 51, and 10z + 33j + 22z == 120, to find all
the positive, integral values of z, y, and =
2. Given 3z + by + 72 = 560, and 0z + 2By. + 49z = 2020, to find
nll the positive, integral values of 2, % and 2z

» 8.. Givert 8z + 11y — 82 = 10, and Bz — 2y+81=30, ta ﬂnﬁ all
the positive, mtegml values of 2, Y and 2. S
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N APPLICATIONS.

1. T wish to expend 8100 in the purchase of three grades of sheep,
worth respectively 3, 87, and $17 per head. How many of each kind
can I buy? In how many different ways can I make the purchase?
How gany of the first two kinds must I take in order to get the least
possible number of the third kind ?

2. A merchant has three kinds of goods. The value of 20 yards
of the first, less the value of 21 yards of the second, is $38; while
the value of 3 yards of the second and 4 yards of the third is 34,
What is the price per yard of cach kind, the question being restricted
to even dollars? What if the latter restriction be removed ?

3. In how many ways can I pay a debt of 8171 with $20, $13, and
86 notes? What is the least number of $20 notes that I can use?
Of %15 notes ? What the greatest number of #6 notes?

4. A farmer has calves worth %10, #11, and #13 per head. What
relative number of each must he take and sell them at the uniform
rate of 812, without gain or loss? If he is to sell only 15 animals,
how must he select them ?

5. A man bought 124 head of cattle, viz., pigs, goats, and sheep,
for $400. Each pig cost $4}, each goat &34, and each sheep $1}.
How many were there of each kind ?

6. A grocer has an order for 150 pounds of tea at 90 cents per pound,
but having none at that price, he would mix some at 75 cents, some
at 87} cents, and rome at 1.00 per pound. How mtch of each sort
must he take?

Svua’s.—The nature of the 4th and Sth problems restricts their solutions to -
positive integers. The 6th is, however, only restricted by its nature to positive
numbers ; they may be fractional as well as integral. '

[See COMPLETE SCHOOL ALGEBRA, snbject Alligation.)

7. What quantity of raisins, at 10 cents, 1& cents, and 20 cents per
pound, must be mixed together to fill a cusk containing 150 pounds,
and to be worth 19 cents a pound ?

8. A wheel in 36 revolutmns passes over 29 yards and in 2 of
eheu revolutions it describes 2 yds., y ft., and § in, What are the,
vﬂm od: x, ¥, and 2 ? ' .
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CHAPTER IL
LOCI OF EQUATIONS. .

[NoTe.~—This subject, though properly geometrical,is introduced here for the
purpose of the elegant and clear illustrations which it affords of the gbstract
principles of the subject of Higher Equations. It is thought that the aid which
it will afford the pupil in comprehending thé principles of the succeeding chapter
will more than compensate for the time required to master this, Moreover, the
subject of Loci of Equations is of prime importance in a mathematical course,
and is always pursued with pleasure by the pupil. No geometrical knowledge
is required in reading this chapter, farther than the ability to draw and measure
straight lines.]

221. Prop.—Every equation between two variables,* having
real roots,} may be interpreted as representing some line either
straight or curved.

This proposition will be made sufficiently evident for our present purpose, if
we show how such equations can be made to represent lines. This we shall do
by means of particular examples.

Y ExXAMPLES,

{ 1. Draw the line represented by the equa-
1 tion y = 22 + 6.

SoLuTION.—First, in all cases, draw two straight
lines, as X'X and YY',at right apgles to each other,
es in the figure. Then,in the equation y = 2z + 6,
assign values (arbitrarily) to #, and find the corre-
sponding values of y. Thus,

It =0, y= 6, |Also,if g=-1, y= 4
f “ 2=1, y=8, “ g=—B, y= 2,
oobet _a i “ g=9, y=10, “«  p=—8, = 0,
x l { e x « =38, y=12, “ gem—d, y—=-—2,
i ¢ “ p=4, y=14, “  g=—p, y=-4,

i, . ete., ete. eto,, ete,
. Having computed a few corresponding values

v of 2 and y in this way, we proceed with the figure,
e 1. as follows: Measure off a distance Al to the right

o

a2
[ S
[* ST

. ® This means simply, * luvlngtyo urhblel, and only two, in it.”
. ¢The g trical interpretati otmmmmmmwwnmms
purpose.
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of A, of some convenient length, and call it the unit of distances. Draw b1,
at 1, perpendicular to AX, and make it 8 units long (s. e., 8 times as long as A1),
Now, b is at a distance 1 to the right of the line YY’, and 8 above the line X'X,
and is hence & point in the line which our equation represents. In like manner,

find the point ¢, 2 to the right of YY’, and 10 above
X'X ; and ¢ is another point in the line represented
by our equation, Again, when 2 =8, y = 12,
Hence, lay off three units to the right, as to 8 in the
figurepand draw d 3 perpendicular to X'X and 12 in

length. Then is d another point in the line we

seek. When z =4,y = 14. Hence ¢ is a point in
thte line ; since it is 4 from YY’, and 14 from X'X.
When 2 =0,y = 8; whence a is a point in the
line, as it is 0 distance from YY’, and 6 from X’X.
For negative values of z, we have, when 2 = — 1,
¥ =4. Now, laying off negative values of z to the
left from A, since we laid off positive values to the
right, we measure from A to —1, the unit’s distance,
take f1 equal to 4 units, and thus find the point f.
When o= —2,y =2, and g is the corresponding
point. When z = — 8, y = 0; whence % is a point
in the line, a8 it is 8 to the left of YY’ and 0 above
X'X. Whenz= —4, y = —2. As this valueof gy
is negative, we lay it off below X'X. Thus, taking

.5-4 h

\

A

[O% SESSUE—
¥y —

X

V'l'lA

L

Y’
Fie. 8.

from A to —4, a distance of 4 units, and from —4 to ¢, a distance of 2 units, ¢ is
a point in the line. Thus also % is a point in the line, gince when z = —5,

= — 4, and % is taken 5 to the left of YY’ and 4
below X'X. .

This process might be continued indefinitely,
both for positive and negative values of z. We
might also use fractional values of z, as £ =1,
@ = §, ® = 2§, etc.,and, finding the corresponding
values of y, locate points between those found by
taking integral values.

Y

Finally, joining the points ¢, d, ¢, b, @, f, g, h, i, X

%, we have the line MN, which is represented by
the equation y = 2» + 6. This line does not stop
at Mand N, of course, since we might produce
it indefinitely either way, by continuing to take
larger and larger values of @ (numerically). In

this case it is easy tosee that the line is an indefi-
nite straight line.

2. What line is represented by the equa-
tiony= 3z — 6?7 (See Fig.3.)

Bua's~First. compute a table of corresponding values o  and g, aa in the
;arwediug example ; and then locate the points thus designated.
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. 8. What line is represented by the equation y = —2z+4P (See
N v Fig. 4.)

222. DerFINITIONS.—The assumed fixed
lines x'X and YY’ are called the Aaes of
Reference, or simply the Adaces. A is
called the Origin. x'X is the Axis of Ab-
scissas, and YY' the Axis of Ordinates.

g < \ % The distance of a point from the axis bf ab-

gciseas is called the Ordinate of the point;

and the distance of a point from the axis of

M ordinates is called its Abscissa. The ordi-

v nate and abscissa of a point taken together
Fre. 4. are called its Co-ordinates.

Abscissas measured to the right from the axis of ordinates are +,
and those to the left —. Ordinates measured above the axis of
abscissas are +, and those below —,

4 to 13. Draw as above the lines represented by the following equa-~
tions: y=z+5; y=a—b; y= —x+5; y= —z—5; y=4v+6;
=42—6; y= —4dz+6; y= —4z—G6; 21-33,:—5;"—‘%& =2.

Sva.—Put such equations as the last two into the same form as the others
before proceeding with the solution as above.

" 223. Der—The line which is represented by an equation is
called the Locus of the equation; and drawing the line in the
manner indicated, is called Constructing the Locus of the equation.

14. Construct the locus of the equation y = -1—_%:?

[

) 4. 1

X -3 -8 -1-X-% “M
A K} TR

N 8 L I ‘a MK l’ £}
-
Fia. &
SoLUTION.~For 2 =0, y =0, Forz=—4, y=~-14
“z=% y=v, “az=-1 y=~1h
“ =14, y:*, “ 93=-2, y=—*-
“ e=1, y=4, “z=-8 g=—T
“ g=9, y=4, “e=—4 y=—%
“ 0=8 y=-+, . oete .. e, &

“ =4 y=4w,

oba abe
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Now, laying off on the axis of abscissas to the right distances equal to 1, §,
1,2, 8, #ud 4, on some convenient scale, and at these points erecting ordinates
equal respeetively to vy, 3, §, #, %, and 1% of the same scale, we find the points a,
b,¢,d, e,and f of the locus. We also see that if we continued to give @ greater
and greater values, y would continually grow less, but would only become 0 when

e _a*_1 l =0
e R

In like manner laying off the negative va.lues ot z, and the corresponding
valueg of y, we find the points a’, ¥, ¢, d', ¢, and f’, and also find that y dimin.
ishes numerically as @ increases numerically, and that for z negative y is
always negative, and only becomes 0 when = — . Hence, the curve ap-
proaches the axis of abscissas to the left from below, as it does to the right
from above, reaching it in either direction only at an infinite distance from the
origin.

A line sketched through the points found represents the locus sought.

« == oo, for then wé should have y =

1 288 ¢33 X

.

Y
Fre. 7.

15 to 18, Cons};ruct the loci of the following cquations: y=gh
+2—61 (seec Fig. 6); y=3+z—}2* (see Fig. 7); y=a'—4z+é
(see Fig. 8) ; y=2*—3z+5 (see Fig. 9).

Y

v’ ‘ .
1. 8, . Fre. 9.

wﬁn inlm quantity 1, ae.producing no effect when added to the infinite a8,
mmmg pohh: in the lncus, it is often necessary to attribute fractionul vaines to.2.

¥ Shin caso, to sketch the curve from a 16 ¢’, we need an intermediate point. 1f there is
 aboit the character of the curve between $wo polnts, resolve the dogibt lu this way. .
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19 to 28. Construct the loai of the following equations: y=28
—32'+22+2 (see Fig. 10); y=?t’—6z'
+182z—10 (see Fig. 11); y=2*—~2z—5 (see
Fig. 12); y=2a*(b—z) (see Fig. 13); and
y=2'—62"+11x—6 (see Fig. 14).




oF

« %4 to 28, Construct the loci of the following equations: y=at

~bad+4 (see Fig. 15); y=2*+22°3—32—dx+4 (see Fig. 16);

y=2'—92'+42+12 (see Fig. 17); y=2'—22—72°—8z+16 (seo
ig. 18) ; and y=a*+2*+ 25 +x+1 (see Fig. 19).

d
M Y

X|
pS A
t=

H

| i
@ o
v’ Y
Fia. 17 Fie. 18,

Fre. 19.

= 29. Construct the locus of the equation y=2*+4a2*—142*—172—6.

Sua’s. — In attempting to construct this
locus, it is necessary to give z values from
—8 to +2, including these values, and also
to obgerve the character of the locus beyond
these limits, But it will be found that for
sorne values of  between these limits, y is in-
conveniently large. In sketching the figure,
we may use one scale for laying off values of
z, and another for laying off values of y.
Thus in the figure given, the unit used for z
is 6 times as great as that used for y. This
i8 equivalent to constructing the locus Gy=ux"
+ 4z — 142°— 170 — 8, or yy = Ja® + Ja* —J2*
— 32y — 1. This locus has all the peculiar-

ities of the one required (that is, all the turns,

flexures, or bends), but is hot of the same pro-

portions. The portion represented is 6 times

as wide in relation to its length as the re-
. quired locus would have been.

80.40.41. Construct the loci of the
- following ‘equations, using a smaller
woalefor-y than for z, as explained in

\4
Y
xl
4

I
474

‘ A g

Fia. 90,
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the suggestions above, when more oconvenient: y = 2'— 22 —15;
y=2'+ 22 +2; y=2"-10x+2; y=2z—3r —8r—10;
y=2'— 122" +18¢ —15; y=2"—2—8r+ 12; y=o —2'
— 2Bz +80; y=a*—2'+8r—16; y=2a2'4+2'~82'—4r+ 4;
y=2a'—62"+ 52 +2 —10; y=2ao + '+ 2*— 162'— 00— 16;
and y = b2* — 42* + 34°— 32°+ 4x — 5.

L]
224. Prob.—To construct the real roots of an equation contain-
ing only one unknown quantity.

SoLUTION.—Put the equation in the form f(z) =0, then write y = f(2).
Construct this equation, and the abscissas of the points where the locus cuts the
axis of abacissas are the roots of the equation f(7) = 0. This is evident, since
for these points, and for these only, ¥ = 0, and we have f(z) =0.

ExaMprLES.
1. Construct the real roots of the equation 2'— 3z — 2 = 0.

SoLuTION.—We will first write y = 2?— 3r — 2. Now,forz =0, y =—2;
fore=1, y= —4; forr =2, y=—4;
for =3, y==—2; and for z =4, y=2.
Hence we see that the locus of the equa-
tion y = £?— 8r — 2, cuts the axis of ab-
! scissas between z = 8, and r = 4, since it
. | passes from below the axis of abscissas
T X (where y is —) to above this axis (where
y i8 +). There is therefore a root of z*
~— 81 —2 =0 between 8 and 4. To con-
struct this root, we skotch the curve be-
m tween r =8 and # =4, by finding the
v " values of y for a few intermediato values
Fie. 31. of a, and then sketching the curve. Thus
for2z =8}, y=—1%; for z =3], y=13. Sketching the curve mn through
these points, we find by measurement Aa = 3.6, as an approximate value of «
in the equation 2*— 3z — 2 = 0. (Verify by solving the equation.) To construct
the other root, we notice that for z =0, y = — 2, and the curve cuts the axis of
abscissas again at the left of the origin (probably, as it certainly docs not cut it
again at the right). Now, for z = —1, y =2; whence we see that the locus
cuts the axis between =0, and @#=—1, Forzz= —}, y= — 1; and for
2=—4%, y=1i. Sketching the curve through these points, we have m'n’;
and measuring Aa’, we find the other value of z to be —.56.

\4

8ue.—For constructing the approximate roots in this manner, as we only
need to sketch a small portion of the locus, in the vicinity of its intersection with
the axis, we can use a much larger scale than would otherwise be prasticahle,
and thus obtain a nearer approximation. With good instruments and scgis vare,
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we can usually construct the root with tolerable accuracy tohundredths. When
the locas cuts the axie quite obliquely, the approximation cannot be made as
accurate.

2 to 7. ‘As above, construct the real roots of the following:
P?—8r=14; 2= 12+ 36 —1T=0; 22—2*—102+6=20;
22— e+ 7=0; b — 122° + 502° — 84z + 49 = 0; and
2 — T+ 10z = 9.

225, Scn.—This method of approximating the roots of equations geo-
metrically is not given as a good practical method; but simply to assist the
learncr in comprehending some subsequent processes, and for its geometrical
importance,

CHAPTER III.
HIGHER EQUATIONS.

SECTION 1.

SOLUTION OF NUMERICAL HIGHER EQUATIONS HAVING COMMEN.
SURABLE (OR RATIONAL) ROOTS*

226. Equations of higher degrees than the second are called
Higher Equations (6-10, or same in COMPLETE SCHOOL ALGEBRA).
No generul, practicable method of resolving such equations is known.
Theoretical solutions of equations of the third and fourth degrees
(cubics and biquadratics) are known; but these solutions are
attended with practical difficulties in many cases, which render
them nearly or quite useless. We ure, however, able to obtain the.
real roots of Numerical Higher Equations, in all cases, either exactly,
or to any required degree of approximate accuracy.

22%. The Real, Commensurable Roots of numerical eqnatibns are
usually found with little difficulty by the methods given in this
sectxon

. mamnrahlo root (or number) is one which can be exactly exp 4 in the dect
W inan lntegral fractional, or mixed form. Thus, 4, 3, ¥Z5, ete., are com
But Vzl VT ) etc., Are incommensurable. :
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228. Prop. — Every equation with one unknown guantity
having real and rational coefficients, cun be transformed into ar

equation of the form
x"+ Ax'4 Bx*?4 Ox"3 - - - - L=0,

in which the exponents are all positive integers, the cogfficient of x™ &
1, and the coefficients of the other terms, A, B, C, ete., and also th:
absolute term L, are integers. .

Dest.—1st. If the unknown quantity occurs in any of the denominators in the
given equation, remove it to the numerator by clearing of fractions. If there
are then any negative exponents, multiply each term by the unknown quantity
with a positive exponent equal to the numerically largest negative exponent
Then unite the terms with reference to the unknown quantity, and write therr
in order with the term containing the highest exponent, at the left, and so tha
the exponents shall diminish toward the right, transposing all the terms to the
first member. The most complicated form which can then occur is

a” ¢ ¢
sy +;zy0 +jy‘ - e . e l=0, 1)
in which any or all of the exponents may be fractions; and ”E>'-r-> ¢, etc
n- 8

is supposed.

2d. To free the equation of fractional exponents, substitute for the unknowr
quantity & new unknown quantity with an exponent cqual to the least commor
multiple of the denominators of the exponents in the equation. Thus, in (1

put y = 2*, whence y* =2, y'=2zv,and y'=2". These values substituted
in the equation, will evidently give an equation of the form

a. € ot Lopne P .
b' +-¢-iz‘ +fz" (=0, @)

in which all that is essential concerning the exponents is that they should be

all positive integers, decreasing in value from Ileft to right, since in (1}
d

2ol ete

n o

84. Now divide by the coeficient of 2", and let the resulting equation be
represented by
C oty €t . . =
L Lt f". U'=0. ®)
Finally, put ¢ = —;-;— , and gubstitute in (8), thus obtaining

ot -t y
Er et e - V=0 @

Multiplying (4) by k*, and representing the absolute term by L, we have

ck_ . ek, - N
a4 d,z" +-7,—2" - L-.Dv Yo
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I now & be so taken that these numerators will be divisible by the denomina-
tors, and the quotients rep ted by A, B, C, etc., we have

e+ Ag*-14 Ber—+-Con-3 - . - - L=0,
the form required.

ExaMPLES.
1..Transform % + 2=t + {L.vi' = 24 + ;a:" + % — 2,into a form

having positive integral exponeuts and coefficients, and having the
coeflicient of the highest power 1.

SorutioN.—Multiplying by a2, we have

w+%z—’+%zﬁ =20t +4a ¥ 48220, @)
Multiplying (1) by 2*, we have .
PIWEES N0 SN I W ) @

Putting r=y*, there results
P3N =2 + " + By — 2™
Arranging with reference to the highest power of y,
2y"—.'§y“—2y‘°—y’" +3y"‘+§y“~—~§=0. or
Y4 = &y =y — M+ "+ Ly -3 =0, ® .

Finally, put y = :—;, whence

2t 522 2% o 8¢ o 1

iRt - i T A o R

k l 10 z‘“ 3’0“ kl. » k'l

zu_ﬁ_ z"—-L‘z“-—-—é— S LAY DL A

12
Now, if & be made 12, this equation will be of the required form.*

Notice that as @ = °, and y = 5, 2 = (1':7' ; 50 that, if the valae of ¢ could

be found, the value of & would be known by implication.

2. Show as above how to transform the following:
-t s SN -3_1 2 .
@2 T+l T+ Gy T=g AW
%) ;——32: +fa:‘}-—1=1;

-1 _ 1—2% 2-'+-8
@ T3=1-9 @ 157 = Z57)

142
" bo) T=F =1 -8, (f) VIz—3P == /T2

ol 3
L4 sthatitation wonld be tedlons, and as it is our presont purpose simply to show the
of the transformation, and the mathod of making it, tho subatitution is unnecesrary.
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229.—S8ince every equation with one unknown quantity, and real
and rational coefficients, can be trunsformed into one of the form

2+ Az Bart+ (" - - - - L=0, 1)

this will be taken as the typical numerical equation whose solution
we shall seek in this and the succeeding sections; and we shall
frequently represent it by f(2)=0, read ¢ function z equals 0.” The
notation f(x) signifies in general, ashas been before explained, simply
any expression involving z. Ilere we use it for this particular form
of expression. We shall also use f'(z) as the symbol for the first
differential coefficicnt pf this function.

230. Prop.— When an equation is reduced to the form x*
+ Ax*!' 4+ Bx*? + Cx"? - - - - =0, the roots, with their signs
changed, are fuctors of the ubsolute (known) term, L.

DeM.—1st. The equation being in this form, if # is a root, the function ie
divisible by #—a. For, suppose upon trial #—a goes into the polynomial z»
+.dr-14 ete., Q times with a remainder R. (Q represents any series of terws
«which may arise from such a division, and R any remainder.) Now, since the
quotient multiplied by the divisor + the remainder, equals the dividend, we
have (t—~a) Q+ R=a*+ Av*=' + Bx"—?+ Cr"~3 .. .- L. But this polynomial = 0.
Hence (r—a) @+ R=0. Now, by hypothesis a i8 & root, and consequently 2—a
=0. Whence R=0, or there is no remainder.

2d. It now r—a exactly divides 2"+ Aan-14 Ban—24 Cov=3 ... . I, @ must
exactly divide I, as readily appears from considering the process of division,
Hence —a is a factor of L, a being a root of the equation. Q. k. D,

231, Cor 1.—1If a is a root of f(\)=0, f(x) is dinisible by x—a ;
and, conversely, if f(x) is divisible by x—a, & 28 @ root of f(x)=0.

DEM.~—The first statement is demonstrated in the proposition, and the second
is evident, since as f(1) iz divisible by #—a, let the quotient be @(?); whence
(x—a) ¢(z)=0. Now r=q will satisfy this equation, since it renders 2—~a=0,
and does not render @(r) infinity, since by hypothesis  does not occur in the
denominator.*

232. Prop.—1f the coefficients and absolute term tn x4 Axe-t
+Bx* 4 Cx*3 - - - « L=0, are all integers, the equntton can kmn
no fractional root.

, ol
* Could there he a termof the form a“’—a n @ (r), Bea would renderss oy 2l (i
be 0 x oo, which is fudeterminuge, sinco 0 x e mOx Jamf,
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lﬁu.—-Suppose in this equation » = -'—. p being a simple fraction in its lowest
terml Substituting this value of 2, we have

' m- ;2 n-3
t—.-'l-Az;:; +BF—+ U‘;-—;----L=o-
Multiplying by ¢*~ we obtain

2-+Ac'°‘+Bta""+ Cig=3 . . .. Lir-1=(,

Now, by hypothesis, all the terms except the first are integral, and the first is a
simple fraction in its lowest terms, as by hypothesis 8 and ¢ are prime to each
other. But the sum of a simple fraction in its lowest terms and a series of in-

tegers cannot be 0. Therefore z cannot equal ;—, 8 ﬁaction.

233, Scw.—This proposition does not preclude the possibility of surd
roots in this form of equation, These are possible.

234, Prop.—An equation f(x) =0 (229) of the nth degree,
hasn roots (if it has any *), and no more.

DrM.—Let @ bea root of f(r) =0, which is of the nth degree. Dividing
J(@) by  — a (231), we have g(z) = 0, an equation of the (n—1)th degree.

Let b be a root of ¢(r) = 0,and divide @(r) by +—h (2:31). Call the quotient
@' (z), whence @' (¥) =0, an equation of the (n—2)th degree. In this way the
degree of the equation can be diminished by division until, after n—1 divisions,
there results @ (z)4 of the first degree, and the equation is 24— {=0. Therefore.

f@)=@—-a o) =@-a)r -8 ¢ =(@—a)x -1 (t -0 ¢"(w:)

=@-)@-d@E—0c - - - - - (®~1)= ",
1. ¢, f(z) imresolvable into n factors, of the form z — m.

* Weo shall aesume that every equation har a reot real or tmacinary : 1, e.. that there h wme
form of expression which enbetituped for the unkuown quantity will eatisfy the equation, It
18 shown in works treating moro largely upon the theory of equatious, that the gencenl form of

arootis o+ /3 4/=1. When /8=0, the root Is real. The gencral demonstration of.thin pmpo-

sition Is too ahstruse for an elementary treatise. That cvery cquation of the forn a4 Frisy

+Br*~2 4 Czn=3 - - - . L=0(299) has a real root when n is an odd number, and also.

when n 18 an even nambor ir Z be negative, is vory simple. Thue, if » 16 odd, and L +, when s,
1s made — o the value of the first membor 18 —; and when 2 1s 0, the valne is +. Henge whik:
@ pasaes from — @ to 0, the function changes aign, and hence must pass through 03 1, & 168
some value of # between — @ and 0, the equation is satisfied. In like manner, §f L |l - Wi
@ = 0, the fauction is —, and when z = 4 o the function is +. Hence some vahie ofa betwsih,
=0 and ¥ o, satisfles the cquation, It follows from this that in an equation of on odd degres,

ifthe tute term is +, there is at least one real, mepative root; and if the :blohm um u =

thara $3 at 1nant ona real. nneltine ront.
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Now, as r=a, or z =25, or v = any one of the quantities a,d,¢ - - - - 1,
will render f(1) equal to 0, each one of these will satisfy the eqdation f(r)=0.
Therefore this equation has n roots.

Again, since it is evident that we have resolved f(z) into its prime factors
with respect to 2, there can be no other factor of the form a—m in f(r), hence
no other root of f(1)=0, and this whether m is equal to one or more of the roots
a,b,¢ - - - - n,ornot. Therefore f(1)= 0 has only z roots.

238, Cor. 1.—The polynonmial 3+ Ax*~'4 Ba*~?+4 Cx*~*t---
L, or f(x),=(x—a)(x—=Db)(x—¢) - - - - (x—1), in which
8, b,c - - -~ - 1 arethe roots of f(x) = 0.

236. Cor. 2—The equation £(x) =0 may have 2, 3, or cven n
equal roots, as there is no inconsistency in supposing a="h,a=D>b
=cora=b=c= - - - - |, in the above demonstration.

23%. Cor. 3.—Imaginary roots enter into equations huving only
real coefficients, in conjugate pairs (228, PART L) ; that is, if f(x)=0
has only real cocfficients, if it has one root of the form a + v/ — 1,
it has another of the form a — B/ — 1; or, if it has one of the form
By — 1, it has another of the form — v/— 1.

This is evident, since only thus can f(z)=(z—a) (x—0) (v—¢) - - - - (@2—n);
that is, if one root, a for example, is a— B4 —1, there must be another of the
form a+/ ¥ =1, in order that the product of these two factors shall not involve
animaginary Thus, [r—(ax+8 ¥ =1)] x [e—(a—F ¥ —1)]=a? ~2ar+(a®+ £2),
a real quantity. Soalso (xr — ¥ —1) (z +4 ¥ —1) = 2* + (3%, a real quantity.
But if the assumed imaginary roots be not in conjugate pairs, the product of the
factors (z —a) (z ~b) (@ —¢) - ~ - -*(z — 1) will involve imaginaries.

238. Cor. +—Hence an equation of an odd degres must have at
least one real root ; but an equation of an even degree does not neces-
sarily have any real root.

239. Cor. 5—1f an equation has a pair of imaginary roats, the
known quantities entering into the equation may be so varied that the
two tmaginary roots shall first give place to two equal roots, and then
these to two real and unequal roots

As shown sbove, imaginary roots arise from real quadratic factors in f(z).
Let z*—2ax + b be such a quadratic factor, whence x*— 242 + b =0 patinfies
S@@) =0, and @+ ¥a* —b are the corresponding roots of f(z) =0, Now, 1#
b3 at, these ronts are imaginary. If, however, b diminiskes or a 1
both change thus togetlter), when b = a* the two imaginary roots
we have in their place two real roots, each a.  If the same change MQ
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ontinues, so that a®* becomes greater than b, the two real, equal roots in turn
sive place to two real, unequal roots. Now ag a and b are functions of the known
juantities of the equation f(r) = 0, such changes are evidently possible.

240, Scn. 1.--That an equation has a number of roots equal to its
legree, is illustrated geometrically by the fact, that, if we write y = f(z) and
sonstruct the locus, we shall always find that a straight line can be drawn
0 a8 to cut the locus in 1 point and only 1, if f(») is of the 1st degree
‘Ex’s..1-13, Cnap. IL); in 2 and only 2 points, if f(2) is of the 2d degree
‘Ex’s. 15-18, Cuar. IL); in 3 and only 3 points, if f(z) is of the 3d degree
Ex’s. 19-23, Cuar. IL); in 4 and only 4 points, if f(¢) is of the 4th degree
‘Ex’s. 24 -28, Crawp. IL.), and specially illustrated by the line X’ X,, (Fig. 20),
ite.

241. Scu. 2.--The fact that imaginary roots enter real equations in
>airs is also beautifully illustrated by the loci of equations. Thus the equa-
ion a!—3» + 5=0 has two imaginary roots, and no real roots. Now, by ref-
rrence to Fig. 9 of the preceding chapter, we sce that the locus of y=a*—8z
+5 does not cut the axis of abscissas at all; i. e., that no real value of 2 will
five la)=0. But, if the equation were so modified as to make each ordinate
mly 4t less than it now is, i e., if y=a2—3z+Y, we should Y
wve the same locus, but changed in position so as just to
ouch the uxis of @, as in ¢, thus giving f(2)==0 two real and
qual roots, If, again, we wrote y=x*—3z—38, we should have
he locus referred to the axis A”X”, and f(2)=0 would have
wo real and uncqual roots. Thus we see, conversely, how o
wo real, unequal roots can pass into two real and equal roots @ G of
by & proper change in the equation, and how by a further
thange two equal real rovts disappear at a time, passing into two _| ,
maginary roots as the equation changes form. All that is _ A]° x
r1ecessary in this change in the form of the cquation is a pro- x

'v,

ser change in the absolute term.

Again, consider Fig. 14, and the corresponding equation Fio. 2.

1=a"—=022+4-112—0. TFirst we obscrve that as this locus cuts the axis of 2
hree times, there are three real roots. Now change the absolute term —6
»y allowing it to increase gradually, becoming —54%, —53, —5, etc. Weshall
ind that the axis of 2 moves down, and the two roots A d and Ay approach
:quality, first becoming equal when the axis just touches the lowest point ¢
»f the curve, and then both becoming imaginary together.

Or, in conclusion, this matter is illustrated by the fact that whatever the
legree.of the equation f(7)=0, if we construct the locus of y=/(), we shall
ind that we oan draw a straight line which will cut the curve in a number
ﬂwﬁh'oqnnl to the dogree of the equation, and that if the line gradually
mm this positipn 80 as to cut the curve in any less number of points,
ﬁﬂ%& BLe found first to run two interscctions together, corvesponding
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L 4 -
to a change of two unequal roots into two equal roots, and then drop out
Both these intersections, corresponding to the introduction of two imaginary
roots at a time,

242. Prop.—If theequation f(x)=0 has equal roots, the highest
common divisor of 1(x) and its differential coefficient,* f(x), being
put equal to 0, constitutes an equation which has for its roots these
egqual roots, and no other roots.

DeM.—Let a be one of the m equal roots of f(z)—o and let the other roots be

b¢- - - - 1; then f(D=(@@—a) @—b)(z—c) - - - - (z— 1)(235). Differentiating
(152) and dividing by dz, we have
P@)=mle—ay-1@—b) (1—0) - - - - €=+ @—ay £—0) - - - - @—1) + --
B ol C ot (z—b) (@—c) - - -- +ete.

Now (z—a)y*-! is evidently the highest common divisor of f(2)and f'(z), and
(z—a)*-! =0 is an equation having o for its root, and having no other.

In a similar manner, if f()=0 has two sets of equal roots, so that
JF@=(z~a (@—=b) (x—c) (z—d) - - - - (x—1),
differentiuting and dividing by dw, we have
f‘(z)—m(:r—a)"-‘(z—b)'(v-—r)(r—d) - - - (2= D)+ (@—a)y"r(z=D)Yz—¢) (2—d)

+(@x—a)y" (x—b) (z—d) - - - - (@—n)+(x—a)* @Dy (3—¢) - - - - (x— 1)+ --
.o a (=) (1'—7))’ (@—c)@—d) - - - - + ete.
Now the highest common divisor of f'(z) and f'(z) is evidently (z—a)"~'(z—b)-!,
Putting this equal to 0, we have (2—a)*—!(z—b)'~'=0, an equation which is sat-
isfied by z=a and z=>0, and by no other values.
Thus we may proceed in the case of any number of sets of equal roots.

243. Scn.—In scarching for the equal roots of equations of high degree,
it may be convenient to apply the process of the proposition several times.
Thus, suppose that f(z)=0 has m roots each equal to @, and = roots each
equal to . Then the highest common divisor of f(z) and f'(z) is of the form
(z—ay"~'(z—by-'; whence (z—a)*'(z—b)'~'=0 i8 an equation having the
equal roots sought. Therefore we can find the highest common divisor of
(e—a)y"~'(z—b)""", and its differential cocflicient which will be of the form
(z—a)**@—b)"" and write (z—a)™* (e—3)"~*=0, as an equation containing
the roots sought. This process continued will cause one of the factors (z—a)
or (z—¥) to disappear and leave (z—a)*~’ =0, when m > r; (z—by~™=0,
when 7> m ; or (z—a)(z—b)=0, when m=r. From any one of these forms
we can readily determine a root.

* The differential coefficient of a function is sometimes called its ﬁrlt derived pdfm a

4 The student must not suppose that the roots of fiz)=0, snd it frst differemtis] eden
S(@)=0, are neccesarily alike. /'(z)=a series of lermes romo of witich may be + atid .
which may destroy each other, £0 as to render f*(z)=D, for other valies of & tander
#)=0,and not necesearlly for any which do render f{z)=0, exeept the egnal rools of fhi Wntter.
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244, *Prop.—In an eguation £(x)=0, £(x) will change sign when
X passes through any real root, if there is but one such root, or if there
i3 an odd number of such roots ; but if there is an EVEN number of
such roots, f(x) will not changs sign.

Let @, b, ¢ - - - - 6 be the roots of f(2)=0, so that f(+)=(v—a) (r—J) (z—¢)
- - - - (2—e)=0(235). Conceive 2 to start with some value less than the least
root, and continuously increase till it becomes greater than the greatest root.
As long as z is less than the least root, all the factors z—a, z—b, etc., are negs-
tive; but when 2 passes the value of the least root, the sign of the factor con-
taining that root will become -+,* and if there is no other equal root, this factor
will be the only one which will change sign. Hence the product of the factors
will change sign. But if there is an even number of roots, each equel to-this,
an even number of factors will change sign; whence there will be no change in
the sign of the function. If, however, there is an odd number of equal roots,
the passage of z through the value of this root will cause a change of sign in an
odd number of factors, and hence will change the sign of the function.

Finally, as it is evident that the signs of the factors, and hence of the function,
will remain the same while x passes from one root to another, and in all casea
changes or does not change as above when 2 passes through a root, the proposi.
tion is established.

245, Scm.—This proposition is illustrated by putting y=f(z) and con-
structing the locus, as in the preceding chapter. Thus, Ex. 15, Fig. 6. In
this case y=f(r)=a*+2~0. The least root is —3. When z is less than -8,
88 —4, or —8} (apything less than —38), ¥, or f(z), is +. When 2 is -3, y,
or f(x)=0, and the equation f(z)=0 is satisfied, and —3 is a root of the equa-
tion. When z becomes greater than —8, as —2, g, or f(z), becomes nega-~
tive, changing sign when z passes through the value of the root —8. Asa
increases, y, or f(z), remains —, till 2 reaches 42, at which value of z,
y=f(x)=0, and the equation f(z)=0 is satisfied. When « passes this value,
becoming anything greater than 2, y, or f(z), becomes +, 4. e., changes sign
as @ passes through the root 2. The same thing is illustrated by the loci
in Figs. 7, 11, 12, 14, 18, and 18, with their corresponding equations,

That f(z) does not change sign upon 2’s passing through the value of one
of two equal roots of f(z)=0, is illustrated in Fig. 8 and its corresponding
equation, EX. 17. * In this case y=f(z)=et—4z+4, and the equation
#*—4z+4=0 has two roots ecach equal to 2, Now when « is anything less
than 2, g, ¢. ¢. f(2), i8 4+ ; when =2, ¥, or f(.'c). i8 0, and the equation f(2)=0

is satisfled. But when 2 passes the value 2, f(z) does not change sign ; it
remuing 4. The same truth is illustrated by the loci in Figs. 10, 18, 16,
and 1%, gmd their corresponding equations. Fig, 16 illustrates the ‘case in
' ‘ are two paiis of equal roots. -

hé 1éaat root, end that ¢’ Is the next state of @ greater than ¢; then ¢~ e+
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Ex. 20 will be found very instructive. The locus in Fig. 20 illustrates the .
case of 8 equal roots. Here y =f(z) = 2"+ 42'— 142*— 172~ 6. The least
root is — 8. When z < — 8, f(z) is —; when2 = — 8, f(z) = 0; when z passes
— 8, increasing, f(z) changes from — to +, and remains + till £ = — 1, when it
becomes 0, and changes sign as @ passes — 1, notwithstanding there are equal
roots, But there is an odd number of such roots, viz., three.

Thus, if X,’ X, were to revolve about ¢’ until it took the pogition X'X, the
intersections 4’ and d' would run into ¢, the ¢hree intersections becoming one.

246. Prop.— Changing the signs of the terms of an equation
containing the odd powers of the unknown quantity changes the angns
of the roots.

DEM.—If 2 = @ satisfies the equation 26 — Az*+ Ba3— Cr 4+ D =0, we have
a®—Aa‘+ Ba*— Ca+ D = 0. Now changing the signs of the terms containing
the odd powers of @, we have 20— Azt~ Bzr®*+ Cz+ D =0. This is satisfied
by ¢ = —a, if the former is by 2=a. For, substituting — @ for z, we have

— Aa*+ Ba*— CUn + D =0, the same as in the first instance.

247%. Cor— Changing the signs of the terms containing the even
powers will answer equally well, since it amounts to the same thing;
and if we are careful to put the equation in the complete form,
changing the signs of the alternate terms will accomplish the purpose.

Irr.—The negative roots of x3— 7z + 6 = 0, are the positive roots of — z?
+%2+ 6=0,0r of 2°— 72— 06=0 (0 being considered an e¢ven exponent); or,
writing the equation 2°+ 02— 7z + 6 =0, changing the signs of alternate
terms, and then dropping the term with its coefficient 0, we obtain the same
result.

Again, the negative roots of z®— 7z° — 524+ 82%— 13227+ 508z — 240 = 0,
are the positive roots of z°+ 72" — 52— 82— 13%*— 5082 — 240 = 0, or of
o @8 T2% + 50 + 827+ 1322t + 508z + 240 = 0,

248. Prob.—To evaluate * f (x) for any particular value of x,
a8 x = 8, more expeditiously than by direct substitution.
SOLUTION.—As f(2) is of the form 2* + Az*~' - Bz*-2 4 C2*-% . . - . L,

let it be required to evaluate z*+ A2?+ Bz?+ Oz + D forz =a. Write the
detached coefficients as below, with a at the right in the form of a divisor: thus

1 +4 . +B +0 : +D la

* This means to find the value of. Thus, suppose we want to find: the yalps: *
i~ 8z + 6t~z - 18, forz =5 We might substitate 5 for 2, of cotree, N
3d. - Bat there s & more expeditions way, as the solution of this problem wiil’ Dow,:
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-Having written the detached coefficients, and the quantity a for which f(z) is
to be evaluated as directed, multiply the first coeficient 1 by a, write the
result under the second, and add, giving @ + A. Multiply this sum by a, write
the product under the third coefficient 3, and add, giving a®+ A« + B. Inlike
manner continue till all the coefficients (including the absolute term, which is
the coefficient of z°) have been used, and we obtain «*+ Aa*+ Ba*+ Ca + D,
which is the value of f(z) for z = a.

ILLUBTRATION.—To evaluate @°— 52°- 24— 82+ 6% — z — 12, forz =5

1 =5 +2 -8 +6 -1 —12 [ 5
5 0 10 85 203 1020
o T2 7 41 204 1008

Now~ 1008 is the value of 26— 52°+4 224— 82°+4 62— 2 — 12, for2=15; and it
is easy to see that much labor is saved by this process.

We are now prepared for the solution of the following important
practical problem :

249, Prob.—7o find the commensurable roots of numerical
higher equations.

The solution of this problem we will illustrate by practical examples.

ExAMPLES.

1. Find the commensurable roots of 2*— 2a*— 152°+ 82°+ 68z
+ 48 =0, if it has any.

SorLuTroN.—By (232), if this equation has any commensurable roots they
are integral :—it can have no fractional roots.

Again, by (230), the roots of this equation with their signs changed are fac-
tors of 48. Now, the integral factors of 48 are 1, 2, 8, 4, 6, 8, 12, 16, 24, 48.
Hence, if the equation has commensurable roots, they are some of these num.
bers, with either the + or — sign. We will, therefore, proceed to  evaluate
S (@) (& e., in this case @®— 2! — 1523+ 822+ 08z +-48), for e = + 1, @ = — 1,
2=+ 2, ¢ = — 2, etc,, by (248), as follows : '

1 -2 —15 + 8 +68 +48 | +1
1 -1 —16 -8 60
-1 —16 -8 60 108

Hence we see that for 2= + 1, f(2)=108,and +1 is not a root of f(z)= 0.
Trying # = — 1, we have

1 -2 15 +8 408 448|—1
-1 8 12 -2 48
8 —12 20 8 0

re#og that for 3 = ~ 1, f(z) = 0, and hence that — 1 is a root of our equs-
h, “v' " .
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We might now divide f(2) by z+1 (23) and reduce'the degree of, ‘the equh-.
tion by unity. But it will be more expeditious to proceed with our trial. Liét
us therefore evaluate f(2) for 2=+2. Thus:

1 -2 15 +8  +68 448 |42
2 0 —30 —44 +48
0 —-15 —-22 24 96
Hence for x=+2, f(z)=96, and 42 is not & root. Trying 2=—2, we have
1 -2 —15 + 8 +68 +48 | —2
-2 8 14 —44 —48
—4 -7 22 24 (1]
Hence for 2=—2, f(2)=0, and —2 is & root. Trying 2=+38, we have *
1 -2 —15 + 8 +868 +48 | +3
3 8 —36 —84 —48
1 —-12 —28 —16 0
Hence for z=+3, f(r)=0, and +8 is a root. Trying z=—3, we have
1 -2 —15 + 8 +08 + 48 | =38
-3 15 0 —24 —132
-5 0 8 44 — 84
Hence for 2= 38, f(¥)=—84, and —3 is not a root. Trying 2=4, we have
1 -2 —-15 + 8 +68 +48 | 4*
4 8 —28 —80 —48
"2 -7 -0 -3 0

Henoe for z=4, f(x)=0, and 4 is a root.

‘We have now found four of the roots, viz., —1, —2, 8, and 4. Their product
gheir signs.changed is 24. Hence, by (230) 48+24=2 is the other root
changed, 7. e. there are two roots —2.

. our equation had equal roots conld have been ascertained by the princi-
.ple in(@4£®) ; but as the process of finding the H.C. D, is tedious, it is generally
“best to.avoid it in practice.

2 to 12. Find the roots of the fol]dwing:

(2) #— 2 — 892" + Uz + 180 =03 — & axd +&
(3) 2* + 82* — 92 — 45 =0; —2. 4y wd -8
(4) 2 + 22° — 232 — 60 = 0; -3 _,,/ J o+ s
(5.) 2 — 82 — 142* + 482 — 32 =0; '

- L
(6) 2 — 82 + 132 — °”‘£'/ “‘4."“ *

Id .
‘Otcouneulsnotnmrytoremnﬂw+m,uwehlvcdonrhiﬂm rec
tlons: it has been done simply for emphasis. . . £
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(7)¢' 1128 + 182 B=0;% (12, =%,/
(8) 28 — 3z‘+6@§‘——3z+2—-0 Y !; /R
(9) 2 — 1324 + 678 B 171a* + 2162 — 108 = 0;

(10.) 2* — 452" — 40z + B = 0;

(11) 2 — 324 — 92 + 212% — 10z + 24 = 0;

(1) 2* — 12® + 112 — 72* + 14a’ — 28z + 40 = 0.

13 to 20. Apply the process for finding equal roots (242, 243) to
the following :
(13) 2 + 86" + 20z + 16 = 0
(14) & — 2~ 8z + 12 = 0;
(15.) 2* — ba® — 8z + 48 = 0;
(16) 24 — 112° + 182 — 8 = 0;
(17) of + 132 + 832° + 31z + 10 = 03
(18) 2 — 1324 + 672 — 171a* + 216z — 108 = 0;
(19.) 2% + 325 — 62* — 62° + 92" + 3z — 4 = 03
(R0.) 2"+ Ba’+ 62°— 6z'— 152°— 327+ 8z + 4 = 0. (See 243.)

21 to 27. Having found all but two of the roots of each of the fol-
lowing by (248), reduce the equation to a quadratic by (23 1), and
from this quadratic find the remaining roots:

(1) 2° — 62 + 102 — 8 = 0
(R2) 2* — 422 — 8z 4+ 32 = 0;
(28) 22 —32" + =+ 2=0;
(24) 2~ 62° 4+ 42 — 16 = 0;
(25.) 2 — 122° + 502® — 842 + 49 = 0;
(26.) 2 — 92° + 172° + 2z — 60 = 0
(27.) 2* — 4a* — 162° + 1122* — 208z + 128 = (.

4

28 to 34, Apply the processes of (228) to reduce the foll - to
the form 2* + da*' + Ba** + C2*~* - - - - Li=0, before mg
for roots:

(28) 22° —82° + 22 —3 = 0;1

* In order to apply the process of evaluation, the coofficients of the miseing powers must e .
supplicd. Thue we have 140 ~11 +18 ~8.

+ Apply the method for finding equal roote. The method of trial based upon (330) as applied
by (248) is likely to lead to much unnecessary work when there are several equal rootas, and atl
the others lncommenuunblc.

3 Wehuvcz' g

; l_mv k=3, we have y3 -3y%+4y~12=0, which can be solved as ba!on. for one value
Mﬁw‘m then rettucod 10 & quadratic and eolved for the other yalues, PFinally,
‘ :1. \vc ‘have the values of 2 requlred :

z!+:t—-=0. Put 2= k' whv.nce ﬂ—yl + iy——so.oryﬂ-“,s -“;!,
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(20.) 32" —22 — 62 + 4 = 0;

(30.) 82* — 262* + 11z + 10 = 0;

(31) 2 — 4z + f = 0; (Lookdut for equal roots.)
(82.) o — 62° + 9}2* — 32 + 4} = 0;

(32) 2= 195" + 4 /18 _ 4030
z

s A 1
(34.) 7t — 3z + 22 $+1_2(x+1)

250, By means of the property exhibited in (2385) produce the
equations whose roots are given in the following examples :

1. Roots 1, —3, 4. 8. Roots 1}, 2, 4/3, -f.
2. Roots /2, —4/2, —1, 8. 9. Roots v/ —2,- —4v/ =2, +/5,
3. Roots 1, 2, 2, —3, 4. « —4/5.
4. Roots —3, 2+4/—1, 2—4/—1.[10. Roots 10, —13, §, 1
5. Roots 3, —2, —2, —2, 1. 11. Roots 3—24/3, 3+24/3,
6. Roots %, 4, —3. 2—34/=1, 2434/, 1,
7. Roots 15£4/=2, 2=4/—3. -1

— r——

SECTION II.

SOLUTION OF NUMERICAL HIGHER EQUATIONS HAVING REAL,
- INCOMMENSURABLE, OR IRRATIONAL ROOTS.

281 As all equations having rcal roots have real coefficients*
(.‘337), and as all such can be reduced to the form 2" + Adaz*-!
+ By 4+ Oz~ - - - - L=0, which we represent by f(z) =0
(229), we shall consider this as the typical form. Moreover, since,
if an equation of this character hus cqual roots, they can be deter-
mined by (242, 243), and the degree of the equation depressed
by (231), we need only to consider the case in which f (z) Q has
no equal roots. ,

¢ This is evident from the fact that f(x)=(x—a) (@—b) (x—6) - < - < (@~n)=0, In
@, D, ¢ ~ - - - 1 are real, no imaginary quantity will be found tn the profluct of the Mﬂon!lﬁ.
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252. The best gencral method of approximating the real, incom-
mensurable roots of such equations, is:

1st. To find the number and situation of such roots by STURM’S
THEOREM and the method based on it.

2d. Having found the first {igure or figures of such a root by
Sturm’s method, to carry forward the approximation to any re-
quired degree of accuracy by HorNER'S method of approxima-
tion.

These methods we will now proceed to develop.

STURM’S THEOREM AND METHOD.

253. Sturnvy’s Theorem is a thcorem by meang of which we
are enabled to find the numéber and situation of the real roofs of any
numerical equation with a single unknown quantity, real and
rational coefficients, and without equal roots.*

ILL~—Thus, if we have the equation #'— Tz 4 7=0, Bturm’s Theorem
enables us to determine that it has three real roots, 4. e., that all its roots are
real. It also enables us to ascertain that one root lics between 1.8 and 1.4,
another between 1.6 and 1.7, and the third between —3 and —4.  Hence it shows
ua that the roots are 1.34-, 1.0+, and —3. with a decimal fraction.

254, Scn.—Of course it follows from the above that if the equation has
commensurable (227) roots, Sturm’s Theorem will enable us to find them,
or even when the roots are not commensurable, it will enable us to find any
number of initial figures. Thus in the equation z'— 7r +7 =0, we might
by Sturm’s Theorem find that the first root is 1.35689 + ; hut it would be
too tedious an operation to be of any practical utility, as will appear hereaf-
ter. We only use this theorem to find one or two of the initial figures, or,
enough of the figures to enable us to distinguish between (separate) the roota,
Thus, if we had an equation f(r) = 0, of which two roots were 2.356878+ and
2.8569504, we might use Sturm’s Theorem to find the first five figures of each
root, i. e., to distinguish between (separate) the roots; but this is not the
best practical method, as will appear hereafter.

255. The Sturmian Functions of f(z) =0 (which has
no eqnal roots) are functions obtained by treating f () and its first
differential coefficient f'(r), as in the process of finding their H. C.

Dy geept that in the process we must not multiply or divide by a
o&ﬁy@quantity, and the signs of the several remainders must be
o PR

o
the oguation which we wish to solve has equal roots, they can be diecovered by
‘4, and the degreo of the equation reduced by division,
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changed before they are used as divisors. Thess remainders with
their signs changed are the Sturniian Functions*

ILL.—Let the equation f(r) =0 be 23— 42*— 2 + 4 = 0. Thefirst differential
coefficient of 2°—4r*— .+ 4is 32‘—8s—1. Dividing r'—42'—a+4 by
8% — 8z — 1, first multiplying the former by 3 to avoid fractions,} exactly as in
the process of finding the H. C. D, we find the first remainder of lower degree
than our divisor to be — 192 + 16, Hence 192 — 16 is the first Sturmian Fune-
tion of ' — 42®* — 2 + 4. Again, dividing 3z*— 82 + 1 by 192 — 16 (introducing
such constant factors as necessary), we find the next remainder to be — 20205.
Hence 2025 is the second Sturmian Function of z’— 4z%— & + 4.

256. Notation.—As the function which constitutes the first
member of our equation is represented by f(r), and its first differ-
ential coefficient by f'(2), we shall represent the Sturmian Func-
tions by fi(r), f,(:r) fia(z), ete., read “f sub 1 function of «,” “f sub
? function of 2,” ete., or simply “ function sub 1,” ¢ function sub 2,”
ete.

257. In any scries of quantities distinguished as + and —, a
succession of two like signs is called a Permanence of signs, and a
succession of two unlike signs a 1ariafion.

ILL.—In the function 2¢ — 3z° — 2r'+ z'+ 2%+ bz — 4, the signs of the terms
are
+ - = + 4+ + -
The first and second constitute a variation; the second and third a perma-
nence ; the third and fourth a varation, the fourth and fifth a permanence ; the
fifth and sixth a permanence; and the sixth and seventh a vanation, Thus, in
this case, there are three permanences and three variations of signs,

8o aleo if we have

f(r) =2°— Te4+ 1823+ 2* — 162 + 4,

J'(2) = 5z — 280° + 800% + 2r — 16,

Jilx) = 1127 — 4822+ 51z + 2,

Je(@) = 8z*— 8z + 4,

Ji@)y=2—2,

Ju@) =

For =0, f(*)= +4, or f@@) I8 +; fi(2)is8 —; fi(@)is 4; fo(@) 18 +;

Ss(@) is —; and f(2) being 0, its sign is not considered. Hence the series of
signs of these functions, for 2=0,i8 + —~ + -+ —; and has three variations
and one permanence. .

* T have thonght it best not to include s (x) and f’(a') under the term Bumhn Fun
There scems to be no propriety in luding them, h as they are not »
Starm’s mc thod ; and by excluding them an importadft distinction §s marked. '
+ We introduce or reject constant factors, just as in finding the . C. D., mtywemm
Introdace o1 reject negative factors since the signs are an cesential {hing in thewe !uncw
to multiply or divide by a negative number would change the eigns of the fanctions,
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Forz =1, welnd f(&), —; f'@), + i Fi@2), +; Sa(z), —; and f3@), —; the
series of signs being — + + — —. This gives two variations and two per-
INANeNnces.

-

258. Prop.—In the series of functions f(x), £'(x), fi(x), fu(x),
fi(x), fu(x), fiy(x) - - - - £,(x), when £(x) = 0 has no equal roots, if
x be conceived to pass through ull possible reul values, that is, to vary
continvously, from —w» to + o, there will be no chunge in the number
of variations and permancnces in the signs of the functions, except
when X passes through a root of f(x) = 0; and when it does puss
through such a root, there will be a loss of one variation, and only
oneX*

DEM.—1st. Any change in 2 which does not cause some one of the functions
to vanish, cannot cause any change in the signs of the functions; for no function
can change its sign without passing through 0 or @, and from the form of the
functions which we are considering, they cannot be « for any finite value of 2.
(These functions are all of the form 2% + Aa*—'4 Br—% . - - . L.)

2d. No two consecutive functions can vanish, i. e , become 0, for the same value
of x. For, in the process of producing the Sturmian functions from f(r) and
J'(r), let the several quotients be represented by ¢, ¢', ¢, ¢'”, ¢, etc.; whenee,
by the principles of division, we have

J@)=s(t}g —Si@), )
@) =i — fol2), ®)
Jilr) = fol2lg" —fi(2), ®
Se(2) = fo(r)g "~ fol), @
Jala) = fu(0)g™ — fa(@), ©)
ete,, cte., ete.

Now, if possible, suppose that some value of z, as z = a, renders two consecutive
functions, as f,(r) and f(r) each 0; that is, that they vanish simultaneously.
Then, since from (4) we have f,(r) = fi(r)g"” — f:(1), fo(2) =0. So, also, from
(5), So(t) =L} — fs(@), and fi(2) =0. Thus,as a consequence of the aimul.
taneous vanighing of any two consecutive functions, we could show that all the
functions would vanish. But as, by hypothesis, f(«) and f’(+) have no commen
divisor containing a, the last remainder found by the process of finding the
H. C. D, cannot contain 2, and hence cannot vanish for any valueof z. It is
therefore impossible that any two consecutive functions of the series should
vanish for the same value of .z {i. ¢., simultaneously).

8d. When any one of the functions, except £(x), vanishes for a particular value

hte is the substance, though not the exact form, of the cclebrated theorem discovered by
#1820, and for w hich he recelved the mathematical prize of the French Academy of
b It in curtainly one of til moat elugant discoveries n ulgebraic analysis made
thwes. It is & masterpiece of logic, and a monument to the sagacity of Jts dlscoverer,

il epiolr tontrining this theorem 18 found in the **Mémoires prdsentés par divers
P PAcadémie des Sciences,” Tom, V1., 1885,
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of x, the adjacent functions have opposite signs for this value. Thus, it filz)is 0
for @ = b, we have, from (4), f2(2) = — f4(2), i ., the adjacent fanctions, nelther
of which can vanish for this value (2d), have opposite signs.

4th, When any value of X, a8 X = c, causcs any function except £(x) o vanish,
the number of variations and permancices of the signs of the functions is the same
Jor the preceding and the succeeding values of x, i.e, for x=c—hand x=c+h,
h being an infinitesimal. Thus, let » = 6 render f;(r) = 0; then, since the adja-
cent functions have opposite gigns for this vulue of .z, we have either + fy(2), 0,
—Fu(@), or — fo(2), 0, + fi(2), t.c., +,0, —, or —, 0, + (3d). Again, as neither
of these adjacent functions vanishes for z = ¢ (2d), neither of them can change
sign as @ passes through ¢ (1st). But f3(r) may or may not change sign as x
passes through ¢ (24£4); hence its signs may be %, =, +, or F, the upper sign
representing the sign of fi(x) just before & reaches e, and the lower its sign just
after it passes, i.¢c., for 2=c¢—Ah, and z =6+ 7, respectively. Hence all tho
changes in signs which can occur are represented thus: + F —, + = —,
+%* =, +F—~, —%+, — =+, — x +, and — F 4. These takenm
any way give simply one permanence and one variation. IHence there can be no
change in the number of variations and permanences of the signs of the functions,
consequent upon the vaiishing of any INTURMLDIATE function.

5th. We are now to exumine what changes, if any, are produced in the num-
ber of variatioas and permanences by th vanishing of an extreme Zunction.
And in the first place we repeat that the last function cannot vanish for any
wvalue of .r, as it does not contain ».  We have then to examine only the case in
which f(r) vanishes, i. e., when  passes through any root of f(r) = 0. For this
purpose let us develop f(z + ) by Taylor's Formula, considering % an infinitesi-
Jual. Thus,

us h’ e h'
FE+2) =7+ @&h+1") 5 + f'(v) e + etc.

Now let » be any root of f(r) =0, and substitute in this development » for z;
whence

J(r+2)=f{) + W%+ f7(r) 7.§ + fm(r)’—é + ete.

Asrisaroot of f(x)=0, f(r)=0; and as % is an infinitesimal, the terms con-
taining its higher powers may be dropped (151, and foot-note). Thu~ we have
J(r + &) = f'(1h. Hence, as | is +, we see that f(r + 2), that is the function
just after x passes a root, has the same sign as f/(7), { e. f'(2) when v isat a
root. But as f'(z) docs not vanish when =17 (2d), f'(r—17%), f(#), and
J'(r+ &) have the same signs.* Again, since, by hypothesis. f(r) =0 has no
equal roots, ¢¢ changes sign when z passes through a root (244), ¢. ¢., f(r— %)
and f(r-+ &) have different signs, Thus, as 7(z) and f'(¢) have like signs just
after 2 has passed a root, and f(r) changes sign in passing, while /() does not,
these functions have unlike signs just before 7 reaches a root,} and what was a

wariation in signs becomes a permanence ; that is, a variation is lost. g
* That 1s, the first differential coefficient of f(r) 8es not change sign when @ W
aro0t of 7 (x)=0 N34

+ ¥rom this we see that the roots of 7/(z)=0 aze intermedinte hotwesti thowe of
snoe I g, 5, and ¢ are roots of J(z)=0, in the vrder of thelr nignitudus, just hefore 2
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Finally, a8 we have befors shown that as = paases through all vaiucs fiom
~® 10 + 40, there can be no change in any of the functions except f(z) which
will affect the namber of variations and permanences in the signs of the fune-
tions, is only one variation lost when = passes through any root of f(:)=0.

289. Cor. 1.— 70 ascertain the number of real roots of the equu-
tion f(x) =0, we substitute in f(x), £'(x), £i(x), fu(x) - = - - £,(x*),*
— o for x, and note the number of variations of signs. Then sub-
stitute + w for x, and note the number of variations. The exrciss
of the number of variations in the former case over that in the latter
indicates the number of real roots of the equation.

This is a direct consequence of the proposition, since as z increases from —o,
there 18 no change in the number of vanations of the signs of the functions ex-
cept when r passes through a root, and every time that it does pass throuch a
rodt one variation is lost, and only one. But in passing from — o to + », @
passes through all real values Hence the cxcess of the number of variations

for 2= — o over the number for 2 = + @ is equal to the total numb¢. of
real roots.

260. Cor. 2.—T0o ascertain how many real roots of f(x) =0 lie
between any two numbers as a and b, substitute the less of the twn
nuinbers in £(7), £'(7), fi(7), 1), ete., und note the number of vari-
ations of siyns. Then substitute the yreuter and note the number of
variations. The ercess of the number of variations in the former
case over that in the lutter indicates the number of real roots between
the ninbers o and b.

This appears from the proposition in the same manner as CoR. 1.

261, Scn.—Since the total number of roots of an cquation corresponds
to the degree of the cquation (234), if we ascertain as above the number of
real roots in any given equation, the number of émaginary roots is khown by
implication,

262. Prob.—To compute the numerical values of f(x), f'(x),
fi(x), £,(7), ete., i.e., @f any jfunction of X for any particular value
of x, when the function €s of the form Ax® + Bx*-? 4 Cx**
+Dx*? - - .- P

SoLUTION.—Of course this can be done by merely substituting the proposed

value of z in the function. But there is o more elegant and expeditious way,
whiclhi we procced to exhibit.

and f/(z) bave different signx, and just qfler, they have like eigns, Bat just before
% () and /’(r) have unlike eigns, and as f(x) ¢ wnot have changed sign, the sign
kaiost have changed ; {.e., ¢ must have passed throngh a root of J/(z)=0, in paesing
b& Yo like manner it may be shown that & root of f/(x) lHes between each two con-
: e of f()m0. This makes f'(x)==0 have one roof les+ than f(z)=0. an it should.

by thix nofation {s moant the nth or last of the Sturaian functions, In which 2 does not

) e ehiae B Min davnct #ldin o 41 s e aehlnk Sha cmmstant Af m e
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Thus, let it be required to eveluate Ax®-+ Bré- Qe+ De*+ B2+ F for
2 = a. Multiply A by a and add the product to B. Multiply this sum by a
and add the product to C. Maultiply this sum by ¢ and add the product to D,
Continue this operation till all the coefficients have been involved uw abso-
lute term added. The last sum is the value of the function when substi-
tuted for z, as will appear from considering the following
A
a

Aa+ D
@
Aat + DBa +
a
Ada* + Ba® + Ca + D
a

Aad + Ba® + Cat + Do+ K
a

Aa® + Bud + Cu® + Da* 4 ko + F,
This is evidently the value of the function when a is substituted for 2z,

N. B.—1. If the function is not complete, ¢ ¢., if it lacks any of the succes-
sive powers of ., carc must be taken to supply the lacking coclicients with (s,
Thus the cocfficients of a4 — 2r? 4 5 are to be considered as 1,0, — 2,0, and
5 (which may be called the coefficient of "),

2. When the numbers involved are small the opération can be performed
mentally.

Ex. 1. Evaluate 2572* — 312.c* + 15532 — 5247865 for z = 342.

OPERATION.
57
242
. 514
1028
™
87894 '

50000194
119818388 )
80868701 ,
10244472174 '
~ o705
10299224300  The value required,
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Ex. 2. Evaluate 2* — 82® 4 bz — 20 for z =2, performing the
operation mentally.

e ExaMpLES oF THE USE oF STUrRM’S METHOD.

1. Find the number and situation of the real roots of 2* — 42'
— 62z +8=0.

Bua’s.—If the student has attended carefully to what precedes, he will have
no difficulty in determining that
J(z) =2’ —da* — 62 +8;
J'(@) = 3r* — 8r — 6;
Ji@) =17r — 12;
and Se(x") = 1467,

Now, for z = — @, we have f(z) —, f'(@) +, fi(®) —, and fo(2°) 4; i.e., the
signs of the functions are — + — +. There are therefore three variations.

Again, when @ = + o, the signs are + + + +, giving no variations. Hence
the number of real roots is 3 — 0 = 3; 4. ¢., they are all real.

To find the situation of these roots we observe that for 2 = 0, the signa of the
functions are + — — +, giving two variations, or one less than — « gives.
Hence there is one root between — o and 0; 4. ¢., one negative root, The other
two must of course be positive. We will first seek the situntion of this negative
root. Evaluate by (262).

For z=0, the signs of the functions are + —~ — +.
« 2= — 1’ - o« “« o “« ‘A -,
.« 2= — 2, . " K .« “« - - +_*

Honce, as one variation is lost when » passes from — 2 to — 1, there is one root
between — 1 and — 2; ¢. e, the negative root is — 1 and a fraction.

In like manner seeking the situation of the positive roots, cvaluating the
functions by (262), we have

For @ =0, thesigns + — — 4+, 2 variations.
“ z=1 « “ —_— - o,
“« =2, “« « —_ +,
« r=8, « “« —_—— 4,
“ =4, “© “ —4 4+ 4,
“ oe=5 Y “ 44+,

O
2

* The evaluation of these functions is most elegantly and expeditionsly cffected by (#62),
Thus for 2= -2 we have

1 -4 -6 +8| -2 8 -8 -6|-%
-2 12 -12 T -6 8
! -6 6 ~d=y) ~14  R=s/)

K]
w:ﬂqe of « for which we are evaluating {s small, and the cocfiicients also small, this
Pbosem et be oarried on mentally without writing, and should be so done,
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Thercfor», ns one variation is lost when z pusen fm 0 to 1, there is one root
between 0 and 1, i.¢., an incommengurable decimal. Again, one variation is lost
when z passes from 4 to 5; hence the other root lies between 4 and 5, or is 4
and an incommensurable decimnl.

gl
263, Sci, 2.—It is usually unnecessary to find f,(2°) (the last of the
Sturmian functions), since its sign, which is all that is important, can be
determined by inspection from the next to the last function and the pre-
ceding divisor. Thus, if we were to divide 822+ 22z — 102 by 122z — 893,
first multiplying the former by 122, it would be clear that the remainder

l\»’vould be —, without going through the operation. Hence f,(z") would
e +.

2 to 7. Find the number and situation of the real roots of the
following :

(2) @+ 62 + 102 —1=10; (5.) «* — 2" +2* — 8z + 6 =0;
(3) 2 —062"+82+40=0; (6) 2'—42° + 2"+ 62 +2=0;
(4) 2 — 422 —3z + 28 =0; (7.) 2* + 22° + 172 — 202 + 100 = 0.

264. Scu. 8.—In case the equation has equal roots, we shall detect them
in the process of producing the Sturmian functions, since in such a case the
divigion will become exact at some stage of the process, and the last Stur-
mian function will be 0. Ilaving thus discovered that the equation has
equal roots, we might divide out the factors containing them, and then ope-
rate on the depressed equation as above for the unequal roots. But it is
not neccssary to depress the degree of the equation, since the several Stur-
mian functions will have the same variations of signs in either case for any
particular value of 2. This arises from the fact that the common divisor of
f(=@ and f'(z), which contains the equal roots, is a factor of each of the
Sturmian functions, and hence its presence or absence will not affect their
signs for any particular value of » if the common factor is + for this value,
and will change the signs of all if it is —; but in either case the variations
of gigns will not be affected. .

8. Find the number and situation of the wmegual real roots of
o* — 62 + V2® + 22° — 60z + 40 = 0, without depressing the equa-
tion.

8ve's.—Forming the required functions, we have

J@) = 2% — 6z¢ + T2 + 22* — 60z + 40;
J'(@) = bz* — 242? + 21z* + 443 — 60;
Ji(@) = 3723 — 228x* + 468z — 820;
o) = :v‘ —dr 4+ 4;
o Jalt) =
Nmr f:(2) is a factor of f(r), J'(z), and fy(2), and wmoving 1t fmm A
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shall have the following functions, which may be used instead of the Sturmian
functions derived from the depressed equation: |
S@) =a® — %t — bz + 10;
J'(@) = bxt — 42 — 15;
Ji@) =87z — 80;
Je@) =1,
Hence, since the signs of these two sets of functions evaluated for any particular
value of z will be the same, either set may be used at pleasure.
Thus either set gives
For ¢ —®, =— 4 — +;
and for ¢ =+, + + + +.
Therefore there are two unegual real roots of f(z) = 0; and from the existence
of the factor (z —2)* in f(z) and f'(2), we know that there are three equal roots,
each 2.

The situation of the unequal roots can now be found as before.

9 to 12. Find the number and situation of the real roots of the
following :
(9) 2 — 2t + 1327 + 11a* — 662 + 72 = 0;
(10.) 2° — 182 — 282" + 24z + 48 = 0;
(11.) 2 — 40°* + 2* 4+ 20z + 13 = 0;
(12) 2* — 102* + 6z + 1 = 0.

265. 8cn. 4.—Elegant as the method of Sturm is, and perfectly as it
accomplishes its object, the labor of producing the functions required and
evaluating them, especially when the roots are large and widely separated,
is so great as to deter us from its use when less laborious methods will serve
the purpose. JIn a great majority of practical cases in which there are no equal
roots, the principle that 1(x) changes sign when x passes through a root of £(x) = 0
will enable us to determine the situation of the roots with far less labor than Sturm’s
Theorem. Often a simple inspection of the equation will determine the near
value of a root. Methods arc usually given for ascertaining the limits (as
they are improperly called) of the roots of an equation, from the coefficients.
But these are of little practical value.*

* For cxample, the two following, which are meet frequently given:

1. In any equation the greatest negative cocficient «»ifh ir sign changed and increased by untty
iy @ SUPERIOR LiMIT Qf the rools.

2. In any equalion unity added to that root of the greulest negative cocfeient with its sign
changed, whoee index is equal to the difference of the exponents of the firel lerm, and the fivst nega-
tive tern is G SUPERIOR LINIT.

NRow consider the equation ® { 22-500=0. By the first rule the superior limit of a root is
807, wid By the second vB00+1, or 28 +. Now the fact is, the greatest root s 7.6+, Agein, by
1, the seperior limit of the roots of &% ~Ja? - 462~ T30 is 73; and by 8 it is the same. But the
TPt oot 1 9,
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13. Find by inspection, and also by Sturm’s method, the situation
of the roots of the equation z* + 2° — 500 = 0.

Sva's.—Let the student apply Sturm’s method. The following is a solution
by inspection:

Since z = V' 500 — 2%, there is a 4+ root less than V' 500, or less than 8. Now,
trying 7, we have

1 41 0 —500|7
T 56 802
8 56 —108, ., f(2)is—
Trying 8, 1 +1 0 -50[8
8 3 576
) 7, i, f@)is+.

There is therefore a root between 7 and 8.

Algo from the relation z= 1” 500—z*, or from the operations above, we see
that there is no other positive root ; since f(r) evaluated for any positive quan-
tity less than 7 would certainly be —, and for anything greater than 8, 4,

Finally, that there can be no negative root is evident, since :/ 500—2z® cannot
be negative until z® > 500, but then V50— < ¥/ =7*, and Vot is always

N ——
<z. Hence for z negative we can never have z = 4500 — z¢. Therefore
our equation has one real and two imaginary roots.

NoTe.—The advantage of this method of inspection over Sturm’s met’hod, in
this case, will not be fully seen unless the student observes that all this can be
done mentally, without writing a single figure.

14. Find by inspection, and also by Sturm’s method, the number
and situation of the real roots of #* + 2* + z — 100 = 0.

Sue’s.—A mere glance should show that there can be but one positive root,
and that that is less than 5. In like manner writing #* — * + @ 4- 100 = 0, or
z* + 2 + 100 = ¢*, we see that no positive valuc of = can satisfy the equation;
for when z is less than 1, of course the first member is greater than the second,
and when 2 is greater than 1, z* itself is greater than a*,

15. Find, by inspecting the changes of sign of f(z) for varying
values of z, the gituation of the roots of z* - 8x — 1 = 0, and also
by Sturm’s method.

16. Find by inspection the situation of the roots of 2* — 22z
—24=0.
- Bue’s.—Writing a(@® — 22) = 24, we see that any positive value of .

satisfles this must make #* > 22, that s, must be greater than 4. But Smakes.
#(a*— 22) =15, and 8 makes it 84. Moreover, it is evident that no znumber”



STURM'S METHOD. %7

greater than 8 will satisfy the equation. Beeking for negative roots, we write
23— 2% + 24 = 0; and then z(2*—22) = — 24, To satisfy this, 2* must be less
than 23,0r2<8. For 2=0, f(z) is +; for 2 =1, f(a) is +; for 2=3, f(2)
is —. Hence a root of the given equation between —1 and — 2. Finally, for
z ._84,.1‘(2) is —; but for =4, f(@)= 0. Hence a root of the given equation

17. Determine the situation of the roots of 2*— 102*+ 6z + 1 =0,
by examining the changes of sign of f(z).

Sva's.—For2=0, f(z)is +; forz=1, f(z)is —; forz =2, f(z)is —; for
=8, f(z)is —; for ¢ =4, f(2) is +; and will evidently remain +, a8 @ ad-
vances beyond 4. This is seen from the following :

1 0 -10 0 +8 +1|4
4 16 24 +96 408

4 6 24 102 400

Now any positive number greater than 4 would destroy the —10 in this pro-
cess, and give tho sum at that point greater than 8, and hence the aggregate
would rapidly increase. Thus notice, when 8 is substituted, we have

1 0 -—10 0 +6  +1]|8
8 9 -8 -9 . -9

Now 8 is not large enough to destroy the —10; but every number larger than
4 will destroy it.

To examine for negative roots we write @%— 102+ 62— 1 = 0. In this, for
=0, f(@)is —~; for 2=1, f(2)is —; for =2, f(v)is —; for z=8, f(z)is
—; but for z = 4 and all numbers greater than 4, f(z) is +.

We have now found that there are certainly three roots between — 4 and
+ 4, and none beyond these limits either way. But it ts not safe to conclude that
the other two roots are imaginary. The fact is, they are not. How, then, are wa
to find them? Sturm’s method is thought to possess particular advantage in
saving us from such erroneous conclusions, and enabling us to find the situation
of all the real roots with infallible certainty. And certainly it does do this; but
let us see if we cannot do it, in this instance at least, as readily without that
method. It will be observed that we know only that — 8 is the initial figure
of one root, and + 8 of another. The initial digit of the root between
0 and + 1 we have not found. Let us geek it. For 2=0, f(2) is +; and
by trying ¢ = .1, @ = .2, we should at once see that f(z) changes very slowly,
and a8 when =1, f(z)is only — 2, we should be led to try numbers near 1.
Trying # =.8, we would find that f(z) is +, and for ¢ =.9, f(#) is —. Hence .8
is the initial figure.of the root lying between 0 and + 1.

We now know the initial figures of three of the roots. But where are the
! 1!'0 roots ? If they are real we know that they lie between — 4 and + 4,
seen above that no root can lie beyond these limits, Moreover, as
changes value rapidly beyond 1, and slowly between — 1 and 1, #t
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wonld naturally be suggested that there may be ¢we changes of sign between 0.
apd +1,0r 0 and — 1. Evaluating f(z)=2° —10z* + 6z + 1 for .1, .2, .3, etc.,
we soon see that ¢ will not change sign for values of z between 0 and -+ 1.
Evaluating f(#) =2" — 102% + 6z — 1 for .1, 2, 8, etc,, we find that the other
roots are between 0 and — 1, and that their initia] digits are —.1 and —.6.

18 to 23. Find by inspection, by the change in sign of f(z), or by
Sturm’s method, the number and situation of the real roots.of the
following :

(18) 2% — 32 — 4z + 11 = 03

(19) 2 — 2 — 5 =0;

(20.) 2* — 42" — 3z + 23 = 0;

(21.) 2 + 112* — 102z + 181 = 0;
(22) 2 —172* + bder = 350;

(28.) 2* + 22° + 3z — 13089030 = 0.*

266. Sca, 5.—If we have an equation in which, when cleared of frac-
tions, the coefficient of the highest power of « is not unity, it may be trans-
formed by (228) into one having such coeflicient. But this is not necessary
€ order to the application of Sturm’s method, as it is not required by anything in
the demonstration of that theorem that the cocfficients should be integral.

24 to 31. Find by Sturm’s method the number and situnation of
the real roots of the following:
(24.) 2+ 82*— 42z — 10 = 0} (28.) 32— 42°+ 2z — 1000 = 0;
(25.) 2°— 187z + 298 =031 (29.) 72— 83x + 187 =0;
(26.) 822 — 362 + 462 — 15 =0;  (30.) 2*— 142"— 132 = 440;
@1) 42— 120°+ 112 —3=0;  (3L) 2*— §2"— §o = 312.

HorxNER's METHOD OF SoLUTION.}

Horner’s method of solving numerical equations is a method
of finding the incommensurable roots of such equations to any re-

# Observe that neglecting the terms 2% + 32, which, since 2 is large, are small as compared
with 2%, we have x¥=13089080, or z lics between 200 and 800 prodably.

t Cleur of fractions first.

4 Among the many methods dircovered, and doubtlees to be discovered, for this purpose, it
is scarcely poseible that Horner's should be sup ded, since the solution of such an equati
will certainly require the extraction of a root corresponding to the degree of the equation ; and
the labor required by Horner's method is not greater than that required to extract this root,
Nor is this merely & method of approximation, except as any method for ncomm able roots
19 becessarily & method of approximation. If the root ¢an be expressed exactly in the deatmpl
notation, or by means of & repeating decimal, this process effects it. The method was first

. puttished by W. G. Horue.luq.o!!uh,hghnd.h ulo.sbqu fifteen years Mmlmx.
Theorem was published.
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quired degree of approximate accuracy. It is based upon the two
following problems and proposition :

268. Prob.— To transform an equation, as f(x) = 0, tnto another
whose roots shall be u less than those of the given equation.

SOLUTION.—Let #=a+,, whence 2, =¢—a, and we have f(2)=f(a+2,)=0,
or 0=f(a+2,). Developing the 1ntter by 'l‘aylors Formula.. we have

0= F(@ + @) = (@) + F@ +1"@) —2- + (@ 131 + @ |4 + ete.,, ar

O0=f(a)+S'(a)2, +f "(a) 'EE +f "'(G)E +f"(a) ’z , etc., as the required equa-
tion. -

269. Scu.—The meaning of this may be stated thus : The absolute term
of the transformed equation is the value of f(z) when a is substituted for
z; the coefficient of the first power of the unknown quantity, z,, in the
new equation is the first differential coeficient of f(z), when a is substituted for

« in this coefficient ; the coefficient of the second power of 21 is |} the second dif-
ferential coefficient of f(2), when a is substituted for z; etec.

Ex.—From 5z* — 122* + 32® + 42 + 5 = 0 deduce a new equati'on
whose roots shall be each less by 2 than the roots of this.

SOLUTION.
S@)=15z% — 122% + 82* + 42+ b =9 =f(a)
r=a=9%
J'(2) = 20z — 8622 + 6z + 4 .= 82 =f"(a).
=
SU@ =002t — T2+ 6 =10R=f"a . if"(@)="5L.
Q==
I(@) = 190z — ” L =18=r"@. ) =28,
) = 1‘20 _ S 10=r@. s S =8
Hence 0 =9 4- 822, + 5lz#+ 2822+ 52, or bz,*+ 282°+512°+822+9=0,
is an equn.non whose roots are 2 less than the roots of the given equation,
since 2, =z — 2.

270. Prob.—To compute the numerical values of 1(s), f'(a),
#"(2), 3£"(a), ﬂ-f"(a), ete., from £(x), when f(x) has the form
Ax® 4 Bx“" +Cx"*4+ Dx"? . . - . P.

‘SoLUTION.—Let j(z) Az*+ B+ Ce*+ Dz + E; whenee, !ormihg J'@),
f' (), f'"@), and- f7(z), and substituting a for z, we have

) b 'ma uunlngof this notation is that = is made squal to 8 in the function, whence resalts
the. foriowing value, .
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Aa* + Ba® + Ca®* + Da+ E
J'(a) =44a® + 8Ba* + 2Ca + D ;
1/ "(a) = 64a* + 8Ba + C;
AS""(@) = 44a + B;

= A.

ADVANCED COURSE IN ALGEBRA.

J(a)

1S(a)

Now, we may compute these as follows
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SOLUTION.—Arranging the coefficients and proceeding as in the

tion. we ha -3 the following :

0 into another equation

each of whose roots shall be 3 less than the roots of this.

ExXAMPLES.

1. Transform 82¢—42® + V2 + 8z—12
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OPERATION.
8 -4 47 48  -123 |8
2 B 6 2
5 22 i 210 = £(8)
L
14 64 268 =73)
s &
28 138 =479
9
83 = |§."(8).

Hence the transformed equation is
82,* +822z,* + 1832 ,* + 2662, +210 = 0.

2. Transform 3z* — 132* 4 72* — 8z — 9 = 0 into another equation
whose roots shall be less by 3 than the roots of this.

The new equation is 3z* +232°+ 522 + 72— 78=0.*

3. Transform 2* + 22° — 62® — 102 + 8 = 0 into another equation
whose roots shall be 2 less than the roots of this.

PROCESS.

1 0 +2 —6 —-10 +8 I_?_ .
2 4 1B m 4
2 [} 6 2 12
2 8 ;6
4 14 34 70
2 1 ®
6 26 86
2 16
8 42
2
10

. The equation is 2° 4 1024 + 4223 4+ 862* + 702 + 12=0.

4. Transform 2* — 62* + 742 + 1.922° — 17.8722—.79232 = 0 into
another equation whose roots shall be each less by 1.2 than the roo
of this. . '

5. Transform 2*—22z*+ 324 4=0 into another equation whose roots
shall be 1.7 less than the roots of this.

6. Transform z*+112*—102z+181=0 into another equation whose
roots shall be 3 less than the roots of this equation: transform the

* For convenience in reading and writing, It 18 cuetomary to omit the subscripts which dis
finguish the unknown quantity in the transformed equation from that in the given equation.
But it should be borne in mind that the unknown quantities are different,
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resulting equation into another whose roots shall be .2 less than the
roots of the last: transform this equation into-another whose roots
shall be .01 less than those of the last: transform this into another
whose roots shall be ;003 less than its roots.

OPERATION.
1 +11 ) -102 +181 .8
8 _i2 180
14 —60 I 1.2
8 L} —om
17 —g* 008+ |01
8 404 — 000739
20* —4.96 0012614 |_.008
_2 4.08 —.001217403
20.2 —.88¢ 000043597
2 .2061
204 —.6730 EXPLANATION.
2 - * These, togetl th the fi
on A, e ese, together with the first,
20 ?}I ;ﬁgm are the coefficients of the equation
_— ) — whose roots are 8 less than those
20.61 ~ 405801 of the given equation. The equa-
01 061908 tion written out is z? +20x®—9z
20.62 —.8488038 +1=0. (A4). But, instecad of re-
.01 writing these coefficients for the

20.63% second trn.nsformntxon we operate upon them just as
003 they stand. )
50.633 + These, together with tl}e first, are the coefficients
‘003 of the equation whose roots are .2 less than those of
e (A), and consequently 8.2 less than those of the given
20636  equation. This equation written out is 2° +20.62%—
-003 8824 .008=0. (). But instead of rewriting these co-
20.639§ eficients we effect the next transformation upon them
just as'they stand.

'$ These, together with the first (which remains the same in all), are the co-
efficients of the equation whoae roots are .01 less than the roots of (B), .21 less
than the roots of (4), and 3.21 less than the roots of the given equation. This
equation is 2° + R0.68z° — 46772 + .001261=0. (0).

§ ‘These are the coefficlents of the equation whose roots are .003 léss than
those of (0), 018 less than those of (B), 218 less than those of (4), and 3.218

less than those of the given equation. The last transformed equation is
=2 + 20,8892 — 3438982 + .000048397=0.

. Transform, as above, the equation 2#— 122+ 122—3=0, suc-
cessively, into equations whose roots shall be 2 less, 2.8 less, and 2.85
less than the roots of the:given equation.
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OPERATION,
1 0 -12 +12 -8 285
2 4 —18 =8
2 -8 —4 —11%
_2 _8 0 8.0856
4 0 —4* —2.0144¢
_2 12 15.232 1.71040625
6 12% 11.232 — 204093754
_2 7.04 21.876
g 19.04 82.608¢
_8 708 L760125
8.8 26.72 84.888125
8 883 1808373
9.6 85.04+ 36.1065004
8 5625
10.4 85.6025
_8 5030
1124 36.1675
03 _s67s
11.25 36.7850%
.05
11.30
.
11.
05
11.404
Hence the successive equations are,
The Primitive, ot —122% +122—8=0; A).
One whose roots are 2 less than those of (4),
24+ 828 + 1223 —42—11=0; (B).

One whose roots are 8 less than those of (B), or 2.8 than those of (4),
24 +11.22% + 35.042* + 32.0082—2.0144=0; ().
One whose roots are .05 less than those of '(C'), .85 less than those of (B), or
2.85 less than those of (4),
z* +11.42° + 86.7852* + 86.19652— 20490375 =0.

8. Transform, a8 above, the equn.tién P—Tz +7=0, sucoéssively,
into equations whose roots'shall be 1 less, 1.3 less, 1.35 less, and 1.356
less than the roots of the given equation.

2V1. Prop.—If a+w, is a root of f{2)=0, and ,issufficiéntly

smiall ivith, réference to a, = — :f’ (Z;,' approximately.
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D.—If a+2, 18 & root of £ (2)=0, fla+2,)=0. Developing this by Taylor's
Formuls, we have

Sla+a)=[f(a)+ [ (@), + f"(a) ——-+ f”'(a)l—3—+ ete.=0.

Now, to determine @, approzimately, which is all the proposition proposes, when
@, is quite small with reference to a, all the terms in the development involving
higher powers of 2, than the first may be neglected ; whence we have f'(a)+
_J@

Jay

Ex.—Knowing that 4.4+ some decimal fraction which we will call
z, i8 a root of 2*+2*+2—100=0, required the approximate value of
the decimal fraction z,.

S'(a)@,=D,or 2, =

SorLuTioN.—Finding f (a), ¢. ¢., in this case f (4)* in the ordinary way, we have

1 +1 +1 -100 14
4 2 M
5 21 —16 = f(a), or £ (4)*
4 36
9 57 =f"(a), or f'(4)*
4
13
Hence —}% = — # =28+ is approximately the decimal part of the root.

In fact, 2 18 the tenths figure of the decimal part of the root,the root being
(as we shall find herenftar) 42644 +.

We thus have #,?+ 18,2+ 572, ~16=0, an equation whose roots are 4 less
than the roots of the given equation. We will now transform this into another
equation whose roots shall be .2 less than the roots of this equation, or 4.2 less
than the roots of the given equation, Thus

1 +18 +57 —16 2
2 2.64 11.928
182 59.64 —4.0712 = f(42)4
2 2.68
18.4 62.82 =f'(4.2)
2
18.6

and the transformed equation is
Eg' + 13.%.‘ + 62,82z, -—4072:0.

* This notation menns, the valne of f () when 4 is substituted for 2 therein.

+ That these are the values of /' (2) (the first member of the given equation) and 7/(x), when
4.3 1s snbstituted for @, will be evident if it is considered that they are the same results as
wonld have been obtained by t forming the glven equation immediately (by one process)
into another whose roots are 4.3 less.
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which is an equation whose roots are 4.2 less than those of the given equation,
S e, 2=42+2,.

Hence by the proposition 2 = — 62;”:.065 approximately. In fact,it will
be seen that 8 £s the hundredths figure of the root.

‘Writing both portions of the above work together, it stands thus:

1 +1 +1 —100 |42
4 2 o
5 21 —~16* * - —16=f(a),or F(4)
_4 _86 11.928
9 e —~—4.07%¢ * .. 57=f"(a), orf'(4)
_4 2.64
13+ 59.64 t o —4.0712=f(42)
_2 2.68
13.2 62.82¢ 1. 62.32=1'(4.9)
2
134
_2
18.6¢

HorNEr’s RULE

272, RULE.—1. PUT THE EQUATION IN THE FORM
Az* + Bz* ' + (2 * - - - - Mz+L=0,

IN WHICH THE COEFFICIENTS 4, B, C' - - - - L, IF NOT INTEGRAL,
ARE EXPRESSED EXACTLY IN DECIMAL FRACTIONS.

2. FIND THE NUMBER AND SITUATION OF THE POSITIVE REAL
ROOTS BY STURM’S THEOREM, DETERMINING ONE OR MORE (USUALLY
TWO) OF THE INITIAL FIGURES. (See ScH. 1.)

3. WRITE THE COEFFICIENTS IN ORDER WITH THEIR PROPER
SIGNS, BEING CAREFUL TO SUPPLY WITH 0’S THE PLACES OF CO-
EFFICIENTS OF MISSING TERMS, IF THE EQUATION IS NOT COMPLETE.
TAKING THE INITIAL FIGURES OF ONE OF THESE ROOTS AS THUS
FOUND, OPERATE ON THESE COEFFICIENTS 80 AS TO OBTAIN THE CO-
EFFICIENTS OF THE TRANSFORMED EQUATION WHOSE ROOTS8 SHALL
BE LES8 BY THE PORTION OF THIS ROOT ALREADY FOUND.

4, HAVING FOUND THESE COEFFICIENTS, IF THE COEFFICIENT OF
THE PIRST POWER OF THE UNKNOWN QUANTITY IN THIS TRANS-
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FORMED EQUATION AND THE ABSOLUTE TERY, f'(a) AND f(a), HAVE
UNLIKE SIGNS, DIVIDE THE LATTER BY THE FORMER, AND THE FIRST
FIGURE OF THIS QUOTIENT ‘WILL BE (APPROXIMATELY) THE NEXT
FIGURE OF THE ROOT. (See ScH.2) IF THESE FUNCTIONS HAVE
LIKE SIGNS, MORE FIGURES OF THE ROOT MUST BE FOUND BY STURM’S
THEOREM OR BY TRIAL, BEFORE PROCEEDING TO APPLY THIS PRO-
CESS OF TRANSFORMATION.

5. HAVING FOUND A FIGURE OF THE ROOT BY DIVIDING f (a) BY
f'(a¢), ANNEX IT TO THE ROOT AND OPERATE ON THE COEFFICIENTS
OF THE LAST (TRANSFORMED) EQUATION AS THEY STAND, TO PRO-
DUCE THE COEFFICIENTS OF TIE NEXT TRANSFORMED EQUATION, 1. €.,
THE ONE WHOSE ROOTS SHALL BE LESS THAN THOSE OF THE LAST,
BY THE LAST FIGURE OF THE ROOT, AND LESS THAN THOSE OF THE
GIVEN EQUATION BY THE ENTIRE PORTION OF TIE ROOT NOW FOUND.
HAVING FOUND THESE COEFFICIENTS, DIVIDE THE ABSOLUTE TERM
BY THE COEFFICIENT OF THE FIRST POWER OF THE UNKNOWN
QUANTITY, IF THEIR SIGNS ARE UNLIKE, AND THE FIRST FIGTRE
OF THIS QUOTIENT WILL BE (APPROXIMATELY) THE NEXT FIGURE
OF THE ROOT. IF THESE SIGNS ARE ALIKE, TIE LAST ASSUMED
FIGURE OF THE ROOT IS TOO LARGE AND MUST BE DIMINISHED.
(See Sca. 3.)

6. PROCEED IN THIS MANNER UNTIL THE ROOT IS OBTAINED;
OR, IF THE ROOT IS INCOMMENSURABLE, UNTIL AS MANY FIGURES
OF THE DECIMAL FRACTION ARE OBTAINED AS ARE DESIRED., (See
ScH. 4.)

%. IN LIKE MANNER ALL THE POSITIVE REAL ROOTS, OR THEIR AP-
PROXIMATE VALUES, MAY BE FOUND. ToO OBTAIN THE NEGATIVE
ROOTS, CHANGE THE SIGNS OF ALL THE TERMS CONTAINING ODD POW-
ERS OF THE UNKNOWN QUANTITY, OR ALL OF THOSE CONTAINING THE
EVEN POWERS; OR, IF THE EQUATION I8 COMPLETE, EACH ALTERNATE
SIGN, AND PROCEED TO FIND THE POSITIVE ROOTS OF THIS EQUATION
A8 BEFORE. THE VALUES THUS FOUND WILL BE THE NUMERICAL
VALUES OF THE NEGATIVE ROOTS (24G).

'This rule s based upon previauly demonstrated prinolples, and needs no
special demonstration. ’ ‘

"278. Scn. 1.—By means of (244, 245) we can usually find the inttial
figure or figures 'of the roots with less labor than by Sturin’s Theorem,
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294, fcr. 2.—Since by (271) 2, = -{;:;i;, if both f(a)and f'(a) have

the same sign af any time, this quotient will be —, and hence the value
thus found for @, will not be the amount to be added (annexed) to the por-
tion of the root already found, for the assumption is that this portion is less
than the root of the equation which we are seeking.

275. Scu. 8.—That the figure of the root found by dividing f(a) by f'(#
is liable to be too large is readily seen when we consider that instead of
Sfl(@)g,= —f(a) (in DeM. of 271), we should have, if no terms were
omitted,

L@ + 11" (@)2, + 51" (@2, + ete. = — F(a).

Now a valuc of #, which satisfies the former may evidently be quite too
large to satisfy the latter. Thus consider z? +102? + 5r—2600=0. Neglect-
ing z® end 10z%, we have 5z=20600, or »=520. But this will by no means
satisfy the equation when 2* and 10z® are not neglected.

Again, the figure found by dividing f(a) by f'(¢) may be too small. Thus,
if we have z*—122% +122—3=0, and neglect z*, and —12z%, we have 12z—3
=0, or 2=]. But this is too small a value to satisfy the equation, since for
=4, —12z% will be numerically much larger than z¢, and hence retaining
these terms will diminish the function, thus making % too smsll to satisfy
the cquation.

276. 8cn. 4.—From S8cu. 2 it appears that f(a) cannot change sign in
the process unless f'(«) also ¢hanges sign. But when f(«) changes sign, we
know by (244) that we have passed a root of the equation; if, however, f'(a)
also changes at the same time, our work may still be right. In such acase
there are two roots having their initial figure or figures alike, e. g., one may
be 2856+, and the other, 23.59+. To obtain the less of the two roots, take
the largest figure which will not cause either f(a) or f'(a) to change sign;
and for the larger of the two roots take the smallest figure which will cause
both f(a) and f'(a) to change sign.

[NoTe.—These scholiums, as also the rule, will be better understood in con-
nection with their applications in the following examples. But in review, after
the eolution of the examples, they should be carefully learned.)

Exauries,
1. Required the roots of 2*—4a*—62+8==0.

SoLuTION.—By Sturm’s method we find that there are 8 real roots, one negs-
tive, and two positive (see EX. 1, page 228), and also that the negative root is
1. and an incommensurable decimal, that one positive root is an incommen-
surable. decimal, and that the other positive root is 4. + an inoommanlmblo
decimal, We will seek the latter first,
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OPERATION,
1 —4 —6 + 8 | 4:802+
4 D =
0 -6 —16.000
_4 _18 18.632
4 10+« —2.808:0
4 7.04 2.309769
8.8 17.04 —.058281s0 ¢
8 7.68 0382752688
9.6 24.72.. —.004955712
8 s
10.49 25. 6641
o _o522
10.58 23.6163. .
.09 021344
10.672 23.0637644
002 021348
10.67 26.658092
.002
10.676

REMARKS.—The general features of the process, being the same as heretofore
given (270, Example’, need no further explanation than they have already re-
ceived. Each decimal figure of the root is added the first time in the first
column simply by annexing it.

: f RAGIN -—16_

F@=" 10 1.6. But
this cannot be the proper addition, since we know that the root lies between 4
and § ; hence this trial fails to give the second figure in the root. (See 275.)
But as we know that this figure cannot be greater than 9, we try 9, and find
that it makes the absolute term change sign so that f(a) and f'(@) have the
same sign, and consequently .9 is too much to add. (8ce 276, and also consider
that f(2) would thus be shown to change sign as 2 passed from 4 to 4.9, and
hence that a root lies between 4 and 4.9, 244.) We therefore try .8, and find
that it is the correct addition. We Anow that .8 is right, since we know that
as z passes from 4.8 to 4.9, f(z) changes sign.

In finding the third figure we have for trial —

In finding the second figure of the root, we have —

JSlay _ —2868 _.
F@= "3 = 09. Try-
ing 9 as the third figure of the root, we find that the absolute term does not
change sign, and hence we know that 9 is the next ﬁgure, 1. 6., we know that a
root lies between 4.89 and 4.9.

The process may be thus continued indefinitely, and as many figures found as
we may desire,

277. N. B—It will be observed that this process is simply one of substitu.
tion in f(z) of values for @ which come nearer and nearer to making f(3) = 0.
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Thus in this example 4, substituted in 22 — 42* — 62 + 8, gives 2 — 42* — 62
+ 8 = — 16; 4.8 substituted for z, gives #* —4z? — @z + § = — 2.368; 4.89
gives 2® — 42° — 62+-8= —.058281; 4.802 gives 23 —4x* —624-8= —.004955712.
Thus we are coming nearer and nearer to the number which substituted for z
would make z? — 4z* — 62 + 8 = 0, or would satisfy the equation.

2. TO FIND THE ROOT WHICH LIES BETWEEN —1 AND —2, we take the equa-
tion 2* + 42* — 6z — 8 = 0 (changing the signs of the terms containing the even
powers of z),and find the root of this equation which lies between 1 and 2
(246).

OPERATION.
1 +4 —6 -8 | 1.8004+

1 5 -1

5 -1 P
1 _8 8.002

6 5.0 —.008sc0sssses
_1_ 6.24 007249504084

78 11.24 —.000750495936
8 6.88

8.6 1812000000

8 00376016

9.4004 18.12376016

0004 00376082

9.4008 18.127562048

0004

9.4012

8. To FIND THE ROOT WHICH LIES BETWEEN 0 AND 1. We first find the
initial figure either by evaluating f(z) successively for .1, .2, .8, etc., and no-
ticing when it changes sign (244); or by Sturm’s method. The former is much
the less laborious, and is to be preferred (268). In fact,to use Sturm’s method
involves exactly the same work as the former metiod, with considerable additional
work. Moreover, the former method can be applied mentally till the proper
{nitial figure is determined, and no other writing will need to be involved than
just what Horner's method requires. No figures will need to be written but
those in the following

OPERATION.
1 —4.. —B. .0 +8,--6 ! _908%_'_
9 —2.79 —7.911 _
—31 —8.79  08D-eeens
_*9 —1.98 — 086242688
—2.2 —10.770 e .002757813
9 .010386
—18.¢ —10.780836
.008

)
g
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It 8 o evident that the last figure is 2 th:.t the operstion for verifying it in
unnecessary.

2 Find the roots of z* — 132% + 532® — 492" — 110:1: + 150 =0,
extending the decimals to the 5th place.

Sue.—Apply Sturmn method. If there are equal roots, depress the equa-
tien,

3 to 5. Find all the real roots of the following, extending the
decimals to 4 or 5 places:

(3.) @+ 102* + 5z — 260=10;
(4) 2 + 32' + 5z =178;
(5.) @ + 2= 23z + 70.

The cubic equations on pages 223, 224, 226, 228, will afford further
exercise.

6. Find the ronts of the equation 2* — 802° + 19982 — 14937z
+5000 = 0.

Sve’s.—Of course we may always find the number and situation of the real
roots by Sturm’s method. But as the labor of substituting in all the functions
used in this method is frequently great, we avoid it when we can. However, ¢
18 generally best to free the equation from equal roots, and find the NUMBER of
positive, and the NUMBER of negative roots by Sturm’s method. But the situation
of the roots is almost always more readily found by inspection based mainly on
the change in sign of f () (244). We will solve this example in this way.

1. By Sturm’s method we find that our equation has no equal roots, and that
it has 4 positive roots, and no negative root (see 26<4£).

2. WE NOW PROCEED TO FIND THE LEAST ROOT. Observing that for =0,
f(@)is +, and for z=1, f(z) is —, we know that at least one real root lies
between these limits. To find it we have the following (see next page) :
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FIRST OPERATION,

~80 +1098 —14937 +5000
_ - 7.9 189.001 —1478.7999
—79.9 1990.01 —14787.999 8526.2001%
_a1 - 7.98 198.208 —2829.6820
~79.8 1982.08 —14589.796% 696.5681+0 00}
_1 - .9 891.686 — 274.42385424
~79.7 1974.08% —14148.160 42214424576
_ 1 — 15.88 888.468 — 272.88640240
~179.6* 1958.18 —18759.603 ¢} 149.25784836§
_ 2 -~ 15.84 88.499288 — 185.86788711
—79.4 1942.84 —18721.192712 13.89000625Y
_ 2 — 15.80 88.467784
-79.2 1926.54..4  ~18682.724028¢
_ 2 — 15756 88.404808
—79.0 1924.9644 —13644.820120

2 — 15753 88.878886
—78.8-4 1923.8892 ~18605.9467845

.03 —~  1.5748 19.168073
—78.78 1921.8144f  —18586.783711

_02 —. 1.5740 19.155211
~178.76 1920.2404 ~18567.6285007

.03
—78.74 1018.6668

__.02 - 15732
—78.72¢ 1917.0936§

.03 — 7863
~78.70 1916.8078

02— 7862
~78.68 1915.5211

.02 ~  .861
—78.66 1914.78509

_®
—78.648

_ot
—78.68

.01
—78.63

.01
—78.61

"

glegg=len
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ReMARES.—This work is given to show how we may proceed to find the first
two figures of the root by successive simple approximations. If the student is
familiar with the principles heretofore developed and applied, he will have no
difficulty in seeing the reasons for the operations above. We are simply adding
to the value of pubstituted in f(z), so as steadily to diminish the absolute
term, being careful not to add so great an amount to « as to make this term
change its sign; and when we can add no more of one order (as of tenths), we
pass to the next lower order (hundreths) and proceed in the same manner. On
this proceas we make two remarks, vis.:

(a.) It is not sure to succeed. Thus, if there were ftwo roots between .84 and
.85, for example, the absolute term would not change sign when we passed from
.84 to .85, although we would have passed both roots ; and it might occur that
10 root lay beyond .85, in which case our method would be fruitless. But such
cases are rare. It is in such cases, and in such only, that Sturm’s method is
well-nigh indispensable for finding the situation of roots.

(0.) In most cases the ezast figure of any order can be told without such an
approximation as the above ; or, what is equivalent, without trying a figure, and
when it is found incorrect, erasing the work and trying another, and so on till
the right figure is found. In this particular case, the first figure tn the root being
a small fraction, the higher powers of z might be neglected (and more especially
as they differ in signs), and — 140872 + 5000 = 0 would give the first figure

in the root at once. Thus 2 = 18957 =.8 4. 806, {n this case, for the second

J \wy vuv.uwUs

figure — @ = — m:o«s <+, which gives the next figure of the
root.

8. To FIND THE NEXT GREATER ROOT. By substituting 1, we find, as on the
next page, f(z) = — 8018 ; and when 1 is added to this, f'(z) = —17506. Now it
is evident that any slight addition, as of 2, 8, or 4, to the value of 2, will only
make f(z) increase negatively. This is seen by inspecting the coefficients 1,
—72, +1542, — 7878, —17508. We therefore make & considerably larger addi-
tion to ,as 10. From this explanation the student should be able to see the
significance of the following (see next page :)
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. SECOND OPERATION..
-8 +1998 —14987 + 5000

1
_1 ~-m © 1919 —13018 1
e 1019 ~18018 — 8018 10
1 - ™ 1841 — 9488 Frx
—8 1841 —11177 —17506
1 -m 1689 18470
-7 1764 — 9488 4086 <o e
1 - . 1615 8787.8441
78 1689 — 7818 — 2086559
L —n 9220
-5 1615 1847
1 -8 4020
—74 1542 5367 «o»
1 ~_620 —~_ 27987
-8 922 53389.063
¢ 1 - 520 — 42931
e 402 5296.183
10 — 420
—63 - 18
10 —_2181
—52 — 3891
10 — 2143
2 - 6183
10 —_2098
8. — 82.26
I
—818
7
806
T
299
T
292

As now f(a) and f'(a) have opposite signs, and the remainder of the root ia
quite small as compared with that already found, the approximation can be

carried on in the ordinary way. Thus we have ~ ;,22 =— _-;_:986!!9
and the next figure of the root is 5,

. 4. To FIND THE NEXT GREATER ROOT we resume the coefficlents atter the
roots had bee: diminished by 12,  Then adding 1 to the value of 2, we find that
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for z = 18, f(2) = 1282, having changed sign, as it should,. Now as f'(2),+. &
5289, and 1 (7) are both positive, and the other coefficierits, though negative, are
comparatively small, it will take considerable increase in @ to change the sign
of f(z). We therefore add 10. Now f'(z) has changed sign, and by inspecting
the coefficients, 1, +12, —348, —1821, and 24872, it is evident that  cannot in-
crease another 10 without changing the sign of f(z). Hence we try 5. For
» similar reason we add 4 next.

THIRD OPERATION.

—82 - 18 +5367 — 4086 12
1 - 81 — 49 5318 1
—81 — 49 5318 1282+ 10
1 — 80 - 23590 5
—30 - 5280 24872 4
1 — 29 —2880 —13180 R+
—29 —108% 2859 110924
1 —180 —3680 —11588
—28* —288 —18214 104§
10 —80 ~1815
—18 —368 —2636
10 20 — 765
-8 —848¢ —38401%
10 85 504
2 —263 —2897
10 110 1144
12¢ —158 —1758§
s 18
17 — 18
S 144
22 126
8 160
2 286
5 176
824 462§
40
A
“
4
AL/ -
Now 7@~ 17“_ .05+, Butas the coefficlents pncedint 1758 m
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all 4+, they will diminish it somewhat in the operation, and hence it is probable
that .06 is the proper addition to make to the root, The process can now be
ocontinued to any extent desired. .

5. TO FIND THE NEXT GREATEST (in this case the greatest) ROOT, we have the
following operation, which we leave the student to trace:

FOURTH OPERATION,

8

1 448 +462 —1758 + 104 i

1 4 s —1242 1

) 511 —1242 Zl1sse 348+

1 50 561 16

50 61 —es1* —1164.c000

1 ! 865 1086.8416

51 612+ — 16 671584

1 58 719

“pow 665 708.000

1 54 655.552

53 9 1358.552

1 5 602.416

54 T4, .. 2050.968

1 B4

55 819.44

1 46.08

56.8 865.53

8 46.712

57.6 912.24

_-8

8.4

_8

50.2

The student should extend these solutions 2 or 8 figures farther.

7 to 12. Solve the following:
(1) 2* + 60z* —800z = 60000.
(8) a* + 22 + 82* + 42® + 5x = 54321,
(9.) 2 + 42 — 42* — 11z + 4 =0,
(10.) 24 — 272* + 1622* + 856z = 1200.
(11.) 2® — 82* = 48654231721.
(12)) 2* + 22° + 32 = 13089030,
(13) 2* — 102" + 62 =1, .
(14) 2* + 178z = 147606380486, . _— o
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(15.) 2* — 70352° + 152627542 = 10000730880,

(16.) 2* + 122 = 35.4025. (Solve by Horner’s methed.)

(17) 2* + 42 — 9z = 57.623625.

(18.) 22*+ 52*+ 4a'+ 32 = 8002, (Observe that it is not neces-

sary to make the first coefficient unity. See examples in the first
part of the section.)

(19.) 324 — da® + 22 = 1000.
{20.) 52* — 3.2z = 41278.216.

Nori.—The roots of several of the above are commensurable ; and their sola-
tion shows that Horner’s method is adapted to such cases,

21 to 25. Extract the roots of the following numbers by Horner’s
method :

(21.) The cube root of 119736852154.

(22.) The square root of 5126485.

(23.) The fifth root of 2.

(24.) The fourth root of 85718271002567691.
(25.) The cube root of 3.

S8va’s.—To solve the 21st, write @* — 110786852154, and solve as usual, being
careful to remember that the coefficients are 1, 0, 0, —119736852154. To find
the initial figure, point off as in the ordinary method of extracting roots. The
following exhibits the first steps of the process:

1 0 0 110780852151 49
4 16 64 L=
"4 16 — 55786
_4 82 534D
8 48ee —~ 2087852
4 1161 ¢
120 5061
_9 143
188 7208
9
147

26 to 29. Solve the following by first eliminating, and then solving
the resulting equation by Horner’s method :
(26.) 22° — bz +8y = 2zy — 42* + 12, and 4y* — 3z = 2y + &.
(27.) 2y* — 4wy + ' — 3y — 22—8 =0, and 4y' + 42" = 11,
(28.) 2y* — 42y + 2 — 8y — 22 =8,and y? X 2y + 2*—6z=—6.
(29.) 2y* — 4y + 22'—8y — 2% = 8§, and y*+ 6y +a’—4dx+9=0.
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SU¢’s.—From the 2d bf (26) we have y = § + $4/82 + &, Substituting this
in the 1st, we obtain 62* — 3z — 4& = (—})4/8z + 3}, whence 86z* — 602?
— 1012* + 8412 4 4420, And dividing by 86, we have 2¢ — 1.9172° — 2.806z*
+ 8.687z + 8.188 = 0, carrying the fractiouns to three places.

278. 8cE.—There are various methods by which Horner’s prooess may
be abridged, especially when a large number of decimals is required; but
we have thought it better to exhibit fully and clearly the principles essentiai
to the process, than to spend time and distract attention by giving these
arithmetical abridgments. The most simple of these are: (@) the omission
of the decimal point; (J) the writing of the sums only in the several working
columns, performing the various multiplications and additions mentally;
(¢) after scveral decimals have been obtained, instead of annexing 0’2
(or -« 's) to the working columns, dropping off’ figures from the right in
each new operation, as one from next to the last right-hand column, two from
the next to the left, three from the next to the left, ctc.; (d) and, flnally,
when all the working columns but the last two have disappeared, continu-
ing the operation as a process of simple division, only dropping off a figure
from the right of the divisor at each step instead of annexing a0 to the
dividend. We condense an example from Todhunter #s an illustration.

Ex.—To compute to 16 decimal places the rootof 2* 4 324 — 22
-~ 5 = 0, which lies between 1 and 2.

OPERATION. . -

1 48 - -2 -5 |1.8800587395679624
4 2 —8000 T
5 700 888000
60 889 — 663000000000
63 108700 — 98647524875
66 110779 x — 8847885443
600 112867000000 —446624425
603 112870405025 —107998801
696 112878900075 —6411112
699000 11287454929 —~767851
699005 11287510850 —90100
699010 1128751574 —11087
699015 1128752063 —029

112875308 —27

112875310 —4
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SECTION III.
GENERAL SOLUTION OF CUBIC AND BIQUADRATIC EQUATIONS.

CARDAN’S SorvTiOoN oF CUBIO EQUATIONS.

279. Prob.—To resolve the general cubic equation x* +px’
+qx +r=0
SoLuTIoN.—This solution consists of three steps: 1. To transform the equa-
tion into one of the form y* + my + n = 0, that is, an incomplete cubic lacking
the square of the unknown quantity. To effect this, we put z =y + ¢, and
substituting, have
¥ +8yte+Byet +2° +pyt +yz +p2t + gy +qr+7=0,

or, y* + (82 + p)y* + (82% + 22+ Qy + 2% +p2t + gz +r=0. @)
Now as we have only one condition expressed between y and ¢, viz., y+e¢=z,
we are at liberty to impose another. Let us put 82 + p =0, whence z = — §p.
Then will this value of ¢ substituted in (1) give
Y+ (@ — W+ Ghp® —dpg + 1) = 0. @)
2. Since the above transformation can always be effected, a solution of
Yy +my+n=0 ()]

will inclnde the solution of all cubic equations. Our second step is to trans-
form this equation into one which can be solved as a quadratic. To do this we
put ¥ = u + o, which gives (). the form .
u? + 8uty +8uv® + 0 + mu+0) +n=0,
or, u?®+ Buo(u + o) + ¢} + mu+v)+n=0,
or, u? 40+ (Buv + m)(u+ o) +n=0. [Y)
"Now, as we have but one condition expressed between % and o, viz., u+ov=y,

we are at liberty to impose another. Let us put 8uv 4+ m = 0, whence v =

—8—-,And(4)beoomes wtot+n=0,
or by substituting the value of o,
m?
3
ud =g =0,
whence we have ©8 + nud = {md, . )

8. Solving this quadratic we obtain
us=_him,oru=;/—in:t APt Ind;

and as v® = — (1 4 ), c="/—in=F V/hm® + int.
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Finally, taking tho square root as + for the value of #, and — for the value
of v, since these are corresponding values, we have

y=/-in+ VM‘+M'+‘/—M—1/—~——hm*+—iﬁ‘. ®

280. Prop.——l In the egquation y* + my + n =0, when m s
Dositive, and when m is negative and gym*® < }n', the equation has
one real and two imaginary roots, and Cardan’s formula (6) gives
a satigfactory solution.

2. When m is negative and Jym® = n’ two of the roots are equal,
and Cardan’s method is satisfactory.®

8. But, when m is negative and fym® > 3n’; all the roots are real
and unequal, while Cardan’s method makes them apparently imagi-
nary, and the solution is unsatigfactory.

DEM.—A cubic equation must have at least one real root (238). Let this be
a. Now conceive the equation reduced to a quadratic by dividing f(z) by z2—a,
and let b + 4/¢, and b — 4/ ¢ be the roots of this quadratic, these being the
general forms of the roots of a quadratic, in which if ¢ is + the roots are real,
if ¢ is — they are imaginary, and if ¢ is 0 these two roots are equal.

Now, a, b+ »\/?. and & — »\/T; being the roots of the equation, we have
by (238)

@—a) @—[+ V) (@ —[b—4/c)) =2 —(a-+2b)x* +(2ab+b* — )z —a(d* —c)=0,
. To transform this into the form y® + my + n = 0, we must put ¢ + 2b = 0;

whence @ = — 2b, and we have
— (35% + o)y + 2H(d* —¢) =
Comparing this with Cardan’s formulat/we see that
‘/hm: + %ns = ,‘/_ fy(Sb’ + c):a + b'(b‘ _c)t - V — 8bte + ‘,}b’o’—fyo'
= 4/ @' —§b%c + #rc®) (— 8c) = (0* — §o)4/ — Be.
Hence we see that if ¢ is +, that is, if all the roots of a cubic equation are
real and unegual, Cardan’s method gives a result apparently imaginary. But if cis

—, that is, if two of the roots are imaginary, Cardan’s method gives a real form.
Also when ¢ = 0, that is, when the roots are a, b, and b, the form is real, since

/T I0E = 0° — be) 4/ — B, is then 8.

Now by inspecting the quantity 4/ ¥m? + {n® we see that it is real when
m is positive; and also when m is negative if Am3? < in®. Hence in these

* If aZ the roots are equal. the equation takes the form (z — 6)3 = 2% — 3ax? + 3a%2 — a¥ =0,
a heing the vaine.of one of the equal roots (235). In this case the tranrformation which makes
the term in z° disappear gives y3 = (, sinced =y ~ {p=y+g, and y=cr~a=0.
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cases there momndmdtwoihaghxymﬁ and Cardan's methad, glving
& real form, enables us to determine onme of t.hem and hence to solve the
equation.

2d. We have also seen above that when ¢ = 0, that ia; when two of the roots
are equal (and not all three), 4/¥4m? + {n* = 0, in which case m must be nega-
tive and yym? = int.

8d. It hasalso appeared above that when all the roots ave real and unegual, Car
dan’s method gives an apparently imaginary result. But this can only be the case
when m is negative, and &m?® > inf.

281. Sca.—Cardan's method would seem to give a cubic equation nine
roots instead of three, since as there are three cube roots of sny number,

,{/ —in+ A/drm? ¥ in* ~would have three values, and 1’/—-}1»-— V Hm® + fn®

would have three other values. Now combining each of the former, in
turn, with each of the latter, we should have nine results. In order to ex-
plain this seeming paradox, let us find the form of the three cube roots of a
number, as of 4®. To do this we have but to solve the equation z° =a3.
Thus 23 — g® = (2 — a) (2* + az + a?) =0. Whence z — g =0, and 2*+az+a®

=0. TFrom these we have z=a, —}a(l+4/—3), and —ja(l — 4/ —38).
Now let the roots of 17 — i1+ 4/Fm3 + Int be 1, —r(1+ 4/—8), and

—3r(l—4/=39); and the roots of "/—;»- A/ drm + int be #, =}
A+ 4/ 3), and — ' (1 — 4/ —8). It will be remembered that we assumed

o = — .-3—, that is, the products of the admiseible roots must be real.
Therefore we can use for the parts of the root rand ¢, —{r(1l + 4/ — 8) and

—3r'(1—4/—38),and —}r(1—4/—3) and —¥r'(1 + 4/ —38); and we can

use these parts in no other combination, as any other would not give a real
quantity, Thus we camnot have y=u+o=r—§r(1 + 1/—:—5), since wo
would then be r[ir(1+-\/ —8))], which is an imeginery quantity, and hence

not equal to — —. 3, aa it should be.

‘We will give a few examples to which the student may apply Cardan’s pro.
cess. :

ExAMPLES,

Solve the following, finding one of the roots by Cardan’s process,
and then depressing the equation by division, solve the resulting
quadratic. : :
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‘Lz'-—t)a:+28 0
22 —32 +4=0. (Seeﬂrstatepin general solution.)
3z‘—6z+4 0.
42+ 62—2=0.
5.z+b+3%b—z=a.
6. 2 4 82 + 9z — 13 = 0.
"“2—92+62z—-2=0.
8. 2 — 62' + 182 — 10 = 0.
9. ¥ — 48z = 128.

10. 2% + 2z = 12.

11, 28 — 324 — 22' — 8= 0.4

12, 4 — 6y + 13y =12

13, 222 — 1%2° + 3Az = 44.

14 Va+z+Va+z_V_a:
. P = =

¢
15, 2* — 82" + 192 — 12 = 0.

Sva.—An sattempt to solve the last by Cardan’s process will give roots
apparently imaginary, although it is easy to see that the roots are all real, and
commensurable.

DEscArTES’S SOLUTION OF BIQUADRATICS.

282. Prob.—To resolve the yeneral biquadratic equation x* 4
8x® + bx* + dx + e=0.

SorutroN.—The first step in the process ia to transform the equation into one
wanting the 8d power of the unknown quantity. This is done in the usual way
(see Cardan’s method of resolving cubics); 1. e., by putting z=y + 2, substituting,
collecting the coefficients with reference to y, and, putting the coefficient of y3
equal to 0, finding the value of z. This value of s substituted in the given
equation will give the form

¥+ my* + ay +r=0.

2. Assume y* + my* + ay + r=(y* + ey + f)(¥* + ey + g), and deter-

# 1t is better for the student to use Cardan's procesithan to substitnte In the formula. Thne
fora® -8z +28 =0, we bave, by putting e =y + & P + 82 + S~ + ) + W= 0;

nndm;kln;ayd—9=o.ors=—z,yl +y!,-'+ss=o. Whoneoyu—l.md—l.and:a%=~3,ua
~1. . .g=y+ s ~4. Then (2% - Bx + ) + (2+4) = 2? ~ dr + T=0; whencex=2x 4/~38.

4 An equationof the form 28w axtm .+ bxw +¢=0 can be reduced to & cubic of the form
¥ +my+n=0, by putting am=y~ ja. . .
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mine thc quantities ¢, ¢, f, and g, so that they will fulfill the required conditions
Thus, expanding we have

yEmytany b r=ytio | Py y’+<r v+
+e| +ee| +eg
+g

whence, as the members are identical,
c+e=0, f+oe+g=m, ¢ +cg=n, and fg=r.
From the first we see that ¢ == — ¢, Substituting this value, we have
() f—et+g=m; @) «f—g=n; and@® fg=r

From (1) and (2) we have g=}(e¢* —% + m), undf:}(a’ + ’i+ m
which substituted in (3) give (e’ + g + m) (s' - '—3 + m) = 6* + 2me?

ni
f?+m’=4f,_or
e + 2met + (m® — 4r)et —n' =0, . 4)

Now (4) can be reduced to a cubic in terms of ¢, by putting e?= ¢, — 3m (see
foot-note on preceding page), This cubic equation will have at least one red?
root (238), and this will give real values to e, and hence to ¢,c¢,f, and g.
Wherefore, if' Cardan’s method gives a practical solution of (4), we can resolve the
biquadratic.

283. Sca.—It will be observed that this resolution of a biquadratic in-
volves the resolution of a cubic, and hence is subject to the difficulty attend-
ing the irreducible case of cubics. We will give a singlc example, to which
the student can apply the process of Descartes.

Ex.—Find by Descartes’s method the roots of z*— 102*— 20z — 16
= 0.

RECURRING EQUATIONS.

284. A Recurring Equation is an equation such that the
coefficients equidistant from the first and last are numerically equal,
when the equation is in the complete form Az*+ Bz*-14 Ca*2- - - -
L =0; and the signs of the corresponding terms are either all alike,
or all unlike; <. ¢, the coefficients of the first half recur in an inverse
order in the second half of the function.

I, 120% + 8z¢ — b5a® — ba® + 82 + 12=0 is & recurring equation,
Azt + Bzt 4 Can2 . - . - Oz + Br + A =0 is the type of such equations.

285, Prop. 1.—The roots of a recurring equation are recipro-

. . s 1.
cals of each other; i. e, if a 18 a roof, — 18 also, and. 8o of euch
of the roots.
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DeM.—I{ a satisfies the equation
Az + Bt 4+ Cx*—2 - . . . Co® + Bz + A =0,
%wm aleo satisty it, for the former when substituted gives
4a* 4 Ba*' + Car3 - - - - Ca* + Ba + A=0;
and the latter gives
A B 4 (4 B _
Etantau s atgtd =0
which, by maultiplying by a* becomes
A+ Ba+ Ca* - - - - Ca*9 4 Bar—! + A* =0,
a result identical with that obtained when a is substituted.

286, Scun.—From this relation among the roots of recurring equations,
they are often called Reciprocal Equations.

287 . Cor. 1.—1If the degree of the equation is ODD the correspond-
ing coefficients may all have like, or all unlike, signs ; but, if the
degree i8 EVEN they must have like signs unless the middle term <s
wanting, in whick case they may have unlike signs, and the roots
8till be reciprocal.

That the signs may be unlike in the cases specified is evident since, if in such
cases @ is & root, and we substitute ‘1—‘ instead of a, clear of fractions, and change
all the signs, we shall have the same result as if @ had been substituted. Thus,
if substituting @ gives Aa®+ Ba*—Ca®+ Ca®—Ba—A4=0, substituting :—l- will

give aAT + EB; f, + g, I—} — A4 = 0; whence clearing of fractions and changing
all the signs we have — A Ba + Ca®* — Ca® + Ba* + Aa® = 0,8 result iden-
tical with the former. The fact concerning the equation of an even degree is
shown in a similar manner. Notice that all the corresponding coefficients must

have like signs or all unlike signs,

288. CoRr. 2.—A recurring equation may always be reduced to &
Jorm having the coefficient of the highesi power of. the unknown
quantity, and the absolute term each 1, since by definition these are
numerically equal,

289, Prop.2.—A4 recurring equation of an odd degree has one
of its roots —1 if the signs of the correapondmg terms are alike, and
+1 §f they are unlike.

DeM.—~Having @*+ A1+ Bam-v4 Crn-d. - - . 4 (o & Ba’s:A.z‘;t 1=0*

' The sign of o» can always be made +. The ambiguous signs are tv be taken + or —, a0~
cordlng to the hypothesis, )
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taking the signs of the corresponding terms alike we can write
(@ + 1) £ Az (@t + 1) & B2tz + 1) & C2%(2*~¢ + 1) + ete. = 0,
which is divisible by z + 1 (PART L, 119), wherefore — 1 is a root (231).
Taking the signs of the corresponding terms unlike, we can write
(@ —1) + Az(@** —1) + Bz*(z*~* — 1) + Cz3(@**— 1) + etc. = 0,
which is divisible by z — 1 (PART L., 219), wherefore + 1 is & root (231).

290. Prop. 3.—A recurring equation of an even degree, whose
corresponding terms have opposite signs, has one root 41, and one
root —1.

Des.—Having 2% 4 Ax™~1 4 Bt 4 C2™2 . . . . T (2® F Be* T Az
— 1 =0, taking the signs of the corresponding terms unlike, and remembering
that the middle term, which would have no corresponding term, is wanting
(287), we can write

(@™ —1) £ Az (z™t~1) £ Brt@™4 — 1) & Ozx?(@z™*— 1) + etc. =20,
which is divisible by 2* —1 (PART 1., 119); wherefore 2* —1=0, and
2= +1 and —1.

291. Prop. 4.—A recurring equation of an even degree above
the second, may be reduced to an equation of half that degree, when
the signs ¢f the corresponding terms are alike.

DM ~Having at = Aa¥ 1+ Bet»—3: 03 - . - - 2 Ma» - - - 202+ B2%+ Az
+1=0, taking the signs of the corresponding terms alike, we can write
(@™ + 1) £ Al + 2) £ Bla™*+ 2*) £ Oz™3 + @%) + etc. = 0
whence, dividing by 2%, we have
(:v-+ —) + 4 (z'—'+ ———) 1B(z'~' +—:,) + C’(z-—'+ ;_,

...-L(¢+E)iﬂ=-
1 1\* 1
Nowputtingz-pazy,wounwﬂu x+;)=w‘+2+;,=y',
1, ( 1\°_ 1 1.1 1
whence o* =Y -2 z+;)_w’+az'5+8a:;-+;,=a'+5;
+ 8(a +‘12) = y? whence a® + %, =y*— 8y.
P 2 L Lo ¢ wh a1 * ' _
(z +tn)=2¢ +2+E,_(y—2).Wencez +;—.=()/—2) -2
1\* 1 1 1 1 1 1
(z-n- E) Sataletl 4 UL 4 Mt 4Bl + L o=ats X

/ 1 ‘ 1 1 ‘
+ B z‘+;,) + lo(z-q- E)-:y',whenee =0 +p=y’-s(y'-87)-10,y.
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s, 1 "= S .4 9 1 - 3— 84)%, wh 8 1 = (43— 8y)*— 2,
Gk~ @ + B + — =0 —8y)*, whence 2® + - = (yi~3y)*~2.

‘Whence we see that any term of the form z» 4+ :—; may be exprégsed in terms

of y, and will involve no higher power than y*. Therefore the original equa-
tion, which is of the 2nth degree, can by this substitution be transformed into
an equation in y, of the nth degree.

EXA](‘PLES.

Solve the following recurring equations by applying the foregoing
principles:

1L 22—+ 62—8x+1=0.

22— 112 + 172* + 172* — 112 + 1 = 0.

3. 62* — 112 — 832 + 382" + 1llz — 6 = 0.

4. 14+ 2*=a(l +2)" ’

5. ' -2 + 2+ 2 — 22 4+ 1 = 0.

6. 82* — 162* — 25z — 162 + 8 = 0.

7. 42" — 242 + 5Vt — 132 + 6V2' — Uz + 4 =0.
8. 2* + 4az® — 19a'2* + 44’z + a* = 0.

9.2+ +2+x+1=0.

10. 1 + 2 = §(1 + 2)%

. Binomrian EquaTtions aAxp THE Roors or UnrIry.

292, A Binomial Equation is one of the form z* % a = 0.
Such equations may be considered as recurring equations and solved
accordingly.

Itr.—Having 2 + 2 =0, put 2» == ay*; whenee ays k a=0,0org* £ 1=0,
which is recurring.

. ExAMPLES.
1. 22%5=0. 3. 22+=2=0 5. 22311 =0,
2 a#+3=0 4, 2+ 7=0 -~ Gt 1=0

%. What are the fwo square roots of 1? The ¢hree cube roots of
1? The four fourth-roots of 1? The five fifth-roots of 1? The
siz gixth-roots of 1?

Sua.—The solution of these questions eomlsts in resolving of —1=0,
v*~1=0, a*—~1=0,etc. The five fifth-roots of 1are

1, 3{(VF-12V-10—28), and =3 (¥E+12V =10 + 2 ¥5),

283. Scu.~It will be observed that the form o” + 1 =10 is omitted
sbove.” Now o’ ~1=0 hu one root 1. The equation can_therefore be
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depressed to a recurring equation of the 6th degree, having ull its signs +.
This can'be reduced to a cubic by (291). 27+ 1=0 has one root z=—1,
and can be reduced to a recurring equation of the 6th degree having its
signs alternately + and —. This can be resolved into one of the 8'rd degreo
by (29X). Hence the complete resolution of @7 + 1 =0 depends on the
resolution of a cubic.

2°+ a =0 cpn be resolved by putting @*=y, whence we have y*+ a =0.
Solving this for y we have 8 roots, Call them a,, @y, 5. Hence to com-
plete the solution we have to resolve the three cubics @?+a,=0, 2°+a,=0,
2+ a; =0.

ExPoNENTIAL EQUATIONS.

294. Exponential Equations are equations in which the
unknown quantity or quantities are involved in the exponents.

1

ILL. a*+W=¢, a=d =42, $=2 =250, 22=100, and
¥ — y* = m are exponential equations.

295. Prob. 1.—7To solve an exponential equation of the form
a* = m. '

SoLuTION.—Taking the logarithms of both members we have z log a = log m
(180, 181) ; whence z = ]1(:,§ Z‘ Therefore finding the logarithms of m and
a from a table of logarithms, and dividing the former by the latter, we find .

296. Prob. 2.—7o solve an exponential equation of the form
x*=m.

SoLuTION.—Taking the logarithms of both members we have & log @ = log m.
Then find log m from the table, and determine z by inspection from the table so
that @ xlog & shall equal log m exactly or approximately.*

EXAMPLES.
1. Find the value of # in the equation 3* = 2546.

SOLUTION, zlog8=1log2348. .. = —2—— = —o— = T.188 +.

2 to 6. Solve the following: (24 =18742; 2==2673; (11)*=2681;
¥=10; F=1; ()=
7. Find the value of z in the equation 2* = 3561.

* The method of solving such equations by Double Position is entirely useless, since a table
of logarithms is necessary for that method, and having such a table at hand, the approximations
can be made to any extent likely to be deslred, more readily by stmple inspection than by com-
puting the errors by Double Position. l(oreove:, the nmhod here given affords an exeellont
cxerclse in the use of the tables, '
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. SoLuTION.—We have « log ¢ = log 3561 = 8.551572. Now looking in a tahle
of logarithms, we soon see that @ must be near 5, since §log§ = 5 x .698070
—-8494850 Thus we see that @ >5. Trying 5.1 we have 5.1 log 5.1=8.60860%,
‘. # < 5.1. Therefore we try 5.05. 5.05 log 5.05 = 8.55161855, which coincides fo
nemrly with the required value of 2 log 2, that undoubtedly the 100ths figure is
4. Again, for a nearer approximation try 5.040, as the value of 3 is very near
506 5.049 log 5.040 = 8.550482. Hence we see that @ = 5.040 +.

8 to 15. Solve the followmgasabove. 22=100; 2" =17; 2° = 21~
2* — 402" = 200; 3* + 3" = 100; a'—;——%' @ r'=¢; a™i*
=cq.

16 to 21. Solve ‘the following: 2*= g% and #*=3'; 2*=¢* and
*=y; m7=mn,and z+y=g¢; 23 =0500, and 22 =3y;

5"~ = 256; (a*— 20" + ¥ = (¢ — b)™ (a + B)~

22. Given the fundamental formulw of Geometrical Progression,
vis, I=ar and 8= ”_ =2, to find the following:
' 1og[;+(r—1)8}—1oga

log i—loga

T logr +1; " log 7
_ logl—loga log I—log [Zr— (r—l)S]
"= Tog (S—a) —Tlog (8—1) +1,and n= — logr

23. Gived the two fundamental formulee of Compound Interest,.
vigz, a = p(L + r),* and {=ga — p, to find the following::

, _ log (p+1) —1log _ loga—logp, .
b= e a+n ¢ !PT Tgarn’ 18 1+
- og(p-}-@)-—]o&_ log (1 + r) = log a-;—log g;'
;= ]oga—log (@ — 7). ‘1og(1+r)=loga—log(a-—z).

log (1 + 7) ’
Nore.—Many problems in Compound Interest, Annuities, and kindred sub-.
Jects are most expeditiously solved by means of logarithms. The student who.
has not a table of logarithms at hand may either omit the following examples.
in this section, or content himself with selecting the proper formula l.nd telllng
how it is ‘applied to the solution of the particular exa.mple

24 What i 1s the amount of 6100 at 73‘ annual compound mterest

. %.This foringla ia obhin-d thu ' letting r represent the rate for time 1, oxprcnad doclgml!y.
\ €., ¥ the rate 1s 7 perot., #=0% or 1 , we bave for time 1 (as 1 year), a=p+pr=p(i+n);

‘or time 2, a..p(t+ﬂ+pr(1+r)=p(1+m i for Hma$, g-pa 194 +prQ +m-wm*, ﬂmg-
‘ore for time ¢, gup(1+r). {
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for 10 years? What if the interest is compounded semi-annually ?
‘What if quarterly? What in each case if the rate is 10g? If 6%?
Irsg?

Sva’s—We have a=p (1 4 r)t, whence log a =log p 4 ¢log (1 + 7) =log
100 + 20 log 1.085, for interest at 74 compounded pemi.annually.

25. In what time will a sum of money double itself at 104 com-
pounded semi-annually? At ©% compounded annually? In what
time triple? Quadruple ?

Suae. a =2 =p(1 + ry, whence 2 =(1+7),and ¢ = — - —

26. In what time will $10 amount to $100 at 84 compounded
annually ?

2%. What is the present worth of 2000 due 8 years hence, without
interest, if money is worth 10% compound interest ?

8ue.—The present worth is a sum which, put at compound interest at 10g,
will amount to $2000 in 8 years. Hence 2000 = p (1.1)%, p standing for present
worth. Whence log p = log 2000 — 8 log (1.1).

28. A soldier’s pension of $350 per annum is 5 years in arrears.
Allowing 5% compound interest, what is now due him ?

Sua’s.—The 5th, or last year's unpaid pension has no interest on it, as it is
just due. The 4th, or next to the last, has 1 year's interest due, and hence
amounts to 850 (1.05) . The 8d year's pension has 2 years’ interest due, and hence
amounts to 850 (1.05)2, Thus the total is found to be 850+ 850 (1.05)+ 350 (1.05)*

+ 850 (1.05)° + 850 (1.05)*, or 850 {1 + (1.05) + (1.05)* + (1.05)* + (1 05)*}.
29. Letting S represent the amount of an annuity a, in arrears
for ¢ years, compound interest being allowed, at r#, show that
(+r—1
S=a.—0—.

80. What ie the present worth of an annuity of $200 for 7 years,
money being worth 54 compound interest ?

S8ua.—Evidently, a sum which, put at 54 compound interest, will amount to
the same sum in 7 years, as the annuity will,

31, Letting P be tl;e present worth of an annuity a, for time #, at

¥ compound interest, show that P= 2. Q(‘H%-'l Also, that if
- L
the annuity ig perpetual (runs forever), P = g. '

.
’
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i o i @ (=1 a (1)
Sua.—~When t=w, P=_- Ax =7 (1+r)‘- ) u it evidently
ghould gince puoh an. annuity is worth a present sum which will yield an

'annu.al interest equn.l to the annuity,

32. What is the present. worth. of a. perpetual anmuty of $860,
money being worth 7## compound interest? If money is worth
10% compound interest

.83. What is the present worth of an annual pension of 0125,
which commences 3 years hence * (first payment to be made 4 years
hence), and runs 10 years, money bemg worth 10% - componnd
interest ?

Sua.—Evidently, the difference between the present worth of such a pension
for 13 years, and for 8 years. .

34. An annuity @, which commences 7 years hence, and runs; t
years at 4 compound interest, gives
P_gj(l + 7)™ —1 (1+4+7r)—1)

B N Vo LA
When the annuity is perpetual nfter the time 7, we have

( (L42)~T— (L 47)""0 }

P= f-:(l + 7)~ 7.  Student give proof. -

35. Two sons are left, one with the immediate possession of an
estate worth $12000, and the other with a perpetual annuity of $800
in reversion .after 7 years: money being worth 5% compound in-
terest, which has the more valuable inheritance, and how much ?

36. What annual payment will meet principal and interest. of a
debt of $2000 at 8% compound interest in.5 years?

8ua’s.—The amount of $2000. at 87 compound interest for 5 years = the
amount of the annuity a for the same rate and time. ‘ ,

37. Show that if D is a debt at compound interest at r%, 5 an
annual payment, and ! the number of years requxred to- hquldate
log b — log (b — Dr) Wi
the debb ¢ == rog @+ 1) ,
88. The debt of a certain State is 820,000,00(), bearmg annual
interest at 43%. = A sinking fund of 02,000.000 annually is get. apart
to meet it. How long will it require to extinguish the debt ?, How
‘long if instead of paying the $2,000,000 annually on the debt, it is
invested at 6% compound interest ?

o

. Anmﬂ*ﬂwhuhmmmnm.numeswiﬂdﬁmuwtohmm
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39, A farmer has paid $10 per annum for newspapers, which he
counsiders have increased his net annunal income at least 4. For 10
years during which his net income has been $500 annually, money
has been worth 10% compound interest. What is the total net gain
to be credited to his investment in newspapers?

40. A boy commenced smoking when 15 years old. For the first
b5 years he smoked 2 b-cent cigars each day. For the next 20 years,
3 10-cent cigars per day. Now had he abstained from smoking and
invested at the end of each six months the amount thus saved,at 10%
annual compound interest, how much wonld he have accumulated from
this source at the age of 40P

41. A man pays a premium of 104 per annum on a life policy of
#4200 for 20 years before his death. Money being worth 104 com-
pound interest, does the insurance company gain or lose, and how
much ?

OHAPTER IV,

DISCUSSION, OR INTERPRETATION, OF EQUATIONS.

29%. To Discuss, or Interpret, an Equation or
an Algebraic Expression, is to determine its significance for
the various values, absolute or relative, which may be attributed to
the quantities entering into it, with special reference to noting any
changes of values which give changes in the general significance.

Buch discussions may be divided into two olasses: 1st. The dis-
cussion of equnations or expressions with reference to their constants;
and 2d. The discussion of equations or expressions with reference to
their variables.

The following principles are of constant use in such discussions:*

298, Prop.—A fraction, when compared with a finite quantity,
becomes :

* Theso principles, and in fact most of this chapter, have been oconsidered previously, but
aze collected hove for review and conniected study.
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- 1; Bgual 86 0, when ite numerator s 0 and ite denomiumrﬂﬂnm,
and when its numerator is finite and sts- denominator o .

2. Equalto w , when its numerator is finits and its denominator 0,
and when its numerator is @ and.-its denominator finite.

8. It assumes an indeterminate form when numerator and deiiom-
tnator are both 0, and when they are both  .*

DEM.—These facts uppear when we consider that the value of a frwtibn d;-
pends upon the relative magnitudes of numerator and denominator.

1. Let a be any constant and z a variable, then the fraction ; diniinishes as

« diminishes, and becomes 0 when z is 0. Again, the fraction g diminishes as

# increases, and when z becomes ®, . ¢., greater than any assignable magni-
a

tude, z becomes less than any assignable magnitude or infinitesimal, and is.to

be regarded as 0 in comparison with finite quantities. (Sce 142 and 151, DEM.,
and foot-note.)

2. As z increases, the tmctionz increages, and hence when z becomes infinite
the value of the fraction is Infinite. Also as 2 diminishes the value of Z in-

creases ; hence when ¢ becomes infinitely small, or 0, the valae of the fraction
exceeds any assignable limits, and is therefore . .

8. Finally, if # and y are variables, s diminishes as z diminishes, and inereases
as g dimiinishes. What then does it become when @ = 0,and y =01 ¢. 6., what Is
the value of g— ? Simple arithmetic would lead us to suppose thnt‘%‘ was abso-
luuly indeterminate, 3. ¢,, that it might have any value whatever assigned to it,
for—-—ls since 0=5 x 0=0; --—7 since 0 =7 x 0 =0, etc. Buts closer

0
inspection will enable us to see that the symbol 0 is not necessarily lndetbrmi-

nate, or rather that the expression which takes this form fer particular values of
its compouents, has not necessarily an indeﬂmte number of values for these

values of its componemts. Thus, whas the nlue ot Z will be when ¢ and yosch

¥ .
diminish to 0 will evidently depend upon the relative values of 2 and y at
first, and which diminishes the faster. Buppose, for example, that y= =5z;

then 3— = 5%.‘ Now, auppose z to diminish ; the denominator will dimlnhh 5

‘,_‘ ﬁy this is mesnt thﬁ-% qd -:-‘ may have _aviekt;ot ﬁluc'l, ndt MMM
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times as fast as the numerator, and whatever the value of o, the valué of fho
fraction will be §. Soify = 'k.;--,,— , which is § for any value of z, Henoo

0 3:___1 o'rz=0_w 1
Pl ARt el Mt T

whena:_o l,ndy._o,wehves

Y

e 0
—=6—-myothervaluodependingn pon the relative values of wand y. So,
also, if 2=c,and y =, 2 = z but if y=~6z we hnve;—%:é
1 : 2 o z 1
=-. And = 10z, - — = e,
g 8o if y =10z, welmvey il T Thus we see that the

niere fact ‘timt numerator and denominator become 0, or become oo, does not de-
termine the value of the fraction, ¢. e., gives it an indeterminate form.

299. A Real Number or Quantity is one which may be
conceived as lying somewhere in the series of numbers or quantities
between — o and + o inclusive.

Irr.~—Thus, if we conceive a series of numbers varying both ways from 0, i.e.
positively and negatively to @, we have

~® ----—4, -8, -2 —-1,0, +1, +2, +8, +4,---. +».

Now a real number is one which may be conceived as situated somewhere
within these limits; it may be +, —, integral, fractional, commensurable, or
incommensurable. Thus + 15624 and — 15624 will evidently be found in this
series, + ' may be conceived as somewhere between + 5 and + 6, though its
exact locality could not be fixed by thoe arithmetical conception of discontinuous

number, 8o, also, — 4 is somewhere between — 5 and — 8. Again + ¥5 is

somewhere between + 2 and + 8, though, as above, we cannot locate it exactly .
by the arithmetical conception,

The following Geometrical ITlustration is more complete than the arithmetical.
Thus let two indefinite lines, as CD and AB, intersect (cross) each other, as at O,
Now let parallel, equidistant lines be drawn between them. Call the one at a

NN B
r
Eaamand Pmmmp 00
P

i ‘ , o ~

+1,that at b will be 42, at ¢ +8, ete. Bo, also, the line at @' being —1, that at
» will be —2, at ¢’ <8, etc. Now conceive one af these lines to start from an
infinite distance at the left and move toward the right. When at an infinite
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g

distance to theleft of O jts value would be — w, and in passing to. O it would
pass through all pam‘ble negative valuce. In passing O it becomes 0 at O,
changes sign to + as it passes, and moving on to. infinity to the right, passes .
through all possible positive values. Hence we see how al real values are em-
braeed between — o and + o inclusive®*

- 300. An Imayinary Number or Quantity is one
which cannot be conceived as lying anywhere between the limits of
— o and + o, a8 explained above. The algebraic form of such a
quantity is an expression involving an even root of a negative quan-
tity.t (See Part I, 218.)

ExXAMPLES.

1. What are the values of 2 and y in the expressions z = z—;;b, ’
y= ‘—l%—:—;t,é , When b = %' and @ and &' are imequal ? Whend=1¥¢"
and e = a'? When a = o' and b and &' are unequal? What are the
signs of z and y when & > &’ and @ > o/, the essential signs of «, d’,
b,and b’ being +? Whend>d'anda<a'? Ifa' and b are essen-
tially negative, and @ =a’, and b = %', what are the values of z and
y? If a’ and &' are cach 07

a—a
1+aa’-0?

2. What general relation between a and 4’ renders
What renders ibao? '

. SornurioN.—To render '—‘T'—r" 0, we must have @’ — a=0, and 1 + ag’
finite or infinite ; or else we must have 1 + aa’' = , while @’ — a i8 finite or 0
’ —_— ! — 1 a—a . 0 '
(298). Nowa'—a=0givesa' =a; w T5aa —i5s0 which is 0 for
any value of a finite or infinite, Hence the relation @’ = @ fulfills the first re-
quirement. Let us nowegee if 1+4-aa’=c will also fulfill this requirement. This
gives aa’ = o, since subtracting 1 from © would not make it other than m,

Thus we have ¢’ = ‘2-. Hence for all finite values of a (including 0) @’ isw,

* For le, the student who is acq d with tho el of g etry knows how to
construct a line which is exactly equal to ~/5 (GEoM., PaRT 1., 110). This lin¢ he can locate .
between + 2 and + 3, and also betweon 2and -3, sloce VB is both + and -,

t+ Tra d 1 faneti afford other form of imaginary exprenlon- 3 tor mmplo.
oln"’!. sec™! 3y, log (~180),.J0g (—m), etc. But our limits forbld the consideration of the in-
terpretation of imaginaries, except in the most netrleud sonse, &8 indiwiw hwﬂbim
with the arithmeticat wenso-of the problem. ' - e
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a.nd;;‘a:,_%._; l,wh.lchan only be 0 wheén a'—n.' 'l'heuiore the
portfcularnlueud’zu:*—a::m,mderl_‘_“:o Mmyemmluluu
do.

Again, in order that =—2% TTad
finite or inﬂnitel; or else we mnst have @' —a=w, and 1_+aa finite or 0.‘

i

= o, we must have 1+aa =0,and @’ —a

L1
i

_l_ a—-a= +1_a*t+1
&'’ 1+ ad -l_i'a"—-a"' 0

a .
for any value of a' finite or infinite. Therefore the g 1 relation a = —

Now 1 + aa' = 0 gives a = = ®

L
al

between ¢ and o’ renders : +— a’, =w.} Let usnow see if the relation a'—a=w
will do the same. Now if a’' — a =, one or the other (@' or @) must be .
&~ LA 1, which can only be oo when a=0.
l4+an'  aa

Let @'=®. We then have
Hence the particular values a'= « and ¢ = 0 render i—‘i;a% = o, but no gen-
eral values meet the requirement unless @ = — —al-.

— ’
8. What general relation between a and @' renders ];‘, +a::_ =0?

‘What renders it o ?

4. In the expression y = — 2z + 4 &= 4/2* — 4z — 5, how many
values has y, in general, for any particular value of 2? For what
value or values of  has y but one value? For what values of x is y
real? For what imaginary ? For what values of « is y positive?
For what negative?

SOLUTION.—Writing the expression thus, y=— (22 —4) £4/27 — dr —§,
we see that the value of y is made up of two parts, viz., a rational part —(2x—4),
and a radical part 4/7% — 4z — 5. But the radical part may be taken with
either the + or the — sign. Hence, #n general, for any particular value of =
there are two values of y. 2d. But if such a value is° given to 2 as to render the
radical part 0, for this value of 2, y will have but one value, viz., the rational

part. But the condition 4/ 2¥ — 47— 5=0 gives =5 and — 1. Thus for

* This reduction 1s made by dropping a and 1, since the subtrdction of & finfte from an in-
finfte, or-the adilftion of a flulte to an infinite, does mot ch tho ¢h of the indnite, -
Thus, in this case, to that dropping @ and 1 affect ‘tha lati tor and,
denominator, would be to assign 1o 4 and 1 some values with mcpect to the infinite @’. But
this is sontrary to the dofinition of an infinite. .

1 1618 to b obuerved that the reletion & = - J; Fequires tHat & and a’ have different ossen-
tial signs; while the relation a' @ requires that they have the nnu omudd .1¢n|
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£=05, y= — 8, but one value; smd fors = ~ 1, y == 46, also but one value,
8d. To ascertain for what values of z, y is real, we observe that y is real when
o* — 42 — 5 is positive, and imaginary when #* — 42 — 5 is negative. Now
for @ positive 2* — (4z 4 5) is + when 2® > 4z 4 5 and for z negative, we
have 2* 4 4z — §, which is positive when ¢* + 4z > 5. The former inequality
gives 2* — 4z 4-4> 9, or 2 > 5 ; and the latter gives 2* + 42 + 4> 9, or2> 1.
Hence for positive values of z greater than 5, y is real, and for negative values
of # numerically greater than 1, y is real. The 4th inquiry is answered by this:
y is imaginary for all values of z between —1 and +5. 5th. To asvertain what
+ valuesof # render y +, and what —; we observe that —(2z—4)+ 4/2* —4z -5
can only be + when the + sign of the radical part is taken and when
A/2* —4x—5>2—4 This gives 2.<2 + 4/—8, & ¢, an imaginary
quantity. Hence y is mever 4 for z +. Taking the negative sign of the
radical we see that both parts of the value of y are —, and ‘consequently y is
real and negative for all 4 values of. z which render y real, i. e., for values '
greater than 5. Finally, for 2 — we have y = 22+ 4 + 4/7° + 45 — 5. 'Now
when we take the + sign of the radical both parts are +; hence this value of
y is always +. When we take the — sign of the radical y is negative if
2 +4 < 4/2% + 4z — 5. But this gives z < — 2 £4/—3. Hence y is never
negative for any negative value of z. Therefore both values of y are positive
and real for all negative values of z numerically greater than 1.

5 to 22, Discuss as above the values of y in the following; 1. e,
1st. Show how many values y has in general, and whether they are
equal or unequal; 2d. For what particular value or values of z, ¥
has but one value ; 3d. For what values of =, y is real, and for what
imaginary ; 4th. For what values of z,y i8 +, and for what — ; 5th.
Algo determine what values of  render y infinite:

(B)y +2%y—2 —4y—z+10=0;*
6)y —2y+2°—2 4+ 2w=0;
(V) & + 2%y + 2* — 6y + 9 =0;

8) ¥+ 2y + 82" —4zx=0;

(9) * — 2y + 32" + 2y~ 42 — 3=10;
(10.) o' + 2y — 82° — 42 = 0;

(11) y* — Ry + 2* + 2= 0;

(1) ¥ — 2wy + 2 —4dy +2+ 4=0;
(13) ' =Ry + 2"+ 2y + 1=0;

(14) ¥ — 22" — 2y + 62 — 3 =0;

(15.) ¢ — %2y —82* — 2y + T2 —1=0;
(16) y*— 2@y —2=0; ‘

* In all cases solve the equation fur y in the firet place. In this exemple
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(18) 49" + 42* + 2y — 8z + 12 = 05

" (19.) 8y* — 82 =12;

(20) 1% +42*=20;
(21) 2* +¢* = 16; .
(22) o —y* =20,

23, Discuss the equation ay' — 2* + (b — c)z’ + boz =0, a.aabove,
when b > ¢ also when ¢ > &.

Sue's, y=x —;1/0' — (b — c)@* — bex. Whence we see that y hastwo values
@
for every value of , numerically equal, but with opposite signs. y is 0, when

—~—@G—c)2®* —bez=0; i e, whenw =0,2=>,and —¢. Again y is real for
w+,when:u’>(b'—-c)w'+bc:o or @ > (b — ¢)@ + be; which givesz > b. For

o—, we have y == —{\/ — @3 — (b — ¢)@* + box, which. gives y real when
a

@? + (b —~ ¢) 2* < bex, which gives  numerically less than ¢, f. ¢., greater than
— ¢. Hence y is imaginary for all values of z between 0 and 4 b, and real for
all values of 2 from + b to +o. 8o also y is real for all values of 2 from 0 to
— ¢, and imaginary for all values of 2 from — ¢ to —.

24. Discuss a8 above 4* = (z — a)* xb, showing that in general

y has two values numerically equal but with opposite signs; that it
is O for # = a, and = = b; is imaginary from z =0 to z = J (except
when 2 = a, b being greater thun @) ; real from # =125 to z = + »,
and real for all negative values of z, 7.6, from 2 =0 to 2= — o}
and that for # =0, y = =% 0, and for = +w®, y = 3= « ; also for
T=—cw, y==ow.

25. Show from the equation y + 2°y = #, that y = 0 when == 0,
+o0, and —o ; ulso that y has.but one value for any particular
value of z; that it is + when 2 is +,and — when 2 is —; and that
y incrcases numerically as 2 passes from 0 to +1,and from 0 to —1,
but that it diminishes numerically a8 = passes from + 1 to + o,
and also from — 1 to —w.

26. Discuss y'z = 4a’ (2a — z) with reference to y as a functmn
of z, as above. .

27. Show that in the equation y* — 8azy + 2* = 0, y has three
real values between the limits x=0,and z =« V'4, and only one

real value between the limits z = av/dand z= +o,and ulso be-
tween the limits 2 = 0 and 2 = —w.

8ua.—This is done by means of Cardan’s formula. (See 280.)
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301. ARITHMETICAL INTERPRETATIONS OF Nne.um "AND
IMAGINARY SOLUTIONS. R !

1. A ig 20 years old, and B 16. When will A be twice as old
as B?

SUG 8.~sWe have 20 + 2 = 2(16 +2); whence 2 = —12. The mtﬁmetxca]
interpretation of this result is that A <ill never be twice as old as B, but that he
was twice as old 12 years ago, 4. ¢, when he was 8 and B 4.

2 Aisa years o]d, and B 5. When will A be n times as old as
B? TFor n > 1 what are the possible relative values of @ and 5 con-
sistently with the arithmetical sense of the problem? Interpret for
a>nb, a=nb, a <nb when # > 1. Also for n =1, @ > nb, a < nb,
and a = nb.

3. Two couriers, A and B, are traveling the same road in the
same direction, the former at rate @, the latter at rate & They are
at two places ¢ miles apart at the same time. Where and when are
they together ?

SoLUTION AND DiscussioN.—Let XY represent the road which the couriers
are traveling in the direction from X to Y, and A and B the stations which they

DI

4

X o' A B D Y

pass at the same time, 4 being at A when B is at B, and D or D’ the place at
which they are together. Call the distance from B to the place at which they
are together xz, + @ when D is beyond B, and — 2 when it i8 on the hither
side of A and B, as at D'. Then the distance from A to the point at which they
are together is ¢ + (+ 2). Now disregarding the essential sign of 2, and leaving
it to be determined in the sequel, we have .

Distance A travels from A=¢ + @,
Distance B travels from B = x;
+ 2 @
3

But these aroc equal. Hence we are to discuss the equation

otz =z be
—a _E,orz s’

oo __ac
and o+ &= g
Tﬁe points to be notieed in the discussion are, (1) when a > b, (2) v;hen a<b,

(8) when @ = b, 0 being greater than 0 in each case but not ®. Also the like
cages when ¢ = 0.

: : ' When ¢> 0 bt not ..

" 'We have, for @ > b, © positive, which shows that the point at which they are
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together is at the rlght of B, 4. ¢,in the direction which they are traveling.
The time, 3 (or ) is positive, which shows that thery are togcthcr qfter
pasiing A snd -8, : . . R .

For a <b, z is negative, and ¢ + x, which eqm.la ) , is also negttive.

This shows that they were together at a point at the le!t of A, that is, be!ore
they reached the stations A and B. With this the expressions for the time also

agree, Thua b bewmes -—S,andc*zisa.lsonegatlve,sineelnthmusez>c
be _be - as _ as .
‘When a-:b.c:-.;——__b_b—_w, and c+c_=;:_—b_-o—..m H which tndl.
cates that they are never together,
When ¢ = 0.

Inthipeuez=;%=0,unda+m=;g-5=0,lor a and b unequsl, indi-

cating that they are together when they are at A and B. This is evidently cor-

bc

rect, since A and B coincide in this case. When a =5,z = 7z 0, lnd

et o= -g-, which shows that they are always together, % being & symbol of in-

determination which in this instance may have any value whatever, as we see
from the nature of the problem.

802. Scn.—The student should not understand that the symbol -g

always indicates that the quantity which takes this form has an indefinite
number of values. It is frequently so, but not necessarily. The indeter-
mination may be only apparent, and what the value of the expression is
must be determined from other comsiderations. The Calculus affords the
most elegant general methods of evaluating such expressions. But the

. —_p3

simple processes of Algebra will often suffice. Thus for z =1, 1—1—% = %
— 3 '

But !{——_j;a 1+ + *, which, forz =1, is 8. Hence 11 =3, for z=1.

Here the aiaparent indetermination arises from the fact that the partmular
sssumption (that = 1) causes the two quantities between which we wish
the ratio, viz., the numerator and denommn.tor, to disappear. Let the

student find that l—:_—'_;;‘”—“-——_z} for 3=1. (See also 298,32 part of
demonstration.) -

4. Two couriers starting at the same time from the two points’
A and B, ¢ miles apart, travel foward each other at the rates a
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‘and 5 respectively. Discuss the problem mth reference to the place
and time of meeting. (Consider when ¢ > 4,4 < 4, and a =3.)

5. Two couriers, A and B, are traveling the same road in the
same direction, the former at rate a, and the latter n times as fast.
They are at two places ¢ miles apart at the same time. Discuss the
problem with reference to place and time of meeting as in Ex. 3
adding the considerations, n > 1, n <Ln=1n=0

6. Divide 10 into two parts whose product shall be 40,

SoLUTION AND DiscussioN.—Let @ and y be the parts, then z + y = 10,

oy =40, andz =8 & 4/— 15, ¥ =05 F4/—15. These results we find to be
imaginary. This signifies that the problem in its arithmetical signification is
impossible : this indeed 1s evident on the face of it. But, although impossible
in the arithmetical sense, the values thus found do satisfy the formal, or alge-

braic sense. Thus the sum of 5+ 4/~ 15 and 5§ — 4/—15 is 10, and the
product 40.

7. The sum of two numbers is required to be a, and the product
b: what is the maximum value of 4 which will render the problem
possible in the arithmetical sense? What are the parts for this
value of 4 ?

8. Divide a into two parts, such that the sum of their equares
shall be a minimum.

Bua’s,—Let z und a—a be the parts, and m the mlnimnm sum. Then
zt + (@ — 2)* =22 — 20z +a* =m;

whence z = {4 = }4/2m —af. From this we see that if 2m <a®, o' is
imaginary, Hence the least value which we can have is 2m = af, or m = {a?.

9. Divide @ into two parts, such that the sum of the square roots
shall be a maximum.

10. Let & be the difference between two numbers: required that
the square of the greater divided by the less shall be a minimum.

1. Let @ and  be two numbers of which « is the greater, to find

a nnmber such that if @ be added to this number, and 5 be sub-

tracted from it, the product of this sum and this difference, divided
by the square of the number, shall be's maximum. o,

"Sve’s.—Let n be the number, and #'the required maximum qﬁoﬂcnt. Then

bythecondmonaﬂvf(a;;m‘@ :

TREIRER GES ugm a

.

P Y R

= m, whence ye find
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From this we see that the greatest value which s can have and render n real
iam=(f%. This gives 5 = — 9= 2 = 2@

12, To find the point on a line passing through two lights at
which the illumination will be the same from each light.

SoLUTION.—Let A and B be the two lights, and XY the line passing through

X - ) % é‘ Y

them. Let a be the intensity of the light A at a unit’s distance from it, b the
intensity of B at a unit’s distance from it, ¢ the distance between the two lights,
as AB, and z the distance of the point of equal illumination from the light A, as
AD (orAD’). Then, as we learn from Physics that the illuminating effect of a light
varies inversely as the square of the distance from it, we have for the illumina-

tion of the point D Ly light A ;”% ,and for the illumination of tlie same point

by light B, b . But by the conditions of the problem these effects are
B ¢
equal ; hence we have the equation to be discussed ; viz.,
e _ b
et T (c—2)*"
(o—a)* b _c—=z VE_ x4/b
This gives r __a,or - = 7= '\/;’
or f_1=% _b;°r£=»\/¢z*—\/—b;
z Va z \a
a Va
or, finall: 2=¢~—V——,and = ¢ —F——,
» Anely Va+/d Va—+/b

which are the values of 2 to be discussed.
DiscussioN.—I. Let c be finite and > 0.

1. When a>b, 2=¢

3 >je, since "/—‘; => ¢ for a> b, This

_Na

Va+y Va+4/

is as it should be, since for a > b the point of equal illumination will evidently

Ve

4/a—+/b

since 7_—‘—/—375» + and > 1, when @ > b. Hence we learn that there is a

point beyond B, as at D', where the {llumination is the game from each light.
It we assume 4/ a=24/3, AD =% ¢, and AD’ =20,

2. It is evidently annecessary to consider the case when a < b,since this would
only situate the points of equal illumination with reference to A as the preced
ing discussion does with reference to B,

be nearer to B than to A. Again, the other valueof @ givesz =¢
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& =1} since___[ﬁ.__= Va =$. This
VP Va+4/F 24/a

is a8 it should be, since it is evident that in this case the point of equal illumina-
tion is midway between the lights. Again, for the second value of 2, we have
r==60 V—_V-L; = o, This is also evidently correct ; for when the lights are

@ —

of equal intensity thers can be no point beyond B, for example, at which the illa-
mination from A will be equal to that from B, except when z = @, for which
the illumination is O for each light. [Let the student give the reagon.]

II. Wheno=0 In this case the original equation ;;: L becomes

c—=F
L] Va

.= 2 , whence a=b. We then have #=¢ —Y—— = 0;and 2 —_-.c—"/—;—
at A/a—4/D

A/a+4/D N
—‘7;—"/—;—‘;-5 = g The former shows that there is a point of equal illumina-
a—

tion where the lights are (when ¢ = 0 they are together), and the latter shows
that any point in the line is equally illuminated by each light. Both these con-
clusions are evidently correct.*

8. Whena=25%,2=¢

* In discussing this problem, some have itted the error of considering that, since fo.
¥Ya
¢=0andgand d qual, 2 =¢ - = 0, therefore there is & point of equal fllumination
¥Yax b

at the point where the lights are eituated! This is evidently absard, since the hypothesis is
that the lights are of unegual Intensity. The error consists in not perceiving that the

hypothosis, ¢ = 0, excludes the hypothesis, ¢ and 5 unequal. That the hypotheses @ : b are

excluded hy the hypothesos ¢= 0 and that there is a point of equal {llumination, is self-evident,
Perhaps the student may think that these conditions are no more inconsistent than those in I. 8,
above, viz., ¢ finite, a="), and a point of equal {llumination ; and that, if in the former case we in-

tx=¢

Va = oo a8 indicating a pomnt of equal {llumination at 2 =, we should in

Va3

this interpret @ = —‘LV—-E-— =0 as indicating a point of equal illumination at the place

where the lights are ai d. Bat the cloal k in 1. 8 will clear up this difficulty.
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SECTION 1.
SERIES.

303. A Series is a succession of related quantities each of
which, except. the first or a certain number of the first, depends upon
the next preceding, or a certain number of the next preceding,
according to a common law., Each of the quuntltxes is culled a
TERM OF THE SERIES. ‘

ILL.—A Progression, as 1, 8, 5, 7, etc.,, or 8, 6, 12, 24, etc., is a series in which
_each term after the first depends upon the next preceding according to a common
law. The numbers 1, 8, 7, 11, 21, 89, 71, 131, ete., constitute & series in which
oach term after the third is the sum of the three next preceding, The numbers
2, 8, 5, 17, 88, 1513, etc., constitute a series in which each term after the first
three is the product of the twe next preceding + the third preceding.

304. A Recurring Series is a series in which each term
after the first » is equal to the sum of the products of each of the »
preceding terms multiplied respeotively by certain quantities which
remain the same throughout the series. These multipliers with
their respective gigns constitute the Scale of Relation.

1L, . 1, 42, 92°%, 1622, etc, ia & recurring series whose scale of relation is
@¥, —8z%, 8w, since (1 x @) + (42 x [ — 82*®]) + (B2* x 8z) = 162°. The next
term afier 16s° would be (4 x @) + (95 x [ —8a*])+ (162° x 82) = 252,
The next would be 862°.

5. An Infinite Series is one which has an infinite number
of terms. Such a series is said to be Convergent when the successive
terms decrease according to such a law as to make the sum finite;
otherwise it is called Divergent.

Iun. %, v#o, %, Tobws, etc, to infinity, is an infinite, converging series
whose sum is §. That % + 18y + Tdsn + Tobvo + ete., to infinity *=§ is evi.
dent, since by division we have § =.8838 + = ¥ + rdv + 1bv + etc.

* The expression * to infinity " is usnally omitted, as being sufiiciently indicated by * etc,; *
and, in fact, either the + sign at the end or the ** et¢.’’ may be omitted,
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306. To Revert a Series involving an unknown quantity
is to express the value of that unknown quantity in terms of
another quantity which is assumed as the sum of the first series, or
as involved in that sum. Thus the general problem is, having
given f(y) = ax + b2® + c2® + etc., to express z in terms of g, 4. e,
to find z = £ (y).

ILL—Thus to revert the serles 2 + 8@* + ba® + To*+ 92° + etc., 18 to express
the value of # in another series involving y when y =z + 82* + Bz® + Tat
+ 9z® + etc., or when 1 — 2y + 6y® =z + 8z* + 5z* + Ta* + 92° + etc., ete.

307. The First Order of Differences of a series is the
series of terms obtained by subtracting the 1st term of the given
series from the 2d, the 2d from the 3d, the 3d from the 4th, etc.
The Second Order is obtained from the first as the first is from the
primitive series. The Third Order is obtained in like manner from
the second ; etc.

These several serics are called the Successive Orders of Differences.

ILL.—Having the series

1, 8, 27, 64, 125, etc., we obtain
1st order of diff’s, 7, 19, 87, 61, etc.,
17 LR U & 12, 18, 24, etc.,
8d ¢ ¢« 6, 8, etc.,
4th ¢ o ot 0, etc.

308. Interpolation is the process of finding intermediate
functions between given non-consecutive functions of a series,
without the labor of computing them from the fundamental formula
of the series.

ILL.—The logarithms of thoe natural numbers 1,2, 3, 4,5, 6, 7, 8, etc., con-
stitute & series of functions., Now knowing these, interpolation teaches how to-
find intermediate logarithms, as log 4.8, 4.5, 4.6, eto., or 2.7, 2.72, 8.102, 7.025,
etc., without the labor of computing them from the fundamental formula of
the series (192).

[Nore.—The student must guard against the notion that every series is a
recurring series. Any succession of numbers related to each other by a common

law, as, for example, the logarithms of the natural numbers, is & serien, as well
as the more simple arithmetical, geometrical, and other recurring successions.]

" 309. Some of the more important problems concerning infinite
series are : To find the scale of relation of a series; To find the nth
(any) term of a series; To determine whether a series is convergent
or divergent ; To find the sum of a convergent series, or of 1 terms
of any serics ; To revert a series; and, To interpolate terms between
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given terms. To these problems weé shall give attention after
having demonstrated the following lemma, which is of use in the
solution of several of them.

310. Lemma.—The first term of the nth order of differences

tsa —nb +n(n2— l)a—- n(n — léfn —2) d +etc., when n is even, and

—a 4+ nb n(n; 1)c+ n(n— lé—(n —2) d—etc., when n s odd; a,
b, ¢, d, etc., betng successive terms of the series.

DrM.—Letting a, b, ¢, d, 6, f, etc., be the series, we have

1st Order of diff’s, b —a, ¢ — b,d —¢, e—d, f—¢, etc.,
d ¢ e« c—2+a,d—2+be—2d+e, f—2¢+d, etc.,

8d «“ « « d—8+8 —a,e—8d+8 —b,f—8e+ 8d—ec, etc.,
4th « "« «  g—4d+ 6c—4b+a,f—46+ 6d—4c+D,ete.,
5th ¢ “ e f—-5e + 10d — 10¢ + 56 — a, etc.

Now by inspection we observe that, numerically, the coefficients in these
terms follow the law of the coefficients in the devclopment of a binomial. Thus
the coefficients in any term of the 2d order of differences,as in ¢ — 2b + a, are
the same a8 in the square of a binomial; those in any term of the 8d order, as
in d~—8¢ + 8b—a, are the same as in the cube of a binomial, etc. Hence, revers.
ing the order of the simple terms in the first terms of the successive orders, and
representing the first term of the first order by D,, the first term of the 2d order
by D,, the 18t term of the 8d order by D, etc., we have, for the even orders,

De=a—2b+e,
Di=a—4b + 6c—4d + e.

Hence, by induction, we have, for the l_st term of the nth order, when 7 is éven,
n(n — l)c-— nn — 1)(n —
3 8

Again, for the odd orders, we have
Dy =—~a+bd,
=—a+ 80~—8¢ +d,
Ds = —a + 50 — 10¢ + 10d — b6 + [.
Hence, by induction, when 7 is odd, the first term of the nth order is
n(n ~1) n{n — 1) (n — 2)
g— ¢+ B d

Dy =a—nb+ 2,’)d+etc.

ete.*

e == — Q& + Nb =~

* The author does not deem it expedient to take the time and space to demonstrate more
rigorously thie law ; nor does he fully sympathize with the idea that §nduction is in no case &




SERIES. ' 276

311. Cor.—1t will be observed that in order to find the 1t term
of the first order of differences, we must have 2 terms of the serics
given ; to find the st term of the 2d order, 3 terms ; to find the 1st
term of the 3d order, 4 terms ; and, in generdl, to find the let term
of the nth order we must know n + 1 terms of the series,

ExXAMPLES.

1. Find the 1st term of the 384 order of differences in the series
%, 12, 21, 86, 62, etc. Also the 1st term of the 4th order.
Bua’s.—For the 8d order we have
Dy=—a+8—8+d=—T7T+8.12—-8.21 +86=2.
For the 4th order,
Di=a—4b+066—4d +¢e=7—4-12+6.21—4.86 + 62=38.
2 to 6. Find the first terms of the orders of differences specified in
the following:
(2.) 24, 3d, and 4th, in 1, 8, 27, 64, 125, ete.
(3.) 3d, and 5th, in 1, 3, 3% 3%, 84, 3° etc.
(4) 5th,in 1, §, 4, $» 1% 3> ete.
(5.) 5th, in 1, 6, 21, 56, 126, 252, etc.
(6.) 6th, in 8, 6, 11, 17, 24, 36, 50, etc.

312. Prob. 1.—To find the Scale of Relation in a recurring
infinite series when a syfficient number of terms is given.

SOLUTION.—18t. When each term after the first depends on the next preceding.

—1Let m represent the scale of relation. Then b = ma (304). Whence m = -2,

d. When each term after the first two depends on the two terms newt preceding
tt.—Letting m, n be the scale of relation, we have e=ma +nb, and d=mb + no

e -
(304). Whence m = 26—__—1;1, and 7 = Z—;l-—__—:——:

8d. When each term after the first three depends onthe three terms next preced-
tng it.—Letting m, n, » represent the scale, we have d = ma + nb + re, e=mb
+ ne + rd, and f = mc + nd + re. From these three equations the values of
m, n, and 7 can be found.

4th, We can evidently proceed in a similar manffer when the dependence is
upon any number of preceding terms.

813, Scu.—In applying this method, if we assume that tho dependence
is upon more terms than it really is, one or more of the terms of the scale
will reduce to 0. If we assume the dependence to be on too few terms, the
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error will appear in attempting to apply the scale when found. If we
attempt to apply the method to a series which is not recurring, the error
will appear in the form which the scale assumes, or when we attempt to
apply it. .

‘When the dependence is upon two terms, any two equations of the series
c=ma + nb, d = mb + ne, e =me + nd, f=md + he, etc., will give the same
‘values for m and n. 8o also if the dependence is upon three terms, any three
equations of the scriesd =ma + nb + re, e=mb + ne + rd, f = me + nd + re,
g=md + ne + 77, etc., will give the same values to m, n, and r; etc., ete.

There is no general method of determining that a series is absolutely not
recurring. The best practical method of procedure is to assume fliret that
the dependence is upon twe terms: if this does not give a scale which will
extend the series, try whether the dependence is not upou three terms, then
upon four, ete. Of course, applying this process to an infinite scries would
not determine that the series was absolutely not recurring.

ExAMPLES.

1. Find the scale of relation in the series 1, 12, 48, 384, 1920, etc.

8vua’s.—Assuming that the dependence is upon two terms, we have 48 =m
+ 127, and 384 = 12m + 48n; whence m =24, and n =2. Now since 1920
=24.48 + 2.384, we conclude that + 24, + 2, is the scale.

2. Find the scale of relation in the series 1, 6z, 1227 482% 12024,
etc.
BuG’s.—We have 122 = m + Grn,and 482? = Gzm + 122%n ; whence m=0z?,

and n=2. Now, as 120z¢ = 6z% . 122* + z. 48z°, we conclude that the scale of
relation is + 62%, + 2.

3. Find the scale of relation in the series 1, 4z, 62, 1122, 2824, 632°,
and extend the series two terms.
Scale of relation, + 343, —2?, + 2.
Next two terms, 1312°, 28327

4 t0 11. Find the scale of relation in the following, and extend
each series 2 or 3 terms:

(4.) 1, =z, 22°, 22°, 34, 32, 42, 47, ete.
(5.) 1, 3, 18, 54, 243, 729, 2916, 8748, ete.
(6.) 1, z, 52° 1323, 412, 1212, 3654°, ete.
(7) 1, 4, 12, 32, 80, etc.
(8.) 3, 5z, 72*, 132°, 232", 452", etc.

ac_ ac ac®

[
(9.) Z-, — -5,-:&', —BT.T,, ---b—‘-z", ete.
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(10.) 1, 4, 10, 20, 35, 56 84, 120, ete.
(11) 1, 4, 8, 13, 19, 26, 34, etc,

314. Prob. 2.—To find the nth term of a series when a syf-
JSicient number of terms is given.

SoLUTION.—The best method of doing this depends upon the character of
tlie series. We give the following :

1st. The formula ! =a + (n — 1)d, and ! = ar*~}, resolve the problem for
arithmetical and geometrical geries, ! being any term,

2d. The scale of relation may be determined by Pnon 1, and the series
extended to the nth term by means of it.

8d. But the first terms of the successive orders of differences afford one of
the most elegant and general methods. Thus from (310) we have

art

ete., etc., ete.

‘Whence, by induction, we have, in general, the nth term =@ + (n — 1)D,
+ (n—1)n —2) D, + (n — 1) (n — 2Xn —
2 |8
Dy I8 reached, or till an order of differences is reached of which each term
is 0. It is only in the latter case that the method is practically useful, since to
determine the first terms of the n — 1 successive orders of differences, requires
that » terms of the series be known,

3) D; + ete., till the term containing

ExAMPLES.
1 to 5. Solve the following by means of the scale of relation:
(1.) Find the 8th term of 1, 2z, 82°, 287°, 10024, etc.
(2.) Find the 9th term of 1, 3z, 5<%, 7%, 97%, 11, ete.
(3 Find the 10th term of 1, 3z, 22%, — 2% — 32/, — 22, etc.
(4.) Find the 12th term of 3, 5, 7, 13, 23, 45, etc.
(5.) Find the 11th term of 1, 1, 5, 13, 41, 121, etc.
6 to 12. Solve the following by means of the successive orders of
differences :

(6.) The 12th term of 1, 5, 15, 35, 70, 126, ete.

$o=wat@ D3 =~a+2a+
td=a-8+3+ Dy =a~—3a+D)+8a+9D;+ Dy + Dy =a+38D,
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(1) The 15th term of 1, 3, 6, 10, 15, 21, etc. Also the nth.
(8.) The nth term of 1:2, 2.3, 3.4, 4.5, etc.
(9.) The 12th term of 1, 4z, 62°, 112%, 2824, 632", etc.*

(10.) Solve the first five given above by this method, when it
will apply. Also determine the scale of relation in (6) to (9) in cases
in which the series is recurring.

(11.) Find the nth term of 1, 2¢, 37, 43, etc.

(12.) Find the 9th term of 70, 252, 594, 1144, 1950, ete.

13. Extend the following to 10 terms by the method of differences:
1,4,8,13,19, ete.  Also 2%, 424, 82%, 132%, 192, etc.  Also 1, 6, 20,
50, 105, 196, etc,

315. Prob. 3.—To determine whether a series is convergent or
divergent.

SoLUTION.—1st. When the terms are all +. If the series is not decreasing,
of course it cannot be convergent., Thus a +b+c+d+ ¢+ ete.,if a<d
<e<d<e,etc.,is > amw. Let us then consider the case when the terms are
all +,and a>b>0> d> ¢, etc. We have

d e )
= 4+ = + ete.
a a

( b b deb  edech
=a(l+- * b2t a +———+etc.).
cha

, Tz’ ete.<p, S<a(l+p+p* + p?+ pt+ ete), which, if

S=a+b+o+d+e+etc.=a(l +2+‘—’+

Now if

|
oIRy

¢
b
a

p<l, = T—p Therefore, An infinite series of positive terms 1.\7 Y

yent, if the ratio of eack term to the preceding term s less than some assignable
quantity which is stself less than 1.

2d, When the terms are alternately + and —, and decreasing. Let the geries
be a, ~b, +¢, —d, +¢ —etc. Now we may write
=(@—0b + (c—d) + (¢~ )) + etc.;
and also B=a—(@®—c)—(d—e)— etc.
Since the terms are decreasing (¢ —d), (¢ —f), etc.,, are +, and 8> a—0b.
Again, @ — ¢), (@ — ¢), etc., are +,and 8 < a. Therefore, Any series of deoreas-
sng terms, which terms are alternatély + and —, 18 convergent.

84. When the terms are alternately + and —, and snereasing, we have
S=a-b+e—~d+e—f+g—etc.=a—~b—c)—(d—e)— (f—g) — ete.
Now, since the terms are increasing, b—c¢, d —e¢, f — g, etc., are eswentially
negative. Representing these differences by —d, —d,, — ds, etc., we have

* It is evident that the 1%th term involves 2 to the 11th power, or contains 211, Hence we
haveronly to find the coefiicient, or the 12th term of the series 1, 4, 6, 11, 28, 63, etc.
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S8=ua+d+d, + dg + ete, & peries which can be examined by the first process
given above,

4th. The process of grouping the terms and thus forming a new series, as in
the last cage, is frequently serviceable in other cases than that there specified.*

ExAMPLES.

1 Determine whether 1 + + — 1 + 1 1

13 T 123t Taag teteis

a convergent series.

c_1 d_1 e 1

3T% ;78 a=a etc.; whence we see that each
of the ratios after the second is less than }, which is itself less than 1. Hence
the series is converging.

Sva’s.—Hero 4 =1,
a

2. Determine whether 1 + § + ¢ + } + ete,, is & converging series.
3 to 6. Determine which of the following are converging :

B) 3 +1+ %+ % + etc

(1)1 +%_ + -}:, + :—a + ete, r being > 1, i. e, any decreasing

geometrical progression.

5~—+1+1+1+ctc.
) 518 + 091 T ek T EW
3 4 5
(6) 135 + g3 *+ g + oo
@ ot P
Y. For what values of 2 is x—§+3 Z+3—-§+etc.,

convergent, and for what divergent ?

2
Suw’s.—This series may be written © — % + 23 (.% - .}) rar(l_2

2 5 6
+ a:"(Tlf.— %) + etc. For @#==1 this becomes % + (é—}) + (é —:—,)
+(;._é + etc., or-%—+§1.—;+ 1 718+etc Nowmthlssenesk :,
-b?- = %, % = ;—z, ‘% = —i—:—, a ratio which evidently approaches 1 without limit.

Hence for =1, the series is divergent. Again, for any value of 2> 1, some
one of the factors (— - 4) (5 6) (7 =g ) e and lll‘ following it

* This is confessedly quite an imperfect p tion of this problem; but it is sufficient for
most purpouses, and is as full as our imits will aliow.
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will become negative. Thus, if c=§, all fbnowlng;— - g will be negative.

The sum of that portion of the series preceding this first negative factor will be
finite, since it will be composed of a finite number of finite terms. Let us now
examine the infinite meries which is composed of negative terms. Let a be
the value of z for which we are examining the series, and y the exponent of z

in the first negative term, This term is therefore a» 1_ !7':_—1) Now this

may be taken as the general term of this portion of the series if we understand
that a is constant and y variable. As y increases by 2 in each successive term,

the first two terms of this series are aVG -2 , w'+'(-—1——- — —?—<¢) ; and
y+1 y+2 y+3

o of th 4 2 (¥ +8—ay—2a !I(y+1)}
the ratio of the second to the first is o {(y+2)(y+8) X Yri—ay

(1—a)y‘—(3a—4jy’—(2u—-3)y N s
— ] -
= a {(1 V7° + 6= Ba)g* + (1 ) 6} , the limit of which, as y in;

creases to infinity, is a*. Butasa > 1, 4® > 1, and this negative series is diver-
gent and its sum is infinite. Hence the given series is divergent for x =1, and
all values of # > 1. In a similar manner it may be examined for z < 1.

316. Prob, 4.—To find the sum of n terms of a series.

This problem, like many others concerning series, does not admit of a general
solution. We specify the following cases: °

CASE 1.— When the series ¥8 ARITHMETICAL 0r GEOMETRICAL, ¢ither divergent
or convergent, for n finite, S=4n[2a¢ + (n —1)d], or 8= pryn al For an
infinite geometrical convergent series we have S = I—-Z—T .

CASE 2.— When the series is an infinite, RECURRING sertes, to find the sum of
the geries (5. &. n being ®). Let the series be @ + b + ¢ + d + 6 + etc,, and
m, n the scale of relation, the dependence being upon two terms, Whence we
have

a=a,
d =b, ¢
c = am + bn,
ad =btm + cn,
6 =om + dn,
J =dm + en,
Putting S=a+b+o+d+etc., - - - - - - - -
and adding, this gives S=a + 0 + Sm + (8§ — a)n.
Solving for 8, we have g=atb—an )

1—m—an"
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When the scale of relation consists of three terms, as m, n, r, Wo have

e =bm + en + dr,
S =em + dn + er,
g =dm + en + fr,

‘Whence B=a+d+c+ 8m+ (S—a)n+ (8S—a—Dby.

_a+bt+c—an— (2 + by
- 1—m—n—r ‘

And golving for 8, 8 @)

When the scale of relation consists of four terms, as m,n, r, 8, We can write
from analogy,

a+b+e+d—an—(@+dr—(a+d+ce
8= . 3)
l—m—n—1r—3s

CASE 8.—To find the sum of n terms of a series by the method of differ-
ences.—Let the series be a, b, ¢, d, ¢, f, etc., which we will call (4).

Now if we write the series .

B) Oa,a+db a+db+e, a+b+e+d a+db+e+d+e, ete,

of which the series (4) is the first order of differences, it is evident that the
(n + 1)th term of (B)is the sum of n terms of the given series (4). By the
formula for the nth term (314, 3d), which is

The nth term = a+ (n—1)D; + (n—l)z(n—z) D; + (n—l)(n‘-_;f)(n-—!i) D, + ete.,
noticing that @, the first term, in series (B) is 0, that D, of series (B) is @ of
geries (A), D, of series (B) is D, of series (A), etc., wo have, for the sum of
m terms of (A4)

nn — 1) n(n — 1)(n

3 Dy + B

On this formula we observe that when the orders of differences do not vanish,
if the scries is extended to tho (n+1)th term the coefficient of that term will
become 0, and the series will terminate. But this requires that we know the
first terln of the nth order of differences, which requires that #» + 1 terms of the
geries be known. In this case, therefore, the formula is of no service. But,
when the differences vanish with some one of the lower orders, it 18 a very con-
venient formula.

CasE 4—Upon the principle that any fraction of the form —J—

Do P P. y PYoR)

1/ 7 Y» q
= G-a3p) many series of fractional terms of the form gy
may be summed,

8=na + —2)Dg+etc.

' 2. _9 _mMtpe-rq_ Pl
'Thlnheﬂflentdnce; P nmtn) nmtpr
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Also many series of fractional terms of the form be

q
n+ p)in +
summed from the fact that ) ws + 2N )
: q =1 _z q 9 } ;
n(n + p)n + 2p)  2p lnu(n + p) (v + p)n + 2p)
‘When the fractional terms are of the form

q
wn + pXn + 2p)n + 8p) the
summation may often be effected upon the principle that

g 1 q - il
n(n + p)n + 2p)n + 8p) ~ 8p {n(n+p)(n+%) (n+zz)(n+2p)(n+8p)}'

The practicability of this method depends upon our ability to find the differ-
ence between two series. Thus, when the terms of the given series are of the

form if we can find the difference between two series whose terms

9
nn + p)’
q

. and q
n

n+p
series. But the method will be more readily comprehended in connection
with its application. (See Ex’s 15-80.)

are of the form respectively, we can find the sum of the given

ExAMPLES.
1 to 7. Find the sum of the following recurring series:

(1) 1+ 22 + 82° + 282 + 1002* + ete.

(2) 1+ 22 + 32° + 52° + 82* + ete.

(3.) 14 3z + 62° + 72* + ete.

(4.) 8 + 5z + Ta® + 132° + 2324 + 4528 4 ete.

"(B) 1+ 1+ 5+ 13 + 41 + 121 + ete.

(6) 1 + z + 2° + 22° + 3z* + 32° + 42* + 42" + ete.

: ]
(1) - e+ e — %z' + ete.

8 to 14. Find the sum of the following by the method of differences:

(8) 1+3+5+7+ete., to 20 terms; to » terms.

(9) 1+2+3+4+5+etc., to 50 terms ; to » terms.
(10.) 1+5+415+35+ 704126 +ete., to 30 terms; to n terms.
(11.) 704252+ 594+ 1144 + 1950 ete., to 25 terms; to » terms,
(12.) 1+2'+3+4*+etc, to 12 terms; to n terms.
(13.) 1+2'+3'+4'+etc., to n terms.
(14.) 1+2°+3*+4*+etc., to n terms. .

. , 1 1 1
15. Find the sum of is + 33 + 31 + i3 + ete., by the method

given in Case 4. .



. ‘ SERIES. 283

Sue’s.—~If we put p=1,¢=1,andn =1, 2, 8, 4, etc., successively, the

yeneral form of the term in this series is —%—. Thus we have
”("'H’)
-Gt
For the 1st term, s = 1d =1i- ) 1(1
F ___?_____._1____1 1____).._. 11y,
or the 3d term, S = e A D=1\ T 241 1(2 g/’
1 1721 1 1 1
F —-——g-—-=-——-—=- —-————-)’: (~-—»-)'
'or the 8d term, P BT D Cpre 1 i)’
q __._1.*_._# » 1)
For the 4th term, -t — = s, = (4 4+1) 1( 3)s
ete., ete., etc.

Putting 8 for the sum of the series and adding, we have
B=A=P+G—-HN+GF-H+E -1 +ete.
_ {1+i+§+}+etc.} =1
SV —p—d-i—ete T
NorE.~It will be seen that this method is only an ingenious device for de-
somposing the given infinite series into two infinite scries, one of which destroys
Ul but a finite portion of the other.
1 1 1
16. Find the sum of —; ——
73 tast 57 T 7o

17. Find the sum of n terms of each of the two preceding series.

.

+ ete.

Bue.—We have for the nth term of the last series ¢=1, p=2, n=2n—1,

since 22 —1 is the nth odd number. Hence for the nth term ——7——
n(n+ p)

=3 (2" o Gl e 1) We therefore have

1 1 1 1 '
g1 l+g+g+7 - - - - =i 1(
-2y _1_ 1.1 1 1 = 2n+1)
8§87 =1 % +1
Y n
E TS
18. Find the sum of 1 + —l —1— L + ete. Also of n terms
14'.35 36 4.7

of the same.

19. Find the sum of -2— —_ 8 4

5
5 53"'63 99+¢al:c.,tonterms.

. _ e _1(q_ _a_
, Since by Case 4, n(u+p)=; n T wie)
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R 2 8 4 5
Svas—Ithllbeseenthatthlsseﬂeslathemnau ~Faties e

+ ete. Hence by making ¢ =2, 8, 4, 5, etc., sncoessively, n=38,5 1,09, etc.,
successively, and p =2, we have
HE-D-QA@=-D+E-H~G =) + etc},
HE— @+ D+ G+ H -G+ D+ fr +ete}
=43 -1+1—1+ +ete}.

Now the form of this last term is 2” + 13 ; and if an even number of terms of
the given series is taken, we have 142 14+ 2t ! } all the intermediate
’ 2 (8 2+ 8§’
terms destroying each other. But if an odd number is taken, we have
172 n+1 n+l 1 1 .
5 Tk—m)' Finally, as P "3“5@7»_53)’ we have for an even
1¢2 1
number of terms — {5”2‘2(2“.3)% 12 — @ " for an odd
12 1, 1 1 1 _
number, 5{ 33 2(2n 3 8)} or 7] 4( o When n=w, we have
1 1
m_o, whence the anmisl—z.
20. Fmdthesumof——l— +i + i+etc.
1.3« 24 35
1 1 1
21. Find the sum of 3-33itss— ete.
22. Find the sum of —-1— + A + 1 + ete.
3 6-12 ° 9.16
1
Stn's---'l‘hinsequn,hsl2 1 s+tsst i 4+ ete. ).
23. Fmdthesumof—-— + A _i—+ o + ete.
1.5 5. 9 9.13 ° 13.17

5
I z 3t o34 T 5as Tt
Sue’s—By putting p =1, ¢=4,5, 6, etc., successively, and n = 1,9, 8, etc.,

‘ ¢ )
successively, these terms take the form AATPE T’ and since

24. Find the sum of

C.

g =1 e _ ¢ .
2 p)m+2p) 2 {n(n D mEp@E T 33} + o may wiite the given
eeries thus :

(G5 %)+ (%~ 50) + (a — o) =
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4 5 6
_1fTeataatEate
-2 4 5 .
- '2_-?3 I S
= (2 +aatEat etc.) —_—(2 + z) (see Ex. 15) =1%.
. 3 9 15
25. Find the sum of 5 8 i + WY + 1417 | + ete.
2 3
26. Find the sum of 5 + 35w + 579 + etc.
4 7 10
27. Find the sum of + 357 + 579 + W1l + ete.

1 1 1
1234t agast + ete.

28. Find the sum of 3456

q

1
Sue.—C g U S P SR
va.—Consider  that n(n + p)(n + 2p) (n + 8p) 8p %n(n + p)(n + 2p)

_ g
(n +p)n + 2p)(n + 31})} ’
1 ? 3

29. Find the sum of 1357 + 5579 + oI + ete.
30. Find the sum of 3 + 5 + 8 + ete.
3-6-9.12 ° 6.9.12.15 ° 9.12.15-18

NoTeE.—The above examples are taken from YOUNG'S ALGEBRA, an ezcellenz
old English work to which American editors are much indebted.

PirLiNe BALLS AND SHELLS.

31%7. In arsenals and navy-yards, cannon-balls and shells are
piled on a level surface in neat and orderly piles of three different
forms, viz., friangular, square, and oblong. The figures below will
sufficiently illustrate these forms:

(‘l?l(q‘@ tw

-~
T OT NN AR Em e
AT BT B AP K Y AL N SR o I A

TRIANGULAR PILE. SQUARE PILK, OBLOXNG PILE.

318. Prop.— The formula for the number of balls or shells in a
triangular pile having n balls or shells on a side of its lowest coterse is

n(n+ 1) (u +2).
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DEM.~The student will be able to discover.that, beginning at the top, the
number of balls or shells in each course is as follows :
1, 1+2, 1+2+38, 1+2+8+4, ----etc..
or 1, 3, 8, 10, 15, 21, - - - - ete.

Summing this series to # terms by the method of daﬂerencea he will obtain the
formula.

319, Cor—The number of courses in a triangular pile is equal
to the number of balls or shells in one side of the lowest course ; and
the number of balls or shells in the lowest course 48 1+ 2 + 3 + 4
- - - - n, or §(n*+ n).

320. Prop.—The formula for the number of balls or shells in
a square pile having n balls or shells on a side of its lowest course is

n(n+1)(Rn + 1)
The student should be able to demonstrate this as above.

321. Cor—The number of courses in « squure pile is equal to the
n'umbu of balls or shells in one side of the lowest course; and the
number of balls or shells in the lowest course 8 1 +3 +5+7+ 9
-~-=2n-—1, or n*

322. Prop.—The formula for the number of balls or shells in
an oblong pile having m balls or shells in the length of the base and
n n the width i

n(n+1)Bm —n +1).

DeM.—Observe that there are as many courses as there are balls in the width
of the base. Let m' be the number in the top row, whence wo have for the
number in the successive rows from the top downward,

m’, (m' + 1), 8(m' + ), 4(m' + 8), 5(m’' + 4), ete.
Taking the successive differences, we find D, =m' +2, D, =2, and Dy =0.
Substituting in

-1 - -
8=m+”(n2 )Dl +n(n zl?gn E)D,, .
we have S=mn+ 20D 40y 4 "—‘L‘-%‘—?:-@. which readily
reduces to 8=in{(n + 1)(8m' + 2n —2)}.

Now m being the number of balls or shells in the length of the base, we observe
that m' = m = n -+ 1, which substituted in the previous equation gives

8= tn(n + 1)Bm — n + 1).

Scr.—If we make m = 7, this givel the formula for the square pile, as it
should. .
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ExAMPLES.

1. Find the number of balls in a triangular pile of 20 courses.
In a triangular pile with 42 balls on one side of the lowest course.
How many balls in the bottom course? How many in one of the
faces ?

2. Find the number of shells in a square pile with 30 courses.
With 23 balls in one side of the lowest course. With 2209 in the
bottom course. How many balls in one fuce of each pile ?

3. Find the number of balls in an oblong pile whose bottom
course’is 42 balls by 20. Whose top course contains 23 balls, and
which has fifteen courses.

4. How many shells remain in an incomplete triangular pile whose
top course contains 28 shells, and whose bottom course has 15 shells
on a side ?

5. How many balls in an incomplete square pile whose top course
is 8 balls on a side, and whose bottom course is 20 balls on a side ?

6. How many shells in an incomplete oblong pile whose top
course is 12 by 20, and whose bottom course is 52 ghells in length ?

REVERSION OF SERIES.
3283. Prob.—To revert a Series.

SoLuTION.—The problem is, having given

S ) = az + bat + cx® + dzt + ete,, )
to express @ as & function of g, <. ., to obtain
2= Ay + By® + Cy® + Dy* + etc., (B)

the essential thing in the solution being to find the values of the indeterminate
coefficients A, B, 0, D, etc. To do this, we form 2%, 23, 24, etc., from (B) in
terms bt y, and substitute in the second member of (4). Whence we have
F @) =S'(y).* From this relation we can obtain the values of the indeterminates
A, B, C, D, etc., in the ordinary way.

EXAMPLES.

1. Given y = z + §a* + §2* + 12* + eto,, to revert the geries, 1. o,
to express the value of  in a series involving y.

* This notation means that both members are fuﬁcﬂons of y, but that they are not the same
fanctlon: one s the /function, and the other the // function, .
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Sva's,—Assume 2= Ay + By* + Cy® + Dy* + ete.
Whence ot = A'y* +RABy" + 240 l y* +ete.,
+ Bt

@® = A%? + 8A®By* + etc.,
and @t = A'y* + ete., these developments being extended
ag far as is necessary in order to determine four termis of the reverted
series,
Substituting these values in the given scries we have
y=A4y+ B |y*+ O |y*+ D |y*+etc
+ }A* + AB + AC
+ 34 |+ iB*
+A*B
+ 344
Whence A =1, B+$+A4%=0, C+ AB+}4%*=0, and D+ AC+}B*+A*B
+444=0. These give A =1, B= —1}, OC=14}, and D= —;. Therefore

*

the reverted series is m=y——é—y’+éy’—%y‘+eto.

2 to 6. Revert the following:
R)y==x+ 2"+ 2 + 2 + ete.
- (8) y == + 32" + 62 + Ta' + 92® + ete.
4) y=z—}2° + }2* — 42" + etc*
(5.) y =2z + 32° + 42* + 62" + ete.
6)y=1+2+§2' + §2° + f2* + etet

7. Required to cxpress the value of y in terms of z from the
relation
Y + ay® + by’ + cy* + ete. = ma + na® + pa® + g2t + ete.

INTERPOLATION.
324. Prob.—Having given a series of functions 8,b, o, 4, e,
ete., to find a function intermediate between any two of this series,
which function shall conform to the law of the serics, .

Inn.—Let the series of functions be the logarithms of 282, 283, 284, 285, etc.,
viz., 2.865488, 2.867856, 2.369216, and 2.871068 ; let it be required to find the
logarithyi of 884, i. ., the function # of the way from 2.867856 to 2.869216.

SoLUTION.~The solution of this problem is simply an application of the

* In this example it will be more expeditious to sesume @ m Ay + By + Cy* + eto., though 1t
is not essential,

+ Tranepose the 1, put s = y ~ 1, and then revert the serles smp4jod 4 -t__§-¢'+¢-‘+ete.

This i« necessnry, since the theory of Indeterminate Cosficlents assumes that both vartables
hecome 0 at tho samo time ; 4, ¢., that ®w=0, makes smQ,
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formula for finding the nth term of a series by the Method of Differences
(314); viz.,

The 7nth term = a + (n — 1)Dy +

(ﬂ—l)én—z) Dy + (»—1)(7»‘32)(7;—8) D,y +ete.

But for our present purpose it is more convenient to replace the (n—1) of the
formula, where n represents the number of the term sought, by g , afraction

which indicates the distance of the term sought, from the first term used,
this distance being measured by calling the distance between any two given
terms 1. Thus in the series a, b, ¢, d, ¢, etc., a term % of the way from b to e,

would be reckoned at a distance 1%, or § from g, ¢. ¢., ? would be 4 in this case,

Now by this method of reckoning it is evident that the (n—1)of the formula must

be replaced by ’7; for n stands for the number of the term, which is ome more

than the number of intervals between it and the first term. Thus the 4th

term is 3 intervals from the first term. Making this substitution of 5 for n—1

the formula becomes
Term to be interpolated —=a + pD, +3 1 p 2 1) 1 p P 1) (p—2) Dy+ete.

325. Scu. 1,—On this formuln we observe that when the series of func-
tions is such that the differences vanish, <. e., D;, D,, Dy, or some order
becomes 0, the formula gives an absolutely correct result. But when the
differences do not vanish, the result is only an approximation. However,
such is the closeness of approximation, that for practical purposes only
second differences are usually needed, although sometimes third and fourth
become necessary.

ExAMPLES,

1. Finding from the tables the logarithms of 232, 233, 234, 235,

to be 2.365488, 2.367356, 2.369216, and R.371068, required to inter-.
polate thelogarithm of 233.4.

ARGUMENTS.*| FUNCTIONS. | 18T DIFF'S. | 2D DIFF’S. (3D DIFF'S.
282 2.365488
001868
233 2.367856 -.000008
001860 000000
234 2.869216 —.,000008
001852
285 | 2.871088

* In euch a care the number is called the Argument, and its logarithm the fanction. This
means simply that the Jogarithm is a function of the number (or argument).
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In this case o = 2.365488, D, = 001868, Dy = —.000008, D, =0, an %-_-%.
Hence we have
log283=a = 2.865488
%D, = %(.001888): 002615
1o (P ) —_14 -—
B2 (q 1) Dy = — 55 (.000008) = — 000002
.+ log 2834 = 2.868101, which is ex-
xctly as it is in the tables.

2. Finding from the table the logarithms of 61, 62, eté., interpo-
late the logarithm of 62.23.

326. Scm. 2.—When second differences only are to be used, and four
functions of the series are known, a convenient and excellent formula is
obtained thus: Let the four functions be a, b, ¢, d, and let it be required to

interpolate betweendand ¢, Let 1;—, be the interval from b to the place of the

term to be interpolated. Now if we compute from b, instead of from @, the
preceding formula will become

The interpolated functnon =b+= A { D, + +3 (E,- - 1)1), } ,

in which D, is the second of the first dlﬁerences, i. ¢., the one which falls
between b and ¢; or, in general, if we tabulate the differences as above, it
is the first difference which falls in the same horizontal linc with the func-
tion to be interpolated. Agaijn, as the second differences are supposed to be
different, it is best to take the arithmetical mean of the two, which mean
will also fall in the same horizontal line with the interpolated function.

3. Find by (326) the logarithm of 68.53 from the logomthms of
67, 68, 69, 70. (See table.)

ARGUMENTS. | FUNCTIONS. | 18T DIFF'S. | 2D DIFF's, 2?]‘;31?:"
7 1.826075 ‘
.008484
68 1.832509 —.000000
LRI I 006840 |- - - - - - - 0000905
69 1.838849 ~—.000091
006249
70 1.845098
Here we have b = log 68 = 1.832509, j-’q-'- = %, = 008840, and

D, = — .0000005. The student should make the substitutions and compare
with the table,
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" 827. 8cm. 8. — But it is not for interpolating logarithms that this
method is chiefly used. For this purpose the method given in (196) is
preferable.  The student will readily discover that the method of (196)
is identical with that just given if only first differences are used. When
great accuracy is required, and the tables used give the logarithms to 8 or
10 places, it sometimes becomes nccessary to use mean second differences,
as nbove. It is, however, in Astronomy that Interpolation has its most im-
portant applications. Thus, suppose the Right Ascension (analogous to
terrestrial longitude) of a planet has been observed jfour times at intervals of,
say one day. By interpolation we may find its Right Ascension at each interme-
diate hour, or point of time. In this problem the Right Ascension isthe function,
and the time is the argument.

4. The Right Ascension of Jupiter to-day, July 1st, at noon, is
10h. 5m. 38.6s.; July 2d, at noon, it will be 10h. 6m. 18.86s.; on July
8d, 10h. 6m. 59.41s., and July 4th, 10h. 7m. 40.24s. What will it be
July 2d, at midnight ?

SOLUTTON.
ARGUMENTS.* .thc'rmns.* 18T DIFK'S.|2D DIFF'S. 2DM1§;NF.&

July 1. 10h. bm. 838.6¢.

40.26 8.
July 2. 10h. 6m. 18.80s. 0.29 8.

40.55 8. 0.285s,
July 3. 10h. 6 m. 59.41.. 0.28 8.

40.83 8.
July 4. 10h. Tm. 40.24s.

In this case % - ; , b =10h. 6m. 1886, D, = 40.55s., and D, = 0.285s.

The answer is 10h. Gm. 39.1s.

5. To-day, July 1st, at noon, the moon’s declination (distance
from the celestial equator) is 6° 38’ 10".8 north; at 4 o’clock it will
be 5° 45’ 51".3 ; at 8 o’clock, 4° 53’ 7".8; at midnight, 4°0'2".8; and
at 4 o’cfock in the morning it will be 8° 6’ 38".7, Titerpolute for
the intermediate hours. '

* In this example the argnment is the #fme, and the function is the Right Ascension, {. ¢.,
the Right Ascenslon is a function of the time.
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SECTION II.
PERMUTATIONS,

328. Combinations are the different groups which can be
made of m things taken # in a group, # being less than .

ILL.—Taking the b letters a, b, ¢, d, ¢, we have the 10 following combinations
when the letters are taken 8 in a group, or, as it is usually expressed, taken 3
and 8: abe, abd, abe, acd, ace, ade, bed, bee, bde, cde. Taken 2 and 2, we have the
following 10 combinations : ab, ac, ad, ae, be, bd, be, cd, ce, de. It is to be noticed
that no two combinations contain the same letters ; 1. e., they are different groups.

329. Permutations are the different orders in which things
can succeed each other.

ILL.—Thus the two letters @, b have the two permutations ab, ba. The three
letters a, b, ¢ have the 6 permutations abe, acb, cad, bae, bea, cba.

330. Arrangements are permutations of combinations.

ILL.—Taking the 10 combinations of 5 letters taken 8 and 8, and permuting
each combination, we get the arrangements of 5 letters taken 8 and 8. Thus
the combination abe gives the 6 arrangements abe, acd, cad, bac, bea, cba. In like
manner each of the 10 combinations of 5 letters taken 3 and 3 will give 6 arrange-
wents ; whenee, in all, 5 letters taken 8 and 3 have 60 arrangements.

331, Prop.—The number of Arrangements of m things taken
n and n i

m(m—1)(m—2)(m—38) - --- (m—n+1).

DEM.—Let us consider the number of arrangements which can be made of the
m letters 4, b, ¢, d, etc., taken 2 and 2. Letting « stand first, we can have abd, ac,
ad, etc., to m ~— 1 arrangements. Letting b stand first, we can have 3a, be, bd,
etc., to m — 1 arrangements. Thus taking each of the m letters in turn we can
have m — 1 arrangements in each case, or m (m — 1) arrangements in all.

Again, each of these m (m — 1) 2 and 2 arrangements will give m — 2 arrange.
ments 8 and 8, by placing before it each of the letters not involved in it. Thus
we have m (m — 1) (m — 2) arrangements of m letters taken 8 and 8.

Once more, each of these m(m — 1) (m —2) 8 and 8 arrangements will give
m — 8 arrangements 4 and 4, by placing before it each of the letters not involved
init. Thus we have m(m — 1) (m — 2) (m — 8) arrangements of m letters taken
4and 4.

Finally, we observe the law ; f.e., the number of arrangements is equal to
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the continued product of m(m —1)(m —2) (m—8) « - - « {Mm—(n—1)} or
mm—1)(m—2(m—~8) --.-(m=n+1).

332, Cor. 1.—The number of Permutations of m things is
1.2.34 - - - - m.

This is evident since arrangements become permutations when the number in
a group is equal to the whole number considered ; 4. ., when n = m.

333. Cor.2—If p of the m letters are alike (as each u), q others
alike, r others alike, etc., the number of permutations is

12834 - - - -m
|£x|_t_1_><[1_'xetc.'

Thus consider the permutations of a, b, ¢, d, viz., abed, dacd, acdb, beda, acdd,
bead, abde, badc, adcb, bdea, ete.  Suppose b to become a, then since for any par-
ticular position of ¢ and d, as in abed, there are as many permutations of the four
letters as there can be permutations of the two letters @ and b, viz.,, 1x2; if b
becomes @ there will be 1x2 fewer permutations when these two letters are
1.2.8-4

1.2

8o, in general, if p of the letters are alike, there will be 1-2.8 - - - - », or
|» fewer permutations than if they are all different, etc. .

alike than when they are different, ¢. e¢.,

334. Cor. 3.—The number of Combinations of m things taken
n and n s
mm—1)(m—2)(m—3) ----(m—n+1)
1234 ----n .

Since arrangements are permutations of combinations, the number of ar-
rangements of m things taken n and 7 is equal to the number of combinations
of m things taken n and n multiplied by the number of permutations of n
things. Hence the number of combinations is equal to the number of arrange-
ments of m things taken n and n divided by the number of permutations of n
things. ¢

EXAMPLES.

1. Hoow many permutations can be made of the letters in the word
marblef Of thosein homef? Of thosein logarithms?

2. How many arrangements can be made of 10 colors taken 3 and
8? Of 7 colors taken 2 and 2? Taken 3 and 3? 4and 4? 5and
5? 6and 67 7 and 7? How many mizfures in each case, irre-
gpective of proportions ? ‘

8. How many different products can be made from the 9 digits
taken 2 and 2? 3and 3? 4and4? Sand5? 6and 6P 7and
7? 8and8? 9and9?
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4. How many different numbers can be represented by the 9 digits
taken 2 and 2? 3and 3? 4and 4? ete.

5. In a certain district 3 representatives are to be elected, and there
are 6 candidates. In how many different ways may a ticket be made
up?

6. There are 7 chemical clements which will unite with each other,
How many ternary compounds can be made from them ? How many
binary ?

7. How many different sums of money can be paid with 1 cent, 1
3-cent piece, 1 5-cent piece, 1 dime, 1 15-cent piece, 1 25-cent piece,
and 1 50-cent piece ?

Sva.—If taken 1 and 1,how many? If 2 and 2,how many? If 8 and 8, etc.?
How many in all ?

8. In how many ways can 12 ladies and 12 gentlemen arrange
themselves in couples ?

9. If you are to select 7 articles out of 12, how many different
choices have yon?

10. How many different sums can be made from 1,2, 3, 4, 5, 6,
taken 2 and 2 ?

11. How many permutations can be mado from the letters in the
word possessions? (See 333.) Iow many from the letters
in the word consistencies?

12. How many different signals can be made with 10 different-
colored flags, by displaying them 1 at a time, 2 at a time, 3 at a time,
etc., the relative positions of the flags with reference to each other
not being taken into account ?

o

PROBABILITIES.

338. The Mathematical Probability of an event is the
number of favorable opportunities divided by the whole number of
opportunities. 7The Mathematical Improbability is the number of un-
favorable opportunities divided by the whole number of opportunities.

InL~A man draws a ball from a bag containing 5 white and 2 black balls ;
the opportunities favorable to drawing a white ball are five, and the whole num-

ber of opportunities is seven ; hence the mathematical probability of drawing
a whito ball is 4. The mathematical improbability of drawing & white ball is §.
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" EXAMPLES.

1. Ilearn that from a vessel on which my friend had taken pass-
age, one person has been lost overboard. There were 40 passengers,
and 20 in the crew. What is the probability that my friend is safe ?

. What the improbability? If I learn that a passenger is lost, what
then is the probability that my friend is safe? What that he is
lost? -

2. A man fires into a flock of birds of which 6 are white, 4 black,
5 slate-colored, and 3 piebald. If he kills one, what is the probability
of its being a black bird ? What the improbability of its being pie-
bald ? How much more probable is it that he will kill a white than
a piebald bird? A black than a piebald ?

3. Twenty-three persons sit around a table. What is the proba-
bility of any given couple sitting together ?
Inr.—Call tho two persons 4 and B. Then wherever 4 may sit, there are 23

others who may sit beside him in one of two places (on his right or left). Thero
are therefore 2 favorable and 20 unfavorable opportunities.

4. What are the odds against the fourth of July coming on Sun-
day in any year taken at random ?

Sua.—The odds against an event is the ratio of the unfavorable to the favor-
able opportunities.

5. The moon changes about once in 7 days. What is the proba-
bility that a change of weather will come within 3 days of a change
in the moon ?

6. The letters a, e, m, n, can be arranged so as to form four words,
viz, mane, mean, name, amen. If they are arranged at random,
what is the probability of their forming a word? What the “odds
againgt ” their forming a word ?

7. Show that the probability that.a leap-year will contain 53 Sun-
days is %.

8. Three balls are to be drawn from an urn which contains 5 black,
3 red, and 2 white balls. What is the pgobability of drawing 2
black balls and 1 red ?

Sua’s.—The first question is, How many opportunities in al1? That is, how

. many different groups (combinations) can be .made of 10 balls taken 8 and 3.
Second, How many opportunities favorable to drawing two black balls and one
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red at the same time? There are 5 black bells, and these can be dombined 2 and

2 in g'—;. or 10, ways ; and as one of the three red balls can be obtained in 8

ways, each one of these combined with one of the 10 ways of obtaining the
black balls will give 10 x 8, or 80, favorable opportunities for selecting the balls
a8 desired. The probability is therefore 4, or i.

9. If from a lottery of 30 tickets, marked 1, 2, 8, etc., 4 tickets are
drawn, what is the probability that 3 and 5 are among them ? What
are the odds against it?

Svue’s,—From 80 how many combinations of 4 and 4? From 28 how many
combinations of 2 and2? Odds sagainst drawing 8 and 5, 143 to 2.

10. A bag contains a $5 bill, 810 bill, and 6 blanks. What is the
expectation of one drawing ? That is, what is one drawing worth ?

8uG.—The probability that one draught will take the §5 bill is §, and hence

is worth $%. The probability that the $10 note will be drawn is also }, and

this expectation is $4%¢. The entire expectation is therefore $4f, or

$1.87}. Hence a gambler who should gell such chances at $2 each, would in
the long run make money.

11. What is the expectation of a draught from a bag containing 5
82 bills, 4 85 bills, 2 $10 bills, 1 $100 bill, and 50 blanks?

12. In a given bag are 5 2 bills, 3 85 bills, and 6 blanks. What
is the expectation of 2 draughts ?

Sue’s.—There are #-13 = 91 opportunities, or ways in which 2 things can

1.2
be drawn from 14.

There are g—% ways in which §2 bills may be drawn. Hence the probability

of drawing 2 $2 bills is §¢, and this expectancy is $§1.

In like manner the probability of drawing 2 $5 bills is %, and this expect.
ancy is $3¢.

The probability of drawing 2 blanks is }{, and this expectancy 0.

The probability of drawing 1 ‘2 and 1 §5 bill is }f, and this expectancy is
S48

The probability ot drawing 1 $2 bill and 1 blank is 3%, and this expectancy
is $51.

The probability of drawing 1 $5 bill and 1 blank is §}, and this expectancy

The entire expectancy, or worth, of 2 draughts is therefore $% + §#-+4%% + §¢
+ §¢ dollars, or $8.574.

Observe that the sum of all the pribabilities, €. e, $% + % + §1 + ¢ + 32 +148,
is 1, as it should be,
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That the probability of drawing 1 $2 bill and 1 85 is 4§, is seen thue : Thero
are § opportunities favorable to drawing 1 $2 bill, and with each of these there
are 8 opportunities favorable to drawing 1 $5 bill.

13. There are 4 white balls and 8 black ones in one bag, and 2
white ones and 7 black ones in another bag. What is the probability
of drawing a white ball from each bag at the first draught from
each P

SoLuTioN.—There are in all 7 opportunities of drawing a ball from the first
bag, and with eack one of these there are 9 opportunities from the second
bag ; hence thereare 7 x 9, or 68 opportunities in all. Again, there are 4 favor-
able opportunities for drawing a white ball from the first bag, and with eack of
these there are 2 favorable opportunities for drawing a white ball from the
second bag; ¢. e., there are in all 4 x 2, or 8, favorable opportunities. Hence
the probability is ;. Notice that this compound probability s the product of the
twa simple probabilities.

14. The probability that 4 can solve a problem is §, and that B
can do the saume is §, what is the joint probability ?

8ua’s.—The student will observe that there are 4 possible results, viz, :
1. Both may succeed, of which the probability is -f ; 2. A maysucceed and B fail,
of which the probability is 4% ; 8. B may succeed and A fail, of which the prob-
ability is +%; and 4. Both may fail, of which the probability is §§. Now either
the first, second, or the third result will give a solution. Hence the probability
of success is :f5f + 33 + & =3h or §.

This result may be more expeditiously obtained by considering that they
will succeed if both do not fail. The probability of A’s failure is §, and of B’s §.
Hence the probability that both will fail is § x #, or #; and the probability of
success is 1—#§, or §,

15. It may be said that on an average 10 persons will die during
the next 10 years

Out of every 62 whose present age is 30,

3 €« 45 13 “ 40’
L] “ 6« 35 &« @ 50,
““ [ 2 5 “«@ [ 60.

What is the probabiiity that & person who is 30 will live till he is
60? What that a person who is 40 will live till he is 70 ?

Sue’s.—Let us examine the probability that the tan who is 80 will dic before
he $8 0. The probability that he dies before 40 is {$, and that he lives to 40
24. Now the probability that a man who is 40 dies before 50 is 3. Hence the
probability is 1} of §} that this man lives to 40 and dies between 40 and 50, or
it is 3§ of £% that he lives to 50. Finally, the probability that he dies between
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50 and 60 is 43 of 34 of £3, or it in 3% of 34 of {2 that he lives from 50 to 60.
Hence the probability that a man who is 30 will die before he is 60.is

. 32+ 43 x 4+ 0% x 18 x 33, or 1445 .

and, consequently, the probability that he will live is 1 — 344, or $38; 1. e., it is
a little more probable that a man who is 80 will die bofore he is 60, than that
he will live to 60.

16. What is the probability that two persons, 4 and B, aged.re-
spectively 30 and 40, will be alive 10 years hence ?

Sva’s.—Chance of 4’s being alive §i, of B’'s 1}, of both £3 x 1%, or $4§.



. LOGARITHMS OF NUMBERS.

N. Log. | N. Log. N. Log. N. Log.
1 0000000 || 26 1:414973 51 1-707570 76 1-8%814
2 o-3o01030 | 27 14431304 h2 1:716003 T 1-6u04g1
8 o.477121° 1 28 1-447158 53 1-724276 | 73 1:892095
4 0+0602060 29 1:4023¢8 b4 14732304 | TV 1-£97627
b 0698970 80 14477121 55 1740303 50 1:903ogo
[ 0.778151 | 81 1-491362 b6 1-745188 81 1-908485
7 o-g45098 | 82 1:505150 g 1.735875 82 1:913814
8 0903090 I 83 1:518514 8 1-763428 83 1919078
9 0:954243 84 1:531479 09 1-770852 84 14924279

10 1-000000 | 85 1:544008 60 1:778151 65 1929419

1 1-041303 86 1-556303 61 1-185330 86 1:934498

12 1:079181 37 1-5uu202 63 1:792392 87 1:93931

13 1-1 139/3 38 1-579784 63 1 -ggqlﬂ 88 1 ~944483

14 1.146128 8Y 1-591005 64 1-806180 80 1:949390

15 1176091 49 1+6020060 65 1-812913 90 1:954243

16 1-204120 41 1-612784 66 1-819544 21 1-959o41t

17 1-23044 42 1623249 67 1-826075 .} 92 1.U37L $

18 1-2052 ? 43 1633468 63 1832509 ©3 1-9684¢3

19 1:278754 44 1643453 69 1838849 94 1:973135

20 1-301030 45 1:653213 50 1845098 95 1:977724

) 21 1-322::2 46 1-662758 7l 1851298 96 1982271

29 1-34242 47 1672008 73 1-857333 97 1.986772

23 1-361728 48 1-681241 73 1863323 93 1-991226

24 1-380211 49 1-690196 74 1-869232 99 1995635

25 1:397940 50 1-698970 75 1+875061 100 24000000

Remarg.—In the following Table, the first twh figures, in the first column of
Logarithms, are to be prefixed to each of the numbers, in the same horizontal
.line, in the next nine columns; but when a point (®) occurs, a 0 is to be put
In its place, and the ¢wo snitial figurcs are to be taken from the ncxt line below.



. 0 1 2 3 4 5 |. 86 7 8 0 I.
100 || 000000 | 0434 | 0868 | 1301 | 1734 | 2166 | 2598 | 3029 | 3461 | 38o1 | 432
101 4331 | 4751 | 5181 6:’:38‘ 6466 | G894 | 7321 | 77948 | 8174 | 438
103 8600 26 3451 9876 | @300 | #7124 | 1147 | 1570 | 1993 | 2415 | 424
108 01283} 259 | 3680 | 4100 | 4521 | 4940 | 5360 | 5779 6127 6616 | 41
104 7033 | 7451 | 7868 | 8284 sa‘oo 116 3531 9947 | ®361 13 | 41
105 o:ugz 1603 | 2016 | 2428 | 2841 | 3252 | 3664 | 40 4486 | 4 412
106 53 5715 | 6125 | B533 | 6942 | 7350 | 7757 | 8164 | 8371 | 8978 | 408
107 384 sz 195 1004 | 1408 | 1812 | 2216 | 2619 | 3021 | 404
108 | 033424 23, 4227 | 4628 | 5029 | 5430 | 5830 | 6230 | 6629 | 7028 | 4oo
109 7426 | 7825 | 8223 | 8620 | 9017 | 9414 | 9811 | ®207 | %602 | & 396
110 [ 041393 | 1789 | 2183 | 25 2 3363 | 3755 | 4148 | 4540 | 4932 | 393
111 5323 5711 o105 6412 6332 7275 | 7064 | 8053 | 8442 | Bdlo 3§Z
112 218 3106 3993 o3| 66 | 11 1538 | 1924 | 2309 | 2094 | 3!
118 || 053078 | 3463 | 3846 | 4230 | 4613 5378 | 5760 | 6142 | 6524 | 383
114 5 | 7286 | 7666 | 8046 | 8426 5 | 9185 3 3942 ®320 | 37
118 1075 | 1452 | 1829 | 2206 | 2582 | 2958 | 3333 | 37 4083°| 37
118 4458 | 4832 | 5206 | 5580 53 | 6326 7071 | 7443 | 7015 | 372
117 8186 | 8557 28 | 9208 8 | e038 '40; €976 | 1145 | 1514 3%2
118 || 071882 | 2250 | 2 IZ 2985 | 3352 | 3718 | 4083 | 4451 | 4816 | 5182 | 3
119 5547 | 5912 | 627 40 | 7004 | 7. 7731 | Bog4 | B457 | 8819 | 363
120 || 079181 | 9543 4 | 2266 | 8626 | ® 1347 | 1707 | 2067 | 2426 | 360
121 oaa 85 3:44 22003 3861 | 4219 4331 4934 | 5291 | 5647 | 6oo4 | 35
122 6360 | 6716 | 7071 | 7426 | 7781 | 8136 | B4g0 | 8845 | 19 352 | 35
128 5 | @258 | %611 | @963 | 1315 | 1667 | 2018 | 2370 | 2721 | 3071 | 35t
124 0932’31 3972 | 4122 | 4471 | 4820 | 5169 | 5518 | 5866 | 6215 | 6562 | 34
125 6310 1:11 7604 | 7991 | 8298 | 8644 9335 81 | 0926 | 34
126 | 100371 | o1 1059 | 1403 | 1747 | 2098 | 2434 | 2777 | 3119 | 3462 | 343
127 3804 | 4146 5483 4828 5»62 5510 | 5851 | 6191 | 6531 | 6871 | 340
128 7310 | 1549 | 7888 | 8227 | 8565 | 8903 | 9241 | 9579 | 9916 | *253 | 338
129 { 110590 0922 1263 | 1599 | 1934 | 2270 | 2605 | 2940 3275 3609 | 335
130 || 113943 | 4277 | 4611 | 4044 | 5298 | 5611 | 5943 | 6296 | 6608 | 6940 | 333
- 181 7271 | 7603 | 7934 | 6265 | 8595 | 8926 | 9256 95&6 391 5| ®245 | 330
182 [ 120574 | 0903 { 1231 | 1560 | 1888 | 2216 | 2544 ( 2871 lgg 3525 | 328
138 3852 | 4178 | 4504 | 4830 | 5156 | 5481 | 5506 | 6131 | 64 6781 | 325
~134 7105 | 7429 | 7753 | 8076 | 8399 | 8722 | 9045 | 9368 ®®;2 | 323
1386 || 130334 | 0650 | 0977 | 1298 | 1619 | 1939 | 2260 | 2580 | 2900 | 3219 | 321
136 3339 | 3858 | 4177 | 4496 | 4814 5133 5451 | 5769 | 6086 | 6403 | 318
137 6721 | 7037 | 7354 | 7671 | 7987 | 8303 | 8618 | 8934 | 9249 | 9564 | 315
138 19 | ®194 | ®508 | ®822 | 1136 | 1450 | 1763 | 2076 | 2389 | 2702 | 314
139 ugox 3327 | 3639 | 3951 | 4263 | 4574 | 4885 | 5196 | 5507 | 5818 | 31z
140 || 146128 | 6438 6&48 7058 | 9367 | 2676 | 1985 | B4 | 8603 | Bgrr | 309
141 9219 | 9527 | 9835 | ®142 | 9449 | ®756 | 1003 | 1370 | 1676 | 1982 | 3o
142 || 1522 2594 | 2900 | 3208 | 3510 | 3815 | 4120 | 4424 | 4738 | 5032 | 3o
148 53 5640 | 5943 | 6246 | 6549 | 6852 1154 1457 1759 8061 | 303
144 83¢3 | 8664 | Bgoh | 9206 | 9567 | 9868 | #1068 | ®460 763 1068 | 301
145 || 1613 1667 | 1967 | 2266 | 2564 | 2803 | 3161 | 3460 | 3758 | 4055 | 299
146 4353 | 4650 | 4947 | 5244 | 5541 | 5838 | 6134 | 6430 | 6726 | 7022 | 29
147 2317 | 1613 -,Zo 8203 | 8497 | 8792 | go86 | 9380 | g674 8 :9&
143 | 190262 | 0555 | 0848 | 1141 | 1434 | 1726 | 2019 | 2312 | 2603 | 2895 | 293
149 31 3478 | 3769 | 4060 | 4351 | 4041 | 4932 | 5222 | 5512 | 5803 | 291
150 { g 1 | 6381 | 6670 248 | 9536 | 7825 | 8113 | 8401 2l
151 76098377 9264 95.7)'; ghgg 21 26 | #4113 ’385 1272 m igz?
158 || 1B1B44 | 2129 | 2415 | 2900 | 2985 | 3270 | 35 3839 | 4123 | 4407 | 28!
158 4691 | 4973 | 5259 | 5542 | 5825 | 6108 | 63g1 | 6674 | 6956 | 7239 | 283
154 7521 | 9 8084 | 83 8647 | 8928 | 9209 | 04 9;2 1 | e85 | 281
155 || 190332 | 0612 2 | 1171 | 1451 | 2730 | 2010 zag; 2 Z 2846 | 27
158 3125 | 3403 1 | 3959 | 423 14 Agg; 5069 | 5346 | 5623 | 27
157 5&;9 6176 | 6453 | 6729 | 7005 | 7281 z 7832 | 8107 | 8382 | 276 .
158 8657 2 | 9206 | 9481 | 9735 | @029 [ #303 | ©579 | ®850 | 3124 | 274
159 || 201397 0 | 3943 .} 2216 | 2488 | 2761 | 3033 | 3305 | 3579 272
N. 0 1 2 8 4 6 6 ] 7 8 9 D.




0 8 5 (] 8 D.
304120 4934 | 5204 | 8475 | 8746 6186 a7
6826 1 34 zgcu 8173 | 8441 8279 229
9313 31 86 | ®853 | 1121 31054 azz
212188 2946 | 3252 | 3518 | 3183 43114 2
4844 38 | Bgoa | 6166 | 6430 6957 264
7484 8273 | 8536 | 8798 | gobo 98> 262
220108 0892 | 1153 | 1414 | 1673 2196 261
zzw 3496 | 3755 | 401 4:;4 4;9: 259
5309 6044 | 6342 6858 9373 253
7887 8657 13 | 9170 | 9426 9933 256
23044 1215 | 1470 | 1724 | 197 2483 254
2892 3757 | 4011 | 4204 | 4 1? 5023 233~
5528 6285 | 6337 89 | 7041 7544 252
8046 8799 | 9049 | 9299 | 9550 850 250
240548 1297 | 1536 | 1795 | 2044 2541 24
303 3782 | 430 | 4277 | 4525 5019 24
.")Jlg gnj: 6499 6743 6995 7482 24’;
797 09 | 8954 1 44 2 24
250520 1.175? 1;195 ?6?8 ?881 3328 23
2533 3580 | 3822 | 4064 | 4306 4790 242
255273 5906 | 6237 | 6477 | 6718 1198 241t
7679 8398 | 8637 8877 9116 9594 2}y
260071 0787 | 1023 | 1263 | 1501 1376 23}
2451 3162 | 3399 { 3036 | 3873 4346 237
4318 5325 | 5961 | 5996 | 6232 6702 235
7172 7875 { 8110 | 8344 | 8578 9046 23¢
9513 213 | 9446 | 9679 | %912 137 233
271842 2538 { 2=70 | 3oox | 3233 369l 232
4158 48550 | 503t | 5311 | 5542 6002 230
0462 7151 | 7350 | 7606 | 7838 8296 229
298754 43 467 | 9Ro5 | @123 58 228
231033 ?7|3 ?9:2 2109 | 23 2849 22
3301 3979 | 4205 | 4431 | 4056 5107 22
55357 6232 | 6456 | 6681 | 6905 1354 225
7802 8473 | 8696 | 8920 | 9143 958 223
290033 0702 | 0925 | 1147 | 1369 181 222
2256 2920 | 3141 | 3363 | 3584 4023 221
4566 5127 | 5347 | 5367 | 5187 6226 220
6665 7323 | 7542 | 71761 | 1979 8416 21
88353 9507 | 9725 | 9943 | 101 *595 ar
301030 1631 { 1898 | 2114 | 2301 2764 2t
31 3344 | 4039 | 4273 | 4491 4921 an
5301 5906 | 6211 | 6525 | 60. g 7068 15
'Mgg 8:57 8331 | 8564 | 897 9204 03
95. 0258 | 04531 | #0693 | 9906 1330 212
311754 2339 | 2600 | 2812 | 3023 3445 211
w07 4499 | 4710 | 4920 | 5130 5551 210
5970 65 bgog 7018 | 7327 7646 )gg 3
8063 86! 8898 | 9106 | 9314 973d 208
320146 0769 ) 0977 | 1184 | 1391 180! 307
322219 2839 | 3046 | 3252 | 3458 3811 206
4282 48 5105 | 5310 | 5516 8926 203
6336 6923 1155 | 73 71563 1972 204
8380 Book | 9194 gbot 8 203
330414 1022 | 1235 | 1427 ib;lo 2034 802
2438 3044 | 3246 { 344 6.4 4051 202
4434 5057 | 5257 | 5458 | 565 6053 201
6560 7060 | 7260 | 7439 | 7659 Bo5 300
8.°6 9255 | 9223 | 9431 | 960 “41 1
352434 1039 | 1237 | 1435, | 1632 2029 3
[ b 4 6 ¢ 8 D.




K. 0 1 4 8 4 ] -8 7 8 9 D.
220 || 342423 | 2620 25!; 3014 | 3212 | 34 3606 | 3802 | 3999 ug6 1
221 ABga 4589 | 4785 | 4981 | 5178 | 5374 1 5570 | 5766 2 | 6157 | 1
228 6353 | 5549 | 6744 gaq 7135 | 7330 | 7525 | 7720 | 7915 | B110 | 195
228 8305 | 8500 g%g.{ 89 | go83 | 9278 { 9472 | gb66 ®e54 | 194
224 || 350248 | 0442 6 | 0829 | 1023 | 1216 | 1410 | 1603 | 1796 | 1 Z 193
226 2183 | 2375 | 2568 61 { 2954 | 3147 | 3339 | 3532 | 3724 1 193
226 4108 | 4301 | 4403 5 48'16 5063 5260 | 5432 | 5643 | 5834 | 192
2927 6026 | 621 6408 | 65 ggqo ggax 7172 | 7363 | 71554 | 7744 | 191
228 7335 8125 | 8316 | 85 96 86 2076 9266 | 9436 | 9646 | 3
229 9835 | 825 | @215 | 8404 | ®593 | ®783 | 8972 | 1161 | 1350 | 1339 | 1
230 || 361728 | 1917 | 2105 | 2294 | 2482 | 2671 | 2859 | 3048 | 3236 | 3424 | 188
281 3612 | 3800 3328 4176 | 4363 | 4551 4239 4926 | 5113 | 5301 | 1
- 282 5488 | 5675 | 5862 | 60 6236 | 6423 | 6610 | 6796 | 6983 | 7169 | 2 ag
238 7336 | 7542 7;29 7015 | 8xot | 8287 | 8473 8632 8845 2030 1
284 9216 | 9401 | 9587 | 9772 | 9958 | @143 | ®328 | ®513 | %698 | ®883 | 185
285 1 371068 | 1253 | 1437 | 1622 | 1806 | 1991 | 2175 | 2360 | 2544 | 2728 | 184
236 2912 { 3 3280 | 3464 | 3647 3331 4015 | 4198 | 4382 | 4565 | 184
287 4;48 4932 | 5115 | 5298 | 5481 | 5664 | 5846 | 6029 | 6212 | 6394 | 183
238 657 6;59 6942 | 7124 | 7306 | 7488 | 7670 | 7852 | 8034 | 8216 | 182
289 83, 8580 | 8761 43 | 9124 | 9306 | 9487 | 9668 | 9849 | ®®30 | 181
240 || 380211 | 0392 | 0573 og54 0934 | 1115 | 1296 | 1476 | 1656 | 1837 | 181
241 201 219; 2377 | 2557 223 2917 | 3097 | 3277 | 3456 | 3636 | 180
242 3815 | 3095 | 4174 | 4353 | 4533 | 4712 | 4801 | 5070 | 5249 | 5428 | 17
248 5606 | 5785 | 5964 | 6142 | 6321 | 6499 662‘2 6856 | 7034 | 7212 | 17
244 7330 7568 | 7746 | 7923 | 8101 | B299 | B4 8634 | 8811 8 | 178
245 9166 | 9343 | 9520 | gbgB | 9475 | ee5; | ®228 | 8405 | @582 | @359 | 1Y
246 || 390935 | 1112 | 1288 | 1464 | 1641 18:; lgg& 2:68 2345 | 2521 | 17
247 2697 | 2893 | 3048 | 3224 | 3400 | 3575 | 3751 322 4101 | 4277 | 176
248 4452 | 4627 | 4802 | 4977 | 5152 | 5326 | 5301 | 5676 | 5850 | 6025 | 175
249 6199 | 6374 | 6548 | 6722 | 6896 | 7071 | 7245 | 7419 | 7592 | 7766 | 174
2560 | 397940 | Bi14 | 8287 | 8461 | 8634 | 8808 | 8981 154 | 9328 | 9501 | 173
251 99874 9&4; @030 | ®192 | ®365 | ®538 | *711 2883 1056 ?218 173
252 || dot4or | 1573 | 1745 | 191 2089 | 2261 | 2433 | 2605 | 2717 | 2949 | 172
958 | “"3iar | 3392 | 3464 | 3035 | 3809 | 3978 | 4140 | 4320 | 4dea | 4063 | 171
254 4834 5 | 51 5346 | 5517 58 8 | 5858 | 6029 | 6199 | 6370 | 171
256 6540 | 6710 | 6881 | 7051 221 | 73g1 | 7561 | 7731 | 7901 | Bo70 | 170
256 8240 | 8410 | 8579 | 8149 ;918 9087 | 9257 | 9426 9285 9764 129
257 33 | ®102 | ®271 | ®440 | ®6: 777 | ®94 1114 | 1283 | 1451 xeg
258 411620 | 1788 | 1956 | 2124 | 2293 | 2461-| 2 ag 2796 | 2964 | 3132 | 16
259 3300 | 3467 | 3635 | 3803 | 3970 | 4137 | 4305 | 4472 | 4039 | 4806 | 167
280 || 414973 | 5140 | 5307 | 5474 | 5641 | 5808 4 | 6141 | 6308 | 6474 | 16
261 6?:4( 57'238 7804 | 7970 | 8135 lbl
2602 8301 9460 25 973! 165
263 9226 110 | 1275 | 1439 | 165
264 || 421604 2754 | 2918 | 3082 | 164
265 3246 4392 | 4555 2318 164
265 4882 6023 | 6186 49 | 103
267 6511, 7648 | 71811 | 7973 | 162
268 8135 9268 | 9429 | 951 | 162
269 9752 @881 | 1042 | 1203 | 161
270 1| 431364 2488 | 2649 | 2809 | 161
271 :ggq 4o 4249 | 4409 | 160
72 4 ‘5685 | 8844 | 6004 | 159
278 616, g: 5 | 7433 | 7592 153
274 7}5! 859 17 | 9175 | 15
275 9333 9437 | ®504 | ®152 | 158
278 || 440909 2008 21 2323 | 1%
o 2480 35 3932 | .3889 lgz
2718 5137 | 5293 54.63 1
79 4 6692 | 6848 | 7003 | 155
N. [ 7 8 9 D.




ANSWERS,

PART L

£.~The full-faced fig in tion with the ber of the page referto the Arti-
eles In tho text. The numbers in parenthesis in the paragraph refer to the particalar Example.
* « # {ndicate that it is not thought expedient to give the answer.]

ADDITION.
(PAcE 13, 68.)

(L) =Ta. (@) 408 —b+a%+ab* +23—3a%, (8 15cats? +2bata? +
Tmatyt. (&) 4ot -V bat pBety—ab—zi—8.  (5) z  (6.) Hra—nd2at.
(1) (a+op+m—bay (8) (Qa+2b+8c—2d+e—2net +(120+n-+2y%,
0.) (@+b+1)* +0—a+Nay+(a—d+1)y%  (10) (@+m)z+y)+b—n)r—y).
(A1) 8m+n—2) ¥o—y.  (12) az Y4 @—myy-1+8c.  (18.) EVa*—7%.
14) 0. (15 3ty E—ies  (16) @++0 VF—4E  (17.) 2a—2m)at
+8(m—1)y* +8cz.

SUBTRACTION.
(Pacm 15, 73.)
@) o'+ot—20-8  (B) -2et+ad).  (#) &titd 5
6) 10 VT2 —8ayt. (1) aly*—y)+(10—2) Vab. (8.) bagw—b)~—

®.) 2¥a<b~ Vb (10). a—b+c+d; ¥¢; a—b+c—d; end
(11) * »»,



304 - ANSWERS.

MULTIPLICATION.
(Paar 20, 87.) .

(1) Tabzsys.  (2) Pme+igminis—r, @) 100z%y}; and — 9absd
“4.) m*; 1; ab; mlu:-'-z; a'%:; c“. (5.) 8a*+10ab—8bt. (6. @*+=2ty®+y*.
(7.) m®—2m2n®ot+nb+408. (8.) am—amiteqantiagntipgntl—gd, (9.) 24—
(a+b+c+d)e® + (ab+ac+be+ad+bd+cd)s® — (abe + abd + acd + bed)e + abed.

am N
(10.) z5—ys, (11.) @™o a1, (12.) 20ab* -+80as—r+wpmt+1
—10a -s+p—ipr—n-m 1 fgr+p—g=1, (18) * * =, (14) ®* e
(15.) —a*+2a2b* —b4 +2(a® +b%)ot —c,

(PAGE 21, 88.)
(8.) 6at—10a’z—22atz® +46a2°—20z4. (4.) 4a° —16a%0*+10a2d* +15ad*
—250°, &) at—at.,  (8.) z°—5z4+1022—102%+5z—-1.

DIVISION.

(PAGE 24, 1085.)
nin mn—1 2.2 £)
(1) m™; now; (aby ;%:}a:w&;é- (2.)%;-——-—-—3(;;’;%;2““”::’.
B)** %  (4) Lasttwo, D-W—bi-n—bebltn;zn ' m2g """ 4 gr—r.
(Btoll) * =& (12) (@+y)°.  (18) # * », (14) * **  (15.) a+d.
(16.) a¥»—~3Br+ic—qgim+n -1h2ena hrom, (17.) m™+an™, (18.) mad+nzt+
nz+m. (19.) ka*—22+k  (20) P . *y*+y*—w"‘n*—y*n*+ ot

(PAGE 26, 106.,) °
(2.) e*—baz+4at. (8.) 23*+4at+8a+16. (4.) 8yt—4rt. (B.) xb—a’y
+wn,¢_ms'a+¢ty‘_”l+’c; ‘”‘""U"
(Pace 27, 107.)
(8.) 2y*—8y3+12y*—By+2. (4.) zB+alyaiy?+odyd+ 2ty +ays+yt;

14+24+2%+2% 4+ a4 4 2° + a¥ + 27 + 2% ete. [ ARAAA @) **
(7)®%»



FACTORING.
(PAcE 31, 122,

. ﬁnmms in factoring are, in general, of such a nature that the answers can-
not be given without destroying the utility of the problem ; hence only the fol-

lowing are given : (28.) k’y’—k’m*y&c*+ k’m*y§¢§—k’m?yz}+k’m*y*z*

_ k”'mqyia + m?zg. ) (24) m;—m’b"y"" + z?yJ‘_zl‘A’y‘h - m*y’-—:ﬂﬁy‘n‘ +y§' .

@6y * * *; 1—a=(1+ #a)(1— ¥a); 1+aisdivisible by 1+ ¥a, 1+ ¥a,
2t y\*

etc. (27) 10a (7 bl Z—’) .

GREATEST OR HIGHEST COMMON DIVISOR.
(PAGE 84, 124.)
1)12.  @)12.  (8)8  (5)2mi.  (6) 2. (1) ziy-be.
(8.) a%y.  (10.) 40%z—4b*.
(PAGE 38, 129.)

8)ez—1. (4)z+1.  (B) 2a+8z.  (6) 2a=db. (7.) «zi-zzyﬂ')
(8.) 2aa?—6az®+10ax—2a. ’

(PAGE 38, 130.)
1) z+6.  (2) 2z+Y).

LOWEST OR LEAST COMMON MULTIPLE.
(PAGE 39, 132,)

@) @+0 (@=b)f.  (8) a*—4 (&) da'—2a*+1).  (5.) 4950a"bta?y>
8) 1—18a+8lat. (8) (@*—302+70) (@—10). @) @—1) (@+8) (z—3).
(10) (a®—4a%b+9ad® —106) (a-+4b). (11)) @ =14 +T12* ~1540+120.
(12.) 2° 724 1007 =702 492+ 03.



FRACTIONS,

(PaGE 48, 167.)
18

(1) #® (2) % # 8.) 1+z+22+2’+etc.; 2°+410— Pk
2ty 4 s __ PR T aab @? a_:f
m+n min’ 1—a+a*—a®+a*—a’+a®—a’'+a®—a®; 14 - + i + S 16
+ete.; | a+zr; 14T rfo-W4a-3L etc.; l—na-"+n’a""-—~n“’a""
+nta-*"—na-10"+ ete. 4) 8-7%a"y; (m+n)t3; etd-ngte;
1 5 1022 +2+4  a(a+b) (b+c)*—at
- 3(a—D0)-3 —— e —_— . . .
eHard @0 B) 1 g et Zet), CHA o,
2(1—2) (a+2) (a—2z)* 2(a—2)*
¥z @)% ** @) =*= @) a(at—z?) ' x(a—zt)’
_Hat2) Y G 2(z—y) z* 0, 1= (1=2")
a(a®—z*)’ Te-pt @yt @—y* (1+2)* (1—2’)’
(1_12)1 (ll ) m‘(m‘-—n‘) n‘(m‘—n‘)
1+27° (I—=z%" T mEn (mt k) (mt—nf)’  mTat(mE4at)(mi—nly
2(9z*—16) 92* (8z—4) 8x(2+-3z) a+b
e (12) £627=T0) @16’ Ba(9s7—16)" a8) o
10a* . z*  adfh—=befh  mP4mn*—min aftl+a,e
200%y*+7c*z® * 94-3zy*’ bdeh + bdfg’ m—n ' bdf+betcof”
886a  6—7) 2 sz+1 ,
(14.) 1i5s 40} I—z¢’ a—c; 1’ 0;
&t+22+13 2a*+at) ,  2abr—S8cat 8b*—2a%b—2a—3
w0 (8) g avbe T (18) =y —,
2 . 82°+20a® —322—285 a7) 2a+d+-e . Yy—pz—3mpy*
ot zt+1’ @iy 8et—5x—84 Y (a+c)(a+d)(a+e)’  Bmy—z)®
oty 6o ., 4 Ba-td
T . (18.) 0. (19) m H 4; _10z421° (20. ) 62+ T
4ab 208 8a  at4bt at—artay—zy,
o Ve 3 "o Y v’

(x*-l)

1)¢ 4 4
@Y, 3 @) aiad; —des grns 1-at; g @S

are+bre—2e 1.1, 2 1 1, —da L g
@) R gt et g 1Rt
e gt 4 gt 1 1__ " 4dab
T e @) ¥ @) 1tat+ats .

91a* 1 : Tavst 1, L
(27 ) -—-T H "—.‘—';-‘- H 1 H *. (28.) 121m‘y H 1—81a'® ’ zfpﬂ .
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' . . 2—a, 1 be(c—b)*
(29.) 1+a*+at; 8(a+d); z7a’ Wi’ T oromin (80.) m?
2(a—b)*
—mE*n—t+ ma-t—n—3; Sb(:; a+)b) a*—2a0+ct—b*; 1. 81.) 1.
boetd? +alerd’
(B2) 1 (80) a~t—a -t 40t—a oo (B4) ey et
agb"y'+w§b"z!’ . iyt a’+b? (85 %4=1 cd—1 8
A ey e CETANPY 7

m—n . (m+n) - .
wn (m—ny 87.) +. (88.) —. 89) +# 40.) 1;

2at—az—ay; 1; (a*—b%)".

INVOLUTION.
(PAck 59, 190.)

(1) 9a°; dafoe; p V‘ ; ;:,m ,"451,, 1 ZL* (2) 1-2¢+828—23 4+ 2¢;
4a* —12az® + 9. (8.) 9—122—22% +42% +-a*; 2726272 +92°~1; 1—0zF
+z; At smbasddy gl @) s1atd; datas; 16040 wimem; atal; adat;
shatyd; siamyn; 1 . (5) 25ast; 512a%F; ooty s ;

e 12525y Tah een iyt
Ji:-}ﬁ PETae (B) o TatyRlaty 35ty Bty Ry Tay 4y

aybng
24 —4z’y+ B2ty —dayd -yt 2706 —27a'c 49zt —a® ; T8—brty+ 15z~ Tyt —
85275y 4 T0z-%* — ote.; @~ -+ 4r-5y + 102-ty% 4 202-Ty3 + 8528y + etc. ;

2 z* 8 528 1 a® 8a* ba®  35a°

sty T T L + et =g ag iy + iy

2.5t s8.58 16.5% 1285t 2?85 1027 T 1284

1524

+ete.p 1—4zt+0z¢—4aS4z%; HEH; 1+ m.+ma R
+ew_); LA TR S X (T) #re e

EVOLUTION, *
(PAGE 61, 195.)

(1)2-2-2-50=472; 2.73==146; 5 - 7. 67=2345; * **; 4 {4 .0 . (a+D)}
=x(atctabe); **. (B t08) b AN
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(PAGE 65, 197.)

) "To give the roots in problems in evolution would be to destroy the benefit of
the exercise ; hence they are omitted,

RBEDUCTION OF RADICALS.
(PAGE 70, 207.)
: (‘1_') Q!.I-l? @)% g‘.:/ﬁ; LETL PO TS ﬂ;;_l_i)(a:_b:)i; LR R
z’;(—g%—)g: ¥Y15@F—y%).  In such oxamples be careful to leave only jntegial‘
forms under the radical sign, in the reduced expression. (Band 4.) * * * ¥
Vi = Vi (B) *** a3(1 ~('%)3=(a=—b*)3. (6) V8 and 49 ;

1 n—1

#enw, Y 3% and Y ry. (7.) ®ex (8')?‘;m;*ﬂﬂﬂ;zﬂy- ;‘
V5 V81 1 2 3 t—z ¥y

"D . R 7 Jpyr T _ NB—zhE, T VY,
; 3 (9):7:3/ -y g (B—a%)¥; oy
w——2£«r_y+;l/_4/g_4/§_ 8(4/5“—9:/5+ 4‘3‘“43/:"»7—~15+V§43/§I—4a/5—5)'
-y ’ P) B
2(4’/§E+4'/270+4’/E); 1145 — 4475, 34/K+21/102+34/§+2f0;
‘_';’_*_‘”_‘_x’ﬁ'_“_'f_'_; 2 +1—22 V2T +1; ——(a:+ 1’:0’—1); 2+ Vot +22° +at—1;
o VB4 ¥B4+2); VBBV 0) sV aaybioybistyd

6
+ zl‘jlyi +ziy+ :r:"iyg + ziy* +:r;’31g + m‘ﬁ‘y% + m&y’ + :cy’“l+ z*yj":-i‘z*y"‘n + yl‘{ H s

coPe angbe AP Moy ot e Py 8% peyey oty ¥ 4 ol
390 (V84+ V3 —5) (8—24G).  (11to18) * * *, .

COMBINATION OF RADICALS.
(PaGE 74, 217.)

Cyeew @ywww; 20 B g gyene @) VB

HVTIEE;  VEaTe; Ve VI 1054 1080480
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VBT, 84B;  80; 1243 (1) 41; z4y; 24645843
—4¥/5—-36 ¥8; B8V30—13¥58 — VIS0 +12. 8 3V10; 447

. b,
VEVE;, VB, 0 N+iVE; 2VD; 1VE+ 4R, bV 1/5—‘
_a+bd — zt+atat .
mVG'—l; VE+‘V5+V_8; at . (lO.)GzVTm,

e Ve s _2._2_54%‘ ; 5—248; 2Ne—a)Va—a; o¥—sabd+sato—ot.

A1) 92 V55%; V7 ; b‘/lSV_ eV ; ¥iss; 34 31%;
§¥3;  (12)2+845; 243+ 845; a¥Vo— Vam; *ee

IMAGINARY QUANTITIES.
(PAGE 78, 223.)
@) 1AVB+)V=T; 19a4/—1; @3+8)¥~1. (&) (Vz £ V) V=1
Gy 1¥V=1; 12V -1 V—=1; 112 ¥/ =1; @¥b—e¥d)¥—1,
@) 1= (@) 6¥IV=I; 16¥3¥=1; 1V=1; Vav—i

(PAGE 79, 225.)
5—7¥/ =T, and 0¥/ =I—1; 2a-+(VF+ ¥3)¥=I, and (¥F—¥2) V=T,

MULTIPLICATION AND INVOLUTION OF
IMAGINARIES,

(PAGE 80, 226.)
@»—2y; —12¥15; —6VG. (B)12/34/=L (&) 89—2¥=1;
2. (B,8)* %% (7)288VIVIT;—486V3I V=L (8) zyem.

DIVISION OF IMAGINARIES.
(PAGE 81, 227.)

4 R— - 2
@) i VIVTL; —vavD @)

at—b%
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PART IL

SIMPLE EQUATIONS.
(PAcE 87, 28.)

3% b a+b+6
) 13; 24; 28f; 8y%; 8; 4; IS 3 2.9; 23%
@) 12 kB e T e 29 o
2) b b_c__b_ 5 n{g—p) . ba(2b—a)  8adb®+4b*—12a%b 2K? |
( + ’ m ' 8c—d ’ 3a*+4ab—actbe ’ 28p+54%°
adfh+bcfh+bdah+bdfg L a.e n. 8a . . .
bafik ; 8; 0; 8 8. 35 4; 4; 4} “.) 81;

2a4'b 81
*—2bc; 16; 5; -1); 8; 1; 6; 6; 3; H —; 4
4 6 4(@ ) * 1

"(264-%)’. { ( V") 4m? . @ p—1)2 ; _9
T a ’ b1 (m+1)2’ D% 7’
| / b5 —2a\ 2, (a—1)* 8. 8a
a‘-—-( 8b ) ’ 2 °’ 16’ '
APPLICATIONS OF SIMPLE EQUATIONS.
(PAGE 90, 33.)
s, ns , ns
(1) 4’s 84, B's 42, (s 14. (Z)Asm le-i-_n_:m’
Cs T @) 30, 18. @) !i‘i’ ‘;;‘?’. (6) 35.
mna am+bn : mns

@) mn—m—ma % (9)an vone (8) Hbofanhours oo
ms 8(l+m) s(14+2m) .
(14.) 817, 951, 1268, 2219 ; 3+4m' Svdm’ Sidm’ S+dm " (16.) 80;
a+b « mMpa—pa+mb—na+me . bf—ac
P+2—m—n" ae) =xs, m+n—mp+p : az) s; a—2b+¢’
a+db+me am—b—me . a—mb—me
(18.) 19, 80; e . (19.) 78, 77; e’

a—mb+me ma .
—m (20.) 8. 21.) —— m+n g (24.) 20, 40, 60; 163,
83%, 50; 143, 284, 42%. (26.) 1200. (27.) 50. (28.) 5712.

(80.) 50.
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SIMPLE EQUATIONS WITH TWO UNKNOWN
‘QUANTITIES,

(PAGE 06, £2.)
(l’.) =10, y=38. (2.) 19, 2.4 (3.) 16, 85. “4.) 72 5) 7,17,

1067 278

©)22 @12 G- @) -2 o)}, 20

101 oy 207—0a?+d  8at—bt+d at  pr—ct

aw -, =, ag) ==, . as) o, SIS

(14) (a+b)%, (a~D)*. (15.) 10, 5. 16, 18, 12. (17.)‘1‘, ;_.
61 61 11

a8) g, oo asyi, L. @0)205; 68 7,10; 8yr-12=0;

¥ —22y+120=0; y*—4y° +14y° —20y* +9=0.

APPLICATIONS.
(PaGk 98, £2.)
)18, 813  (2)8.  (3)20,8  (4)5000,5000. (5) 4%  (6) 24

(7.) 29, 32 (8.) 5000, 6 (9.) LMt an—gmn pmn—qn—pm
: » : e Y mn—m—n ’ mn—m—n

.

bm+a an+b
(10.) i w1t (11.) 48, 16. (12.) 24, 82.

SIMPLE EQUATIONS WITH MORE THAN TWO
UNKNOWN QUANTITIES. )

(PAGE 101, 43.)
2.) 4,82 (8)2,8,4 (4)24,60,120. (B5.) 64,72,84. (6. 8,2,1.

* [ JEUPY SR ] 2 .t pt e L P2 et
@ 5,55, 05 (8) LA, SAoW Ao gy T,
7 21 2 2 1
— -2— » E. (10.) -E N 3 s 2. (ll.) 2&, Qb, 2¢. \ (12.) m,
1 1 Bo e 2 g4y19,8,

T=96-0 e=ae—n M "E Tave "are
7.4  (15)2,1,8 —1,-2. (16.)38,4,5,1,2. (17) b+c—a, a+c—b,
a+db—e.

+ The values of the unknown qiumltlca are given in the order 2, y, 8, ctc.
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APPLICATIONS.
(Pace 102.)
a 19a¢ 25a
(2.) 82, 20 cents, 10 cents.  (8.) £3000 at 4%, ete. (&) gz, 3, T
(5.) 142857. (6. 28,9,5.  (7.) 140,60,45,80. (8. 18y, 844,
, 80.

FA

RATIO.

(PAcE 105, 50.)

1

(l‘)gv §-l

1 18 an

E+y’ ?; b_;';l’ a— b 25

at:bt; 27:125; a?:3%; 5:4; VE:4T; VYm:Vn; 8:4; Vz:-ta/i.
(8.) The former. (7)) 4:1.

w e

ba 9 m, 1., 4. 8,
3 r+y; 16’ 07’ a—b. (2')5 ;25 8' 3a’
1

(8) 5:1111:a%+0%; Ra—2):(a+2). (4)9

PROPORTION.—APPLICATIONS.
{PaGE 111))

®)13,26,%. (4)8,6 () o+ 2% o~ 2”—(1. (6 120, 160, 200.

(7.) 8:9. (8.) 252, (9.) 56, 84, 70. (10.) 20. (11.) 150. (12.) 300.
(14.) 8h. 82y%m., 3h. 494;m., 8h. 16:4m. (15.) Every 14} hours, - hours,
and 14y ; or 11 times in 12h., 22 times, and 11 times. (16.) No; since it takes

the minute hand 11-‘; hours to gain a round, and 3% to gain half a round.

a+s 8—a W—a
(17.) 8:45 A.M. (18.) 1st. M m Mem’ etec.; 2d, V_F_"—:ﬂ, Py, 7 ) cte,;

a+mt s+a<+mt Re+-a+mt s—a—mt  s—a—mt - .
M—m’ M—m ’ H—m * o m—M ' oy 7 A
s—ot+ Mt —atMt . ...
M-m ' M-m :

-t

ARITHMETICAL PROGRESSION.
(PAcE 117, 83.)

n-—l n3n+1) n—1
) —_i‘z—'—* (4) 0’ —""'.

(1) 83,003 (2) —89, —884,  (3)
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5.) 108 243..208..843..808 .. 448, (7.)—«,%. ®) 100, (9) 22E",
nin  midn ' -

s "¢
GEOMETRICAL PROGRESSION,
(PagE 120, 90.)
(1.) 46875, 58503. (2.) 6, 18, 54, 162, 486. (3 ) 16384, 21845%%. (4.) —vk,
-4 6 1, & 1, 8. 6) %; 3; #t; #2. 10.) —A[(—§)=—1];
is8ed; ;5 WA %

VARIATION.
(PAGE 124, 95.)
(6.) zxz. (12.) 18. (18.) s==}fes.

HARMONIC PROPORTION AND PROGRESSION.

(Page 126, 100.)
(6') *) ’I‘f; T‘T-

PURE QUADRATICS.
(PAGE 128, 108.)

1) =4 @) 5. (@) =Vab—0%. (4) =V6.  (5.) =$aVa.
©) 6. () +4/;05 ®) V=B @) hevB. (10) £8V=m

‘ x2 a(Vh=1)8
ql-) t.%v—-w- (12) £  (8) Umge: (4) =+ =5 =
APPLICATIONS. .
em¥s +n Vs
(1.) 12, 20. @) = {a V8. 3.) Vi +n"+p -m_ﬁ R
+p¥3 _m-n_ ) 55T+,
(4) 4550. ®) Vzn —m’ Vinem 6) 557+

18.19—, 40.51+. (7.) 149,247.2 + miles from the surface of the earth (8,) 240.

<18 T . a V‘
=== from A. (10-) from the louder bell.
&) Vv 1
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AFFECTED QUADRATICS.
(PAGE 138, 114.)
1)8 -2 2)6.2 (8)a(2+#11). 4)8 —1. (5)2=¥—41.

6)1, —a. (1) 2, —1. 87 ®) Z—:, %. (11.) 8, —6%.
ag) s - a8) %22 aeypw a6y uge (162, -1
A% B a8y Y1241, a9 44 (@0) da(~8 = ¥7)
@1) V3.  (22)8, —§  (28) “"i’f;—“z—"', b @41.) 4, —3.

(25.) 12, 4. (26.) 4, 1. (87) 712+, —=5.18+. (28.) 3a(1£8 ¥=3).
®9) 1,4  (80)5,8.

'HIGHER EQUATIONS SOLVED AS QUADRATICS.
(PAcE 136, 122.)
(1) 8, =8¥=1. () 2; the other four roots not required.  (3.) = m¥.
)27 (B)121.  (6)64. (7)) bs. 8) =8  (9.) =¥ —6, 2.
a0) Vi1 VipsD). 1) 4 VB, (2) {55 (- vEiw)} ¥

(18.) V{a = Vat+o)'. (14.) 243, (—28)%. (15.) 16, 143L,
ae) § (b s V5T Ha0)} Loans® o asy v y-2 as,
1, 1x24715. 20.) 9, —12. @1.) 8, —4, 4(5 = ¥1820).  (22.) 4, 69.

(28.) 1= 48). 24 3(1*4/'5). (25.) 8,4, 3(—8.£ ¥55).  (26.) 2,1},

1+ V5 —2™
17+ ¥E). (@7) %3‘,%%

¥+ ¥/=T). 80)2,81 (B81)2 -1 i(1=V=H). (82)1, -3, -3.
(88)2,22¥—1. (84)5 4x47  (85) -2, —1,—5. (86)0,20,3.
87) 6,4,5. (88)1,1,—2, —2. .(89.)4,1,82 (40)3,—1,1+ ¥=8.
(41) 5, —4,8, —2.  (42) 8, —8, }(—18 + ¥=155). (48) 4,8, H(7x V).
44) 0,4, 4(—82 ¥=7). - (46) +1,—1, £ ¥/=1; —1, (1 £¥=3); 1

Kotavmm) 11, e 07T SN Ly (e vE e,

(28.)5,—1,2x4-14. (29 6, -2,
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s, avm L (Vv
“e) M:é/mf = ‘f(ta;(;’m:;r 2) - 48) #a = Va4,
-] -

9= 3V —8 = ¥8a+1). (50) 1= ¥F).  (51) 2, —, 4(8 = ¥B0B):
Va a )

52) 1,1, -2, —2. (68)2(—1:¥8). (4)= Y2 {~ +¥aTal,

(62.) ¢ 8( ‘* ) *2{6‘-‘_2 @& }

e e N A e kT

(56.) 0,4,3 —1,+2,—2. (BT.) %, $(—1=V88), *1, xVi(—112/8b).

SIMULTANEOUS QUADRATICS.
(Pace 142, 127.)

(1) =8, —=H; y=—4, W  @)e==z¥]; y=2+Vi 8)e2=2;
y=2. (&) o==x7, 24; y==z4,17. (5.) v==8, 2§ ¥2; y==2, +} V2.
6.) =12, +}¥10; y==4, =3¥710. (7.) =28, =8; y==28.
(8) z=2§¥1d; y=24¥1d.  (9) e=24421; y=2+421. (10) z==1,
V=5 y=+2 £4V =B (1l)o=12, +443; y=26, +30/3
(12) 2= +10, + 434/ —47; y=x8, FHV—47. (18) ==4, 2,
3(—18 £ ¥877); y=2, 4, (=18 F ¥/BTT).  (14) =4, —2,0; y=2, —4, 0.
(15)2=2,8; y=8 2 (16)z=+842; y=x+42. (17.)z=9, 4;
¥=4,9. @8y z=11, (1 £+ ¥=211); y=8, ¥ —15+¥—310).
(19) 2=15,0;y=45,0. (20)z=x¥2; y=27F V2. 1) =0,2;
y=—2,0 (2)z=1,4; y=4,1. (23)2=1,823F5+/—1; y=3,
1,254V -1 (24) 2=5, —2, 8+ ¥=067); y=2, —5, H{—3 + ¥=67)
@6)2=+8 £2; y=£2,+8 (20)e==x2, 1, F2V—1, 2+ ¥—1;
y=x18 x2, + V=1, 72Y=1  @7) e=V3(¥2-1); y:'m.ﬁ.
umw "=ab-f:cbf-ao’ ’=ab-f:zc—bc' @9)e=4+3,
y==x2 e==%x1 80)z=+2 y=14, e=x86. BGl)e=1, y=3,
6=8 @2)e=x4, FRYV-I, 25 F4V71; y=z%, xR V],
£4, 25¥V—1.  (@8)a=+1V3, 28 +8VTI; y=s V5 x1,
£ ¥=1.  (84) 2=8,0;y=8,0. (85) ¢=2, 8; y=8,2. (86) 2=10F445,
WF§V/TE; y=10£4Y6, 104V @7) o=+ §VET, 2 §VI0,

@8) 2=



1
1

£a¥FT; y=+RV300) @) e=4,9, —8F4YT; y=9, 4,

Z814VTT0.  (89) c= (15 £8470),5,1; y=w(3 104D, 8, 1.
@0) e=1; y=16. (A1) o=4,1,0;y=8,0 (42.)o=2744, §; y=0604, 4.

APPLICATIONS.
1) 8. (2.) 18, $20. (8) 10 and 3 days, 120 and 86 miles.  (4.) 12, 36.

(3) 14,10. (6.) 6milesanhour. (7)4and 5. (8. 5(—4_‘—"‘——1——)1’.—*1“&”),
P W—

i __(‘*_".’.:_/!’%{Lifj_’?_ﬂ), ®)1v5,16+45). (10)1,8,57 (11)2,
3,450 (12)3,6,12. (18)2,4,8  (14)510,20,40.  (15) 2,4,
8 (16)06,810,12. (17) 1,2, 4,8  (18) 108, 144, 192, 266. (19 72,
63,56  (20)7, 3  (2L)2/.  (22) $960, $1120.  (28.) 248.
(24.) 6 and 7 per cent, (25.) 8 and 14,

INEQUALITIES.
(PacE 150, 134.)
(8.) it and A2,  (9.) Any number betwéen 15 and 20.

«PART II1
DIFFERENTIATION.
(PaGE 157, 156,)
(8.) 15brtdr — 60zdz + 4dr. (4) 24rdz + 3Batdr + 4Cz'dr
Arydz—2atdy drdr } ghdr e ,
(70 12.) 5 H @t 22z + 2z Baty dy-t—2.ry du
+8dp; (Dt —120°+12°—2)de; (@—22+1)dz. (1810 17.) 18(a® +2%)rtdr ;
$@e—de;  A@—atytede;  — 2. (18 to 22) — 2
2 +a)t (+a)

3dn & bmde  Smde ‘
— m; - m: (1—;-3‘};; a‘:}j;. (28.) When 2 > 1, faster; alx

1 1
faster when @<} and > ——. When 2 = --———, they both change at the sam¢
bend> o % sva o

rate,. When 2 < 5‘3’?' ¥ changen slower than 2.



IN DETERMINATE COEFFICI EN TS.—-DE‘VEDOPMENT OF
FUNCTIONS,
(Pacm 161, 161.)
B) 1—ja* —jrt—ste.; B—at+ad—pt c. G od  ao'd a'd ,
) 1—3at—jot—ete.; o— —ot+etc. ; b+b'm+b‘z+b_‘z
+ete.;  1+iw+ 3ot 4552 + At +eote. 4.) 24+20—82% 5 —pt—ete.;

1+ 22 + Ba* + 62° + 9% + ete.; L _ 5 15 45 185, e

Pro e TR T A ™)
6.) 1—{z—ja®—Frad—etc.; 1+3r—32®+Kad—etc.

DECOMPOSITION OF FRACTIONS.
(PAGE 164, 1867.)

5 2 8 1 5 4 7
@08) o "D’ B B2’ E:Z = LT

1 1 4 9 1 3
T 3@—2)’ e+l 242 Faid) (Ttoll) o 1)-* ~ =iy Y’
e _ 8 1 t_ 1.3 1 _ 1 _ 1
@+ " @idr T o2 T T Himn T Wirer T H+e'

1 11 1 2 1.2

prem v 4(a:+1) W)’ B9 @—2) * W+ T 136@1H)"
%e-2 2 S@+d 1 1 1 2 8
(12t018) w’+1 @t+1)t’ o (2*—R)* +a:’—-2+w-—1’ ' 5+¢+1'

11 LI Y L S S
E{E:i S ei—z+1 = 2itasif’ 4a’(a+z) © da*(a—a)
P S 1t 1182 10 '

3a¥(@*+2%)’ (a—d)(z—a) (a—b)(@=0)’' z—8 @—1 a—3

’ THE BINOMIAL FORMULA.
| (PacE 167, 171.)

(1% 6.) a®—684°b+15a4d2 —20a%0° -+ 150204 —06ad®+28 ; @’ —Tz0y+S2lys

— 80aty® + 85ay — 2aty® + Tays — o ; @ — na* e + ﬂ.’fz:'_l..) du—lza
”‘”“1)("_2) ar—sg 4 M08 1)("@' DO=8) i ete.; 3 14do+6a® 4 4a®

4oty 1Oyt 10 —10p byt =gt 1—np+ D “‘””é‘?’?’r

+ """“”("l; DO psete. (Ttoll) #eses, (18, T oll) wars,
' 1 ot




s18 . awwems.

+ 37:,%1‘ 4ete.;  o'+daot18atcrdatol por, (28.) —ghira Vo,
~ ittt Ton '

LOGARITHMS.,
(Paar 179, 199.)

(1) 4,6, %% », 2.) —2, % 3) 4, %% (5. To the 8201147th
power, and the 1000000th root extracted. (6.) The 1000000th root of the
8414630th power. (7toD.) ** %% (10.) .28108, .17677, * *,  (11.) £.449419,
4627084, 1.890210. (12 12.43, .00010081, 18.3625, 1.8358.  (14.) §log®
+#{log (1+2)+log (1—2)], }(log a+log z—log b—log y), #[log (8—a)+log (s—0)
~+log (8—c)—log 8], 4[log z+log (1—2)]—4% log y; ’—11 (m log a+p log b—t log ¢),

$log c— 1,103 d+ :—L[los(m+w)+1°g (m—a)]—mlog a+nlogd  (16.) — iif‘a >

mdx 83mde mdr ndz
= TE T T Wi (19.) .065712, 4.49134.

SUCCESSIVE DIFFERENTIATION.
(PAGe 182, 204.)
(2.) 12zdz®. 5.) ** ™, (7)) 2[(@—d)+(z—c)+ (z—a))dat.

DIFFERENTIAL COEFFICIENTS.
(PAeE 185, 207.)
L]
(6.) 102¢4-1223—102, 402%4-862%—10, 12008+ 722, 2402472, 240; *** &,

TAYLOR'S FORMULA.
(Pace 188, 219,

@y*re, dbitety oty ab s s eyt eete ) ot
+%-'y+8w—'y'+4r‘y°+5r‘y‘+6w-'u’+etc o togay gy
= y"+i¥% ‘-—w""‘ywm Pacx 189, (2.) w-w-;-(w—u)»
+(W-—2W+Wh'+1m‘+w



v o ANSWEES, 819

INDETERMINATE EQUATIONS.

(PAE 193, 218.)

@@= oy ®) None.

- {y... 5, 14, 28, 82, 41, 50, 59, 68, 77,886,905, 104,113, 122, 181, 140, 149.
»=215, 202, 189, 176, 188, 150, 187, 124, 111, 98,85, 72, 59, 46, 83, 20, 7.

y=28, 6. 8. y= 9, 28, 47, etc. y=2, 119, 286, etc.
@ 'zz =17, 28 "t“ {z =20. &2 %az=56, 178, 290, etc. ( ){z=3, 131, 259, etc.

y._13 _ oy y= 5, 10, 15, etc.
(h){ . () 52+9y=40. None. BGz—9y=40, {z=17’ 26 35, e

y_s _ . y= 2, 7,12, etc.
O savoy=on, ;7 se—orZen, {470 o0 G0

APPLICATIONS,

(2.) Yes; 15, 168, 9. (4.) No; yes, in an infinite number of ways; 4 8-shil-
ling pieces and 102 guineas ; possible; possible; possible. (5.) 190.

INDETERMINATE EQUATIONS BETWEEN THREE

QUANTITIES.
(PAGE 194, 219.)
e=1, 2, 8, 4, 5 6 11,12, 183, 14.
(2){3,:11, 9, 7, 65 8 1, 8 6, 4, 2. (8.) 59 sets of values
2=10, 11, 12, 13, 14, 15, 1, 2, 8, 4
_4 fy= 2, 4,6,8,10. _ofy=1, 85,170 _afy= 2,4,6,8.
@) “‘1{:;:15, 12,9, 6, s.} 2—2{:):..14 11, 8, 5,2% "8{@:10,7,4, 1.}
41 $y=1,8,5. _x fy=24 —g {¥=1,8
'“4{40_—_9, 8, 3.} =0 1 2=5, 2.} i 6‘1:4-.—4, 1.}
. (PAGE 194, 220.)

(1.) =7, y=2, 2=10. (2.) e=15, 80, y=82, 40, =15, 50. (8.) None.

) APPLICATIONS.
. (1.) 8of 1st, 6 of 2d, 2 of 8d, and in 9 other ways: 28 and 2, 16 and 5, 9 and
8, 2 and 11. (2.) #4, 82, $7; infinite variety of prices. (8.) 6,8,1,186.

(£:). Number of the 8d kind equals twice the number of the 1st kind, plus the
number of the 2d kind; 1 of 1st, 8 of 2d, 8 of 8d kind. (5.) 40, 60, 24.
(6.) 55, 10, 85 is one result in integers. There are an infinite number of other
mya. @)** B)s=10,y=1,0=18, . .



i

LOCI OF EQUATIONS.

A LARGE number of these constructions are exhibited in the text, and to give
more would be to destroy the possibility of the student’s deriving any benefit

from the exercise. .

v HIGHER EQUATIONS—TRANSFORMATION.
(Paer 205, 228.)

(2.) Multiply by y*, and then put y=2". Finally put = E R eto.
It is not deemed expedient to give farther explanations.

L]
(PacE 214, 249,)
(2 to 84.) To give the roots of these equations would destroy the practical
value of the examples.
(PAGE 218, 250.)
@) w-‘—za:’—li:c+12=0. (2.) z¢—22%—bz2+4w+6=0. (8.) #**,
(4.) 2®—2*—"72+15=0. (5.) * * (6.) 802*—172° —112+6=0,
(7% 10.) #* % ¥ an (11.) °—102®+ 33x* —b56x2 — 7822 + 662+ 89=0.

EQUATIONS WITH INCOMMENSURABLE ROOTS.
(PAcEs 216-247.)

To give the answers to these examples would be to destroy their value to the
student,

CARDAN’S PROCESS.
(Pace 261, 281.)

@) -1,2,2. (®)2 ~1:#48 (4) V—+3, and the roots of
o (VE-V2)s + (VE—73)'+6=0, which are —4(¥VZ—43)
4/ ~1V3-17i-3. ) (ad=})’, { —p(at—t) 24 (b %) v=3}".
6)1,-2x84—1. (T) = 8)2 3+ ¥=1.  (9)8, —4 —4
(10) ** . (1) ***  (12)*** (18 One root is 289748+,

'(1") ————" .. ’

'-0
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DESCARTES’S PROCESS.
(PAcE 252, 283.)
Ex. 4, -2, —g+4’—1, and —1 — ¥/ =1,

RECURRING EQUATIONS.

. . ' (PAGE 255, 291.)

1) 2+V8 3§12V, @) —1, OV, $B£VE. (B)1,8,.
H—2 - 4) —1, 3m = Vim® 1, in which m=}—+—%\ésa—~;-———m
G.) —~1, 1,1, —1, —1, 3 (1 £V=3). 6.) 2, §, $n = VIm? —1, in which.
m=3(=5+vE). (1)%424+A:V8 )6+ VE), 3(—T+8v5)..

0) 1 (V6—12V—10—2V5), —}(VB+15V—=10+23V0). (10, ym.
+vV}m® —1, in which m=2(1 = V3).,

BINOMIAL EQUATIONS.
(PAGE 255, 292.)

(1 to 5.) Seo answers to (45), page 1388, and multiply them respectively by.-
4’/5; 4‘/1—3: 4“/5, :"f’: ;/ﬁ (7.) See as above.

EXPONENTIAL EQUATIONS.
(PAGE 256, 206.)

(210 6) B005T-+, 11384+, 8202+, 0,0.  (8) 8507+, (9.) 2816+,
‘ i

(10) 2879+.  (11)8288+.  (12) 2001+.  (18) %————?L‘).
b

. 2 log a+log o log ¢ . o b

a4y TEIEED (15) ekt ady bk an (57

a 5'513 log n log n o 8(2+log 5)°

G as *(' +togm)’ *(’ “logm) 19 Fiog3i8l0g 8’

A2 +log B) _ log (a—b)
Ty @02 -ten @) EETE @) swem,

$109.98, $200.17, $350.87, $265.33, $268.51, $180.61, $181.43, $184.83



(25.) 7.18, 1024, 16.28, 2048 years.  (26) 20.91 years.  (27.) $1502.63
(28) $108897.  (80.) $LI57.28. (82, $479452, $3500.  (33.) $577.06
(85.) The former by $620.08....(88.) $500.91. (88.) 13.58 years. (39.) $796.67.
(40) $8220.70.  (41.) Gains $1756.60. o

_,..‘b'- ‘
4 PPENDIX.

SERIES.
(PAGE 275, 311.)
(2) 12,6,0. (8) 8, 82. 4) —&. B)1 (6) —-14

. (PAGE 276, 313.)
4) —z*, +z*, +@. Oob, b2°. 6.) =27, +9, +8. 82805, 93415,

(8) +30%, +2z. 1003¢7,32812%.  (7) —4, +4. 192, 448,  (8.) —%e*, 4,
nd 5
+2. 812°,1782%.  (9) — @ rat, — e et (10) =1, +4, 6, +1.

56, 84, 120. (11) +1, —38, +8. 26, 84, 43.

(PAGE 277, 314.)
(1) 451627,  (2) 172°.  (8) —2°. (4) 2783  (5) 20526.  (6) 1365,

@) 20. "D gy atm+). . (@) 63062, (10) +1, —5,
+10, =10, +5. +1,—3, +8. +1, —3, +8. +82°, —a?, +22. (11) n2.

(12.) 8694. (18.) 20, 84, 43, 58, 64. 206z%, 84z™, 432", 532", 642%. 196, 830,
540, 825, 1210, 1716,

(PAGE 279, 315.)
, (2,) No. (8 t0 6.) Yes.

(PaGE 282, 316.)

o

1—2 1+2 1+2 : 8—7—02°
W) =g @iz @ g W g
G)o.  (8) i-_z‘“—lwﬁ @) ﬂg?‘z (8) 400; nt. (9. 1275:
2D o) sree; "‘"*“’“‘*3’;’2”;*”"”’*“". ' (11.) 1081580 ;
6nt + 44n® 4 09nf - 61n - : N L)
== Caemo; F 4T o

8
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nn-+1)@n+1) w1 1 1
18.) - (14) —g (16, 3 (18.) %
G- as) @i @i e @)l

@) @6)% @&  @8) e (29) v (80) i

PILING BALLS AND SHELLS. X
(PAcE 287, 322.) )

(L) 1540, 18244, 903.  (2.) 9455, 4324, 85720, 465, 276, 1128,  (B.) 7490,
3880. (4.) 624 (5. 2730.  (6.) 89556.

REVERSION OF SERIES.
(PaGE 288, 323.)
@)e=y—y*+y®—y* + etc. 8) z=y — 8y* + 18y* — 67y* + etc.
4) =y +3y® + %y® + &%y’ + ete. B) =1y — &y* + Wy — ete.
e _, 2
(6) o=(—)—d@—1* +4y—1°—d@—10+ ete. (@) o= Y o

m m?

bmt —mp—2n{am?® —a1)]y*
+ [‘" *"——""""’0—"——‘—’—‘—‘— +

ete.

INTERPOLATION.
(PAGR 290, 325.)
(2.) 1.794. B.) ¢ ¥ *),

PERMUTATIONS.
(PAGE 293, 334.)
(1.) 720, 24, 3,628,800. (2.) 720, 42, 210, 840, 2520, 5040, 5040. 120, 21,
35,35, 21,7, 1. (8.) 36, 84, 1206, 126, 84, 36, 1. (4.) 72, 504, 3024. (5.) 20.
(8.) 88, 21. (7.) 127. (8.9 479,001,600. (9.) 792. (10) 135

11,.166,320. 64,864,800. (12)) 1023.

PROBABILITIES,
(PAGe 205, 335.) -

(1) 8% ds 1% & 206 5 2:1, 48 @d)6tel  G)(r*H
)4 6tol. (11 $2i¢





















