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PREFACE.

THE present work contains all the propositions which
are usually included in treatises on Plane Trigonometry,
together with about a thousand examples for exercise.
The desiyn has been to render the subject easily intel-
ligible, and at the same time to afford the student the
opportunity of obtaining all the information which he will
require on this branch of Mathematics. The work is di-
vided into a large number of chapters, each of which is in
a great measure complete in itself. Thus it will be easy
for teachers to select for pupils such portions as will be
suitable for them in their first reading of the book. Each
chapter is followed by a set of examples; those which are
entitled Miscellaneous Examples, together with a few in
some of the other sets, may be advantageously reserved by
the student for exercise after he has made some progress
in the subject.

As the text, and the examples of the work have been
tested by considerable experierice in teaching, the hope may
be entertained that they will be suitable for imparting a
"$oufid 4d comprehensive knowledge of Plane Trigonometry,
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together with readiness in the application of this knowledge
to the solution of problems. Any suggestions or correc-
tions from students and teachers will be most thankfully
reccived.

The Miscellaneous Examples at the end are arranged in
sets, each set containing ten examples: the first hundred
relate to the first eight Chapters of the book; the second
hundred extend to the end of the sixteenth Chapter; and
the last hundred relate to the whole book.

1. TODHUNTER.

CaMBRIDGE,
August, 1874
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PLANE TRIGONOMETRY.

L. MEASUREMENT OF ANGLES BY DEGREES
OR GRADES.

1. TaE word Trigonometry is derived from two Greek words,
one signifying a ¢riangle and the other signifying I measure, and
originally denoted the science in which the relations subsisting
between the sides and the angles of a triangle were investigated; the
science was called plane trigonometry, or spherical trigonometry,
according as the triangle was formed on a plane surface or on a
spherical surface. Plane Trigonometry has now a wider meaning,
and comprises all algebraical investigations with respect to plane
angles, whether forming a triangle or not.

2. We have first to explain how angles are measured. Some
angle is selected as the wnit, and the measure of any other angle
is the number of units which it contains. Any angle might be
taken for the wnit, as for example a right angle; but a smaller
angle than a right angle is found more convenient. Accordingly
a right angle is divided into 90 equal parts called degrees; and any
angle may be estimated by ascertaining the number of degrees which
it contains. If the angle does not contain an exact number of de-
grees we can oxpress it in degrofh and a fraction of a degree. A
degree is divided into 60 equal parts called minutes, and a minute
into 60 equal parts called seconds, and thus p fraction of a degree
may if we pleage be converted infh minutes and seconds.

3. Thus, for example, half a right angle contains 45 degrees ;

a quarter of a right angle contains 224 degrees, which we may write

in thy decimal notation 325 degrees, or we may express it as
1
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23 degrees, 30 minutes. Similarly, if a right angle be divided into
16 equal parts, each part contains 5§ degrees, that is, 5 degrees,
387 minutes, 30 seconds.

4. Bymbols are used as abbreviations of the words degrees,
minutes, seconds. Thus 5° 37’ 30” is used to denote, b degrees,
37 minutes, 30 seconds.

6. The method of estimating angles by degrees, minutes, and
seconds, is almost universally adopted in practical calculations.
Another method was proposed in France in connexion with a
uniform system of decimal tables of weights and measures. In
this method a right angle is divided into 100 equal parts called
grades, a grade is divided into 100 equal parts called minutes, and
a minute is divided into 100 equal parts called seconds. On
account of the occurrence of the number ons hundred in forming
the subdivisions of a right angle, this method of estimating angles
is called the centesimal method ; and the common method is called
the sexagesimal method on account of the occurrence of the num-
ber sixty in forming the subdivisions of a degree. The centesimal
method is also called the Frenck method, and the common method
is called the English method.

6. Symbols are used as abbreviations of the words grades,
minutes, and seconds, in the centesimal method. Thus 5% 37° 30"
is used to demote b grades, 37 minutes, 30 seconds in the
centesimal method. A centesimal minute and second are not the
same a8 a Bexagesimal minute and second, and the accents which
are used to denote centesinal minutes and seconds differ from
those which are used to denote sqgagesimal minutes and seconds.

7. In the centesimal method any whole number of minutes
and seconds may be expressed immediately as a decimal fraction of
[ ]

a grade. Thus 37 minutesis-l%%ofagmde,'thatis'w of a

grade ; and 80 seconds is 1%%), of a grade, that is 003 of & grade.
Henoe 5% 837* 30" may be written 5%:373; and since a grade is
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one-hundredth of a right angle, 5#373 may be written as 05373
of a right angle. Notmt.hstandmg this great advantage of the
ocentesimal method, the sengemnal method has been retained in
practical calculations, because the latter had become thoroughly
established by long use in mathematical works, and especially in
mathematieal tables, before the former was proposed ; and such
works and tables would have been rendered almost useless by the
change in the method of estimating angles. The centesimal method
is not practically used even in France. Nevertheless it is cus-
tomary to retain in works on Trigonometry the matter which we
shall give in the next two Articles.

8. To compare the number of degrees in any angle with the
number of grades in the same angle.

Let D be the number of degrees contained in any angle, @ the
number of grades contained in the same angle. Then since there are
90 degrees in a right angle, g% expressos the ratio of the given angle
to a right angle ; and since there are 100 grades in a right angle,
lgo also expresses the ratio of the given angle to a right angle.

, D_ @&
Hence g—o—m,
therefore D—m G—-—G G—— G
100 10 1 .
and G—T.D——D D+9D

The formula D-G’—— @ glbes the following rule : From the

numberquradacontmmd in any angle subtract one-tenth of that
number, the remainder is the numbgr of degnees® contained in the angle.

The formuls §'=D + 3 D gives the following rale: Zo the wum.

ber of degrees contained in any angle add oneninth of that number,
the sum 1s the number of grades contained in the angle.
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9. Again, let m be the number of English minutes contained
in any angle, p the number of French minutes contained in the
same angle. Then since there are 90 x 60 Englisb minutes in a
right angle, %%36 expresses the ratio of the given angle to a right
angle ; and since there are 100 x 100 French minutes®in a right

100 x 100 also expresses the ratio of ‘the given angle to a

right angle. Hence

90 x 60 ~ 100 x 100’

O9%x6 27
therefore ™= 0% 10" = 50"
50
and W = g e

Similarly, if s be the number of English seconds contained in
any angle, and o the number of French seconds contained in the
same angle,

90 x 60 x 60 ~ 100 x 100 x 100’

81
therefore 8= 355

250
and o=5r*

10. The angles considered in Geometry are in general less
than two right angles. We say in general, because angles greater
than two right angles are not altogether excluded. For we may
refer to the proposition that ih equal circles, angles, whether
at the centres or at the circumferences, have the same ratio as
the aros on which they stand have to one another; here there
is no limit to the magmitude of the arcs, and consequently no
limit to the magnitude of the angles; and in the course of the de-
monstration given by Euclid, an angle oocurs which may be
any multiple whatever of a given angle, and so may be as great
as we please.
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11. It is however usual in works on Trigonometry expressly
to state that there is to be no restriction with respect to the mag-
nitude of the angles considered. ®* Let BAD be any straight line,

£

CAE a straight line at right angles to the former. Suppose a
struight line AP to revolve round one end 4, starting from the
fixed position 4B. When AP coincides with AC, the angle which
has been described is a right angle ; when 4P coincides with 4D,
the angle which has been described is two right angles; when 4P
coincides with 4, the angle which has been described is three
right angles; when AP coincides with 4B, the angle which has
been described is four right angles. Then as 4 P proceeds through
a second revolution, the angle described will be greater than four
right angles. Thus if AP be situated midway between 4B and
AC, the angle between 4B and¥4 P will be half a right angle if
AP be supposed in its first revolution; the angle will be four
right angles and a half if 4 P be supposed in jts second revolution ;
the angle will be eight right anfles and & half if AP be supposed
in its thérd revolution ; and so on.

12. The straight lines CAE and BAD form by their intersec-
tion four right angles ; these are called quadrants. BAC is called
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the first quadrant, CAD the second quadrani, DAE the third quad-
ront, and EAB the jfourth guadrami. Now suppose any angle
formed by the fixed straight line 4.8 and the moveable straight
line AP; if AP is situated in the first quadrant, the angle BAP
is gaid to be in the first quadrant; if AP is situated in the
second quadrant, the angle is said to be in the second, quadrant;
and so on.

EXAMPLES.

1. The difference of two angles is 10 grades and their sum is
45 degrees ; find each angle.

2. Divide two-thirds of a right angle into two parts, such that
the number of degrees in one part may be to the number of grades
in the other part as 3 is to 10.

3. Divide half a right angle into two parts, such that the
number of degrees in one part may be to the number of grades in
the other part as 9 is to 5.

4, Find the measure of 1' 5" in decimals of a degree.

5. Divide an angle of n degrees into two parts, one of which
contains as many English minutes as the other does French.

6. If one-third of a right angle be assumed as the unit of
angular measure, what number will represent 75°%

7. Determine the number of degrees in the unit of angular
measure when an angle of 66§ grades is represented by 20.

8. The number of the sides of one equiangular polygon is
two-thirds of the number of the sides of another ; and the number
of grades in an angle of the first equals the number of degrees in
an angle of the second : find the apgles.

9. Shew that an angle expressed in centesimal seconds will
be transformed to sexagesimal by multiplying by the factor ‘324.

10. Compare the ahgles which contain the same number of
English seconds as of French minutes.

11. Express in the French method 35° 10" 3”.

12. Express in the English method 69 22' 50"
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II. OIROCULAR MEASURE OF AN ANGLE

13. We have explained two methods of estimating angles,
pamely, that by means of degrees and subdivisions, and that by
means of grades and subdivisions, and we have stated that the for-
mer method is that which is most commonly used in practical cal-
culations, 'There i is, however, another method of estimating angles
which is of great importance in the theory of mathematics, which .
we shall now explain. The object of the present Chapter is to es-
tablish and apply the following proposition : [f with the point of
indersection of any two straight lines as centre a circle be described
with any radius, then the angle contained by the straight lines may
be measured by the ratio of the length of the arc of the circle inter-
cepted between the straight lines to the length of the radius. We
shall require some preliminary propositions; the proposition in
Art. 14 is sometimes assumed, and the beginner may adopt this
course and return to the point hereafter.

14. The circumferences of circles vary as their radii.

Let R denote the radius and C the circumference of one circle ;
let r denote the radius and ¢ the circumference of another circle.
In each circle let an equilateral polygon of n sides be inscribed,
and in each circle draw two straight lines from the centre to the
extremities of one of the sides of the inscribed polygon ; thus
we obtain two similar triangles. Let P denote the perimeter of
the polygon inscribed in the first circle, and p the perimeter of
the polygon inscribed in the second circle. By similar triangles
a side of the first polygon is to a side of the second polygon as the
radius of the first circle is to the radius of the second circle;
therefore also

P_R
p 7 o

Now let P=C~ X and p=c—x; thus

r(C-X)=R(c-2);

therefore 0~ Rc=rX - Rz
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Now we assume that by making n as large as we please, the
perimeter of each polygon can be made to differ as little as we
pleass from the circumference of sthe corresponding circle; thus X
and « can each be made as small as we please, and therefore
rX — Rz can be made as small as we please. Hence »C' — Re must
be zero,; for if it had any value a then »X — Rz could not be made
less than a, which is inconsistent with the fact that »X — Bx can
be wade as small as we please. Thus

rC — Re =0,
¢
-

therefore g =

15. Thus the ratio of the circumference of a circle to its radius
i8 constant whatever be the magnitude of the circle; therefore of
course the ratio of the circumference to the diameter is also constant.
The numerical value of the ratio of the circumference of a circle to
its diameter cannot be stated exactly,; but, as we shall shew here-
after, this ratio may be calculated to any degree of approximation

that is required ; the value is approximately equal to ?72 , and still
more nearly equal to % ; the value correct to eight places of
decimals is 3:14159265...The symbol = is invariably used to denote
the ratio of the circumference of a circle to its diameter ; hence, if
r denote the radius of a circle, its circumference is 27r: and
w=314159....

16. The angle subtended at the centre of a circle by an arc

which is equal in length to the radius s an invariable angle.

- [}
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With oentre O and any radius OA describe a circle; let AB
be an are of this circle equal in length to the radius. Then, since
angles at the centre of a circle are proportional to the arcs on
which they stand,

angle 40B arc AB r _1 ;
four right angles ~ circumference of the circle  2mxr 2’
therefore angle AOB= t‘guig_g;;a_ng_lgs .

Thus the angle A0B is a certain fraction of four right angles
which is constant, whatever may be the radius of the circle.

17. Since the angle subtended at the centre of & circle by an
arc which is equal to the radius is an tnvariable angle, it may be
taken as the unit of angular measurement, and then any angle will

be estimated by the ratio which it bears to this unit.
Let AOC be any angle; with O as centre and uny radius OA

B

o

describe a circle; let 4B be an arc of this circle equal in length
to the radius; let » denote the radius, and ! the length of the arc
AC.

Then, since angles at the centr» of a circle are proportional to
the arcs on which they stand,

therefore angle 400 = ; x angle 40B;
this result is true whatever the unit of angular measurement may
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be, the same unit of course being used for the two angles. If we
take the angle AOB itself for the unit, then this angle must be
denoted by unity ; .

thus angle A00=f_ .

18. We have thus proved that any angle may be estimated by
8 fraction which has for its numerator the arc subtended by that
angle at the centre of any circle, and for its denominator the radius
of that circle. And in this mode of estimating angles the unit,
that is the angle denoted by 1, is the angle in which the arc
subtended is equal to the radius. 'We have shewn that this angle

is four right a.ngles; hence the number of degrees contained in this

P
angle is %%‘—) , that is 1-18‘-_(—) . If we use the approximate value of =

given in Art. 15, we shall find that 120 =57-29577951...; this
therefore is the number of degrees contained in the angle which is
subtended at the centre of a circle by an arc equal to the radius.

19. Thus there are two methods of forming an idea of the
magnitude of an angle which is estimated by the fraction arc
divided by radius. Suppose, for example, we speak of the angle §;
we may refer to the unit of angular measurement, which is an
angle containing about 57 degrees, and imagine two-thirds of this
unit to be taken; or without thinking about the unit at all, we
may suppose an angle is taken such that the arc subtending it is
two-thirds of the corresponding radius.

20. The fraction arc dividsd by radius is called the circular
measurs of an angle. Since, a8 we have already stated, this method
of measuring angles is very much used in theoretical investigations,
it is sometimes called the theoretical method.

21. If r denote the radius of a circle, the circumference is 2xr;
henoe the circular measure of four right angles is?;z , that i3 2».
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The circular measure of two right angles is ; the ciroular measure
of one right angle is g ; and the ci.rcul&r measure of n right angles

is ';, where n may be either integral or fractional.

22. We will now shew how to conneot the circular measure
of any angle with the measure of the same angle in degrees.

Let # denote the number of degrees in any given angle, 6 the
circular measure of the same angle. Since there are 180 degrees

in two right angles, -1—;6 expresses the ratio of the given angle to

two right angles, And &ince = is the circular measure of two right

angles, 8 also expresses the ratio of the given angle to two right
™

angles. Hence

z 0.

180 &’
thus w=—1—§(—)0,
T

T

and 0 m

23. Forexample, the circular measure of an angle of one degroe

Omr
I8 155 80 ; the circular measure of an angle of ten degrees i xs 180° the

circular measure of an angle of half a degree is | 80 ;, the cir-
cular measure of an angle of one minute is 180 0’ the circular
meg/ure of an angle of one second is W:TT?:T\ ; and &0 on.

/ Again ; if the circular measura of an angle is §, the number of

degrees contained in the angle is i lﬂ) , thatis - 1 of57 29577951...

if the circular measure of an a.ngle is 10, the number of degrees
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contained in the angle is 10. 52, that is 10 x 57-296779B1...; und

80 on. e

The student is recommended to pay particular attention to
these points; especially he should accustom himself to express
readily in circular measure an angle which is given in,degrees.

24. Similarly we may connect the circular measure of any
angle with the measure of the same angle in grades.

Let y denote the number of grades in any given angle, 8 the
circular measure of the same angle; then the ratio of the given

angle to two right angles is expressed by 2—’60 and also by 3 .

Hence
y _9.
200 =’
thus y=-2-—_9?;
Y
and 9=200"

The number of grades in the angle which is the unit of circular
measure is 2_:9, that is, 63-661977...

26. In Art. 17 we proved that
angle 40C =£ x angle 40B;

where nothing is assumed respecting the unit of angular measure-
ment, except that the same unit is to be employed for both angles.
Since 40B is an invariable ang‘le, we see that the magnitude of
any angle A0C varies as the subtending arc directly, and as the
radius tnversely. Thus we may say that

k x arc

radius ’

when & is some quantity which does not change with 40C, and the
value of which depends upon the unit of angular measurement

angle 400 =
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which we please to employ, Suppose, for example, that we wish
to take the half of a right angle as our unit; then we require that
AOC should be equal to 1 when the arc is the eighth part of the
circumference ; thus

27r

kx — 4

l = e ; therefore k== .

r T

Thus the formula
arc

angle A00=$ X

gives the correct estimate of the magnitude of an angle when the
unit is half a right angle,

EXAMPLES,

1. If D, @, C be respectively the number of degrees, grades,
and units of circular measure in an angle, shew that

2. Find the number of degrees in the angle subtended at the
centre of a circle whose radius is 10 feet by an arc 9 inches long,

3. Find the circular measure of 5° 37’ 30",

4. Find the circular measure of 1* 1%,

5. There are three angles; the circular measure of the first

exceeds that of the second by % , the sum of the second and the

third is 30 grades, and the sum of the first and the second is
36 degrees. Determine the three angles.

6. Express five-sixteenths of a right angle in circular measure,
in degrees and decimals of a degree, and in grades and decimals
of a grade.

7. The angles of a triangle are in arithmetical progression,
and the greatest is double the least : express the angles in degrees,
in grades, and in circular measure.
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8. The angles of a triangle are in arithmetical progression,
and the number of degrees in the least is to the circular measure
of the greatest as 60 is to = : find the angles.

9. Find the circular measure of an angle of an equiangular
polygon of x sides,

10. Express in each system of angular measurement the
angle between the long hand and the short hand of a watch at a
quarter past twelve.

IT11. TRIGONOMETRICAL RATIOS.

26. Let BAC be any angle ; take any point in either of the
containing straight lines, and from it draw a perpendicular to the

/('-’
£
/1

A M b
sther straight line; let P be tne point in the straight line 4C

and PM perpendicular to 4B. We shall use the letter 4 to
lenote the angle BAC. Then

ru . perpendioular . ) .
'A*j,,th&tlﬂ——W,mcalledthemofthemgleA,

dM

ZT,—,t.lut. is —--é——mi——-,iswlled the cosine of the angle 4 ;

hypo
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M . perpendicular .
;—M’ that By s ea.l]e:i the tangent of the angle 4 ;
AM . base s

I’ that is vornondioular ? 18 called the cotangent of the angle 4 ;
AP . hypotenuse
g that is base
AP . hypotenuse
P B e edierdar
If the cosine of 4 be subtracted from unity, the remainder is called
the versed sine of A. If the sine of A be subtracted from unity,
the remainder is called the coversed sine of A ; the latter term

however is rarely used in practice.

, i8 called the secant of the angle 4 ;

, i8 called the cosecant of the angle 4.

27. The words sine, cosine, tangent, cotangent, secant, cosecant,
versed sine, and coversed sine are usually abbreviated in writing
and printing; thus the above definitions may be expressed as
follows :
ru
ar’

AM
4P’
Py
tan 4 = 73
Ay
ry’
AP
An’

AP
eosecA=m,

sind =

COBA=

cot 4 =

secd =

vers A=1—o008 4, .
covers A =1 —sin 4,
28. The sine, cosine, tangens, cotangent, secant, cosecant, versed

sine, and coversed sine are called trigonometrical ratios or trigo-
nomelrical functions; sometimes they have been called goniometrical
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Junctions. A large part of T'rigonometry consists in the investigu-
tion of the properties and the relations of these jfunctions of an
angle. 'These functions are, it will be observed, not lengths, but
ratios of one length to another; that is, they are arithmetical
whole numbers or fractions.

29. The defect of any angle from a right angle is called the
complement of that angle ; thus if 4 denote the number of degrees
ocontained in any angle, 90 - 4 is the number of degrees contained
in the complement of that angle. This affords another method of
defining some of the Trigonometrical ratios; after defining, as in
Art. 26, the sine, tangent, and secant of an angle we may say

the cosine of an angle is the sine of the complement of that
angle ;

the cotangent of an angle is the tangent of the complement of
that angle ;

the cosecant of an angle is the secant of the complement of
that angle.

For in the triangle PAM the angle APM is the complement of
the angle 4 ; and

ﬂmAPM—'—’;y " ﬁ_ A,
_perpmdicular_A__il_ .

tan APM =*- tose = MP- t 4 ;
_hypotmusa__AP_

soc APM = bass _W-cosecA

These results may also be empressed thus:

the gine of an angle is the cosine of the complement of that
angle ; ‘o .

the tangent of an angle is the cotangent of the complement
of that angle ;

the secant of an angle is the cosecant of the complement of
that angle.
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80. The T'rigonometrical Ratios remain unchanged so long as
the angle remains unchanged.

Let BAC be any angle; in AC %take any point P and draw PX
perpendicular to 4B ; also take any other point /' and draw P’
perpendioular to 4B, Then by similar triangles 2 = 200, that
is, the sine of the angle 4 is the same whether it be formed from

/6'

M
2

-

4 M M P £

the triangle 4APM or from the triangle 4/”M’. The same result
holds for the other Trigonometrical Ratios.

Or we may suppose a point P” taken in 4B, and " M” drawn
perpendicular to AC; then the triangles APM and AP”"M" are

PM _P'M”

similar, and Zp = 7P -

Wo now proceed to establish certain relations which hold
among the Trigonometrical Ratios.

3l. We have immediately from the definitions
tand xcot A =1; thereforeta.nA=-—1—, cot 4 = 1

cot 4 tand’
o 1 1
sec 4 x cos 4 =1 ; therefore secA:m, cosA=s—§-1,
. 1, ., 1
cosec 4 x sin 4 =1 ; therefore coqecA:s—,ﬂ, smA..c—om.

PM PM AM sind
Also wnd =T = 2P+ AP "o d’
AM AM PM ocosd

tA_ﬁf__A_ﬁ-g-AP and’
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82,  To prove that (sin A" +(cos 4)* =1,

In the right-angled triangle 4P} we have
P '+ AM*= AP,
PM*+ AM*_

therefore T 4p =b
PMN\* (AM\*

therefore (—ZT,) + (ﬁ‘) =1 H

that is (sin 4)° + (cos 4)*=1.

33. With respect to the preceding proof it should be re-
marked that it is shewn in Kuclid, 1. 47, that the square described
on the hypotenuse of a right-angled triangle is equal to the sum
of the squares described on the sides; and it is known that the
geometrical square described on any straight line is measured by the
urithmetical square of the number which measures the length of
the straight line. From combining these two results we obtain
the arithmetical equality

PM°+ AM* = AP*

It must be observed that (sin 4)° is often written for shortness
thus, sin® 4 ; similarly (sin 4)° is written thus, sin® 4, The same
mode of abbreviation is used for the powers of the other Tri-
gonometrical- Ratios, and so the result obtained in Art. 32 is
usually written thus,

sin’ 4 +cos' 4 =1,
34. To prove that
(vec 4)" =1 + (tan 4)", and (cosec 4)* =1 + (cot 4)".
In the right-angled triangle 2P} we have

AP =AM+ PM*;

e 4P PM*

therefore 1= 1 #Zflﬁ”
AP\* PM\*
therefore Z)i) =1+ Z—M) s

that is (sec 4V = 1 + (tan 4)"
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Again, gince AP =PM'+ AM,
AP 14+ AMN\?
() =1+ (73t)

that is (cosec 4)*=1 + (cot 4)".

The results here obtained are usually written thus,
sec' A =1 +tan® 4, cosec' 4 =1 + cot* 4,

35. By means of the relations established in Arts. 31...34 we
are able to express all the other Trigonometrical Ratios in terms
of any one of them; thus, for example, we will express ull the
rest in terms of the sine ;

oos A = /(1 —sin" 4) (Art. 32);

sin 4 sin 4

tan 4 = oA = JT=sini 4)

(Arts. 31, 33);

oot 4 =204 MA=EA) (14, 31, 39,

1 1
s0d = oo = =) (Arte 31, 82);

1
cosec 4 =i (Art. 31);

versd =1-cosd =1-,/(1-sin"4) (Art. 32).
Again, we will express all the rest in terms of the tangen ;

sinA—-—»l—— _ 1 _ 1 _ tand
“cosecd  J(1+cot’d) <1 . 1 ) ~ J(1+tan* 4)
tan*4
(Arts. 31, 34) ;
1 1
cosd =A™ J(1 + tan® 4) (frts. 31, 34%;

cobd= 1 (Art. 31); seod= /(1 +ten’ 4) (Art 34);

_ 1 J(+tan'q) 1
eosecA_sinA_——m-—— versd=1—-cos d= l_—$/(1+tan'A .

i
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‘We shall now proceed to determine the values of the Trigono-
metrical Ratios for some specificsangles.

36. To determine the values of the T'rigonometrical Ratios for
an angle of 40°.

Let BAC be an angle of 45°; take any point Pin AC and

7

/

A M B
draw I’M perpendicular to 4B. Since PAM is half a right
angle 4 PM is also half a right angle ; thercfore PM = A M.

Now PM* + AM*= AP
thus 2PM*=AP;
therefore (% = %,
therefore p_.ljf= :;:§
Thus gin 45° = §¥=:;2; &)845":%1}{::;—2;
tan 456° —:};%—l cot 45° = ;ﬁ:l;
oo 48°= 4% = /2 cosec 45°= B0 = 2;

vera45°=1-ooe45°=l——}7,.



TRIGONOMETRICAL RATIOS 21

37. To determine the values of the Trigonomeirical Ratios for
an angls of 60° and for an angle of 30°.
Let APB be an equilateral friangle, so that the angle PAB

P

\

A M B

containg 60 degrees; draw PM perpendicular to 4B, then
AM=MB; therefore AM=3AB=3AD.

AM 1
0 =
Thus cos 60°= P =3

sin 60°=,,/(l—cos’60")=\/ 1-5 ,\/(4

sin 60° /3 . 1
a0 T N3 b6 E.T—‘J

0 . o __ 1 = 2-
sec 60 ————600—2, cosec 60 —-sineoo—:/-g,

3,
7’

tan 60° =

vers 60"=l—00560°=%.

And sin 30° = cos 60° =%; cos.30°=sin60°=#;

tan 30°=cot60"=7§; cot 30° = tan 60°= ,/3 ;
. o *
sec 30°= cosec60’-—, cosec 30° =sec 60°=2;

NE
versso'-l-cos30'=1_~£’



z EXAMPLES, CHAPTER I

88. The student should render himself perfectly familiar with
the values of the Trigonometrical Ratios for an angle of 30°, 45°,
or 60°; as they will be perpetually used in the subject. Thus, for
exa.mple, if an angle of 60° ocours it may be necessary to have the
cosine of this angle, which has been found to be }. And con-
versely, if the cosine of an angle is known to be %, and the angle
is less than a right angle, the student will immediately infer that
the angle contains 60°. Should there be any difficulty in this in-
ference it will be removed by the remarks made hereafter, in which
it will appear why we introduce the restriction that the angle ts
less than a right angle. See Art. 44.

It may be observed that if an angle be less than 45° the
cosine of the angle is greater than the sine, and if the angle be
greater than 45° and less than 90° the cosine is less than the sine;
these results follow immediately from the triangle PAM (see figure
in Art. 26) since the greater side in a triangle is opposite to the
greater angle.

EXAMPLES.

1. The sine of a certain angle isg; find the other Trigono-
metrical Ratios of the angle.

2. The tangent of a certain angle 13 ; find the other Tri-
gonometrical Ratios of the angle.

8. Theoosmeofaoeﬁ.ama.nglexs\/s, find the other Tri-
gonometrical Ratios of the angle.
4. Shew that sec’d cosec’d = tan'6 + oot*6 + 2.

5. Shew that sin'6 tan 6+ cos*6 cot 0 + 2 sin 6 cos 6
=tan @ + oot 6.

6. Shew that 2 (sin® 6 + cos® 6) — 3 (sin* 6 + cos' 6) + 1=0.
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Obtain solutions of the following equations :

7. 2s8in*0 =3 cosb. 8. sinf+cosf=1.
9, oot =2 0086, 10. sin'0-—2oos€+i=0.
11 3sec'd+8=10sec'd. 12 tanf+cotf=2,

13, Given sin(4~8)=y, andcos (4 + B)= 1, find 4 and B,

14. Given tan (4 + B)=,/3, and tan (4 — B)=1, find 4 and B.

IV. APPLICATION OF ALGEBRAICAL SIGNS.

39. In the preceding Chapter we defined the Trigonometrical
Ratios, and established certain relations between them; we con-
tined ourselves to angles not exceeding a right angle. We ghall
now extend the definitions so as to render them applicable to an-
gles of any magnitude ; the relations which were established will
then also be found to be true for angles of any magnitude.

40. Let O be a tixed point in a fixed straight line, and sup-
pose we have to determine the positions of other points in this

M’ 0 M

straight line with respect to O. The position of any point in the
straight line will be known if we know the distance of the point
from O, and also know on which side of O the point lies. Now it
is found convenient to adopt the following convention : distances
measured in one direction from O glong the fixed straight line will
be denoted by positive numbers, and distances measured in the
opposite direction from O will be denoted by neyative numbers,
Thus, for example, suppose that digtances mpasured from O towards
the right hand are denoted by positive numbers, and let # be a
point the distance of which from O is denoted by 2 or +2; then if
M’ be as far from O as M is, and on the other side of O, the dis-
tance of M’ from O will be denoted by - 2.
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41. We have called this method of determining position b;
means of numbers affected with algebraical signs a convention; w
mean by this word to indicates that it is not absolutely necessar
to adopt this method, but merely convenient. The symbols + and -
are defined in the beginning of elementary works on Algebra as
indicative of the operations of addition and subtraction respectively
As the student advances in Algebra he finds that the symbols-
and — are also used as indicative of the gqualities of quantities ; anc
that no contradiction or confusion nltimately arises from this double
mode of considering the symbols, but that Algebra gains thereb,
considerably in power. (See Algebra, Chaps. V. and XIV.)

It may be remarked, that we are at liberty to take either of the
two directions from O ‘as that which will be indicated by positiv
numbers ; but when the selection has been made, we must adhere
to it throughout the investigations on which we way be engaged.

42. Let OB, OC be two straight lines which meet at righ

C

b7 0 B

« (/44 .
angles ; produce BO to any point B’ and CO to any point ¢". Let
P be any point in the plane containing the two straight lines. The
position of P will be known if we know the distance of P from
. each of the straight lines BB’ and C'(”, and also know on which
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#ids of each of these straight lines it is situated. Draw PM and
PN perpendioular to the straight lines BB’ and CC’ respectively.
We shall adopt the following conventions : the distance ON or PM
will be denoted by a positive number when P is above the straight
line BB, and by a negative number when P is bslow the straight
line BB'; the distance OM or PN will be denoted by a positive
number when P is to the right of CC’, and by a negadive number
when P is to the left of CC'.

43. A similar convention may conveniently be adopted with
respect to angular magnitude.

Let a straight line 4P start from the position 4B, and by re-
volving in one direction round 4 trace out the angle P4B, and
let this angle be denoted by a positive number; then if the straight
line A P start from the position 4B and by revolving round 4 in
the opposite direction trace out the angle P48, this angle may be
denoted by a negative number. If, for example, each of the angles
BAP and BAP is one-third of a right angle, and we denote the

P

former by the positive fraction %, the latter may be denoted by

the negative fraction .-
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44. We shall now give our extended definitions of the Trigo-
nometrical Ratios.

C) / (24

A 4] A B

Let AB, AC be twostraight lines at right angles; let a straight
line revolve round the point 4 from 4B towards AC and come
into any position 4P; draw PM perpendicular to 4B or 4B pro-
duoed. Then consider 4P always as positive; consider A M as
positive or negative according as M is on the same side of AC as
B is, or on the opposite side; and consider PM as positive or
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negative according as P is on the same side of 4B as C is, or on
the opposite side. Let the angle PAB be denoted by 4, then

. PM PM AP

snd="pr A=y, sed=Zy,
AM AM AP

OOSA=2—I;, th:PM,wSOOA—'I,—ll,

‘versd =1—cos 4, coversd =1 —sin 4,

Thus the Trigonometrical Ratios are always whole numbers or
fractions positive or negative.

We have therefore Trigonometrical Ratios for any positive
angle whatever may be its magnitude ; and we have also Trigono
metrical Ratios for any negative angle by adopting the convention
that the Trigonometrical Ratios for any negutive angle shull be the
same a8 they would be for what we may call tho corresponding posi-
tive angle. Thus, for example, in the last figure we may consider

BAP a8 u negative angle, the magnitude of which is — 7; then the

Trigonometrical Ratios will be the same as for the angle formed
by revolving the moveable straight line 4P in the positive direc-
tion until it reaches the position which it has in the figure ; so

that the Trigonometrical Ratios for the angle —; will be the

same as for the angle 27 — g .

45, 1t follows immediately from the definitions, that if two
angles differ by four right angles or by any multiple of four right
angles the Trigonometrical Ratios of the two angles are the same.

46. The following relutious which have been already esta-
blished for angles not exceeding a Might angle, will now be seen in
like manner to hold universally whatever be the magnitude of an
angle positive or negative.

tand xcot4=1, secd xcos¥d =1, S A x sin A = 1,

4 cos d
ta.nA—:-'m—A, OOtA-;‘m,

sin’ 4 +o008°A=1, sec* 4=1 +tan' 4, oosec’ 4 =1+ cot* 4.
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It must be observed that from such an equation as
sin"4d +cos'4=1,

we can infer only that ‘sin 4 = ,/(1 - cos’'4), or that
oos A= ,/(1-gin'4); we shall have to determine in any parti-
oular case which sign must be ascribed to the radical.

47. The supplement of an angle is its defect from two right
angles. Thus if 4 denote the number of degrees in any angle,
180 — 4 is the number of degrees in its supplement; if 6 be the
circular measure of an angle, m— 0 is the circular measure of its
supplement. The verbal definition of the word supplement might
appear to limit the word to the case in which the original angle
is a positive angle less than two right angles; but the word is
used in a wider sense, so that if 4 be any number positive or
negative, the angle denoted in degrees by 180 — 4 is called the
supplement of that denoted in degrees by 4. Similarly, whatever
0 may be, the angle whose circular measure is = —0, is called the
supplement of that whose circular measure is 6.

48. To compare the Trigonometrical Ratios of any angle and
of its supplement.

Let PAB be any angle,produce B4 to B’ and make P’AB'=PAB;

B M A M B

take AP’ = AP, and druw PM and P’M" perpendicular to BE.

The angle PAB=180°~ P AB =180~ PAB; thus P’AB is
the supplement of PAB. The triangles PAM and P’ AM’ are geo-
metrically equal in all respects ; now
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PM . PPy
'Z—I—,—, sln(180°—A)=-rP,—;

gind =
and since PM and M’ are equal in magnitude and of the same
sign, we have

sin 4 =sin (180° - 4).

AN

AM
Also cos d = =P

ﬁ, OOG(]SO"—A)
now AM and AM’ are equal in magnitude, but since they are
measured in opposite directions from 4, they are of opposite sign ;
thus

008 4 =—cos (180°~ 4).
The other Trigonometrical Ratios of the angle 4 may be com-
pared with those of the supplement either by direct use of the

figure, or by employing the two results already established ; thus,
adopting the latter method,

sin(180°— 4)  sin 4

tan (180° - 4) = S S ——tan 4,

cot (180°—A)=:i°:8§g::j; = ot d,
. 1 1

so0 (180" = 4) = oy = ooy == w0,

cosec(180° — 4) = —r ! - come4,

sin (180°- 4)  sin 4
vers (180° —4) =1 —cos (180°— 4)=1+cos 4.

Thus the sine and the cosecandt of a:n; angle are respectively
the same as the sine and cosecant of the supplement of the angle;
all the other Trigonometrical Ratios of any angle, except the
versed gine, are mumerically equal to the corresponding Ratios
of the supplement of the a.ngl.e, but are of opposite sign.
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49. 7o prove that sin (— 4) = — 8in 4 and cos (— 4) =cos 4.

8 A ALB
\K
Pl
~
_.,ﬁM > -

5

let PAB be any angle; draw PJM perpendicular to BAB,
and produce it to J” so that M]” may be equal in length to MP,
and join 4P, Then the angles "4 B and PA B which are measured
in opposite directions from AB are numerically equal, and if
PAB be denoted by 4, then P’ AB will be denoted by —4. And
. PM . Vid 4
sin 4 =3P’ sm(—A):F ;
and P’M is numerically equal to P, but of opposite sign; thus
gin (- 4) = —sin 4.
A AM
Also cOB(—A):F=F=OOBA.
gin (—4) -sind
cos(—4) cosd
oos(=4) oosd _
gin(— 4) —smd"
1 1

Moreover,  tan(—4) = =—tand;

oot (- 4) = —ootd;
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1 1
)~ end
vers (—4)=1-cos (- 4} =1—cos 4 =vers 4.

All these results may if we please be obtained by direct use of
the figure,
50. To prove that
sin (180° + 4) =—sin 4 and cos (180° + 4) =~ cos 4.
Let PAB be any angle, produce P4 to P’ so that AP may be
equal in length to 4P, Draw PM and P’M’ perpendicular to

}lo/
7 A//L B

P
BAR. Thenit [’4/; be denoted by 4, the angle /”4B mensured
in the same direction from 4B will be denoted by 180° + 4.
The triangles P4M and /”AM’ are geometrically equal in all
respects ;
!
and shA:%, sin(180”+A)=I—;—A{;
4
cos 4 =i%[, cos (180°+ A)=§—}?{7.

Now PM and P'M’ are numerically equal but of opposite sign ;
also AM and AM’ are numerically equal but of opposite sign ; thus
sin (180°+ A) = —gin 4, cbs (180° % A)=—ocos 4;
sin (180°+4) -sind
cos (180°+4) ~ —cosd

cos (180° + 4)

- o0s 4
oot (180 +.4) = G e ) = oA oot

cosec (— 4) = = ~cosec 4 ;

moreover tan(180°+ 4)= =tan 4,
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similarly sec (180°+4)=—sec 4, cosec (180°+ 4)=—cosec 4.
vers (180° + 4) =1 - cos (180° + 4) =1 +cos 4.

All these results may if we please be obtained by direct use of
the figure,

It is obviously only another mode of expressing th’e two funda-
mental results if we write

gin 4 = —sin (4 — 180°), cos 4 =—cos (4 —180°).

51. The results of Arts. 48, 49, and 50, are true whatever
be -the magnitude of the angle 4, and whether 4 be positive or
negative. This the student should carefully notice. First con-
sider Art. 49; whatever the magnitude of A may be, positive or
negative, we shall always have PMP’ forming a straight line, and
the points P and 7 equally distant from M and on opposite sides
of it; and the angles PAB and P’AB will be numerically equal
but of opposite sign. Thus we become certain of the universal
truth of Art. 49. Next consider Art. 50; the essential points of
the demonstration are that M and M’ should be equally distant
from 4 and on opposite sides of it, and that P and P’ should be
equally distant from the straight line BAB and on opposite sides
of it; and the figure assures us that these essential points are
always secured. If PAB be any positive angle, then by adding
to it an angle of 180° we obtain the angle formed by 4B and 4P
If P’AB be any negative angle, then by adding to it an angle of
180° we obtain the angle formed by AP and 4B. Thus we be-
come certain of the universal truth of Art. 50. The universal
truth of Art. 48 may be made tb depend on that of Art. 49 and
that of Art. 50. For we have

gin 4 = —sin (4 — 180°), universally, by Art. 50,

gin (4 — 180%) = — &in (180° — 4), universally, by Art, 49,
therefore sin A = gin (180° - 4) universally.

Agsin  cos A =— o008 (4 - 180°), universally, by Art. 50,
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008 (4 - 180°) = cos (180° — 4), universally, by Art. 49,
therefore cos 4 = —cos (180° - 4), universally.

53. To prove that sin (90°+ A) =cos 4, and cos (90°+ A)=—sin A,

i M’ A M B

Let PA D be uny angle; let AP be at right angles to 4/ and
so situated that a moveable straight line can passfrom the position
AP to the position AP’ by revolving round 4 in the positive
direction through a right angle. Then if PAB be denoted by 4
we can denote PPAB by 90°+ 4. Take AP'= AP and draw PM
and P'M’' perpendicular to BAB. Then the angle PAM is
geometrically equal to the angle AP M’, and the triangles PAM
and P’AM’ are geometrically equal in all respects. And

. o _ry _AM
sin (90 +A)_AP’ , cOSA_Z—P_’

now P’M’ is numerically equal to A} and both are of the same
sign (Axt. 42); thus

sin (90° + 4) = cos 4.

AM" PM

ar 4=gp;

now AM' and PM are numerjcally equalsbut of opposite sign
(Art. 42); thus

[ ]
Again cos (90°+ 4) =

cos (90° + 4) = —sin 4.

53. In order to prove that the proposition in the preceding
Article is universally true, we must examine the different cases
TT 3
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that cun occur ; the figure in the preceding Article supposes that
4 is a positive angle terminated in the first quadrant. The an-
nexed three figures shew AP ih the second, third, and fourth
quadrants respectively.

In every case it will be seen that the triangles PAM and
P'AM’ are geometrically equal in all respects ; also P’ and AY
are of the same sign, and AM '’ and PM are of opposite sign, Thus
the proposition may be seen to be true if 4 be any positive angle,

P
\
M —
B M / 1 B
P
M M ;)
P ¢
<3/
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The four figures of this and the preceding Article will also shew
the truth of the proposition for any negative angle ; the last figure
for example applies when 4 is between 0 and — 90°, the third figure
when 4 is between — 90° and — 180° the second figure when 4 is
between — 180° and — 270°, and the first figure when 4 is between
- 270° and - 360"

%
(N

54. If A be the number of degrees in any angle, then the
angle which is expressed in degrees by 90— 4 is called the com-
plement of the angle 4 ; so ’E’_e is the circular measure of the
complement of the angle whose circular measure is 6. The term
complement of an angle has already been introduced (Art. 29), but
the angle contemplated then was a positive angle less than a right
angle. This restriction however will be no longer retained. We
may now shew universally that the sine of an angle is equal to the
cosine of its complement, and thecosine of an angle is equal to the
sine of its complement. These propositions may be proved by
examining different cases as in Arts. 52 and 53 ; or they may be
deduced from results already established. Thus, for example, we
have proved that

sin (90° + 4) = cos 4, universally (Arts. 52, 53),
also sin (90° + 4) = sin (180°— 90° — 4), universally (Art. 51),
therefore sin (90° - A) = cos 4, universally.
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Then if we suppose 90°—4 =4’ we have A=90°~4'; thus
sin 4’ = cos (90° — 4'), universally.

55. It will now be found that we are able to express any
Trigonometrical Ratio of any angle whatever in terms of the
same Trigonometrical Ratio of some positive angle not, exceeding
& right angle. For in the first place by the formule sin (- 4)
=-pind and cos(—4)=cos 4, and those which follow from
these (see Art. 49), we can make the Trigonometrical Ratios of
any negative angle depend upon those of the corresponding posi-
tive angle ; and so we need only consider positive angles if we
please. By Art. 45 any multiple of four right angles may be
rejected ; thus, so far as its Trigonometrical Ratios are concerned,
we may replace any angle whatever by an angle less than four
right angles. Then by the formulse sin (180°+ 4)=—sin 4, and
008 (180°+ 4)=—~cos 4, and those which follow from these (see
Art. 50), we may make the Trigonometrical Ratios of any angle
depend upon those of an angle not exceeding two right angles.
Lastly, by the formule sin (180°~ 4)=sin 4 and cos (180° - 4)
=—cos8 4, and those which follow from these (see Art. 48), we may
make the Trigonometrical Ratios of any angle depend upon those
of an angle not exceeding a right angle,

For example,
sin 600° = sin (360° + 240°) = sin 240° = sin (180° + 60°) = — sin 60°.

Tan (- 1000°) =—tan 1000° = — tan (720° + 280°) = — tan 280°
=—tan (180° + 100°) = — tan 100° = - tan (180° — 80°) = tan 80".

66. To trace the changes in the sine of an angle as the
angle varies. o

Let BAB' and CAC' be two straight lines at right angles, and
suppose a straight line AP of constant length to revolve round
one end A from the fixed positidn 4B so that P traces out the
circle BCB'C". From any position of P draw PM perpendicular
to BAB'; then
PM

SmPAB=71‘}, .
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(7/

When A P coincides with 4B the perpendicular PM vanishes ;
thus when the angle is zero so also is its sine. While 4P moves
through the first quadrant PM is positive, and continually in-
creages until 4P coincides with 4C, and then P is equal to 4P;
thus as the angle increases from 0 to 90° the sine increases from
0 to 1. While 4P moves through the second quadrant PM is
positive, and continually decreases until AP coincides with 4B’
and then PM vanishes; thus as the angle increases from 90° to
180° the sine diminishes from § to 0. While AP moves through
the third quadrant PM is negative, and increases numerically
antil AP coincides with AC’; thus as the angle increases from
180° to 270° the sine is negatiwe and incredses numerically from
0 to -1, While 4P moves through the fourth quadrant PM is
negative, and decreases numerically until AP coincides with 4B :
thus as the angle increases from 270° to 360° the sine is negatine
and decreases numerically from — 1 to 0.
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87. To trace the changes in the cosine of an angle as the angle
varies.
‘With the figure of the preoedi;xg Avrticle we have

AM
1P

At first AP coincides with 4B and then AM = AP ; thus when
the angle is zero the cosine is 1. While 4P moves through the
first quadrant AM is positive and continually decreases until 4
ooincides with AC' and then AM vanishes ; thus as the angle in-
creases from 0 to 90° the cosine diminishes from 1t0 0. While 4
moves through the second quadrant 4. is negative and increases
numerically until AP coincides with 4.B’; thus as the angle increases
from 90° to 180° the cosine is negative and increases numerically
from 0 to — 1. While 4P moves through the third quadrant 4 4
is negative and decreases numerically until AP coincides with AC”;
thus as the angle increases from 180° to 270° the cosine is negative
and decreases numerically from — 1 to 0. 'While 4. moves through
the fourth quadrant 4. M is positive and continually increases until
4 P coincides with 4 B; thus as the angle increases from 270° to 360°
the cosine is positive and increases from 0 to 1.

cos PAB =

68. To trace the chunges in the tangent of an angle as the
angle varies.

With the figure of Art. 56 we have

TAM?

At first AP coincides with 4B and then PM vanishes and
thus when the angle is zero so also is its tangent.

While 4/ moves through the first quadrant PM and AM are
positive ; PM contindally increaseg and AM continually decreases
until 4P coincides with AC ; thus as the angle increases from 0 to
90° the tangent increases from 0 without limit, so that by taking
an angle sufficiently near to 90° we can make the tangent as great
a8 we please ; this is usually expressed for the sake of abbreviation
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thus, the tangent of 90° is infinite. 'While 4P moves through the
second quadrant PM is positive and AM is negative; PM con-
tinually decreases and 4 increases numerically until 4 P coincides
with A B’; thus as the angle increases from 90 to 180° the tangent
is negative and decreases numerically from an indefinitely large
value to zero. While 4P moves through the third quadrant PM
and AM are negative; PM increases numerically and AM de-
creases numerically until 4 P coincides with 4C’; thus as the angle
increases from 180° to 270° the tangent is positive and increases
from 0 without limit, so that by taking an angle sufficiently near
to 270° we can make the tangent as great as we please; this us
before is abbreviated into the tangent of 270° 48 infinite. 'While
AP moves through the fourth quadrant PM is negative and 4 M
is positive; PM continually decreases numerically und 44 in-
creases until 4/£ coincides with 4B ; thus a8 the angle increases
from 270° to 360° the tungent is negative und decreases numerically
from an indefinitely large value to zero.

Similarly the changes in the cotangent of an angle may be traced.

59. To trace the changes in the secant of an angle as the angle
varies.

The changes in the secant of un angle way be traced by weans of
the figure in the same way as those of the sine, cosine, und tangent;
GWII’IB , and infer the
changes in the secant from the known changes in the cosine; we
will adopt the latter method. As the angle increases from 0 to 90°
the cosine diminishes from 1 to 0; thus the secant increases from
1 without limit, so we may sayethe secant of 90° 8 tnfinite. As
the angle increases from 90° to 180° the cosine is negative und in-
creases numerically from 0 to —1; thus the secant is neyative and
decreases numerically from an indefinitely large value to — 1. As
the angle increases from 180° to 270° the cosine is negative and
decreases numerically from —1 to 0; thus the secant is negative
and increases numerically from —1 to infinity. As the angle
increases from 270° to 360° the cosine is positive and continually

or we may use the formula sec PAB =
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inoreases from 0 to 1; thus the secant is positive and diminishes
from infinity to 1.
Similarly the changes in the odsecant of an angle may be traced.
60. Bince vers 4 = 1—cos 4, as the angle increases from 0 to

180° the versed sine increases from 0 to 2, and as the angle in-
creases from 180° to 360° the versed sine diminishes froln 2 to O,

61. Thus we see that the sine and the cosine may have any
value between — 1 and +1; the tangent and the cotangent may
have any value between — « and + o ; the secant and the cosecant
may have any value between — o and — 1 and between + 1 and + 0,
And it will be found on examination that no Trigonometrical
Ratio changes its sign except when it passes through the value
zero or the value infinity. The versed sine is always positive and
may have any value between 0 and 2.

62. The following table of the values of the Trigonometrical
Ratios of certain angles is formed from the results of the preceding

Chapter and the present Chapter.

0° | 30°| 45°| 60°| 90°| 120° | 135° | 150° ({180°
} 11 |3 J3 1 1
sine 0 3 :/T? 5 1 5 ~—/-2' 3 0
o Bl [ s
cosine 1155 :/'5 3 3 72|78 |- 1
1 1
tangent 0 NE] 1 |3 | [ /3] -1 |- 73 0
i 1 1
cotangent | o |43 | 1 73 0 B 1 | -/3 |
: 2 - .) 2 2. 1
secant 1 J3 N2 w | =2 | -J2 | - N
: 2 2
| cosecant | o | 2 |2 | 73 ! NE J2 3 |
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EXAMPLES.

1. Determine the values of the.Trigonometrica.l Ratios for an
angle of 585",

2. Also for an angle of 690°.
3, Also for an angle of 930°.
4. Also for an angle of 6420°.

6. Find all the angles hetween 0 and 900° which satisfy the
relation tan 6 =1,

6. Find all the angles between 0 and 900° which satisfy the
relation cos® 6= 4.

7. Find all the values of versin 711 where n is any integer.

8. Find all the values of sin {112?4- (-1 g} where n is any
integer.

9. Solve sin®6 + cos® § = 0.

10. Solve 2sin’6~b5cosf-4=0.

11. Trace the changes in the sign and value of cos 6 —sin 0
a8 6 changes from 0 to 2.

12. Also of cos® § —sin® 6. ‘
13. Also of tan 8 + cot 6.

14, Is sec’0=z¢%, a possible equation if ¢ and b are un-
equal ¢
15. Shew that tan (4 +90°) = cob 4, cot (4 +90%) = — tan 4,
sec (4 +90°) = — cosec 4, cosec (4 + 90") =sec 4,
vers (A +90°) =1 +sin 4. »
16. Shew that sin (270°— 4)=—cos 4, cos (270° - 4) = —gin 4
17. Shew that sin (270 + 4) =~ cos 4, cos (270" + 4) =¢in 4.
18. 8hew that sin (360°— 4) =—gin 4, cos (360° — 4) = cos 4.
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V. ANGLES WITH GIVEN TRIGONOMETRICAL
RATIOS,

63. 7o construct an angle with a given sine or cosine.

C

Required an angle the sine of which is a given quantity a.
Describe a circle with unity for its diameter, and take any diameter
4 B of this circle ; with centre B and radius a describe a circle ; let
C be one of the points where this circle meets the former circle ;
join AC and BC.

Then AC B is a right angle, by Euclid, 111. 31, and the sine of BAC
is g%, that is a; therefore BAC is such an angle as is required.

If the cosine of the required angle is to be a, then the same
construction may be made, and ABC will be such an angle as is
required. .

64. 7o construct an angle with a given tangent or cotangent.

Required an angle the tangent of which is a given quantity a.

Take a straiglic line AB tke length of which is unity; draw
BC at right angles to 4B and equal in length to @, and join C'4.
Then the tangent of BAC is 2 , that is a ; therefore BAC is suh
an angle as is required.
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If the cotangent of the required angle is to be & then the same
construction may be made, and ACB will be such an angle as is
required.

(4

A 8

65. If an angle is required to have a given cosecant, then
since the cosecant is the reciprocal of the mine, the angle must
have a known sine; therefore the angle may be found by Art, 63.
Similarly if an angle is required to have a given secant, or a given
versed sine, then the cosine of the angle is known and the angle
may be found by Art. 63.

We shall now proceed to find expressions which include all the
angles which have a given Trigonometrical Ratio. In the re-
mainder of this Chapter we shall express all the angles that occur
in circular measure.

66. To find an expression for all the angles which have a
given sine. .
Let BAC be the least positive angle which has the given sine ;

4

(4

B’ A4+ ]
denote this angle by a. Produce BA to any point B’ and make
the angle B'AC" = BAC ; then BAC/ =n—a, <«

Now it is obvious from the figure that the only positive angles
which have the same sine as a are = —a, and the angles formed by
adding any multiple of four right angles to a or to = —a; that is,
angles included in the formnlse 2nr + aand 2nw + 7w — a, where = ix
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zero or any positive integer. Also the only negative angles which
have the same gine as a are — (v +a), and — (27 —a), and the angles
formed by adding to these ary multiple of four right angles taken
negatively ; that is angles included in the formule 2nz — (7 + a),
and 2n7 — (27 — o), where n is zero or any negative integer. All
the angles which have been indicated will be found on trial to
be included in the formula nm+(-~1)" a, where = is zero, or any
integer positive or negative. Also all the angles included in this
formula will be found among the angles which have been indi-
cated.

Thus the formula 7 + (— 1)"a includes all the angles which
have the same sine as a, and all the angles which it includes have
the same sine as a. i

This formula also determines all the angles which have the same
cosecant as a.

67. To find an expression for all the angles which have a given
cogine.

Let BAC be the least positive angle which has the given cosine;
denote this angle by a. Make the angle BAC” = BAC.

g

A\ D

N
\C”

Now it is obvious from the figure, that the only positive angles
which have the same cosine 88 a are 2 —a, and the angles formed
- by adding any multiple of four right angles to a or to 27-a;
that is, angles included in the formule 27w + a and 2nr + 27 - q,
where n is zero ‘or any positive integer. Also the only negative
angles which have the same cosine as a are —a, and — (27 - ), and
the angles formed by adding to these any multiple of four right
angles taken negatively; that is, angles included in the formulse
r—a and 2nr — (27 — a), where # is zero or any negative integer.
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All the angles which have been indicated will be found on trial to
be included in the formula 2ns % a, where # is zero or any integer
positive or negative. Also all the adgles included in this formula
will be found among the angles which have been indicated.

Thus the formula 2ns s a includes all the angles which have
the same cosine as a, and all the angles which it includes have the

same cosine as a.
This formula also determines all the angles which have the
same secant or the same versed sine as a.

68. To find an expression for all the angles which have a given
tangent.

Let BAC be the least positive angle which has the given tan-
gent; denote this angle by a. Produce B4 to any point B’ and
CA4 to any point (",

(_,—,

B A B

0/

Now it is obvious from the figure that the only positive angles
which have the same tangent as a are = +a, and the angles formed
by adding any multiple of four right angles to a or to = +a; that
is, angles included in the formule 2w + a and 2nw + 7 + a, where
n is zero or any positive integer. Also the only negative angles
which have the same tangent as a are — (v —a), and — (27 —a), and
the angles formed by adding to these any multiple of four right
angles taken negatively ; that is, angles included in the formuls
2nw — (7 — o) and 2n7 ~ (27 — a), where n is zero or any negative
integer. All the angles which have been indicated will be found
on trial to be included in the formula n + a, where n is zero, or
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uny integer positive or negative. Also all the angles included in
this formula will be found among the angles which have been
indicated. .

Thus the formula nr +a includes all the angles which have
the same tangent as a, and all the angles which it includes have
the same tangent as a.

This formula also determines all the a.ngles which have the
same cotangent as a.

69. In Art. 66 we shewed that if a be the least positive angle
which has a given sine, the formula nx + (- 1)* a includes without
excess or defect all the angles which have the same sine as a; it
was convenient for distinctness in the demonstration to suppose a
the least positive angle which has the given sine. But this restric-
tion can be removed, for we can shew that if 8 be any angle, the
formula nar + (- 1)" B will include without excess or defect all the
angles which have the same sine as 8. For suppose a to be the
least positive angle which has its sine equal to sin 8; then, from
what has been proved, we know that 8 must be one of the angles
included in the formula mar + (~1)" a where m is zero, or any in-
teger positive or negative. Suppose then 8=rr + (- 1)"a; there-
fore nwr+ (~1)"B=nmw+ (- 1)"rr+(-1)"*"a; and all we have to
prove is, that this formula includes without excess or defect all the
angles included in the formula mz+(-1)"a. If n be even the
formulse correspond by taking m=n +r; if n be odd, the formuls
correspond by taking m=n—r. The formula nr+ (-1)"8 will
of course also include without excess or defect all the angles which
have the same cosecant as f3.

70. Similarly we may shéw that if 8 be any angle, the angles
which have the same cosine or secant or versed sine as 8 will be
included without excess or defect in the formula 27z % 8 ; and that
the angles which have the sanfe tangent or cotangent as 8 will be
included without excess or defect in the formula n= + 8.

71. Before leaving this part of the subject we will recur to the
definitions of the Trigonometrical Ratios; we considered them



ANGLES WITH GIVEN TRIGONOMETRICAL RATIOS. 47

as ratios formed by comparing the sides of a right-angled triangle,
but formerly they weré differently defined, and it is advisable to
notioe the old definitions in order that the student may understand
allusions to them which will occur in his reading.

L] C y

~ ;

A A B

Let 4 be the centre of any circle, 4B a radius, BP any arc;
draw the radius AC at right angles to 4B,%nd draw tangents to
the circle at the points B and C'; produce 4P to meet the first
tangent at 7’ and the second tangent at ¢; draw P perpendicular
to 4B. Then the old definitions are as follows, in which the
straight lines of the figure are considered to be functions of the
arc BP. PM is the sine of the arg BP, AM is its cosine, BT is
its tangent, C't is its cotangent, A7 is its secant, 4t is its cosecant,
BM is its versed sine, also the straight line joining B and P is the
chord of the arc BP. Thus the teyms sine, cosne, &c., formerly
denoted certain straight lines and not certain ratios. On the old
system the lengths of the sine, cosine, &c. depended on the radius
of the circle considered, so that it became necessary to state what
length was ascribed to this radius in any investigation,
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72. Tt is easy to connect the values of the old and new Trigo-
nometrical Functions; for

sine of the angle PAB—-IF ,

sine of the arc PB= PM;
thus sine of the arc = radius of circle x sine of the angle,

sine of the arc

and gine of the angle = m .

Similar results hold for all the other Trigonometrical Functions.
Thus from any formula in the modern system which involves Func-
tions of angles, we can deduce the corresponding formula in the
ancient system which will involve Functions of arcs, and vice versa.

For example, if 4 denote any angle, we have (Art. 32)
sin4 +cos"4=1.

Now let a denote the arc corresponding to 4 in a circle of
radius »; then, using the old definitions,

sina cos'a

— + = 1,

so that sin’ @ + cos’ @ = 7,
Suppose the atra.i'ght l.ine PB drawn ; then the sine of half the
angle PAB= ﬁ = Q 1 B ; and therefore the chord of an arc

=radius of cu-cle x twice the sine of half the angle.

73. Bince the sine of an are is equal to the radius of the circle
multiplied by the sine of the angle, it follows that if the radius q/'
the circle be unity the numerical value of the sine is the same in
both systems ; and a similar result holds for the other Trigonome-
trical Functions. Thus a.ny formula expressed in the ancient
system may be immediately converted into a formula expressed
in the modern system by supposing the radius of the circls to be
equal to unmity.
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74. The old definitions give some indications of the origin of
the terms sine, cosine, &o. The wqrd sine seems derived from the
Latin word sinus a bosom, the arc is supposed to represent a bow,
and thus gets its name, and the string, balf of which represents the
sine of half the arc, would come against the breast of the archer.
The words fdngent and secant are naturally derived from the old
definitions. (See the English Cyclopeedia; article T'rigonometry.)

75. The modern method has now completely superseded the
ancient method in English works ; it was introduced by Dr Peacock.
(See Peacock’s dlgebra, Vol. 11 page 157.) It may however be
observed, that it is stated by Professor De Morgan (Z'rigonometry
and Double Algebra, page 18), that “ Rheticus, who gave the first
complete Trigonometrical table, and invented the secant and cose-
cant to complete it, used the method of ratios.”

EXAMPLES,
1. Write down the general value of § when tan 6 = 1.
2. Write down the general value of § when sin 6= 1.
3. Write down the general value of § when cos § = 1.

4. Write down the general value of § when cos 6=~
Find all the values of 6 which satisfy sin®0 = sin"a.
‘Write down the general value of § when cosec’d =

Find all the values of 6 which satisfy cos’d = cos’a.
Write down the general value of § when sec*§= 2.
Find all the values of 6 which satisfy tan®6 = tan’a.
10. Write down the general value of 6 when tan®*6 = %
11. Shew that all the angles Which have both the same sine
and the same cogine as a, are included in the formula 2nr + a.
12, Write down the general value of § which satisfies both

a1 J/3
Blna——§ andcosO-:—-2—.

T. T 4

[T

e o=
©of >
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76. To express the sine and the cosine of the sum of two angles
in terms of the sines and the cosines of the angles themselves.

v

o [/ - C
Let the angle COD be denoted by 4, and the angle DOE by
B; then the angle COE will be denoted by 4 + B. In OF take
any point P, draw PM perpendicular to OC, and PN perpendicular
to 0D; draw NR perpendicular to PM and NQ perpendicular
to OC.
Then the angle NPR is the complement of PNE, and is
therefore equal to RNO, which is equal to ¥OC or 4.
PM RM+PR NQ PR
0P~ 0P ~or‘oP
_Ye o¥° PR PN
“ON'OP PN ' OP
‘.=si.nAcong+oosAsinB.
OM 0Q-QM 0Q ANR
x4+ 5 =5p~—0oP ~0r oP
0Q ON NR NP
~ON ' OP NP’ OP
=008 4 cos B - sin 4 sin B.

Now sin (4 + B) =
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77. To express the sine and the cosine of the difference of two
angles in terms of the sines cmdthgoosimuy'theanglaﬂwmnlm.

N 7
\~\ /
P
o ¢ M (A

Let the angle COD bhe denoted by 4, and the angle DOE by
B; then the angle COE will be denoted by 4 —B. In OF take
any point P, draw PM perpendicular to OC and PN perpendicular
to OD; draw NR perpendicular to M/ P produced and ¥@Q perpen-
dicular to OC.

Then the angle NPR is the comple.ment of PNR, and is
therefore equal to )NR which is equal to DOC or 4.

PM RM-RP _NQ RP

Now sin(4 - B) = =—5P 0P 0P

_ I_VQ ON RP PN
“ON' OP PN’ OP
=8in 4 cos B~ cos 4 sin B.
OM 0Q +QM 0(,) ‘NR
®A-B=0F="0P ~0P"*oP
_0Q 0N NR PN
~ON'OP * PN’ OP

w8 dcor B+rin 4sir B
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78. To assist the student in remembering the preceding
demonstrations, we may observe that the point P is taken in the
straight line which bounds the compound angle we are considering;
thus, in proving the formule for sin (4 + B) and cos (4 + B) the
point P is taken in the straight line which bounds the angle
4 + B, and in proving the formuls for sin (4 — B) and cos (4 - B)
the point P is taken in the straight line which bounds the angle
A-B. After the construction is completed, the principal step
consists in shewing that the angle N¥PR is equal to 4 ; it will
be seen from the construction that this is the case, for the straight
lines PN, PR are respectively perpendicular to the straight limes
which form the angle A, and thus form an angle equal to 4.

79. The formule established in Arts. 76 and 77 are true
whatever may be the size of the angles 4 and B; the student may
exercise himself by going through the comstruction and demon-
stration in different cases; it will be found that the only variety
which occurs in the construction consists in the circumstance that
the perpendiculars sometimes fall on certain straight lines and
sometimes fall on those straight lines produced. We will, as an
example, prove the formuls in Art. 76, when each of the angles 4
and B is less than a right angle, and their sum greater than a
right angle.

b g 0 C
Let the angle COD be denoted by 4, and the angle DOE by
B; then the angle COE will be denoted-by 4 + B. In OF take
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any point P, draw PM perpendicular to CO produced and PN
perpendicular to OD; draw NR perpendicular to PM and NQ
perpendicular to OC. .

Then the angle VPR is the complement of PNR, and is there-
fore equal to RNO, which is equal to NOC or 4.
PM MR+PR NQ PR
oP~—oP ~oP*oP
NQ ON PR PN
~ow-op * P¥ 0P
=8in 4 cos B + cos 4 sin B.
OM
D—P:
here we must remember that OM being measured to the left of O
is a negative quantity, and we may put for it 0Q — QM, that is
0Q - NR; thus

Now sin {4 + B) =

Also ocos(4 + B)=

0Q-NR 0Q ANER
COB(A+B)= -—Q‘—O-T—=6?—'o—?
0Q ON NR PN

ON'OP PN 'OP
=cos 4 cos B -sin A4 sin B.

80. The formuls established in Arts. 76 and 77 may be con-
sidered the fundamental formule of the Bubject; it is important
therefore that they should be shewn to be universally true. As
we have intimated in the preceding Article, the student might
convince himself of their universal truth by examination of all
the cases that can occur; but we may arrive at the required result
more decisively by making use of some theorems which have al-
ready been completely established.

The formulse we have to prove are

sin (4 + B) =sin 4 cos Bet cos 4 sin B'.........cuoueee ).
cos(4d + B)y=cos Acos B—sin A sin B.................. @)
sin (4 — B) =gin 4 cos B—oos A sin B.................. (3).

c08(4 ~B)=cosdcos B +sindsin B..................(4).
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Now in Arts. 76 and 79 we have shewn that (1) and (2) hold for
all positive values of 4 and B, which do not exceed a right angle ;
and in Art. 77 we have shewn that (3) and (4) hold for all positive
values of 4 and B which do not exceed a right angle, provided 4
be greater than B. 'We shall first shew that the restriction of 4
being greater than B may be removed from (3) and (4).
By Art, 49, gin (4 — B) =~sin (B - 4),
and cos (4 — B)=cos (B- 4);
if then we know that

fin (B - 4) =sgin B cos 4 — cos Bsin 4,
and 008 (B —4) =cos Bcos 4 +&in Bsin 4 ;
we know also that

sin (4 - B) =sin 4 cos B —cos 4 sin B,
and cos (4 — B) =cos 4 cos B +&in 4 sin B.

Therefore if (3) and (4) hold for values of 4 and B comprised
between any limits when 4 is greater than B, they hold for values
of 4 and B comprised between the same limits when A is less
than B.

Thus we know that the four formulse are all true for any
positive value of each angle between zero and a right angle. We
shall next shew that if all the formulse are true for values of 4 and
B comprised between certain limits, these limits may be increased
by a right angle. For by Art. 52,

gin (90° + 4 + B) =cos (4 + B) =cos 4 cos B - sin 4 sin B
=gin (90° + 4) cos B + cos (90° + 4) sin B;
in this way, from the truth of (£) for any limits, we can infer the
truth of (1) with an increase of 90°in the limits of either angle.
Similar considerations apply to all the other formule; and thus
the limits become as large as we ‘please.

Lastly, the truth of the formules for any negative angles may
be established ; suppose 4 and B both negative, lot 4 =~ 4’ and
B =-F; thus
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gin (4 + B) =gin (- 4'— B) =—gin (4'+ B)), by Art. 49;
=—(sin 4’ cos B’ + cos 4'sin B')
=sin (- 4") co(— B') + 008 (— 4) sin (- B)
=gin 4 cos B + cos 4 sin B.

Similarly all the other formulss may be shewn to be true when both
the angles are negative, or when one of the angles is negative.

81. From the four fundamental formulse a large number of
other furmule may be deduced; we shall give some examples of
such deductions,

82. In the expressions for sin(4 + B) and cos (4 + B) put
B = 4 ; thus
8in 24 = 2sin 4 cos 4 ;
co824 =cos’ 4 ~sin"4 =1-28in"4 =2 cos* 4 - 1.

Thus 14co824=2cos' 4,
1 -cos 24 =2sin’ 4,
1-cos 24 .
and m—m A
sin 24 sin 24
Also 1+cos2'A=tanA’ i-cos?A=cotA'

83. Sin(4 + B)sin (4 - B) .

= (sin 4 cos B + cos 4 sin B) (sin 4 cos B — cos A siu B)
=sgin* 4 cos* B - cos" 4 sin* B
=gin® 4 (1 - gin’ B) - (1 —sin® 4) sin* B
=gin’ 4 —sin® B,

This result is very important, @

And  cos(4 + B)cos (4 - B)
=(cos 4 cos B ~ sin 4 gin B) (cos Axcos B + sin 4 sin B)
=cos" 4 cos' B - gin* 4 sin' B
=c08" 4 (1 - sin® B) — (1 — cos* 4) sin* B
=o008' 4 —gin® B =cos" B —sin® 4.
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84. From the four fundamental formuls we have
gin (4 + B) +sin (4 ~ B) =2sin 4 cos B,
sin (4 + B) ~sin (4 ~ B) =2 cos 4 sin B,
ocos (4 + B) + cos (4 — B) = 2 cos 4 cos B,
cos (4 — B) —cos (4 +B)=2sin 4 gin B, -
Let A+ B=C and 4 - B= D; therefore
4 =%4(C+D)and B=}(C-D); thus

sin0+sinD=2singf2—gcosq,;_£’

C'+1)sin0—D
2 2

¢+D C-D
g ®g

cosl)—cosC:Zsin—C—';—l-)-s' -q%]—)

sin C —sin D = 2 cos

cos C'+cos ) = 2 cos

These formulee will be found to be extremely useful in mathe-
matical investigations; they enable us to put the sum or the dif-
Jerence of two sines or two cosines in the form of a product; or tc
replace the product of ,» sine or a cosine into a sine or a cosine
by half the sum or half the difference of two such Ratios.

sin(4 +B) sinAd cos B+cosdsin B
cos (4 + B) ~ cos 4 cos B—sin 4 sin B’

85. Tan (4 +B)=

divide both numerator and denominator of the last expression by
L]
sind sin B
cosd cos B ,
sin 4 sin B’

“oos A cos B
ten 4 + ten B
T-tan 4 tan B*

co8 4 cos 53 ; thus we get

therefore tan (4 + B) =
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Suppose B = 4 ; thus we obtain
2tan 4
o2 =t
sin (4 - B) _sin 4 cos B —cos 4 sin B
Tan (4 - B) = Co@=B) = cos A 'oos B+ in A 5in B
. snd snB
_cosd cosB tand —tan B
T ,,Endsm B Titan Atan B
cos A cos B
Suppose for example that B =45 so that tan B=1; then we
shall obtain

tam (4.4 450y L0 4 tand - 1

“Totna’ BT

_cos(4+B) cosdcos B—gindsin B
86. Cot(4+B) = oA+ B) ~ sin 4 cos B + cos 4 sin B
oosAch_
gin 4 sin B cot 4 cot B—1
cos 4 cosF cot A +cot B °
sin 4 smB

Suppose B =4 ; thus we obtain

cot*’4 -1
cot 24 = —m .
. cotdcot B+1
87. Sin24 =2sinAcosA_2—s,nii+o—“% (Arts. 82 and 32);
divide both numerator and denominator of the last expression by
2sin4
cos 4
oo’ 4 ; thus we get =—=Tr=y=—r;
1+ toos 4

2 tan 4

th'erefore 8in 24 = o4
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o .y, 008"A—gin'4
sin® 4 [
___cos"d 1-tan'4
_l+si“'A-1+tan'A'
cos' 4

1-

sinA+BcosA_B
sin 4 +sin B _ 2 2

88, — — = = (Art. 84)
sin 4 —sin B 2cosA+BsinFB
2 2
m{;B
mz_:}.
2
oOEA+J.'£OOSA-B
oosd +cosls 2
cosB-oosd o ATD . A—p (At 8)
28 pi
2 2
A+ B A-B
=00t—2-~ t—2'
9usi A+ B A-B
gind +8in B ‘810 92 co8 9 —t,anA+H
co8d +cos B A+ 8 4A-B 9
2 €08 —— cos ——

2 2
2cosA—-———+BainA—-~_B
ain:{—sinlf_ 2 2 —cotA+B
oos8B -cos 4 2sinA.;BsinA§B 9

sin 4* sin B _gin 4 cos B + cos 4 sin B
co8 4 " cosB cos 4 cos B

89. Tan 4 + tan B=

_sin(4 + B)
“cos 4 cos B
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- sin (4 - B)
Similarly tan 4 —tan B~ con doon B

sind cosd sin"A +cos'4
90. Tand +ootd =2 + o= smdood

1 2

2
“sindcosAd 2sin Acosd  sin 24

sind cosd sin'd —cos'4

fan 4 = cotA_cosA sind sndcosd
cos 24 2cos 24
““Sndcosd= singd - 20024

91, Sin 34 =uin(24 + A)=8in24 cos 4 + cos 24 sin 4 (Art. 76)
=2s8in 4 cos* 4 + (1 — 2sin* 4)sin 4
=2sin 4 (1 —sin® 4) + (1 — 2 sin® 4) sin 4
=3sin 4 - 45in® 4.

co8 34 =cos (24 + A)=cos 24 cos 4 -sin24 sin 4 (Art. 76)

=(2cos’4 —1)cos 4 —2 cos 4 gin* 4
=(2cos’4 —1)cos 4 —2 cos 4 (1 - cos* 4)

=4 cos’ 4 - 3 cos 4. '

sin34 3sind-4sin®4

Hence t"&ns“l=cols:‘},4 4o’ A-3cosd

Divide both numerator and denominator by cos®4 ; thus

.
i:?A -4 tan® 4
t,;m3A= ——T—— .
cos® 4
_3tan 4 (1+tan’ )—4tan’ 4 _Stan4 -tan"4
R S Ti ey A A g Ty
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92. Tofind the valuss of the Trigonometrical Ratios for an

angle of 15° and an angle of 75".

sin 15° = sin (45° - 30°) = sin 45° cos 30° — cos 45° sin 30° = “/gj; ;
cos 15° = cos (45° — 30°) = cos 45° cos 30° + sin 45°sin 30°= 3/23—}21,
o
w2 By,

: 0_ 0 _ \/?Ll 0 _ ot 0__ ~/3"l.
And sin 75° = cos 15° = N cos 75° = gin 15 =573

tan 76° =cot 16°=2 +,/3 ; cot 75°=tan 16°=2 - /3 ;

2.2 2.2
0 o__“ N4 o _ 0, INZ
sec 75° = cosec 15° = 370 cosec 75° =sec 15 7341

v
93. Ifsind =sin B and cos A =cos B, then either A and I}
are equal, or they differ by some multiple of four right angles.
For cos (4 ~ B) = cos 4 cos B +sin A sin B
=cos’4 +sin"4 =1
therefore 4 — B =0, or a multiple of four right angles taken posi-
tively or negatively. (Art. 67.)
94, If oos A =cos B and sin 4 = —sin B, then A + B is zero,
or a multiple of four right angles positive or negative.
For the given relations may. be written
co8 A =cos(— B), sin 4=sin(~B). (Art. 49.)

Henoe by the preceding Article 4 — (— B), that is 4 + B, is zero or
eomo multiple of four right angles taken positively or negatively..



Prove the following identities :
L

S Sk »ow

=

10.

11
12.
13.

14,

15.
16.
17.

18.
19.
20.
21
- 22,
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EXAMPLES.

cos 4 +sin 4

cos A -gin 4

2gin’d sin’ B + 2 cos* A cos® B=1 + cos 24 cos 2B.

tan (45° + 4) — tan (45° - 4) = 2 tan 24.

sin 34 cosec 4 ~ cos 34 sec 4 = 2.

3sin 4 —sin 34 =2sin 4 (1 - cos 24).

sin 4 +2sin 34 +sin 54 _sin 34

sin3A+2sin54 +8in 74  sin b4’

sin B _sin (24 + B)

sind sind

sin 44 = 48in 4 cos® 4 — 4 cos 4 sin® A.

cos 4 — cos 34

sin 34 — sin 4

q_o_s2A—cos4A

sin 44 —sin 24

cosec 24 + cot 44 = cot A —cosec 4 4.

cos* (4 — B) +cos* B— 2 cos (4 — B) cos A cos B=sin" 4.

sin*(4 — B) + sin® B + 2 sin (4 — B) sin Bcos 4 = sin* 4

1 - tan®(45° - 4) ¢

1+ tan®(45° - 4)

4tan 4 (1 —tan®4)
(1 + tan® 4)°

sin 4 (1 + tan 4) +cos 4 (1 + cot 4) =sec 4 + cosec 4.

i 258in%4

e~ Togamad (44

cos 4 + cos (120° - 4) + cos (120° + 4) =J.

4 sin 4 sin (60° — 4) sin (60° + 4) = sin 34.

4 cos 4 cos (60°— 4) cos (60° + 4) = cos 34.

tan 4 tan (60° + 4) tan (120° + 4) =—tan 34.

tan A + tan (60° + 4) + tan (120° + 4) = 8 tan 34,

=tan 24 + sec 24.

—2cos (4 + B).

= tan 24.

=tan 34.

:Sin 2A.

=sin 44.
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28. cot 4 + cot (60° + 4) + cot (120° + 4) = 3 cot 34.
94, oot 4 oot (60° + 4) + oo (60° + 4) cot (120° + 4)
+cot (120°+ 4)cot 4 =- 3.
25. sin®4 + sin® (120° + 4) + sin® (240° + 4) = — § sin 34.
26. &sin 34 sin®4 +cos 34 cos® A = cos® 24.
, 5034 .. cos34 sindd
27. OOSA 3 +smA 3 = 4 .
28. cosndcos(n+2)4d—cos’(n+1)4 +sin"d =0.
sin 4 +ginnd +sin (2n-1)4
. sdecmndroos(@n-T)4- nnd
30. sin 24 cosec®d sec 4 — cos nd sec* 4 cosec 4
=4 gin (n — 1) 4 cosec’ 24.
3L cos 104 +cos 84 + 3 cos 44 + 3 cos 24 = 8 cos 4 cos® 34.
82. cot 4 +cot24 +cot 44
= cosec 44 (2 + 2 cos 24 + 3 cos 44).
33 oo d = 28in 24 + 2 cos 24
- CoBeC A= s A _sind _cos34+sin 34"
84. cos*24 = (cos A — sin 34)" + 2 cos A sin 34 (cos 4 — sin 4)°,
35. cos® A —sin® 4 =vcos 24 (1 - } sin24).
36, sinbA =b5sin A4 —20sin* 4 + 16 sin® 4.
Solve the following equations :
37, m(§—9)+cot(;—:—9>=4. 38. &in46+sinf=0.
39, sin70 - sin 0=sin 30, 40, sin0+cosO=J—12.
41, sin 56 =16 &in®6. « 42. co830+cos 20 +cosd=0.
43. sin30+sin20+8inf=0, 44, to.no+tan(;+o)=2.
— 20 _ ™ - .
15. tan 20=Boos'0- cot 6,  46. tam(4+0)--3tan(l 6).
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VIL FORMULAZ FOR THE.DIVISION OF ANGLES.

95. In Art. 82 cl.ange 4 into ;; thus we obtain
cosA=l—28in’f;—=2m’%_l;

.| 1-cosd A4 1+cosd
bhereforesmg=\/———2—-, cos§=\/————-§———.

96. Since we may suppose cither the positive or negative sign
to be placed before the radical quantities in the preceding Article,
we see that corresponding to one value of ces 4 there are two values

of sin—;- and two values of cos%; and the reason of this may
be assigned. For if a be an angle which has a certain cosine, then
the formula 277 % o includes all the angles which have the same
a
2
in terms of cos a may be expected to give the value of the sine of
every angle included in the formula } (2n7 +a). Now

cosine; therefore any expression which gives the value of sin

2 2 2 2 2’
thus two values occur which differ only in sign. Similarly, any

. a . a . a . a . a
Sin (77 & = ) = 8IN 7w CuS 5 * COS N 81N ; =% COSNT SIn 5 = *&8IN 5 ;

a
2
expected to give the value of the cosine of every angle included in
the formula § (2nmw & a). Now ¢

expression which gives the value of cos ; in terms of cos a may he

a a o . Q@ a a
cos nw*—):cosmrcos--vsmmrsm—=cosmrcos—=-l=cou—;
2 2 2 . 2 2

thus two values occur which differ only in sign.
Such an explanation as we have here supplied of an ambiguity

in sign is applicable in many cases in Trigonometry ; for example,
in Art. 46 : we shall see other instances in the present Chapter.
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97. If oosd only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 95
cannot be removed. If however 4 itself be given, then -‘-;— is a

known angle, and therefore we know whether sm%l is positive or

negative ; and also whether cos 4 is positive or negative ; thus we

2
know which sign is to be taken with each radical quantity, Or if

we merely know in which quadrant the angle % lies, we can

determine the proper signs ; for example, if %

180° and 270", both its sine and cosine must be negative quantities.

is an angle between

98. By Art. 82 sind =2 sin% cosd

2
also 1 :sin’g-+cos'g,
?
thus (sing + cosg) =1+sind,
. 4 AyN? .
and (sm—2-—-oos§)=l—smA;
therefore sinf +cond = /(148 d).corrn ),
A
and Bm§ —cos—_J(l—smA) ................ 2);
A

therefore 2 gin 5= (1 +sin 4) + /(1 —=in 4),

‘

and 2 cos 5 = /(1 + sin 4) - /(1  sin 4).

99, Since we may suppose either the positive or negative sign
to be placed before each of the radical quantities in equations (1)
and (2) of the preceding Article, we see that corresponding to ons

value of sin4 there are four values for oosé

3 and fowr values for



FORMULA FUR THo DLVISION Or ANGLmS, 90

and the reason of this may be assigned. For if a be an angle

4
l“l.-§ N
which has & certain sine, then the formula #r + (- 1)* a includes all
the angles which have the same sine; therefore any expression

which gives the value of sins in terms of sina may be expected

2
to give the value of the sine of every angle included in the
formula 4{nm +(-1)"a}.

First suppose n even and equal to 2m ; then

sin § {nr+ (- 1)" a}:sin(mr+%)=sin7mrcos;+oosm1rsin;

. .
=COS M7 8In -~ ==§In - ,

2 2
Next suppose » odd and equal to 2m + 1 ; then

sin } {n7r+(—1)"a}=sin (m1r + ?):smmrcosw—%ﬁ+cOSM1rsin"—;f

o8 mr Sin T = ok gin L = & CO8
= T —_— = —_— -
2 2 92’

Thus four values occur for the sine of half an angle when the sine
of the angle is given.

Similarly any expression which gives the value of oosg in

terms of sina, may be expected to give the value of the cosine of
every angle included in the formula 4 {nr + (= 1)" a}

First suppose n even and equal to 2m ; then

cos § {nr + (~ 1)" a} = cos (m1r+§)=cosm1rcos;—sinmwrain§

COB MV 008 5 = % 008
- 2 2°

Next suppose n odd and equal,to 2m + 1 ; then

cos  {nw+(—1)"a}=cos (m1r+ 5 _cosmarcoa——z——mnmarmnTQ—"
_ oosﬂ"—a_*“‘n'—ﬂ._*sing
= cosmm e —g—= PR

T T 5
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Thus four values occur for the cosine of half an angle when the
sine of the angle is given. .

100. If sin 4 only be given and nothing more be known
respecting 4, then the ambiguities of sign which occur in Art. 98
cannot be removed. If however 4 itself be given, or if we merely
know in which quadrant the angle 4 lies, we can determine the
proper signs; for in any particular case we may proceed thus,
‘We have

find+008 5 = (1 +8D 4) ooreoerern ),
sin 5 — cos 3 = /(1 ~8i0 4)..oorccrrrrrnn @).

Now suppose, for example, that 4 lies between 0 and 90°, then %

lies between 0 and 45°; therefore cos 1—21 and sin% are both positive

and cos % is greater than sin 4 ; hence the left-hand member of (1)

is a positive quantity, and we must therefore take the positive sign
in (1), and the left-hand member of (2) is a negative quantity, and
we must therefore take the negative sign in (2). Therefore if 4
lies between 0 and 90°, we have

sin 5 +cos 5 =+ /(1 + sin 4), sin%—oos%:—J(l—sinA);

therefore 2sin%=+~/(l+sind)—-,,/(l—sind),

Bcon’s =+ /(1 + sin 4) + /(1 - sin ),
For another example, suppose that 4 lies between 270° and 360°,

theng lies betwedn 135° and ]80°; therefore oos% is negative,
and nin%is positive, and eos% is numerically greater tha.nsm‘—;; H

hence the left-hand member of (1) is & negative quantity, and we
must therefore take the negative sign in (1), and the left-hand
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member of (2) i8 a positive quantity, and we must therefore take
the positive sign in (2). Therefore if 4 lies between 270°and 360°,
we have

. A A . . 4 .
m§-+oos§-=—J(l+smA), m—f—oos—z--q-\/(l—sm,{);
therefore ) 2sin%=-~/(1 +s8in4) + /(1 - sin 4),

2ooai;-=_J(1 +8in 4) - /(1 —sin 4).

101. It is easy to give general formulse for determining the

s of sin A + cos and sin 4 — cosd
mngns o sm2 0087&11 smg—cos2 .

. 4 4 1 . 4 1 y| . (4w
Fornm-f-p 008 5= ,J2<Wsm— + —Jﬁcos—-)z J2sm(§ +—),
+ 7 lies between 2nr and (2n + 1),

now sm(2 )u;pom,tt/unf;4

and negative if % +7 lion botween (2n + 1) and (2 + 2) 7, where

. . . . A 4
n i8 zero or any integer positive or negative. Thus sin g o8
is positive 1f 4 lies between 2nw — — a.nd 2n1r+:1
4. 3r 7 .
7 lies between 2nr + T and 2nm 1
A

Similarly sin%—cosi-J2sin(-2——§); and hence we can

infer that sm’—g-—oosA is poaxtlvelfA

, and negative if

3 lies between 2mm + — i T and

[ ]
2mw + 5T’ and negative xfi lies between 2mar + T T and 2mvr + 9:

where m is zero or any mteger positive or negative.
We will apply this to an example ; required the limits between

which % must lie in order that

z.in:;.=_./(1 +8in 4)~ /(1 - sin 4).
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To obtain this result the lower sign must be taken in (1) anc
in (2) of Art. 100; thus from (1) we infer that 2 must lie betweer

2
3 Tw . 4 .
2mr+—4—uul 2mr+—4-; and from (2) we infer that—z—must lie

between 2m,1r+§i—r and 2m= + QT" : hence, combining these results

we see that ‘—;— must lie between 2mr+5—f and 2mr+2’—r, where 7
is zero or any integer positive or negative.
4

2ta.n7

102. By Art. 85, ta.nA=——-—15

—.—
lta.n2

put ¢ for tan 4 ; thus ctan'%+2tan%—-c=0;

therefore tan£=——~———1*"/§———l+c).
, 2 c

103. The reason why two values occur in finding the tangen
of half an angle when the tangent of the angle is given, may be
assigned as before. For if a be an angle which has a certain tan-
gent, then the formula nw + a includes all the angles which have
the same tangent; therefore any expression which gives the value
a
2
tangent of every angle included in the formula } (n7 + a).

First suppose n even and equal to 2m ; then

of tan 7 in terms of tan a may be expected to give the value of the

t&ni(mr+a.)=tan(m-rr+§)=ta.n§.

Next suppose n odd and equal to 2m + 1, then

T+a T+ a k.3 a — (_1.
D) ):tanT——tan<§+§)— 00t2.

Thus two values ocour for the tangent of half an angle when the

tangent of the angle is given,

tan § (nr+ a)=ta.n(m1r+
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104, If tan 4 only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 102
cannot be removed. If however 4 itself be given, or if we merely

know in which quadrant g lies, we know whether tan% is positive

or negative, and thus we know which sign we must take,

105. By Art. 91, cosA=4cos‘i;-3ms-g¥.

Thus if cos 4 be given we have a cubic equation for determining
008 g ; and the reason for this may be assigned as before. For if a

be an angle which has a certain cosine, then the formula 2nmr &a
includes all the angles which have the same cosine ; therefore any
a
3
expected to give the value of the cosine of every angle included in
the formula § (2nw % a). Now n is of one of the forms 3m, 3m + 1,
3m - 1.
First suppose n =3m ; then

expression which gives the value of cos ; in terms of cos a may be

cos§(2n1rd-a)=oos<2mw*§)=cos§.

Next suppose n=3m + 1; then
Irka

cos § (2nm & a) = cos <2m1r + 2"; = 008 ~g— .

Lastly suppose n = 3m — 1 ; then

o8 §(2mrd=a)=cos(2m1r-—21r*a) 08 2"*0’.

3 )" 3
27+ a 27— a

Thus three values occur, namely o;s % ) COB—5—, €08 —¢

106. By Art. 91, sinA='3sin3;‘_4siif§.

Thus if sin 4 be given, we have a cubic equation for determining
sin % ; and the reason for this may be assigned as before.



70 EXAMPLES. CHAPTER VIL

EXAMPLES.

1. Show that 2sin g = /(1 +sin 4) - /(1 —sin 4), when 4
Lies between 450° and 630°,

3. Obtain oosg in terms of sin 4 when ‘—; lies between 405°
and 495°,

3. Obtain sin %in terms of sin 4 when g lies between — 45°
and - 135°,

4. Determine the limits between which 4 must lie in order
that 2 gin 4 = - /(1 +sin 24) + /(1 —sin 24).

5. Determine the limits between which 4 must lie in order
that 2 cos 4 = — /(1 + &in 24) + /(1 ~ sin 24).

6. Determine the limits between which 4 must lie in order
that 2sin 4 = /(1 + gin 24) - /(1 - sin 24).

7. Divide a given angle into two parts whose sines shall be
in a given ratio,

8. Divide a given angle into two parts whose cosines shall be
in a given ratio,

9. Divide a given angle into two parts whose tangents shall
be in a given ratio.

10. Given tan 5 =2 3, find sin 4,

11. Given sin 210°= — %, find cos 105",

12. Given tan24=—?7-4, find sin 4 and 008 4.

13. Find tan 165° from the known value of tan 330°
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A 2s8inAd-sin24
3 _—————
14, Sherwi:ha.(zta.n—_2 S ET TR

180°+ 4 180°- 4
2 2
A-B

16. (eouA+cosB)’+(smA+smB) =4 cos’ —5

4-B
5"

15. vers (180° — 4) = 2 vers

17. (cos 4 —cos B)' + (sin A — sin B)" = 4 sin"

18. Shew thet sin 22§ = Y -VD), ooq 99y - YE2Y),

and tan 224°= /2 - 1.
4 A A\

19. (tan4 + cot 4) 2 tan 5 (1-m 2) (1+t&n’—2—).
w A\ _seod +tan 4
£73) secd—tand "

. /x 8 6\  sind
2. sin(7-g)+oos (7-5)= Jvers 6"
22, Shewthausin'f( —-sm) {1—J(1 +sin O)}".

4
0T 4008 T 4 cos* O 4 cost T = 3
23. cos 8+cot; §+cos 8 + Cco8 3 =3

2. tanT§'=/6—,/3+ /22
95, tan1424°=2+,/2-,/3 - /6.

26. If tanw=(2+/3)tan 3, find the value of tan.

20. ta.n'(

27. Ifa= (n + 1!1* %)w, where n is any integer, find the value

of tana + cot a.
cosacosl3a

28, Ifa_ﬁ,ﬁnd the valueofms5a

29, Ift:uac(¢+a)+:;ec(cﬁ—a)=25¢5c¢,t;heneos¢=,‘/2cos'l

6 _(L+o\b, ¢ cos¢p - ¢
30. Tf tan §— IT 2,ﬂhewt~h&t0007=f—ow‘a.
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VIIIL. MISCELLANEOUS PROPOSITIONS,
.

107. To find the sine and the cosine of an angle of 18°.

Let A denote an angle which contains 18°, then 24 contains
36° and 34 contains 54°; hence, by Art. 29, sin 24 = cos 34,
therefore 2sindcosd=4cos’4—3cos 4;
divide by cos 4, thus 2gin 4 =4cos’ 4 ~ 3=1-4sin" 4,
therefore 48in’ 4+28in4~1=0;
by solving this quadratic equation we obtain

sin =220,
4

Since the sine of an angle of 18° is a positive quantity we must

take the upper sign, therefore
8in 18°= “/—5-:3 )

and oos 18°= (1 —sint 189 - L1+ 2/2),

108. 7o find the sine and the cosine of an angle of 36°.
8
co8 36°=1-2sin'1s°=1—2(~ﬁ:—1) =1-‘i‘_82ﬁ

* 1 3=W6_ 145
I S S

sin 36°= /(1 — cos* 36%) = Y{1 22'./5) .

109. Hence the values of the Trigonometrical Ratios for
angles of 54° and 72° are k.nown for

sin 54° = 008:36°, cos 54° =sin 36°, sin 72° = cos 18", cos 72° = sin 18°,
110. The reason why more than one result was obtained in
Art. 107, is that the equation sin 34 =cos 34 is true for some
other values of 4 besides 18°. This equation may be written
cos (90° - 2.4) = cos 34,



MISCELLANEOUS PROPOSITIONS. 78

Henoe we oonclude that 90°— 24 must either be equal to 34
or to one of the angles which have the same cosine as 34 ; thus
every admissible value of 4 will be found from the equation

90°-24=n,360°w34;
where % i8 zero or any integer positive or negative ;
90° —n.360°
23

For example, if n=0 and we take the lower sign in the de-
nominator, we obtain 4 = —90°; this value of 4 makes cos 4 =0,
and thus we see a reason for the appearance of the factor cos 4
which was removed by division in Art. 107. Again, if we put
n=1 and take the upper sign in the denominator, we obtain
A 270° 54°: and si o . 4o o 1+ ./b

-——F == ; and gin (~ 54°) = —sin 54°=—~cos 36° = - 7
and thus we see a reason for the appearance of the other root in the
quadratic equation of Art. 107, besides the root which we used.

111. To find the sine and the cosine of an angle of 9°, and
of an angle of 81°.
By Art. 100,
6in 9°+ 008 9° = /(1 + sin 18 = .~/$3-;f-1‘2,

thus ‘ 4=

6in 9 - 008 9°= — (1 - sin 18" =~V C=/%),
herefore NP EN. BN N}

cos 9= LB+ 0+ SO = J5)

And 5in 81°=cos 9% ¢ cos 81°=sin 9°.

We have now found expressions for the sines and the cosines
of the following angles, 9°, 15°, 18°, 30°, 36°, 45°, 54°, 60°, 72°, 75°,
81°%. (See Arts. 36, 37, 92, 107, 108, 111.)

Bince 3°=18°~15°, we can obtain the gine and the cosine of 8°
from those of 18° and 15° by Art. 77; and then by means of
Art. 76 combined with results already obtained, we can easily find
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the sine and the oosine of any angle comprised in the series
3, 6, 8°, 12.,...
112, In Arts. 82and 91 we have given expressions forsin 24,

oos 24, sin 34, and cos 34 in terms of sin 4 and cos 4 ; we may
also express the sines and cosines of 44, 54,... in a similar way.

Forsin (n + 1)4 +sin (n—1)4 = 2ginnd cos 4; =

therefore gin (n+1)4 =2sinnd cos 4 —sin (n—1)4;
let n=23 ; thussin44 =2sin 34 cos 4 —sin 24;
let n=4; thussin 54 = 2 sin 44 cos 4 —sin 34 ;

and 8o on; thus we can find in succession sin 44, sin 54,..., in
terms of the sine and cosine of 4.
Similarly, the formula
cos(n+1) 4 +cos(n—1)4=2cosnd cos 4,
may be used to find in succession cos 44, cos 54,...

This subject will be considered again hereafter, and we shall
then give general formule for the sine and the cosine of nd in
terms of the sine and cosine of 4 for any integral value of n.

113, It is easy to find expressions for the Trigonometrical
Ratios of any compound angle in terms of the Ratios of the com-
ponent angles. For example,

sin (4 + B+ C)=sin (4 + B) cos C + cos (4 + B) sin C
=gin 4 cos B cos C +sin B cos C cos 4
+8in C cos 4 cos B—sin 4 sin Bsin C.
Cos(4 + B+ C) =cos (4 + B)cos C —sin(4 + B)sin
= cos A cos B cos C' - cos 4 sin Bsin C
— o008 Bsin 4 sin C ~ cos €' sin 4 sin B.

Tm(A+B+0)=Z§—§% -

gin 4 008 Boos C +8in B cos C'cos 4 +8in C 0084 cos B—sind sin Bsin €
0084 008 B cos C—cosd sin Bsin('—cos Bsind sin 0'—cos C'sind sin B’
divide both numerator and denominator of the last expression by.
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oos A 008 B oos C ; thus we obtain
tan 4 + tan B + tan C - tan 4 tan B tan C
tan(4+ B+ 0) = G BtanC—tquCtan 4 —tan 4 tan B’
Suppose B and C each equal to 4 ; thus we have, as in Art. 91,
3 tan 4 — tan’4
. 1-8tan'4d °
114. When three or more angles are connected by some

relation, we may often find that some simple relation exists among
some of their Trigonometrical Ratios.

For example, if 4 + B+ C = 180° then will
sin 24 +sin 2B +8in 2C = 4 sin 4 sin Bsin C.

For sin 24+ sin 2B =2 sin (4 + B) cos (4 - B) =2 sin (' 008 (4 - B)
and gin 20 =2 gin C cos C =~ 28in C cos (4 + B), (Art. 48);
therefore

gin 24 +sin 2B + sin 2C = 2 sin C {cos (4 — B) — cos (4 + B)}

=4 sin C sin 4 sin B.

Again, if 4 + B+ C =180° then will

tan 34 =

cosd +conB+oosCml+dsing sinsins.
For cosA+cosB=2cosA—"-£cosA—_£=2singoosA—_‘§;
2 2 2 2
and cosC=1- 2si.n'§; fherefore

oos.A+cosB+cosC=l+2dn-g<mA;B—shg)

=l+2sin£2"(oosf1—5—8-cosA_;_
=l+4si.n%aingsin—2q.
Again, if 4 + B+ C = 180°, then will
tan 4 + tan B + tan C = tan 4 tan B tan C.
For tan 180°=0, therefore tan (4 + B+ C)=0; and therefore by
Art. 113, tan 4 + tan B + tan ('~ tan 4 tan Btan C' = 0.
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Again, by Art, 113, .
1-tan B tan C — tan C tan 4 — tan 4 tan B
oot (4 +B+0) = e BrtanC—ten A tan Btan 0 ’

now cot 90°= 0 ; hence if 4 + B+ (C = 90° then will
1 =tan B tan C + tan € tan 4 + tan 4 tan B.
The relations which have been obtained in the present Article
hold whether 4, B, and C' are positive or negative provided that
A+ B+(C =180 thus they hold if 4, B, and C are the angles of

a triangle: but this is of course a particular case, as the angles of a
triangle are all positive quantities.

Any relation which has been found on the supposition that
4 + B+ (C=180" will also hold when we change 4, B, and C re-
g, 90"—?, and 90"—%: for on the suppo-

sition adopted the sum of the last three angles is equal to 180°,

spectively into 90° -

115. For another example, suppose we have to investigate
what relation must exist among the angles 4, B, C, in order that

008’4 +cos’ B + cos"C' + 2 cos A cos B cos C' — 1 may be zero.

cos* 4 + cos' B + cos*C' + 2 cos 4 cos Beos C -1
=(cosA+cosBoosC)‘+cos’B+oos’0’— 1 - cos’ B cos*C

=(cos 4 + cos B cos 0)* — (1 — cos’ B) (1 - cos*()

= (cos 4 + cos B cos )" — sin’ B sin*C

= (008 4 + cos B cos C' + sin B sin (') (cos 4 + cos B cos ' - sin Bsin ()
={co8 4 + 008 (B~ C)} {cos 4 + cos (B + C)}

A+B-C A-B+C A+B+C B+C-4A

=4 oos 3 cos 3 cos 3 cos 3 .

Hence in order that the proposed expression may be zero, one of
the four cosines last written must be zero, and thus one of the four
compound angles must be some odd multiple of a right angle,  *
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MISCELLANEOUS EXAMPLES.
Prove the following formuls : *
L M:l—t&nﬂt&ny—t&nyt&na—mamﬂ.

cos a cos 3 cos y
2. %=Ma+m3+m7—Mam3m7.
8. sin(a~p)+sin(B—y)+sin(y-a)
+48in 2] Bsmg——sm~2-a=0.

4. 4gin (0 - o) sin (mf — a) cos (§ — mb)
=1+ cos (20 - 2mb) — cos (20 — 2a) — cos (2mb — 2a).
5. sin(a +p)cos B —sin(a + y) cos y =sin (B —y) cos(a+B+7).
6. cos(a+B+y)+cos(a+B—7)+cos(a+y—p)
+cos (B +y—a)=4cosacosBcosy.
7. cos2a+cos2B+cos2y+cos2(a+B+y)
=4 cos (a + 8) cos (B + y) cos (y +a).
sina sin 8
sim (a = ) im (a - y)*ain(ﬁ—y)sinoe-a>
siny ¢
Tsn(y-a)sin(y- )
9. cos(a+p)sinfB—cos(a+y)siny
=gin (« + B) cos B — sin (a + y) cos y.
10. sin(a+8—2y)cos B —sin(a +y~2B)cosy .
= sin (8~ y){c08 (B + - a) +cos (o +y— ) +co8 (a+ B~ )}
11. sin(a+B+y)sinB=sin (a +B)sin (B +y) —sinasiny.
12. sina gin B sin (8 — a) + sin B sin y sin (y - B)
+sin y sin a sin (@ —y) + sin (B - o) sin (y - B) sin (a — y) = 0.
13. cos (a + B) sin (& — B) + cos (B + y) sin (B~ )
+ 008 (y + 8) sin (y—8) + cos (3 + a) sin (§-a) =0
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sin (3 - B) sin (a — y) + &in (8- ) sin (a - 3)
+8in (y - 8) sin (a - B) =0.

If A+ B+ C =, prove the following formuls contained in the
examples from 15 to 35 inclusive.

15.

16.

117.

18.
19.

20.

21.

22.

23.
24.

25.

26.
27.

28,

29.

30.

A B (o 4 B . C
oot§+oot2+oot§-oot2cot200t§ .

B C

. . \ 4
nnA+mB+sm0=4oos§ co8 5 008 7.

. . . . B.C
smA—smB+smC’=4mn§cos§sm§.
co824 +cos2B +cos20 +4 cosdcosBecosC +1=0.
cos 44 +cos 4B + cos 4C + 1 = 4 cos 24 cos 2B cos 2C.

eosA+cosB+cosg-4 "_Acos"—Bcos'-a

2 2 2 4 4 4
mé_m3+mg=4mw+44m1r-3mw+0

2 2 2 4 4 4 °
sind rain B asinl 1 dain™ A n ™" Bn™-C

2 2 2 4 4 4 -

gin’ 4 4 sin’B + 8in®C - 2 cos 4 cos Beos ' = 2.

sin'2A +ain'2B+si.n'2C'+2cos2A cos 2B cos 2C = 2.

B, (4 C 4
ta.nzta.n2+t&n2t&n2+t&n2tan2 =1

sin 4 +sin B - sin C A B

gind +sin B+8inC “‘“2*‘"‘2

1+ 0084 cos BcosC=cos Asin Bein C +cos Bsin 4 sinC

+cosCsinAsin B. |

oot A + cot B + cot O’ = cot 4 cot B cot ¢

+ oosec 4 cosec B cosec C.

C’ _(sinB+sinC—sin4)(sinC +sin 4 — smB)

4sin 4 sin B

The expression oot4+m will retain the same

value if any two of the quantities 4, B, C, be interchunged.
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4 B C
tand +tan B+tan¢ O FOFEZ

(sin 4 +sin B +sin C)* =93 ¢sdcosBoosC
nr nd nB nC

gin nd + gin B + gin nC = 4sm—2—eos g 008 5= 008 5,

if » be an intéger of the form 4m + 1 or 4m + 3.

33.

sin nd + sin B+ sinnC = — 4 con o sin”_24 si.n%}-gsin%q,

if n be an integer of the form 4m or 4m + 2.

34,

385.

36.

A+c B C_4OOSB+0 A+0’008A+B
0085 08—2—+008—2— 1 co8 i 1 .
tomA.+ta.nB+ta.n0+tanA+tanB+tan0
tanB tanC tand tan C  tan 4 = tan B

=gec 4 sec Bsec(C - 2.

If the sum of four angles be two right angles, the sum of

their tangents is equal to the sum of the products of the tangents
taken three and three.

317.

ten(d~B) 60’0, ove that tan 4 tan B = tan’C.

B—a7 *ad

tan’a _ cos B (cos  — cos a)

38. Given fan'B = oo8 @ (c0sz 008 )’
shew that m"%: ““*’%t“n’g-‘

39. Ifcos’0=-~—'[—;, cos'0’=z'—?7—;, and %:ﬁ.‘_‘l‘.’;,
shew that m'§m'§'.m'§.

40. If cosa=cosf3 cos ¢ =cos B cos¢’, and

sina= 2sm¢ ¢ , shew that ta.n'2 ta.n'ﬁtan'p'.

2 2

0, I t‘i"(“"3)=““‘.("""’), shew that
gin 6

sin 8
cot 8 — cot @ = cot (¢ + 6) + cot (a— B).
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9. If 5) = tan’a — tan'B, then oosoat?:—g

smO “tan 6
43. lt'ta.n¢—oos€ta.na, and tana’ = tan 0 sin ¢,
then one value ofta.n"”xsi:a.na;at 4-2-a'

44. Find the relation between the angles a, .B, 7, when the
cosines are connected by the relation
1 - cos®a — cos"8 — cos®y + 2 cosa cos B cos y = 0.
6. I “"“(:“) =t‘m(z+ﬁ)= 204, then wil

“-” sin® (a B)+"’ 2 sin' (B-7) + ~—— sin’ (y—a) = 0,

ta.n 0 tan’ sinf _sin ¢
6. I _—'ﬁ 1, and o “sing’
shew that gin 0 = ~sna

(1% cosacos)
sin(0—a) a dcos(9—a.)

. U 50=h b ™ ow(@=p) "0
aa’ + bb’
then 008((1 - B) = m.
48. Having giveh tan¢ = 5%15’0-%?0 , shew that one of the

¢ . 6 T
values of tan - is ta.nétan(‘:—i).

2
49. Given cos @ =cosacosB, cos@ =cosa’cosp,
bang tan§= B , shew that sin®8 = (seca—1)(seca’—1).

650. Having given that sin(B + C' — 4), sin(C + 4 — B), and
sin(4 + B—-C) are in arithmetical progression, shew that tan 4,
tan B and tan C, are in arithmetical progression.

51. If the sines of the angles of a triangle be in arithmetical
progression, the cotangents of the half angles are also in arith-

tical p .
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53. If the sum of the squares of the cosinos of the angles of a
triangle = 1, the difference between the greatest and least angle is

equal to the mean angle. .
53, Ifd+B+C=180", mdsin(A+g)=nsin-g,
. 4 B n-1
shew that mit&n—g'm-

54 IfA+B+C =180, md‘f“;iJ“‘B:—g

’

2
then (a:-y)cot%+(y—z)cot%+(z—w)cot—g=0.

55. If A +B + C =mr where m is any integer, then

tan 4 + tan B + tan C = tan 4 tan B tan C.

56. Shew that if a, B, y, and x are any angles

gin (20 + %) + 8in (28 + «) +sin (2y + ) —sin (2a + 28 + 2y + 3=)
=4sin(a+ B+x)sin (B +y +a)sin (y+a +a).
67. From the preceding result deduce two special cases by

supposing respectively that &= 0 and that « = 1—2" ; and from these

cases obtain the first two relations of Art. 114.
[ ]
68. If a, B, y be any angles, shew that

sina+sinﬁ+siny—4oosgoosgcos%
=2nina—fp+7—"{cos 3—a__——-_ﬂ_;y+7r+cos3/3—a—y+r
4 4

" 4 cos

.
dy—a-B+mw a+fB+y~x
5T 4 oos 2 }

59. Express cos 50 in terms of cos 6.
60 Bhew that sin 60 =2 sin 6 (16 cos* § — 16 cos® 6 + 3 cos 6).

™~ 6
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IX. CONSTRUCTION OF TRIGONOMETRICAL
TABLES.

116. If 0 be the circular measure of a positive angle less than
a right angle, 6 is greater than sin 6 and less than tan 6.

Let AODB be an angle less than a right angle and let OB =04;
from B draw BM perpendicular to O4 and produce it to C so that
MC=MB; draw BT at right angles to OB meeting 04 produced
at 7, and join C7 and OC. Then the triangles MOC and MOB
are equal in all respects, so that the angle 70C =the angle T0B;
therefore the triangles 770C and 7’0B are equal in all respects, so
that 7'CO is a right angle, and 7C = T'B.

‘With centre O and radius OB describe an arc of a circle BAC;
this will touch BT at B and C7 at C.

Now we assume as an axiom that the straight line B( is less
than the arc BAC; thus BM the half of BC is less than BA the

balf of the arc BA(C ; therefore %is less than %; that is, the
gine of A0B is less than the circular measure of 40B.

B

‘7

Again, we assume as an axiom that the arc BAC is less than
the sum of the two exterior lines B7 and 7'C ; thus BA is lees thun,
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BT;therefore‘g—; isleathmg%; that is, the cireular measure of

AOB is less than the tangent of 4QB.

Hence sin 6, §, and tan 0 are in ascending order of magnitude
if 0 be less than 3.

117. We have assumed two axioms in the preceding Article;
the first is so obvious that it will be readily admitted; but the
second is more difficult. The student is recommended to postpone
this point for future consideration. It is however easy to shew
that the assumption may be made to depend upon another
almost identical with that which we have already been compelled
to make in Art. 14. For divide the arc BAC into any number of
arcs and draw tangents at the points of division; then from the fact
that two sides of a triangle are greater than the third, it follows
that the perimeter of the portion of a polygon thus formed, is less
than the sum of B7 and 7'C by a finite difference. Moreover
this perimeter diminishes as the number of points of division is
increased. Now assume as in Art. 14 that the perimeter of the
polygon can be made to differ as little as we please from the arc
BAC by sufficiently increasing the number of sides and diminishing
the length of each side; thus it follows that the arc BAC is less
than the sum of B7 and 7'C. .

118. The limit of # when 0 i8 indefinitely diminished is
unity.

For in @, §, and tan 0 are in ascending order of magnitude;
divide by sin 6 ; therefore 1 -———00,$.nd ! eyl in ascending order
of magnitude. Thus —0—9 lies in value between 1 and %; but
when 0 is zero, cos 8 is unity; hence as dl.mmmhu mdeﬁmtoly

0
oy approaches the limit unity. Therefore also = - approanbel

the limit wnity.
6—2
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tanf sinf 1 . s tan 6
Andu-T=Txm,the hmlﬁﬁf—o— when 0 is
indefinitely diminished is also tnity.

119. From the preceding Article we see that the limit of

msin'%whmmmmawqﬁnwyisa. .
. . @ a PO .
For min —=asin —+ ~; and when m is indefinitely great
. @ a . .
sin — + — is unity.
m ' m
Similarly the limit of m ta.niwhen m increases indefinitely is a.

Tt must be carefully remembered that in the important propo-
sition of the preceding Article, § is the ctrcular measure of the
angle considered. If any other unit of angular measurement be
adopted instead of the unit of circular measure, the limit under
consideration will not be unity. For example, let us find the limit

CH }
of Eg". when n is indefinitely diminished. Let 6 be the circular

measure of an angle of n degrees, then 6 = %"6 ; thus

sinn® sinfd =« sind
n 1 80" ¢ °
Now when n diminishes indefinitely, 6 does so also, and the limit

o . (]
ofs—l-:—ois unity ; hence the limit of'innﬁ when 7 is diminighed
‘

indefinitely ia-l%, which is the circular measure of an angle of
: ’
ons degres. Similarly we may prove that the limit of s'%‘-when

n is indefinitely diminished is the ciroular measure of an angle of
one manuds; and so on. Thus we shall find that, whatever be the
unit of angular measurement, the limit of the ratio of the sine of «
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an angle to the angle, when the angle is indefinitely diminished,
is the circular measure of the undt.

120. If 0 be the circular measure of a positive angle less than
o right angle, sin 0 is greater than 8- .

For sin 0 = Bmgoosg,andtangisgreaber tha.ng,themfom

mﬂ is greater thangoos therefore sin & is greater than

230053, thatmgreatertha.nOoos;, that is greater than
)
o(l—sin‘i). And sin'g is less than (9) therefore a fortiori

sin 0 is greater than 0(1-%'); that is, sin 8 is gmtertlmo—%'.

121. Thus we see that if 0 lie between zero and a right
angle sin 0 is less than 0 and greater than 6 7 ; snd thorefore

and greater thang—ej

0 0
is less than & 33"

2 2

]
Now oos0==1—2sin'g. Thus cos § is gxea.tertha.nl—2g ,
2

)
. ¢ . 9 &y
that is greater then 1~ . Also cos 6 is less than 1 3 §_ﬁ),

sin o

. e o (AN , .
t.hntlslessthanl—-+1—6—-2(3—2);thereforeafomonoo30|s

122. To caloulate approximately the sine of 10",

. L, . 10x
The circular measure of 10 “————180x60x60’that“64800’

thu-efomtheuineofl(fisleuthanag%ﬁ and greater than
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3
61800 4800 (6 4800) If we take for » the approximate value

8:141592653589793...we find = 64800 = *000048481368110... ; the

gine of 10” is therefore less than this decimal fraction. And ——— F1800 4800
s less than ‘00005, therefore a fortiori, sin 10” is’greater than
‘000048481368110...... —7:('00005)'; that is, sin 10” is greater

than *000048481368078......

We have thus found two decimal fractions between which
sin 10” must lie, and these decimal fractions agree in their first
twelve figures; therefore we may say that

sin 10" = -000048481368......

and we are certain that the error is less tha.nl(.},, .

The value of cos 10” may then be found approximately since it
is \/(1 ~sin 10”); or we may make use of the results established
in Art. 121. Thus it will be found that as far as thirteen places
of decimals we have

cos 10” =9999999988248......

123. It appears from the preceding Article that as far as
twelve places of decimals we have sin 10”=the circular measure
of 10”; and in the same way we may shew that sin 1” = the cir-
cular measure of 1”7 very approximately. And if » be any small
number of seoonds, we shall have approzimately sin n” = the circular
measure of n”=n times the circular measure of 1”=n x 8in 1",
the circular measure of n”

sin 1”7
number of seconds in any small angle is found approximately by
dividing the circular measure of that angle by the sine of one
second.

124, We ghall now shew how to calculate the sines of angled
which form an arithmetical progression having 10” for the common

diffar-nna

approximately; that is the

Thus n=
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Let a denote any angle, then
sin (n + 1)a +8in (n — 1).a= 2 sin na cos a;
suppose 2 cosa =2 -k, then
gin (n + 1) a+sin (n— 1) a = (2 — k) sin na,
therefore &in (» + 1) a —8in na = sin #a ~ sin (n — 1) & — k sin na.
Now suppose a = 10”, then sin a is known and cos a is known,
and therefore & is known; we put n=1, and thus we obtain the
value of sin 20" —gin 10”, and thence the value of sin 20”; next
we put n=2, and thus we obtain the value of sin 30" —sin 20",
and thence the value of sin 30”; next we put n=3, and so on.
It will be seen that the only laborious part of this operation
consists in the multiplication by % of the sines as they are suc-
cessively found; but from the value of cos10” it follows that
k=0000000023504...and the smallness of % facilitates the process.

125. When the sines of angles up to 45° have been calculated,
those for the remainder of the quadrant might be deduced by the
theorem

8in (456°+ 4) —sin (45° - A) =2 cos 45° sin 4 = /2.5in 4 ;
this would require the multiplication of the sines already found by
the approximate value of ,/2. If however we calculate the sines
of angles up to 60°, those for the remainder of the quadrant may
be very easily found from the theorem ¢
gin (60° + 4) — sin (60° ~ 4) = 2 cos 60° sin 4 =sin 4.

126. When the values of the sines of all the proposed angles
in the first quadrant are known the values of the cosines are also
known, for the cosine of any anglejs equal to the sine of the com-
plement of the angle. The values of the tangents can be found by
dividing the sine of every angle by the cosine of that angle, The
tangents of angles greater than 45° may be easily inferred from
those of angles less than 45° by the theorem

tan (45° + 4) - tan (45° — 4) =2 tan 24,
which gives
tan (46°+ 4) =tan (45° - 4) + 2 tan 24,
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The ocotangents are known since the cotangent of any angle is equal
to the tangent of the complement of the angle, The cosecants may
be obtained by calculating the® reciprocals of the sines; they may
however be obtained more simply from the tables of tangents by
the theorem 4 4
1
OOSOOA=§{M§+00t§-}. .

The secants are known since the secant of any angle is equal
to the cosecant of the complement of the angle.

127. In the method adopted for calculating the sines of angles,
the gine of 10” was first obtained to twelve places of decimals, and
then the values of sin 20", sin 30”, ... were deduced in succession.
It will not however follow that the values of the sines of all the
angles are correct to twelve places of decimals, and it is therefore
useful to be able to test the extent to which the results are correct;
and moreover it is essential to be able to test the correctness with
which the calculations are performed. We may for this purpose
compare the value of the sine of any angle obtained in the manner
which has been explained with its valuc obtained independently.

Thus, for example, we know that sin 18°= “/—i_—l- ; hence the sine

of 18° may easily be calculated to any degree of approximation, and
by comparison with thé value obtained in the tables we can judge
how far we can rely upon the tables. There are however two
formulse which are usually called formule of vertfication from the
fact that they can be easily used to verify any part of the calculated
tables. These formule are

gin A + sin (72° + 4) —sin (72°¢-4) =sin (36°+ 4) — sin (36° — 4),

cos A + cos (72°+ 4) +co8 (72° — 4) = cos (36° + 4) + cos (36°~ 4);
they may be readily demonstrated ; for

gin (72" + 4) - sin (19"~ 4) =2 con T2sin 4 =L sin 4,

sin (36° + 4) —sin (36° — 4) = 3 008 36'sin 4 =0 L ein 4,
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therefore sin A +sin (72° + 4) — sin (72°— ) =sin 4 + Jbz-lm‘

Jo+1
2
Similarly the second formula may be demonstrated; or it may be
deduced from.the first by changing 4 into 90°- 4.

Then if we ascribe any value to 4, and take from the tables
the values of the sines and cosines of the angles involved, these
values must satisfy the formule of verificaiion to a certain number
of places of decimals, if the tables have been correctly calculated to
that number of decimal places.

gin 4 = sin (367 + 4) — sin (36° - 4).

128. Some further remarks upon Trigonometrical Tables will
be given in Chapter XI., in which we shall explain the method
of using such tables. 'We will add here two theorems which will
extend the results obtained in Art. 121; these theorems will
furnish interesting examples although not of any immediate prac-
tical importance.

129. The limit of cos; cos%ccos g...cos; when the tnieger

. s o, ., sinx
n i3 indefinitely increased is "

. L X x

For amw=2sm§cos§
. x x oz
=4HmZMI cosﬁ

=8sin 2 cos ™ ogs T cos s
= 300880@10055

---------------------

.s & x x @®

=2sm-2-,-,oos§, ...... 005300520052
Theref ® o8 2 ooe 2 z _ Sz
erefore 005200540038 ...... oosz,_
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And the limit of Z'dn%when n is indefinitely increased is z, by
Art, 119. .
This result is sometimes cited as Euwler's Formula.

130. 7o prove that if « be the circular measure «of a positive
angle less than a right angle sin x i greater thamz—%.
We have, by Art. 91,

s e T g g ®
smx-3sm3 4sm3

z_ x in* %
—3(3sm 4sm3) ‘hsm3

—3’51113—,—4sm 3—4x3sm 3,

. x Y ..
=3 <3sm——4sm 3) 4 gin’ §—4x3sm 3

3sm——~4{sm 2 + 3sin® Z 4+ 3%sin 3,}

3° 3 3
Proceeding in this way we see that
ngi X ‘_ i8 =1 gind T
sinz= 3sm3. 4{ 3+3sm3 +3 3_}.

Hence, by Art. 116, sin « is greater than

3 gin & 4o® 1 1 1
M§.—?{l+§,+§‘+...+3—ﬁ.},

1L
x %:d' 3"_
3"_ 3 F-1

that is greater than 3" sin

Thus sin  exceeds the last expression ; and the excess does not
vanish however great n may be: therefore sinx exceeds the limit,

ta: hich th 1 + wnr~ “ion nnra ahe cth n 1 mad~ infinit
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But the limit of rmgimbym 119; and the Limit of

1-3i,_m1 thus '
. o
sin 2 mgreaterthanz——g.
By proceeding as in Art. 121, we may now shew that

l w‘

2 ¥ gy
(Le Cointe’s T'rigonometry, and Messenger of Mathematics, 111. 101.)

cos x is less than 1 —

MISCELLANEOUS EXAMPLES.

1. Let P be any point in a semicircle whose diameter is 4B
and centre C'; draw PM perpendicular to 4B, and draw P4, PB;
from this construction, observing that the angles BPM and PAM
are each equal to half of PCB, deduce the formula

l-cosd 4
Troosd ~ B0 g+
0 ¢
tan - tan -
9. If cos§=""%%"0 4, 2 2

a—booseg’ " J@+0) Ja-b) "
If tan’ 6= 2 tan® ¢ + 1, then cos 26 + sin® ¢ = 0,
If sec 20 = 2sec 6 cosec 6, then cosec 20 = cosec® # ~ sec” 8.
If tan §=ntan ¢, shew that tan’ (6 - ¢) cannot exceed
(n- l)' .
4n
6. Reduce sin 0 + sin ¢ ~ cos §sin (f + ¢) to a single term.
ainﬂoosa(ta.na+tan,3)+ sin } (a—B)
1~ cos (a +S) cos,Bsmi(aﬁB)"
8. Find approximately the height of an object which at the
diatance of a mile subtends at the eve an angle of one minute,

7. Shew that
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9. Find approximately the distance at which a circular plate of
six inches diameter must be placed so as just to conceal the Moon,
supposing the apparent diameter of the Moon to be half a degree.

10. Ifsin 34 =nsin 4 be true for any value of 4 besides zero,
or two right angles, or a multiple of two right angles, shew that n
must lie between 3 and — 1; solve the equation when n = 2,

284008 % shew that tan(a—p) = (1 —n) tan a.

1L If tan g= 2000000

12. If sin 39 be given, determine the number of values of
tan 6.
13. Prove that 64 (cos®4 +sin®4) =cos 84 + 28 cos 44 + 3b.

14. Find all the values of 6 and ¢ which satisfy
cosfcosp+1=0.

15. If n'sin® (a+ B) =sin'a + sin* B — 2 sin a sin B cos (a - B),

shew that tn.na=#ta.nﬁ.
L ¥}
. .. sin 46 cot 0 .. .

16. Find the limit of vors 96 oot 20’ when 0 i8 indefinitely
jiminished.

Solve the following equations :

17. sinf+cosf=,/2. 18. . /3sinf-cosf=,/2.

19. gin 20 =cos 6. 20. cos 6 — cos 20 =sin 36.

21, (4 -./3)(sec @ + cosec 6) = 4 (sin 6 tan 6 + cos 8 cot ).
22. cot§—tand =cos+ sin 6. 23. 2sin’0 +8in"20=2

24, mo+2cotzo=smo(1+tmotmg).

26, sin® 20— sin’ 0 = sin' - 26. cosec0=oosecg.

97, co8 61008 30 = cos 56 cos 76 28. sinOsinQG:%.

.
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20, 4sin’f+&in'20=3. 30. (1- tan6)(l +&in 26)=1+tané,
81. &in 0 +sin 26 + sin 30+ sin 46 =0,

33. sin 0008 0= 4sin foos" 0,

33, (cot - tan6) (23— /3) =4 (3+ J3).

34, 2~/2:>os(£-0)(l+sin0)=l+eos20.

35. 8in90 +sinbf+2sin" 6= 1.

X. LOGARITHMS AND LOGARITHMIC SERIES.

131. It will be necessary now for the student to become
acquainted with the nature and use of logarithms, and the mode
of calculating them. As it is usual to introduce into works on
Trigonometry a Chapter on these subjects, we shall repeat here
part of the chapter on Exponential and Logarithmic Series from
the Algebra.

1382. Suppose a“=n, then x is called the logarithm of n to the
base a; thus the logarithm of a number to a given base is the
index of the power to which the base must be raised to be equal
to the number. .

The logarithm of n to the base a is written log,n; thus
log,n =  expresses the same relation as a” = n.

For example 3*=81; thus 4 is the logarithm of 81 to the
base 3.

If we wish to find the logarithms of the numbers 1, 2,8, ...
to a given base 10, for example, we have to solve a series of equa-
tions 10°=1, 10°=2, 10°=3,..... We shall see in some sub-
sequent Articles that this can be done approzimately, that is, for
example, although we cannot find such a value of x as will make
10"=2 exactly, yet we can find such a value of z as will make 10"
differ from 2 by as small a quantity as we please,
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We shall now prove some of the properties of logarithms.

133. The logarithm of 1 is O whatever the base may be.
For o’ =1, therefore log, 1 = 0.

184, The logarithm of the base itself is unity.
For &' = a, therefore log,a=1. '

135. The logarithm of a product ts equal to the sum of the
logarithms of its factors.

For let x =logm, y=log.n;
therefore m=a", n=d*;
therefore mn = a"a® = a**¥;
therefore log.(mn) = 2 + y = log.m + log,n.

186. The logarithm of a quotient is equal to the logarithm of
the dividend diminished by the logarithm of the divisor,

For let z=logm, y=Ilogm;
therefore m=a", n=a';
m_8
therefore Rt @sT
m
therefore log, n=ZmY= log.m - log,n.

137,  The logarithm of any power, integral or fractional, of a
number 18 equal to the product of the logarithm of the number and
the index of the power.

For let m =a"; therefore m" = (a*) = a™,
therefore log, (m") = re=rlog,m.

138. To find the relation between the logarithms of the same
aumber to different bases.
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Let z=logm, y=Ilogm ;
therefore m=a"and =b";
therefore a=b ;

H y
therefore @’=b, and V" =a;
therefore 3 = log,b, and g: logsa.

2

Hence y =z log,a, and = Togoh’

Hence the logarithm of a number to the base b may be found
by multiplying the logarithm of the number to the base a by

1
log.a, or by Togb’
We may notice that log,a x log,b = 1.

139. In practical calculations the only base that is used is
10 ; logarithms to the base 10 are called common logarithms. We
will point out in the next two Articles some peculiarities which
constitute the advantage of the base 10. 'We shall require the fol-
lowing definition : the integral part of any logarithm is called
the characteristic, and the decimal part the mantissa.

140. In the common system of logarithms, if the logarithm
of any number be known we can vmmediately determine the loga-
rithm of the product or quutient of that nwmber by amy power
of 10.

For  log, (& x 10°) =log,, ¥ + log,, 10" =log,, N +n,
log,, %_ =log,, N —log,, 10" =log,, N — n.
That is, if we know the logarithm of any number we can

determine the logarithm of any other number which has the same
figures, but differs merely by the position of the decimal point.



96 LOGARITHMS AND LOGARITHMIC SERIES,

141, In ths common system of logarithms the characteristio
of the logarithm of any number can be determined by wnspection.
For suppose the number to be greater than unity and let the

integral part consist of n+1 figures, so that the number lies between
10* and 10**; then its logarithm must be greater than n and less

than n + 1 : hence the characteristic of the logarithm, is n.

Next suppose the number to be less than unity, and let there

be n ciphers between the decimal point and the first significant
figure, so that the number lies between T:—)"' and me , that is,
between 10™ and 107¢*); then its logarithm will be some
negative quantity between —n and — (n+1); hence if we agree
that the mantissa shall always be positive, the characteristic will

be — (n +1).

142. By reason of the properties explained in the two pre-
ceding Articles it is unnecessary in a table of common logarithms
to print either the characteristics of the logarithms or the decimal

points of the numbers.

For example, we find in a table the following figures:

Numbe: Logarithm
15627 1938756

This means that *1938756 is the mantissa; for the number 15627
the corresponding charlicteristic is 4, and therefore
log 15627 = 4:1938756.

Similarly log 156-27 = 2:1938756, and log ‘0015627 = 3-1938756 :
in the last example§ is used instead of - 3, so that we express in
the manner indicated the fact that log ‘0015627 =— 3 + *1938756,

It is necessary to notice one point in practical operations
with negative characteristics.

Suppose we require the logarithm of the cube root of 0015627,
By Art. 187 the logarithm is 4 of 31938756, The division here
can be immediately effected; for § of — 3 is —1; and } of *1938756
is 0646252 : thus the required logarithm is 10646252,
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But suppose we require the logarithm of the square root of
0015627. By Art. 137 the logarithm is } of 3-1938756. It is
convenient now to put 3:1938756e in the form —4 + 1-1938756;
then dividing by 2 we obtain — 2 + 5969378, so that the required
logarithm is 2-5969378.

Similarly*if we require the logarithm of the sixth root of
‘0015627 we put 31938756 in the form —6 +3:1938756; then
dividing by 6 we obtain —1+ 5323126, so that the required
logarithm is 1-5323126.

‘We shall now proceed to investigate formule for the calcula-
tion of logarithms.

143. 7o expand a® in a series of ascending powers of x, that
i, to expand a number in a series of ascending powers of s
logarithm to a given base.

a'={1+(a-1)}"; and, expa.ndmg by the Binomial Theorem,

wohave  {l+(@-DpF=1+z(a-1)+=E N @ 1y

" a:(m-l- %)2(.933— 2) @-1y+ x (x— 1) (.'c 2) (m 3) (@=1)'+

=1+z{a—1-%(a—1)’+§(a—1)'—}(a.—1)‘+ ...... }
+ terms involving &% «°, and higher powers of .

......

This shews that a® can be expanded in a series beginning
with 1 and proceeding in ascending powers of x; we may there-
fore suppose that

a'=1+cz+ca’ +:.:c‘ +eoxt+ ..
where ¢, ¢, c,...... are quantities which do not depend on w,
and which therefore remain unchanged however = may be

changed ; also
e,=a-1-3(a-1) +3(a—-1Y-3(a-1)+......
while ¢, o,...... are at present unknown; we proceed to find
T T. 7T
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their values. Changing x into # +y we have
at'=14+ec (x+y)+c,(@+y) +o, (x+y)* +
=l+cy+ecy +ey™+ ...
+(e,+2y+3cy'+...)2
+ terms involving #* and higher powers of z;
but a™=aa’=a{l+cx+c’+c @+ ...... }
=a'+ec T+ + ......

Since the two expressions for @™ are identically equal, we
may assume that the coefficients of % in the two expressions are
equal, thus

o,+2cy+3cy +4ey + ...... =c,u
=c{l+ey+ey +ey+ ...}

In this identity we may wssume that the coeflicients of the
corresponding powers of y ure equal ; thus

2¢,=¢*; therefore ¢, 2
c.c c?
3c=cc,; therefore c,= "?' =733
s ¢t
de,=cc,; therefore ¢, = —:1—! =13 .' Wk
~ s, 8 L* B
v *=1 R LA LA
hus « +e,x+ 2 + B + L +
Since this result is true for all values of x, take x such that
1 1,
cx= lt.heua:—c-la.nda -l+l+|2+@ L ...... ;
1

this series is usually denoted by e; thus "'=e, therefore a = 6%
and ¢, = log,a ; hence

a =1+ (loga) z+ a°gl’;) G (logL.g)'x' ...... .

This result is called the Kxnonential Theorem.
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Put ¢ for a, then log,s becomes log,¢, that is, unity (Art, 134);

thus

s‘=1+a;+’—’" 2 o

lg + [.3- + E— + ...

With respect to the assumption which has been made twice
in the coumse of this Article, the student is referred to the Chapter
on Indeterminate Coefficients in the Algebra,; he may also consult
with advantage the part of the Chapter on Exponential and Log-
arithmic Series which we do not repeat here.

144. By actual calculation we may find approximately the
numerical value of the series which we have denoted by ¢; it is
2-718281828......

145. To expand log,(1 + x) in a series of ascending powers
of ®.

We have seen in Art. 143, that ¢, =loga; that is, by
the same Article,

loga=a-1-}(@-1 +}(@-1P-}@-1)}+......

For a put 1 + 2; hence
log, (1 —x-2 x'—:—”—‘+
og,(l+x)==x gty @t

This series may be applied to calculate log, (1 +x) if = is &
proper fraction ; but unless z be very small the terms diminish so
slowly that we shall have to retain a large number of them; if =
be greater than unity the series is altogether unsuitable. We
shall therefore deduce some more ®onvenient formulse.

146. We have
2 3
log,(1+2) =z -5 +5 - % +.....
therefore log,(l—x):—x—%.-%-—%‘ ....... ’

-3
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by subtraction we obtain the value of log, (1 +z)-1log, (1 —=),

that is of log,i +e.

L

. 8
therefore log, _24‘:5 +'§+§+ ...... } ......

In this series write —— " for «, and therefore - for
m+n n
thus
m m-n 1 /m-n\> 1 /m-n\*
log.—’;—2{m+§(m) +5(m> + e .} ...-..(1)-
Put »n=1, then
m-1 1/m-1 1 /m-1\°
logsm = 2{ +l+3<m+1> +5(m)+...} ...... (2).
Again in (1) put m=n+1, thus we obtain the value of
Io g, ; therefore
log, (n+1)—log.n

1 1 1
=2{2n+1+3(2n+1),+5(2n+1)‘+ ...... } ......... (3).
As an example of these formulee suppose we put x=1 in the
expansion of log, (1 + «): thus we obtain

. ;1,111 1
0. 2=l -g5+3-g+5 g+
1 1 1

I2%31%6%"
Again, put 1 for » in (3): thus
1 1 1
log,2= 2{3 TRty }

147. The series (2) of the preceding Article will enable us to
find log, 2; put m = 2, then by calculation we shall find
log,2 = *6931471.......
From the series (3) we can calculate the logarithm of either of
two consecutive numbers when we know that of the other. Put
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n=2, and by making use of the known value of log, 2, we shall
obtain i
log, 3 = 1:0986122......
Put n=9 in (3); then log, 9 =log, 3'=21log, 3 and is therefore
known ; hence we shall find

) log, 10 = 2:3025850......

Logarithms ‘to the base ¢ are called Napierian logarithms,
from Napier the inventor of logarithms; they are also called
natural logarithms, being those which occur first in our investi-
gation of a method of calculating logarithms, We have said
that the base 10 is the only base used in the practical application
of logarithms, but logarithms to the base e occur frequently in
theoretical investigations.

148. From Art. 138 we see that the logarithm of a number
to the base 10 can be found by multiplying the Napierian loga-

1 1
rithm by log, 10 by 330958509 by '43429448...;
this multlpher is called the modulus of the common system.

The base e, the modulus of the common system, and the
logarithms to the base ¢ of 2, 3, and 5 have all been calculated to
upwards of 260 places of decimals. See the Proceedings of the
Royal Society of London, Vol. XxvII. pa.ge 88,

The series in Art. 146 may be so adjusted as to give common

logarithms ; for example, take the series (3), multiply throughout
by the modulus which we shall denote by . ; thus

that is,

] 1)-plog,n=2 { L 1 ;
wlog, (n+1)—plogn=2p15. =8 +357 1)'+5(2n+1)°+"'}’
that is,

1 1 1
logy, (1 + 1) - logyyn =2p {2n+1 S@n+ 1 T E@ni1yt }
Similarly from Art. 145 we have

z 2 2
loglo(1+w)=p. {m—.—2-+§— I+...}.
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In fuoture we shall in general use the symbol log without
the suffix ¢ or 10; the student will be able always to infer from
the context which base we are employing: we almost invariably
employ the base ¢ in theoretical investigations, and the base 10 in
practical applications.

149. The quantity e ts tncommensurable.
For suppose if possible ¢ =’£ , Where m and n are integers; thus

.'2—24,_1_4._1.4._1
LA ERNE:
Multiply both sides by L'i5 then

+ ..

1
mn-1= anmﬁeger+ (n+1)(n+2) (n+l)(n+2)(n+3) -

1 1 1
s Tl e Y ) Rl T Y ) Y e

But

is a fraction, for it is greater than 7—‘—%_—] and less th.un the geome-
trical progression

that is, lessthm;‘.

Thus the difference of two integers is equal to a fraction, which
is absurd. Therefore ¢ is incomm?nsumble.

1560. We will conclude this Chapter by investigating two
limits which will be useful hereafter.

To find the limit of (cos ;;) when 1 is increased indefinitely,

Lt w=(o0s2) = (1-sin'2)F; then
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log u = log (l —s8in’ ;—:)* = g log (1 —sin® ;—:)

——E(Bin’gi-lsm + - 8in® S+ )
=-3 atg . RO .

This series is numerically less than

n
31" +sm +sm + },

sin® aﬁ o
that is numerically less than — el or-tan’s
2 1 —sin®® 2
—sin’ ~

But n ta; %: a when % is increased indefinitely, by Art. 119 ;

therefore n tan® % =a tan % =0 ultimately. Therefore log u=0;
therefore =1. Thus the required limit is unity.
‘sin% "
To find the limit of (— when n i8 increased indefinitely.
n
. @
gin —
We know by Art. 116 that = is less than 1 and greater than
n
sin ¢ in 2\»

sin —

—" that is, greater than cos - ; dence _;_n is less than 1" or
t,,m-

n

1 and greater than (cos ;,).; and by the preceding Article the
. By

o a\" s

limit of (oos ;;) is unity, therefore the limit of —_ is unity.



104 EXAMPLES. CHAPTER X.

MISCELLANEQOUS EXAMPLES,
)

1. Find the logarithm of 128 to the base /4.
2. Find the logarithm of 243 ,/9 to the base /3.

3. Find the following logarithms, log, 2187, log,, ‘0001,
log, cos 45°.

4. Find approximately the value of x from the equation
6°~* = 2°**, having given log 2 = '301030.

5. Given log ‘224 = @ and log 125 = b, find log 2 and log 7.
6. Required the characteristics of log, 725, and of log, 3/(*0725).
7. Given log 2 = 301030, log 405 = 2:607455, find log -003.
8 Given log 2 = '301030, log 7 = ‘845098, find log 98 and
4\4
lOg (gzg) .
9. Given log2= 30103, log 3 = 47712, find log (-0020736)},

10. Determine the sum of the series

2 4 6 .
@+@+E+...adm_ﬁ

11. Shew that «
e 1 1+2 1+2+3 1+2+3+4
IR TTE T
Find « from the following six equations :
12. 4sinxsi.n(x—a)=2co.sa—1.
13. cosB.J(a'-«")+asina=gxsin B,

14. sina+sin (% —a) + sin (% + a) = sin (¢ + a) + sin (2 - a).

+ ... ad inf.

3 1 .
16. cos(m+-2-)a+008(z+§)a=ama.

16. w'oos«:cos(a—g)+zcos(a—ﬁ)=2oosg.
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17. oot 257" a— cot 2 = cosec 3a.
18. Solve the equation m vers §¢=7 vers (a — 6).

19, Solve the equation cosn6 + cos (n — 2) 0 =cos 6.

20. Solve.the following equation, and shew that there are
seven positive values of 6 greater than 0 and less than 2,

sin @ +sin 36 = sin 26 + sin 46.

21. Find tan z from the equation tanz=tan B tan (a+ 2);
and shew that in order that tanx may be real, tan 8 must not
lie between (sec a — tan a)* and (sec a + tan a)’.

22. Find the least value of @ which satisfies
n ™ 8.2 \4
tan 2—0)+ta.n(z+ 0)_ 1T 73 ~/2> .

23. @iven sin’(n + 1)0 = sin*n6 + sin® (n — 1) where (n + 1)6,
nd, and (n—1) 0 are the angles of a triangle, find an integral
value of n.

24. Reduce to its simplest form and solve the equation

cos' —cos*a = 2 cos"d (cos 0 — cos @) — 2 sin®f (sin § — sin a).

25, Shew that all the angles which have the same sine as
@ are includod in the formula (2n + é) ws(3-a).

26. Shew that all the angles which have the same cosine
L ]
a8 a are included in the formula (n + %)w +(=-1)m (a—-g) .

27. In the formula cos%- sin% =u /(1 — 8in 4) the ambi-
guity s may be replaced by (— 1)", where m is the greatest integer

contained in 27364(;‘4 , the angle 4 being expressed in degrees.
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. ,
38. In the formula tan % = N(LHEADL 4y orpiguiy

«may be replaced by (— l)“ where m is the greatest integer

contained in 90l;-OA , the angle 4 being expressed in degrees.

29. If tan (cobx)=cot (tana), shew that the real values of

 are given by sin 2z = me)r, where # is any integer except — 1.

30. Shew how to express cos% in terms of cos 4, where n
is any positive integer.
31. From the equation cosz =« ~/ 1—4'-220-2'? deduce the

formula for sinz in terms of sin 22, and shew how the proper
signs for the radicals may be determined.

. Acos(f+a)+Bsin (6 +p) . '
32. If the expression A5 (6+ o)+ B'oos (65 B) retain the
same value for all values of 6, then will
AA’ - BB = (A'B—- AB)sin (a - B).

33. If the sum of two angles is given, shew that the sum
of their sines is numerically greatest when the angles are equal.
If the cosine of the given sum is positive shew that the sum of the
tangents is numerically least when the angles are equal.

34. If A+ B+C=90° shew unav unity is the least value
of tan’ 4 + tan® B + tan® C.
.
85. If A+ B+ C=180° shew that unity is the least value
of cot® 4 + oot® B + cot* C.

36. If A, B, C are the angles of a triangle shew that
2ot 4+ 3 cot B+ 2 cot O is never less than cosec 4 +cosec B+cosec C.

37. Shew that the sum of the three acute angles which satisfy
the equation 008’ 4 + 0os" B + cos® €' =1 is less than 180°.
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38. If each of the angles 4, B, C' be less than 90°, then
gin (4 + B + C) is less than gin 4 + sin B +sin C.

w Ll
39. Find the limit of (oos :—L‘) when 7 is increased indefinitely.

[
40. Find the limit of (cos ;.) when n is increased indefinitely.
8
41. Shew that sin 6 is greater than mo-“—‘;—-oif 8 is posi-

tive and lesstha.nzr-.

42. Shew that ( 1) continually increases as z increases

from unity to infinity ; and find the limit of the expression when
 is increased indefinitely.

X1. USE OF LOGARITHMIC AND TRIGONOMETRICAL
TABLES.

151. In the preceding two Chapters we have shewn how
tables of the values of the Trigonometrical Ratios may be cal-
culated and how tables of logarithms may be calculated, and we
shall now shew how to use such tables; we begin with tables of
logarithms. It is obvious that tables of logarithms may be cal-
culated to various degrees of approximation ;-they may be calcu-
lated to 5, 6, 7 or a higher number of decimal places. For a list
of logarithmic and trigonometrical tables the student may consult
the article Z'ables in the English Cyclopeedia, and the Report of
the British Association for 1873. Different tables present some
variety in their mode of arrangement, and are usually accom-
panied with full explanation of their peculiarities and the methods
of using the tables ; we shall not enter into any minute acoount of
the way in which tables may be used with the greatest advantage,
but shall give such general illustrations as will enable the student
to avail himself of any set of tables for the purpose of occasional
calculation. The logarithms will always he supposed taken to the
base ten.
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152. We may observe that throughout all approximate cal-
culations it is usual to take for the last figure which we retain,
the figure which gives thb nearest approach to the true value.
Thus for example, suppose we have the decimal fraction ‘3726 ;
if we wish to retain only three places of decimals we should write
*373 and not 372 ; the former is too large and the latter too small,
but the excess in the former case is ‘0004, and the defect in the
latter case is "0006, so that there is a smaller error in the former
case than in the latter case. Thus we have this general rule,
when only a certain number of decimal places is to be retained:
strike off the rest of the figures, and increase the last figure retained
by 1 if the first figure struck off be 5 or greater than 5.

‘We now proceed to explain the use of tables of common log-
arithms ; and we shall use tables of seven places of decimals.

153. To find the logarithm of a given number.

If the number be contained in the Table we have merely
to take the decimal part of the logarithm immediately from the
Table and prefix the characteristic (Arts. 141, 142). For example,
required the logarithm of 534. The table gives 7275413 as
the decimal part, and the characteristic is 2 ; therefore

log 534 = 2-7275413.
Similarly, loé 53400 = 47275413, log ‘0534 = 2-7275413,

In the last example the characteristic is — 2, and this is denoted
by the bar placed over the 2: see Art. 142.

Suppose, however, that the given number is not contained
in the Table; the Table fgr instance may give the logarithms
of numbers from 1 up to 100000 and we may require the logarithm
of 5340234. Here we can take from the Table the logarithm
of 5340200, and the logarithm of 5340300 ; we have

log 5340300 = 6-7275657
log 5340200 = 6-7275575

difference = +0000082
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The required logarithm of course lies between the two logarithms
which we have taken from the Table. Now we see that cor-
respondmg to the increase 100 in the number there is an increase
0000082 in the logarithm; and we assume that corresponding
to an increase 34 in- the number there will be a proportional
increase in the logarithm. Let x denote the quantity which
we must add to the logarithm of 5340200 in order to obtain
the logarithm of 5340234 ; then we have, from the assumption
which we have made, the following proportion :

100 : 34 :: 0000082 : x;

thorefore &= 7 x 0000082 = 0000028 (Art. 152);

therefore log 5340234 = 6-7275575 + ‘0000028 = 6-7275603,

154. We assumed in the preceding Article that the increase
in a logarithm is proportional to the increase in the number ; this
is a case of what is called the principle of proportional parts, and
although it is not strictly true, yet it is in most cases sufficient for
practical purposes. 'We shall in the next Chapter investigate the
subject, and shew to what degree of approximation we can rely
upon the principle of proportional parts.

1565. The process given in Art. 153 is facilitated in large
Tables in the following manner. Requirefl the logarithm of
23453487,

log 23454000 = 7-3702169
log 23453000 = 7-3701984

difference = .'0000185
Here by the process of Art. 153 we have to multiply
487 4 8 7
‘0000185 by y77-r, that is, by 5 + 777 + o+ Now the mul-
tiplication is effected for us, and the results given, in a small
Table headed Proportional parts, which is printed on the same
page as the two logarithms which we have taken from the Table;
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the small Table shews that 4 x ‘0000185 Proportional Parts
=+0000740, that 8 x 0000185 ='0001480,
and that 7 x 0000185 = 0001295 ; and
from these results, by dividing by 10, 100
and 1000 respectively, we obtain the
three parts which we require. The pro-
cess may be arranged thus:
log 23453000 = 7-3701984
add for 4 740
8 1480
7 1296

7:3702074095
therefore, retaining 7 places of decimals,
log 23453487 = 7-:3702074.

156. We have taken as our example a whole number ; if a
decimal fraction, or a mixed quantity formed of a whole number
and decimal fraction, be given, we may throw aside the decimal
point, and find the decimal part of the logarithm of the whole
number thus obtained ; then by prefixing the proper characteristic
wo have the required logarithm. Thus, for example, required the
logarithm of ‘23453487 and of 234-53487. The decimal part of
the logarithm is 37 ?207 4 ; therefore

log *23453487 =1-3702074 log 234-53487 = 2-3702074.

1567. To find the number which corresponds to a given logarithm.

If the decimal part of the logarithm be found in the Table, we
have merely to take the number which corresponds to it, and put
the decimal point in the number in the place indicated by the
characteristic. For example, required the number which has for
its logarithm 2-7275413. Corresponding to the decimal part
7275413 we find in the Table the number 534, and as the charac-
teristio is 2, there must be one cypher before the first significant
figure (Art. 141); therefore the number which has the given
logarithm is 0534, .

WO ~I DOV O
-
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Buppose, however, that the decimal part of the given logarithm
is not contained exactly in the Table; for example, let the given
logarithm be 13702074, we shall fing that the decimal part of this
logarithm is not in the Table; we have, however, corresponding to
the number 23454 the decimal part of the logarithm :3702169,
and corresponding to the number 23453 the decimal part of the
logarithm 3701984 ; thus

log 23454 = 4:3702169
log 23453 = 4:3701984
difference = ‘0000185

The excess of the given decimal part of the logarithm above
-3701984 is -3702074 —-3701984, that is 0000090, The required
number of course lies between ‘23454 and ‘23453 ; let d denote
its excess above ‘23453, then assuming that the increase of the
number is proportional to the increase of the logarithm, we have

0000185 : ‘0000090 :: 1 : d;

90
therefore d == ﬁs = 486
Therefore log 23453-486 = 4-3702074,
and log 23453486 = 1-3702074 ;
thus the required number is *23453486. o 185) 90-0(486
740

158. We may save the labour of dividing 16 00
90 by 185 in the preceding example by means 14 80
of the Table of proportional parts given in 1200
Art. 1656; the process of dlvmon, if per- 1110
formed, wﬂl stand thus:

Now the products 740, 1480, 1110, s,  14p
furnished ready in the Table referred to, so 160
that we need only perform the subtractions 8 1480
and put down the following steps : “1200

6 1110
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159. We will now give some examples of the use of logarithms:
we take of course all our logarithms from Tables.
Required the product of 3670:257 and 12:61158.
Log 36702 “= 35646897
5 60
7 8

Log 3670257 = 3:6646965
Log12:611 =1-1007495

b 172
8 28
Log 12:61158 = 1:1007695
3:5646965
by adding the logs 46654660
Decimal part of log 46287 6654590
70
(f 66
4 40
4628774

Thus the required number is 4628774, the position of the
decimal point being determined by the characteristic 4.
160. Required the quotient of 1234567 by 54-87645.

Log ‘P2345 =1-0914911
6 211
7 25

Log *1234567 = 1-0915147
Log 54876 =1-7393824
4 32

b 4

Log 5487645 = 1'7393860

10915147
17393860

by subtracting 3-3521287
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3-3521287
Decimal part of log 22497 = -3521246

41
2 39
1 20
2249721 .
Thus the required number is ‘002249721 ; there are two
cyphers before the first significant figure, because the character-
istic of the logarithm is 3.

161. Required the cube of -3180236.
Log'31802 =1-5024544
3 41
6 8
Log -3180236 = 15024593
3

2:5073779
Decimal part of log 32164 = 5073701

78
b 67
8 l10
3216458
Thus the required number is "03216458.
162. Required the cube root of ‘3663265.

Log 36632 = 15638606
6 e 71
5 6

Log ‘3663265 = 1-5638683
We have now to divide 1°5638683 by 3 ; that is, we have to
divide — 1 + 5688683 by 3. It is convenient to write the num-
ber to be divided thus, — 3 + 2:5638683 ; then by dividing by 3
we obtain — 1 + 8546228, that is, 1-8546228,
T e
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1-8546228
Decimal part of  log 715662 = ‘8546218
' 10
1 6
6 40
7165216
Thus the required number is -71552186.

Wo shall now explain the use of Trigonowetrical Tables.

163.  To find the sine of a given angle.

If the given angle be one which is contained in the Table of
the sines of angles the required aine is furnished immediately by
the Table; we proceed then to the case when the given angle lies
between two which are contained in the Table. For example, re-
quired the sine of 44° 35’ 25", having given from the Table

sin 44° 36’ = *T021531
sin 44° 35" = 7019459

difference = ‘0002072

The required sine of course lies between the two sines which
we have taken from the Table; let « denote its excess above the
sine of 44° 35, and assume that the increase of the sine is propor-
tional to the increase of the angle, therefore

60" : 25" : *0002072 :

therefore ”‘E(‘) x *0002072 = ‘0000863,

Therefore sin 44° 35’ 25" = 7019459+ 0000863 = 7020322,
We have thus again assumed the principle of proportional

parts, and we shall assume it throughout the present Chapter,
reserving the investigation of it for the following Chapter.

164. 1o find the amgle which corresponds to a given sine.

If the given sine be found in the Table the required angle is
furnished immediately by the Table; we proceed then to the case
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when the given sine lies between two which are contained in the
Table. For example, required the angle which has for its sine
-6970886, having given from the Thble

sin 44° 12’ =-6971651

sin 44° 11’ = ‘6969565

difference = ‘0002086

The excess of the given sine above the sine of 44°11’ is
6970886 — 6969565, that is, ‘0001321. The required angle of
course lies between the two angles which we have taken from the
Table; let n be the number of seconds in its excess above 44°11’, then

0002086 : -0001321 :: 60 : m,
y ‘0001321 _ 60 x 1321
‘0002086 anen

Therefore the required angle is 44° 11’ 38",

=38.

therefore n=60

165. To find the cosine of a given angle.

[f the given angle be one which is contained in the Table of
the cosines of angles, the required cosine is furnished immediately
by the Table; we proceed then to the case when the given angle
lies between two which are contained in the Table. For example,
required the cosine of 44° 35’ 25”, having given from the Table

cos 44° 35’ = 7122308
cos 44° 36’ = -7120260
difference = ‘0002043

Since in the first quadrant the cosine decreases as the angle in-
creases, the required cosine will be less than the cosine of 44° 35,
and the required cosine of cours8 lies between the two cosines
which we have taken from the Table; let x denote its defect
below the cosine of 44° 36/, then

60 : 25 :: 10002043 :
therefore x= g—g x *0002043 = ‘0000851,
Therefore  cos 44° 35" 25” = 7122303 — 0000851 = *7121452.
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166. To find the angle which corresponds to a given cosine.

If the given cosine be found in the Table the required angle is
furnished immediately by the Table; we proceed then to the case
when the given cosine lies between two which are contained in the
Table. For example, required the angle which has for its cosine
7169848, having given from the Table

cos 44°11"'=-7171134
cos 44°12'=-7169106

difference = -0002028
The given cosine falls short of the cosine of 44°11’ by
T171134 — ‘7169848, that is, by ‘0001286, The required angle of

course lies between the two angles which we have taken from the
Table; let » be the number of seconds in its excess above 44°11’, then

0002028 : 0001286 :: 60 : n,

0001286 60 x 1286
therefore %= 60 x 55550508 = 3028

=38

Therefore the required angle is 44° 11’ 38"

167. It will not be necessary to give examples for the other
Trigonometrical Functions ; the important fact to be remembered
is that in the first quadrant the tangent and secant increase as the
angle increases, and the cotangent and cosecant decrease as the angle
increases ; thus the tangent and secant are treated in the same way
as the sine, and the cotangent and cosecant in the same way us the
cosine.

168. The Tables of Trigonoraetrical Functions which we have
hitherto considered are called Tables of the Natwral Functions to
distinguish them from other Tables which we now proceed to con-
gider. The Table of sines of angles for example is called a Table of
natural gines; if we take the logarithms of the sines of all the angles
which have been calculated we form a new Table which is called a
Table of Logarithmic sines. Similarly, we can form a Table of the
logarithms of the cosines of angles, and a Table of the logarithms
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of the tangents of angles, and 8o on ; these Tables are called respect-
ively Tables of Logarithmic cosines, Tables of Logarithmic tangents
and 80 on. . :

169. The great advantage which we obtain from these Loga-
rithmic Tables is that calculations are much abbreviated with their
assistance ; this is especially the case, as we shall see hereafter, in
what is called the solution of Triangles. We have stated as suffi-
ciently obvious that these Logarithmic Tables may be calculated by
taking the logarithms of the values of the Trigonometrical Functions
which have been already tabulated ; it will be shewn however in
the higher parts of the subject that the Logarithmic Tables can be
calculated independently, that is, without the use of the Tables of
the Natural Functions. We proceed now to exemplify the use of
the Tables of Logarithmic Functions,

170. Since the sine of an angle is never greater than unity
the logarithm of the sine will never be a positive quantity ; also
the same remark is true for the cosine. The logarithm of the
tangent of an angle will be negative if the angle be less than
45°, and the logarithm of the cotangent of an angle will be
negative if the angle be greater than 45°. In order to avoid
the occurrence of negative quantities in the Tables it is found
convenient to add 10 to the logarithm of every Trigonometrical
Function before registering it in the Thbles; the logarithm so
increased is called the Z'abular logarithm and is usually denoted
by the letter Z. Thus L sin 4 means the Zabular logarithm
of the sine of A4, and it is equal to the real logarithm of the
sine of 4 increased by ten. Of course in calculations we shall
have to remember and to allowefor this increase of the real log-
arithms ; this will be seen when we come to the solution of T'ri-
angles. In what follows we shall exemplify the use of the Tables
of Logarithmic Functions.

171.  To find the tabular logarithmic sine of & given angle.

If the given angle be one which is contained in the Table
of the Logarithmic sines the required result is furnished imme-



118 USE OF LOGARITHMIC

diately by the Table; we proceed then to the case when the given
angle lies between two which are contained in the Table. For
oxample, required the tabular logarithmic sine of 44° 35’ 26”7,
having given from the Table

Lsin 44° 35’ 30" = 9:8463678
L sin 44° 35’ 20” = 9-8463464
difference = ‘0000214

The required tabular logarithmic sine lies of course between
the two which we have taken from the Table; let a denote its
excess above the tabular logarithmic sine of 44°35’20”; then by

the principle of proportional parts
10 : 57 :: 0000214 : =z,

therefore z = %g x ‘0000214 = -0000122.

Therefore L sin 44° 35’ 25" ‘7= 9-8463464 + 0000122 = 9-8463586.

172. To find the angle which corresponds to a given tabular
logarithmic sine.

If the given tabular logarithmic sine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic sine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic sine
9:8432894, having given from the Table

Lsin 44° 11’ 40" = 9-8432923
Lgin 44° 11’ 30" = 9-8432707
difference = ‘0000216
The excess of the given tabular logarithmic sine above that of

44° 11’ 30” is 9-8432894 — 9-8432707, that is, "0000187. The re-
quired angle of course lies between the two angles which we have
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taken from the Table; let n be the nnmber of seconds in its excess
above 44° 11’ 30", then
0000216 : ‘0000187 :: 10 : =,
therefore ~ m=10x 0000187 10 x187 .
Therefore the required angle is 44° 11’ 38" 7.
173. To find the tabular logarithmic cosine of a given angle.
If the given angle be one which is contained in the Table of the
logarithmic cosines the required result is furnished immediately by
the Table ; we proceed then to the case when the given angle lies
between two which are contained in the Table, For example, re-
quired the tabular logarithmic cosine of 44° 35’ 256" -7, having given
from the Table
L cos 44° 35’ 20" =9-8525789
L cos 44° 36' 30" = 9-8525582
difference = ‘0000207
'The required tabular logarithmic cosine lies of course between
the two which we have taken from the Table, and is less than the
tabular logarithmic cosine of 44° 35’ 20”; let & denote its defect
below the latter ; then
10 : 5:7 = +0000207 » z,

therefore z =§1'—g % 0000207 = 0000118,

Therefore L cos 44° 35’ 25" -7 = 9-8525789 — 0000118 = 9-8525671.

174.  To find the angle whick corresponds to a given tabular
logarithmic cosine.

If the given tabular logarithmic cosine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic cosine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic cosine
9:8655086, having given from the Table .
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L cos 44° 11' 30" = 9-8565264
L cos 44" 11' 40” = 9-8555060
differénce = 0000204
The given tabular logarithmic cosine falls short of that of
44°11' 30” by 9-8556264 — 9-85565086, that is, -0000178. The
required angle of course lies between the two angles which we
have taken from the Table ; let » be the number of seconds in its
excess above 44°11’ 30”; then
0000204 : ‘0000178 :: 10 : =,
therefore n=10x MH—? = 1—:,,8——0 =8T.
Therefore the required angle is 44° 11’ 38"7.

175. It will not be necessary to give examples for the other
Trigonometrical Functions ; the important fact to be remembered
is that in the first quadrant the tabular logarithms of the tangent
and secant ¢ncrease as the angle increases, and the tabular logarithms
of the cotangent and cosecant decrease as the angle increases ; thus
the tangent and secant are treated in the same way as the sine,
and the cotangent and cosecant in the same way as the cosine.

EXAMPLES.

1. Given log 12440 = 4-0948204,
log 12441 = 40948553,
find log 12440-35.

2. Given log 10686 = ‘0288152,
log 1-0687 = 0288558,
find the number of which the logarithm is ‘0288355,

8. Given log 23456 = 4-3702540,
log 23457 = 4-3702726,

form a table of proportional parts for the intermediate numbers,
snd find log -2345638.
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4. Find the number whose logarithm is — (1-8753145), having
iven
d log 1:3325 = 1246672, log,1:3326 = 1246998,
5. Given log 3855 =-5860244,
log 3-8551 = *5860356,
find * log(-00385504)t.
6. Given log 24 =1-3802112,
log 4:8989 = -6900986,
log 48990 = -6901074,
find (24)} to six places of decimals.
7. Given log 14271 =4-1544544,
log 20313 = 4-3077741,
log 20314 = 43077954,
find (142-71)}.
8. Given log 7= -8450980,
log 58751 = 4-7690153,
log 58752 = 47690227,
find ('07)* to seven significant figures.

9. Given log2=-3010300, log 5743491 =-7591760,
find the fifth root of -0625. ¢

10. Given log2-7=-4313638, log 5172818 = 7137272,
find the value of 27-%.

11.  Given log 71968 = 48571394, diff. for 1= 0000060,
find the value of &(-0719686).

12. Given log103=2:0128372, log 7440942 = 6:871628,
find (1-03)™.

18. Find the value of 64 {1 — (1'05)~*}, having given
log 105 = 2-0211893, log 37689 = 4:5762140.
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14. Find approximately 5V%, having given
log 2 = +301030, log 1562944 =-193943,
log 349485= 5643428, log 3:666  =-562887,
log 36566  =563006.
15. Having given
log 12 = 110791812, log 1257915 =*0996512,
log 1121568 = +0498256, find the value of
(1-44)7° - (1-44)7
16. Having given
log 105 =2-0211893, log 5303214 = 67245391,
log 3768894 = 6°576214, find the value of

1 {._1_ 1
05 1(T05)® ~ (1-05)"} :
17. Given sin 47° = ‘7313537,
sin 48° = 7431448,
find sin 47° 1",
18. Given sin 7° 17’ = *1267761,
gin 7° 18’ = *1270646,
find sin 7° 17’ 25”.
19. Given . Lsin 17° 1’ = 94663483,
Lsin17°  =9-4659853,
find Lsin17°0° 12",
20. Given Lsin 26° 24’ = 9-6480038,
Lsin 26° 25’ = 9-6482582,
find Lsin 36°24’12”.
21, Given L oot 72° 16" = 9-5052891,
Zcot 72° 16 = 9-5048538,
find L cot 72° 15’ 35”.
22. Given L cot 81° 46’ = 9:1604569, diff, for 10” = 0001486,
find the angle whose L cot is 91603493,
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23, Given L oos 20°35'20"=9-9713351, diff. for 10”=-0000079,
find the angle whose Z cos is 9-9713383.

24, Qiven L ocos 34°24'=9-9165137, diff for 1'=-0000865,
find L cos 34° 24’ 26", and also the angle whose L cos is 9°9165646.
25, Given L sin 37° 19'=9-7826301, diff-for 1' = 0001657,

L cos 37° 19’ = 990056294, diff. for 1’ = 0000963,
find Lsec37°19' 47”7, and L tan 37° 19’ 47",

26. Given L sin 32°18"= 97278277, diff. for 1’ = 0001998,
L cos 32°18'=99269913, diff. for 1"=-0000799,
find  Lsine, L cosine, and L tangent of 32° 18’246,

XII. THEORY OF PROPORTIONAL PARTS.

176. We shall now investigate the principle of proportional
parts, the truth of which was assumed throughout the preceding
Chapter. The logarithms in the present Chapter are supposed to be
logarithms to the base 10 ; and we will suppose that the Table of
logarithms is calculated to seven places of decimals, and that it con-
tains the logarithm of every whole number from 1 to 100000.

177, To shew that the change of the logarithm ts approximately
proportional to the change of the number.

We know that log (n+d)—logn0=log1-;—§=log(l + 9 ,

d & o
and by Art. 148, 1og(1+7i‘f)=,t(;‘—-2-17+3—n-,_...),

where u is the modulus, so that p = '43429448......

Suppose that n is an integer containing five figures so that » is
not less than 10000, and suppose that d is not greater thun unity.
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Then £ isless than | (olm)', and a fortior less than <000000008;

8
%:7 is less than one ten-thouwsandth part of this, and so on.

Hence at least as far as seven places of decimals we have
log (n +d) - logn=’—;—d.

This equation establishes the required result ; for it shews that
if the number be changed from n to n + d the corresponding change

in the logarithm is approximately ’%d , that is, the change of the
logarithm i8 approximately proportional to the change of the number.

178. The principle of proportional parts is thus shewn to hold
in the case of the logarithms of numbers to a sufficient degree of
accuracy for practical use, For when we wish to find the loga-
rithm of a given number we can suppose the decimal point in the
number placed after the fifth figure, so that the number is thus
made to lie between two which differ by unity and which are both
contained in the Table; and we have shewn that as far as seven
places of decimals the change of the logarithm is proportional to
the change of the number. Then we can if necessary change the
position of the decimal point and make the corresponding change
in the characteristic of the logarithm ; and thus we finally obtain
the logarithm of the original given number. Similarly we may
proceed if we want to find the number which corresponds to a
given logarithm lying between two in the Table.

179. We will now shew how the result of Art. 177 is applied
in practice. We have

log (n+d)—logn="—-:,

also log(n+1)—logn=£=8§uppose,

thus log (n + d) = log n +d3,
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Now 8 being the difference of two known logarithms is furnished
immediately by the Table; and to obtain the logarithm of (n + d)
we multiply this known quantity 8 bythe given fraction d and add
the product to the logarithm of n. This is the rule which was
used in the preceding Chapter, Art. 153, in order to find the
logarithm of & given number.

Again, suppose we require the number which corresponds to a
given logarithm. Let n and n + 1 be integers between which the
required number lies, and denote the required number by = +d.
Then log (v +d) —logn is known ; call it «, and let § denote the

x

known quantity log (n +1)—logn; thus dd=zx; therefore d= 5°
This is the rule which was used in the preceding Chapter, Art. 157.

180. We shall now proceed to examine how far the principle of
proportional parts holds in the case of the Natural Trigonometrical
Functions ; this we shall do by considering these Functions sepa-
rately. 'We shall suppose throughout this Chapter that the angles
which occur are positive angles not exceeding a right angle,; this is
sufficient because it has been shewn that any Trigonometrical
Function of any angle is numerically equal to the same Function
of some positive angle not exceeding a right angle ; see Art. 55.

181. 7o prove that in general the change of the sine of an
angle s approximately proportional to the change of the angle.

We have sin (6 + &) — sin = sin k cos 6 — sin 6 (1 - cos b)

1- cos!z)
sin A

=sinhcos€(1~ta.n0
.

=sinhcos€(l-—tan0tang).

Let us now suppose. that % is the circular measure of a very
small angle so that sin A =& approximately ; thus, approximately,

sin(o+h)-sino=heoso(1-momg);
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let us also suppose that 6 is not very nearly equal to; 8o that

tan @ is not very large, and thus tan 4 ta.ng may be neglected.
‘We have then, approximately,
gin (0 + k) —sin 6 = A cos 6,
and this establishes the proposition.
Similarly sin (0 — ) — sin @ = — & cos 6 approximately.

182. We may however require to know more exactly the
amount of error to which we are liable in using the result of the
preceding Article; this point we will now examine. The approx-
imate value of sin (6 + 4) - sin 6, is A cos 6, while the exact value is
sink cos@ — (1 — cos 4) 8in 6 ; thus to obtain the approximate value we
change sin/ into /4 in the first term of the exact value, and we neglect
the second term of the exact value. First then consider the error
produced by writing 4 for ginA. The circular measure of an angle

T

of half a degree is 360 and by Art. 130 sin % cannot differ from A

8
by so much as ’% , 80 that it may be shewn that for an angle of half

a degree the sine cannot differ from the circular measure by so much
as ‘00000012. Hente if our calculations extend to only seven
places of decimals an error will hardly be introduced by changing
sink into A even for an angle of half a degree, and a fortiori no
error will be introduced by the change if we restrict %4 to be not
greater than the circular measure of an angle of one minute. Next
consider the error produced by neglecting the term sin 6 (1 - cos %),

that is, 2sin03in'g. Since sin 6 is never greater than unity and

smg is lees thn.n% , the value of the term neglected is less than

g
’;— ; and if A be the circular measure of an angle of one minute %.
i8 leas than ‘0000001. Hence if our calculations extend to only '
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seven places of decimals, no error will be introduced by neglecting
the term sin 6 (1 — cos A) if we restrict % to be not greater than the
circular measure of an angle of ene minute.

Therefore if we have a Table of natural sines calculated for
every minute to seven places of decimals, no error will be intro-
duced by our cdlculating to seven places of decimals the sine of an
angle which lies between two in the Table from the formula

gin (6 + h) —sin 6=k cos 6.

183, We will now shew how this result is applied in practice.
Suppose that we have a Table of natural sines calculated for every
minute, and that we require the sine of an angle which lies be-
tween two in the Table. Let & be the circular measure of an angle
of one minute; let § and 6 + & be the circular measures of the angles
in the Table between which the given angle lies, and let 6 + A be
the circular measure of the given angle. Then

gin (0 + k) —sin 6 = & cos 6 = & suppose,

sin(0+h)—sin0=hcoso=%8;

. . h . 8
thus sxn(0+h)=sm0+128=sm0:—@8,
where s is the number of seconds in the angle of which 4 is the
circular measure, Now 8 is the difference between two consecutive
sines in the Table, and is therefore furnished i.mmedia.tely by the

Table, and we must multiply this knowu quantity by =— 60 and add

the result to sin 6 in order to obtmn gin (6 + k). This is the rule
which was used in the preceding Chapter, Art. 163.

Again suppose that we require the angle which corresponds to
a given natural gine. Let & be the circular measure of an angle of
one minute; 6 and 6 + % the circular measures of angles in the
Table between which the required angle must lie, and let 6 + & be
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the circular measure of the required angle. Then sin (6 + A) —sin
is known; call it », and let 8 denote the known quantity

sin (0 + ) — sin 0 therefore’-;-f=z, therefore  =%; lot & be the

%780
number of seconds in the angle of which the circular measure is A4,
then (_55 =§, therefore 3_6—(8)3:. This is the rule vhich was usad

in the preceding Chapter, Art. 164.

184. When 6 is nearly -215 , since cos @ is then very small, the

term % cos @ will be very small if A be the circular measure of a
small angle. Thus the difference between the natural sines of two
angles, each of which is nearly equal to a right angle, is very small ;
this is expressed by saying that the differences in the sines of con-
secutive angles are nearly insensible when the angles are nearly
equal to a right angle.

There is also another point to be noticed in this case; we have

sin (6 +A) —sin 6=sin hcos § — (1 —cos k) &in 6 ;
the ratio of the second term to the first is numerically

sin 6 (1 — cos &)

cos@sink ’

that is, tu.nﬂta.ng,a.nd when 6 is nearly equal to T this ratio

2
will be a sensible quantity unless g be extremely small. Thus the

second term ought not to be tejected in comparison with the first
term unless g be extremely small. This is expressed by saying

that the differences in the sines of consecutive angles are irregular
when the ungles ure nearly equal to a right angle. In the present
case this ¥rregularity is not of much importance on account of the
accompanying insensibility.
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185. 'We have shewn that, approximately,
sin (6 + k) -sinf=hcos §;
change 6 into E - ¢, thus

sin ——0’+h)—-sm (—-—0) hcos(g—G’) .
that is cos (¢’ —h)—cos¢ =hsing';
and by changing the sign of 4
cos (0 + h) — cos ¢ =—h sin 0'.

It is convenient to deduce this formula from that n.lready
proved, because we thus know, without a new investigation, the
amount of error to which we are liable in using it; it may how-
ever be proved independently, as we will now shew.

186. 7o prove that in general the change of the cosine of an
angle is approximately proportional to the change of the angle.
‘We have
cos{6—h)—cosf =sin h sin 6 — 0050(1 —cos k)
—co8 h)
sin A

=si.nhsi.n0( —cot0

=si.nhs'm0(l—cot0tang).

[
Let us now suppose that 4 is the circular measure of a very
small angle, so that sin % = & approximately ; thus, approximately,

008 (8~ %) — co8 6 =  sin 6 (1 -cototang) ;
let us also suppose that 6 is not veny small, so that cot 0 is not very

large, and thus cot 6 ta.n’—b may be negiected. We have then,

) 2
approximately,
cos (§ — k) — cos 6 =h sin 6,

and by changing the sign of 4,
cos (0+h)—cos6=—hsind;
and this establishes the proposition,
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187. From the result of the preceding Article, we can deduce
the rule used in Arts. 165 and 166 of the preceding Chapter; the
method is the same as that which we have already given in
Art. 183. The only peculiarity to notice is that the cosine
diminishes as the angle increases.

And by proceeding as in Art. 184 we see that the differences
in the cosines of consecutive angles are nearly tnsensible and are
also trregular when the angles are very small.

188. To prove that in general the change of the tangent of an
angle is approximately proportional to the change of the amgle.
gin(f+h) sinb

We have ta.n(0+h)—tan0=m ey

__8in (6+A)cosf—cos (f+h)sinf  sin

cos (6 + &) cos 6 " cos(6+h)cos@ ~ cos (6+4)cos 9

____A_si.ph _ tan &
~cos*0 (cos h—sin/tan B)  cos’ O (1 — tan O tan k)

Let us now suppose that %4 is so small that we may put A for

tan A, and also that 6 is not nearly equal to ; 80 that tan 6 tan &

may be neglected. 'We have then, approximately,

tan (0+ ) — tan 0 = " = & sec*,
cos’ 6
also by changing the sign of %
tan (0 — h) ~tan @ =— h sec’6;
this establishes the proposition.
189. From the result of the preceding Article we obtain the
same rule for the tangent as we obtained in Art. 183 for the sine.

‘We will now proceed to examine the amount of error to which we are
liable in using the approximate formula of the preceding Article.

tan b
cos® 0 (1 — tan 6 tan &)

=tanhsec’d (1+ tanOtan h + tan* Gtan’ b+ ...);

We have = tan /& sec* 6 (1 — tan 6 tan A)~"
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thus if we take only the first term tan /4 sec®d we neglect a series
of terms beginning with tan®/sec®dtan 6, that is approximately
&' (1 +tan’6)tan . Now if we have a table of natural tangents
calculated for every minute and we wish to find the natural
tangents of intermediate angles the greatest value of 4 is the cir-

cular measure of one minute, that is, m‘,_;TG , or ‘0003 approxi-

mately. Hence the numerical value of the greatest error is not
less than (“0003)* (1 + tan®0) tan 6, and therefore even if § be not
greater than E
of decimals. If, however, we have a table calculated for every
ten seconds the greatest value of A is the circular measure of

we are liable to an error in the seventh place

. ™ . .
ten seconds, that is 180606’ &~ 00005 approximately; in

this case we shall be free from error in the seventh place of
decimals until tan 6 is nearly as great as 3} : the table shews that
tan 73° 18' is rather less than 33.

190. Since tan (6 +%)—tan 0 =/hsec’ 6 approximately, and
sec§ is never less than unity, the differences of consecutive tan-
gents are never insensible ; but as we have shewn in the preceding
Article, the differences are irregular when the angles are nearly
right angles,

191. 'We have shewn that approximately
tan (0 +4) — tan 6 = h sec” 6 ;
change 6 into g— ¢', thus

m(’_;_mh)-m (%—0’)=hsec’(%—0’).
that is cot (8 — &) — cot 8’ = k cosec® ¢,
and by changing the sign of 4
cot (6' + &) — cot 6’ = — h cosec* 6'.
This may be proved independently, as we will now shew.
9—



132 THEORY OF PROPORTIONAL PARTS,
192. To prove that in general the chamge of the cotangent of
an angle 18 approximaiely proportional to the change of the angle.
TR —eoig_CoB(0—Fh) cosf
We have  cot (6 -4) wto'sin(o—h) Y
_co8(0—%)sinf~cosOsin (f-%) sin(§-0+4)
N sin (6 — ) sin 6 " sin (6 -4} sin @
_ sin A _ sin A
“sin(§—A)sin@  sin® g (cos & —sin A cot )

~ tan h
= 0(1 —tankcot §)’

Let us now suppose that % is so small, that we may put A for
tan &, and also that @ is not very small, so that cot 6 tan / may be
neglected. We have then approximately

cot(e—h)—coto—m_hcosec 0,

also by changing the sign of A
cot (6 + h) — cot 6 =— h cosec’ 6 ;
this establishes the proposition.
193. 7o prove that in general the chamge of the secant of an
angle i8 proportional to the change of the angle.
1 1
‘We have sec(0+h)-sec0-m7i)-m

_cosf—cos(6+h) sminhsinf+ (1 —cosh)cos e
"~ cos@cos (§+ %)  cos®d (cos b - sin A tan 6)

-tanhsina(1+tangcot0)
cos” § (1 — tan 0 tan h)

Let us now suppose that % is so small that we may put 4 for
tan %, and algo that 4 is neither very small nor very nearly equal *
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m
2
bave then approximately .

hsin 6
cos’ §

to 5, 8o that tanBtanhandootOtangmaybeneglecbed. We

sec (0 +h) —sec 0 =
also by changing the sign of 4
sec (0 — %) —sec 6 =—hsin 0 sec* 0 ;
this establishes the proposition.

= h sin @ sec’ 0,

194, We have shewn that approximately
sec (0 + ) —sec 6 = h sin O sec* 6 ;

change 6 into g- ¢, thus

sec (g -6 +h> —8ec (g - 0’) =l sin (g - 0’) sec,(; - 0’) ,
that is cosec (§' - k) — cosec & = h cos 6’ cosec® ¢,
and by changing the sign of &
cosec (¢’ + &) — cosec 6 = — h cos & cosec’ &'
This may also be proved independently.

195. The amount of error to which we are liable in using the
approximate formule of the preceding twq, Articles may be in-
vestigated as in Art. 189. It will be seen that the differences of
consecutive secants are insensible and wrregular when the angles
are very small, and they are irregular when the angles are nearly
right angles ; the differences of consecutive cosecants are irregular
when the angles are small, and insensible and irregular when the
angles are nearly right angles. )

‘We will now proceed to examine how far the principle of pro-
portional parts holds in the case of the Logarithmic T'rigonometrical
Fumctions.

196. T'o prove that in general the change of the tabular loga-
rithmic sine of an angle is approximately proportional to the change
of the angle.
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'We have approximately sin (6 + &) = sin 6 + A cos 6,
therefore S 0+B)_ ) 4 hootf;
gin §

thereforo log sin (9 + )~ login 0= log "2+ ) 105 (1 4 & ot 0)

and log (1 + % cot 6) = pwh cot 6 approximately (Art. 148), where u
is the modulus,; thus approximately
log sin (6 + ) ~ log sin 6 = ph cot 6,
also by changing the sign of 4
log sin (6 — &) — log sin 6 = — pk cot 6.
If L stand for tabular logarithm, we have
L sin (8 + &) =10 + log sin (9 + &),
Lgin =10 +logsinf;
therefore Lsin (6 = h) — L 8in 6 = & ph cot 6.
This establishes the proposition.
197. We will now shew that in general the principle of pro-
portional parts holds approximately in the case of the other
tabular logarithmic functions, and then we will consider the

amount of error to which we are liable in using the approximate
formulze,

198, 'We have shewn that approximately
L sin (6 + &) — L sin 6 = pk cot 6,

change 0 into 5—0', thus

Lsin %-—0’+h)-Lsin(’é—&'):phoot(g—e'),
that is L cos (6 ~ b) — L cos & = ph tan 6,
and by changing the sign of A
Lcos (¢ +h)—Lcost/ =~ phtand.
This proves the principle in the case of the tabular logarithmig
cosines,
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199. We have shewn that approximately
log sin (6 + A) — log sin & = uk cot 6,
and logoos(0+h)-logc;s0=-—;4htan0;
then by subtraction

log sin (6 +4) — log cos (6 + k) —{log sin 6 -log cos@} = pk(cot 6 + tan ),

. 2
that is 1ogm(e+h)-1ogmo=si_ni2"é,
_ 2k
therefore Lta.n(9+h)-Lta.n9—;i;—2—0,
and by changing the sign of A

 2ub
Ltan (0—k) - Ltan 6 90"
This proves the principle in the case of the tabular logarithmic

tangents. By changing 6 into ’E’- ¢ we obtain

, 2
L cot (¢ = k) — L cot 0 =*§iﬁ’i2h0’;

this proves the principle in the case of the tabular logarithmie
cotangents, *

200. We have shewn that approximately
log sin (6 + &) — log sin 8 = pk cot 0,

1 1
therefore log m@Th) " lod v B wh cot 0,
that is log cosec (0 + &) — log cosec 0 = — uh cot 6,
therefore L cosec (0 + k) — L cosec 0 = — ph cot 6,

also by changing the sign of 4
T cosec (0 — hY — L cosec 8 = uh cot 0 ;
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this proves the principle in the case of the tabular logarithmio
cosecants. By changing intog—a', we obtain

Lsec(f/ wh)—Lsect ==phtan@ ;
this proves the principle in the case of the tabular logarithmic
secants. .

201. From the results of Arts. 196...200 we obtain the rules
which were exemplified in Arts. 171...174. It will be observed
that we have deduced the approximate formule for all the other
logarithmic functions from that of the logarithmic sine ; thus if we
investigate the amount of error to which we are liable in the case
of the logarithmic sine, we shall know the amount of error for all
the other logarithmic functions. The approximate formulsee how-
ever for the other logarithmic functions may be obtained inde-
pendently, and we will for example give the investigations for the
logarithmic cosine and the logarithmic tangent.

202. To prove that in general the change of the tabular loga~
rithmic cosine of an angle is approximately proportional to the
change of the angle.

‘We have approximately cos (9 —h) =cos @ + hsin 0,
therefore cos (6~ %) _ 1+ A tan 6,

« cos 0
cos (6 - k)
cos §
and log (1 + A tan ) = wh tan @ approximately (Art. 148),
therefbre log cos (6 — &) - log cos § = ph tan 6 approximately,
therefore Lcos (0 —k)— L cos 6 = ph tan 6,
and by changing the sign of 4
L cos (6 + k) — L cos 6 =— ph tan 6.

203. To prove that in general the change of the tabular loga-
rithmic tangent of am angle is approximately proportional to the
change of the angle.

therefore log cos (6 — %) — log cos 6 = log =log (1+4 tan@),
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‘We have approximately tan (6 + A) = tan 6 + A sec®d,
tan (0+4) 1 +hsec'0

tan ¢ tan 6
therefore log tan (9 + 4) — log tan 6 = log (1 + 24 cosec 26)

= 2uh cosec 20 approximately,
therefore  Lrtan (6 + A) — L tan 0 = 2uh cosec 26,
and by changing the sign of &
L tan (6 — h) — L tan 6 = — 2uk cosec 20. '

204. We will now proceed to consider the amount of error to

which we are liable in using the approximate formula
Lsin (0 + &) — L sin 6 = ph cot 6.

In obtaining this formula log (1 + A cot 6) was taken equal to
phcot 6, so that the square and higher powers of %cot 6 were
neglected. But when 6 is very small cot 6 is very large, and thus
h* cot’0 may be too large to be neglected ; this case then will
require further examination.

‘We have shewn in Art. 181 that

sin(e+h)_sino=sin7moso(1-tanota.n%‘);

let us suppose % so small that we may write & for sin 4 and 3 for

therefore

=1+ 24 cosec 20,

2
ta.ng ; thus approximately sin (6 +A) ~sin § 2% cos 6 — % sin 6,

3 2
therefore s—lg—gii) =1+hcotd- ]i ,
sin 6 2
sin (0 + 7 i
therefore log —én 9 ") = lo.g (1 +hcot 6 - §’)

’b’ ]LQ 1
=F(h cot0—§) -g(h cot0--2—) 4 ... (Art, 148)

2
=ph cotG—"’—:—(l +cot’d) + ... ;
thus if we omit powers of % higher than A* we have

$
log sin (6 + &) — log sin 6 = uh cot @ — —— cosec” 4.
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If our Table is calculated to every ten seconds, then the
greatest value of 4 is the circular measure of ten seconds, that is
about “00005; and x=4 approximately. Thus the greatest error
to which we are lisble is about 25" ®.  This error will become
sensible in calculations to seven places of decimals if 6 cosec’d is
as large as 10° that is if sin’ @ is as small as ‘006 : the tables

shew that the sine of 4}° is rather greater than ,/-006.

Thus we see that the differences of consecutive logarithmic
sines are trregular when the angles are very small.

When 0 is very nearly a right angle, cot § is very small
while cosec®@ is not very small; thus the above formula for
log sin (0 + &) ~ log 8in 6 shews that the differences of consecutive
logarithmic sines are nearly insensible when the angles are nearly
equal to a right angle, and that these differences are at the same
time érregular.

From these results we can immediately infer the corresponding
results for the logarithms of the other Trigonometrical functions;
they will be found enunciated in Art. 206.

205. It appears from the preceding Article, that when an
angle i8 small it calnot be accurately determined from its loga-
rithmic sine nor the logarithmic sine from the angle by means of
the common tables, because although the differences of consecutive
logarithmic sines are then sensible, yet they are irregular. To
obviate this difficulty three methods have been proposed.

(]
First Method. We may have a Table of Logarithmic sines
calculated for every second for the first foew degrees of the quadrant;
in this case the greatest value of % is the circular measure of one

2
second, and thus % cosec'd becomes small enough to be neglected,

provided sin @ is as small as ,/©00006: the tables shew that the
gine of half a degree is rather greater than ,/-00006. ¢



THEORY OF PROPORTIONAL PARTS. 139

Second Method. This is called Delambre’'s Method. A Table
is constructed which gives the value of log sn; 6 + Lsin1” for every
second for the first few degrees of the quadrant.

Let 6 be the circular measure of an angle of » seconds, then

6=nsin 1” approximately (Art. 123),

”

therefore log sn; o_ log ::ilnnl,, =log sin n” — log n — log sin 17,

=Lginn"—logn— Lsinl",

therefore  logn=ZLsinn”— <log su; 6 +1L sin‘l”) .

If the angle is known, then the Table gives the value of

logmfol 6 + Lsin 1”, and logn can be found from a Table of the log-

arithms of numbers; thus the formula enables us to find L sin n".

If the value of L sinn" is given and we have to find n, we pro-
ceed thus: since L sin n” is known we can find approximately
the value of the angle, and then from the Table we get the value

of logTo + Lsin1"; then the formula gives us log n, and we can

find » by an ordinary table of logarithmseof numbers. In this
operation we are liable to an error by using an approximate value

of 9—;—0 instead of the real value. But it may be inferred from

Chap. 1x. and will be more fully shewn hereafter, that when 6 is
small E:—qm very nearly equal to ¢ —%—, and thus a small error in
@ will not produce any sensible error in our calculations, since

log —— m; 4 will vary far less rapidly than 6.

Third Method. This is called Maskelyne's Method. It may be
used if Tables such as those described in the other methods are
not accessible.
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It may be inferred from Chap. 1x. and will be more fully shewn
hereafter, that when 6 is very small we have approximately

gin @ = 0-—%, oosﬂ=l—%-.;
ing_. ¢ AN :
therefore %:1 -5= (1—:2-) approximately,

= (cos )} approximately,
therefore log sin 0 = log 6 + § log cos 6 approximately.

This formula gives log sin 8 at once if 6 be given. If log sin §
be given, we must find an approximate value of 6, and then find
log cos 6 approximately ; then we have

log 6 = log sin 6 — } log cos 6.

Hero since cos § varies far less rapidly than 6, we are free from
sensible error by using an approximate value of log cos 6 instead of
the real value.

A gimilar formula may be found for the tangent of a small
angle ; for

: 2\ —=1
tan 0 =11—‘;'9 ( gn) (1 - 0_) approximately,

cos @

therefore tm 0 0.) (1 +0’)

=1 + 7= (l - —2—') approximately,
therefore log tan 6 = log 6 — § log cos § approximately.

206. We will now sum up the results of the investigations
of the present Chapter.

The principle of proportional parts is applicable to all the
trigonometrical functions natural and logarithmic with certain
exceptions, which occur when the angles are small or nearly equal
to a right angle. In the exceptional cases the differences of
consecutive functions are sometimes trregular only; sometimes
they are nearly insensible, and then they are also trregular.
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For the matural functions we have the following exoceptional
cases. For the sine the differences are insensible when the angles
are nearly right angles; for the cosine they are insensible when
the angles are small. For the tangent the differences are ir-
regular when the angles are nearly right angles; for the cotangent
they are irregular when the angles are small. For the secant
the differences are insensible when the angles are small, and
irregular when they are nearly right angles; for the cosecant
the differences are irregular when the angles are small, and in-
sensible when they are nearly right angles.

For every logarithmic function the principle of proportional
parts fails both when the angles are small and when they are
nearly right angles. For the log sine and the log cosecant the
» differences are irregular when the angles are small, and insensible
when they are nearly right angles. For the log cosine and the
log secant the differences are insensible when the angles are
small, and irregular when they are nearly right angles. For the
log tangent and the log cotangent the differences are irregular
when the angles are small and when they are nearly right angles.

207. In using Trigonometrical Tables it is necessary to avoid
as much as possible the cases in which the principle of pro-
portional parts does not hold. In other words, we must endeavour
to use a Table such that the differences of the function corre-
sponding to given small differences of the angle are both sensible
and regular. If the differences of the function are insensible
for a certain number of decimal places we cannot by any method
determine the value of the functiog for any intermediate angle,
or perform the converse operation, so long as we are restricted
to the certain number of decimal places. If the differences of
the function are irregular we cannot determine the value of the
function for an intermediate angle, or perform the converse
operation, by the principle of proportional parts, though we may
by retaining the terms which were neglected in the first approxi-
mation.
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208. If we have to determine an angle from its natural
sine or oosine it will be advisable to employ the natural sine
if the angle be less than 45° and the natural cosine if the n.ngle
be greater than 45°. For the differences of consecutive sines
vary approximately as the cosine of the angle, and the differences
of consecutive cosines vary approximately as the sine of the
angle; thus the differences of consecutive sines are greater or
less than the differences of comsecutive cosines according as the
angle is less or greater than 45°. A similar remark holds for
the logarithmic sine and cosine.

209. The student who is acquainted with the elements of
the Differential Calculus will see that all the results of the present
Chapter may be obtained from Taylor's Theorem ; and thus these
results may be easily retained in the memory, or at least readily
recovered when required. For example, consider the natural
gine; we have by Taylor's Theorem

sin (9 + &) =sin 6 +  cos 0 — »-sin (6 + M),

where A iz some proper fraction. This formula shews that if

we put
sin (0 + &) =sin 0 + k cos 6

]
the error is less t.ha.nc’;- . Moreover we see that when 6 is small the

principle of proportional parts is especially applicable, for then
2
the term ’—; sin (§ + Ms) is extremely small in comparison with
heos0; and on the other hand, when 6 is nearlyg the principle
]
is not so appropriate, because then %sm (6 + \&) may be sensible
in comparison with 4 cos 6.
Again, by Taylor's Theorem, we have
]
logsin(ﬂ+h)=logsin0+pbcot9—"-3’.‘-cosec'(0+)\h),
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where p is the modulus and A some proper fraction. This equa-
tion shews that the principle of proportional parts is in general
applicable for the logarithmic sine,,but that the differences of
consecutive logarithmic sines are irregular when the angles are
emall, and insensible and irregular when the angles are nearly
right angles.

210. The following application of Taylor'’s Theorem will give
a good mode of estimating the amount of error involved in the
principle of proportional parts. Take the logarithmic sine for
example ; we have

log sin (0 + &) = log sin 0 + pk cot (6 + A%),

where A is some proper fraction, Thus the approximation
uses cot § instead of cot(6+ M). The true value in fact of
log sin (6 + &) — log sin § must lie between wh cot § and uh cot (6 +4),
80 that the error is less than uh {cot 6 — cot (6 + £)}.

MISCELLANEOUS EXAMPLES.

1. From one of the angles of a rectangle a perpendicular
is drawn to its diagonal, and from the poin® of their intersection
straight lines are drawn perpendicular to the sides which contain
the opposite angle: shew that if » and ¢ be the lengths of the
perpendiculars last drawn, and ¢ the diagonal of the rectangle,

2. If two circles whose radii are @ and b touch each other
externally, and if 6 be the angle containcd by the two common
tangents to these circles, shew that

8in 0 =

3. Given seca sec 0 + tan a tan 6 = sec 8, find tan 6.
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4. Find the limit when =0 of

. 0
mn§00620 , '

and of _ten’f
vers 6 cot 6’ sec20-.1°

5. Shew that cot g is never less than 1+ cot @ if 6 lies be-

tween 0 and .

0 tan@+c-1 0
6. If tan, = g o7y fnd tang.

7. Find the condition necessary that the same value of 6
may satisfy both the equations
asec'@—~bcos 0 =2a, bcos’f - asecld=2b
8. Eliminate a and B from the equations
@ = gin a cos B sin 6 + cos a cos 6,
b=sina cos B cos § ~ cosa sin 6,
¢=sinasinBsiné.
9. Eliminate a and 8 from the equations
b+ccosa=wucos(a—0), b+ccosB=ucos(B—0), a—B=23;
and shew that u*— 2uc cos 8 + ¢* = b sec’ 8.
10. Eliminate z<rom the equations

atan’f—x 2a tan 0 o
tan 2a tan 2a’  tan 2a + tan 2a’

and shew that tan (2¢ + 2a’) = tan 26.
11. Eliminate 6 and ¢ from the equations
sin 0 + sin ¢ = a, cosb+cos¢=b, cos (6 —¢)=c.
12. Eliminate 6 and ¢ from the equations
xcosd +ysinf=a, zcos(6+2¢)—ysin (6 + 2¢) =a,
bsin (+ @) =asin ¢.
13. Eliminate 2 and y from the equations
tanz +tany=a, ocotx+ocoty=>56 x+y=e

z;
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14. Eliminate 6 from the equations

x _secf-cos’d 20
a 80c°9 +coe’ 0’

145

v = nsec” § +cos’ 0.

15. Eliminate 6 from the equations

(a+b)tan (60— ) =(a - D) tan (0 + ), acos 2¢ + bcos 20=c.
?m0=!§,cos0+;cos;0',

16. Given

and _r - 4 -
sin(6+6¢) sin(6-6') sin 26’
3 2
shew that s.lLa, = b— .
sinf  a°
Eliminate ¢ from the equations
y co8 ¢ — x 8in ¢ = a cos 24,
and shew that

17.

ysing +xcos P = 2a sin 2¢;
(z + 3/)'?i + (2 - y)! = 24},
18. Eliminate § and ¢ from the equations

_sinf _siny o N
coso-ém, cos:b—é—.l;—u, cor (6 — ¢) =gin Beiny;
and shew that

tan® a = tan® B + tan®vy.
L J
19. Eliminate 6 from the equations

m=cosec@-sin 8, n=-sech—cosb.

20, Eliminate 6 from the equations

. o cos’@ sin'6 1
xzsin @ —ycos 6 = ,/(z* +y"), ® pe i © STy
Eliminate 6 and ¢’ from the equations

asin® 6 + a’ cos* 6 = b,

21.

o' 8in* @ +a cos* 6’ = &',
atanf=a'tand';

and shew that 1,1

T. T. 10
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¢ Find the limit when =0 of
. 0
m§m20 * indop tan'd
e T e e &

5. Shew that cotg is never less than 1+ cot @ if 6 lies be-

2
tween 0 and .
6 tanf+c-1 6
6. If tan§=m, find ta.ni.

7. Find the condition necessary that the same value of 6
may satisfy both the equations
asec’@—bcos 0 =2a, bcos'd- asech=2b.
8. [Eliminate a and 8 from the equations
a = sin a cos B8 &in 0 + cos a cos 6,
b =sina cos 3 cos § — cos asin 6,
¢=ginasin 8 sin 6.
9. Eliminate a and 8 from the equations
b+ccosa=wucos(a~0), b+ccosf=ucos(B-0), a—B=23;
and shew that u®— 2uc cos 6 + ¢’ = b* sec’ 3.
10. Eliminate z£rom the equations

atan’f—x 2a tan 6
tan 2a tan 2o’ tan 2a + tan 2q'

and shew that tan (2a + 2a') = tan 26.
11. Eliminate 6 and ¢ from the equations

sin 6 + sin ¢ = a, cos'0+cos¢=b, cos (0 — ¢) =c.
12. Eliminate 6 and ¢ from the equations
acosd + ysin 0 =a, xcos(6+2¢) - ysin (0 + 2¢) =a,

b sin (0 + ¢) = a sin ¢.

13. Eliminate # and y from the equations

tang +tany =a, cotxz+ooty=56, x+y=ec

=a-x;
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14. Eliminate § from the equations

x _sec'f-cos’d 260 R
a s f+cosl’ yo oo 8 + cos”0.

15. Eliminate § from the equations

145

(@ +b) tan (0~ ¢) = (@ —b) tan (0 + ¢), acos 2¢ + b cos 20 =c.

t
16. Given g cos 8 =2 cos 6 + 2 cos @',

a’ b*
x -y __*
and sin (0+0)  sin(0—0)  sin 20°
shew that sin 6 = o

sinf o’

17.  Eliminate ¢ from the equations

ycosp—xsind =acos 2¢, ysing+xcosd = 2asin2e;

and shew that (x+ _'1/)5 + (- .1/)"l =24},
18. Eliminate 6 and ¢ from the equations
_sinf _siny . .
cosa—ém, cos¢-m, cos (0 — ¢) =sin Bsiny;

and shew that tan®a = tan* 3 + tan’y,
[ ]

19. Eliminate 6 from the equations
m=cosec - sin @, = =secl— cosd.
20. Eliminate 0 from the equations

: " *0 sin®0 1
2sin 0 -y oo 0= (&' +), *T5 + e =z

21. Eliminate 6 and 6’ from the equations
asin®6+a'cos*d=b, a'sin*d +acos' =0,
atanf=a'tan @' ;
1
b
T.T. 10

and shew that +

1
a’

Qb

1.
5
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. . 1
23. Given z'+y'=a"'+?¥", wy:absma, e v e

shew that « cot 26 = cot 2a + o 7 cosec 2a.
93, 1f  oBF_co8dr o3z ow that
a, a, a,
gin?® 2a,~a, — .
2" 4a,
94 If sin x sm3ac sin5ac
: a, a, a, ’
shew that @~ 2a,+a, =% 8a, .
a, @y
95. Qiven 8% _0us (x+6) cos(xz+20) cos(z+30)
' e - a, - a4 '
shew that Bt %ta,
aﬂ aﬂ ’
, tan (7: & a>
26. If sin'e= °:§s?i(‘_°:§3)“ . then ta.n’%’ A
a+a tan (;r - a')
9. I gin (- B)cosa cos(a+06)sinf
’ sin(¢p—a)cos 8  cos(¢p—B)sina ’
and tanf tana  cos (a—f) ~0,

tan4>tanﬂ+cos(a+ﬁ)

shew that tan @ =4 (tan B+ cota), tan ¢ =4 (tana - cotfB).
2 _sinfBsinf _tan (6 -a)

8 T+z cos(B—6) cotp °’

shew that = (cot ke 2 cotﬁ) (tan % + 2 cot ,8) .

29, Given sin 6 8in ¢ = 8in a 8in B, tan¢cosﬂ=cot;, prove

:hst one of the values of sin% is sin ;—l sin 8.

30. Given sin¢p=nsinf, tanp=2tanf, find the limiting
values of n that these equations may coexist.
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81, Shew by means of a Trigonometrical formula that
if ©+ y +8= a:yz,

o
then 2a= 2y 2

1- ? 1- y’ 1 z' - Ty 15
32. Find the values of v, , ¥, 2 from the equations

sinz siny sinz
V==Y =o—; ®+y+2=2m

33. Find the limit of (cos az)®"#*® when ¢ is zero.

34. From a table of natural tangents which goes to 7 places
of decimals, shew that an angle may be determined within about
z8oth part of a second when the angle is nearly 60°.

35. When an angle is very nearly equal to 64°36’, shew that
the angle can be determined from its Z sine within about 1oth of &
second ; having given log, 10. tan 64° 36’ = 4-8492, and the tables
going to 7 places of decimals.

36. Shew that
(1 ta.n'a)( — tan® a)(l ta.n’a ...... ad inf = .
tan

37. If 4, B, C be positive angles which satisfy the equation
sin*4 +sin* B +sin®C = 1, prove that 4 + B +,C is greater than 90°

38. A circle is drawn touching the tangent and secant of a
given angle a, as well as the corresponding arc ; find its radius and
explain the double value. 1f vne value be equal to the rudius of

the original circle, shew that a= -5
.

39. If 2cos(0—B)—m cos(0—a)=mn, shew that
Isin (0 — B) — m sin (0 — a) = /PF+m’ —n"— 2Im cos (a— ).
40. Shew that 6 - «in@ is less than tan §—0 if 0 lies be

tween 0 and g

10—2
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XTII. RELATIONS BETWEEN THE SIDES OF A
TRIANGLE AND THE TRIGONOMETRICAL
FUNCTIONS OF THE ANGLES.

211. We shall now investigate certain relations which hold
between the sides of a triangle and the Trigonometrical Functions
of its angles; these relations will be applied in the following
Chapter to the solution of Triangles. 'We shall denote the angles
of a triangle by the letters 4, B, C, and the lengths of the sides
respectively opposite to these angles by the letters a, b, ¢ ; thus a, b, ¢
are numbers expressing the lengths of the sides in terms of some unit
of length such as a foot, or a yard, or a mile. The unit of length
may be whatever we please, but must be the same for all the sides.

212. In a right-angled triangle each side
is equal to the product of the hypotenuse into
the cosine of the adjacent angle.

Let ABC be a triangle having a right angle
at €' ; then

j—%:cosA,( §%=c0511;
therefore b=ccosd, a=ccosB.

v/

Since cos 4 =sin B and cos B=sin 4, we may also enuuciate
the proposition thus: in a right-angled triangle each side is equal
to the product of the hypotenuse gnto the sine of the opposite angle.

213. In any right-angled triangle each side is equal to the pro-
duct of the tangent of the opposite angle into the other side.

From the figure of the preceding Article we have
BC AC
00 P=go
herefore a=btan 4, b=atan B,

tan 4 =
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Since tan 4 =cét.B and tan B =cot 4, we may also enunciute the
proposition thus : in any right-angled triangle each side is equal to
the product of the cotamgent of the adjacent angle tnto the other side.

214. In any triangle the sides are proportional to the sines of
the opposite angles.

A

V] D [+ B 4

Let ABC be any triangle, and from 4 draw 4D perpendicular
to the opposite side meeting that side, or that side produced, at .
If B and C are acute angles we have from the left-hand figure,

AD=ABsin B, and AD=AC sin(;

therefore AB sin B =AC sinC,
¢ sinC
t}lorefme b = gin—-B .

If the angle C be obluse we have from the right-hand figure,
AD=ABsinB, and 4D=A4C sinACD=ACsin(180"-(C)=ACsinC;

therefore AB sin B=AC sin C,
¢ sinC
therefore b= gm—B

If the angle C' be a right rmgle, we have from the figure of
Art. 212,

AC = AB sin B,
¢ 1 sm 0
therefore b snB snd’

8'

g5
K

Thus it is proved that in every case 5 =
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. a sind .o sind °

Similarly  p=mp = I=mo-

The results may be writtext symmetrically thus,
sind _sinB_sinC,
a b ¢’

and we shall shew hereafter that each of these is equal to 517?’

where R is the radius of the circle described round the triangle,

215.  To express the cosine of an angle of a triangle in terms
of the sides.

Let ABC be a triangle, and suppose C an acute angle. (See the
left-hand figure of the preceding Article.) %...a by Euclid II. 13,
AB°'=B(C*+AC*-2BC.0D,

and CD=A4C cos(C;
therefore ¢ =a’+b" - 2ab cos C.
Next suppose C an obtuse angle. (See the right-hand figure of
the preceding Article.) Then by Euclid IL 12,
AB*=BC*+ AC*+ 2BC . CD,
and CD = A(C cos(180° - C)=—AC cos C,
therefore ¢ =a’ +b° - 2ab cos C.
Thus in both cases‘we have cos ' = d+b- & .
2ab
Moreover when C is a right angle, a’+ b’=¢* and cosC is zero;
thus the formula just found for cos (' is true in every case,
b+c*-a' _+a'=b"

SLmllm‘ly mA=T, cos B Sca

216. In every triangle each side is equal to the swm of the
product of each of the other sides into the cosine of the amgle which
it makes with the first side,

From the left-hand figure in Art. 214, we have

BC=BD +DC=ABcos B+ AC cosC,
thag in a=ccosB+heonl,
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From the right-hand figure in Art. 214, we have
BC=BD-DC=ABcosB~-A4C cos (180°—
=ABcos B+ AC cos C,
that is a=ccosB+bcosC.
Similarly we shall have b =a cosC+ccos 4, and ¢ = b cos4 +a cos B.

217.  To express the sine, the cosine, and the tangent of half an
angle of a triangle in terms of the sides.
We have by Art. 215,

¥ +c"—a
cosd ==—gp—>
_q b+c-d' _a'-(b-¢)
therefore l-cosd=1- T = St
A (a+b—c)(a+c—-b)
therefore sin 3= i

Let 2s=a+b+c¢, so that s is half the sum of the sides of the
triangle ; then
a+b-c=a+b+c-2c=2(s-c¢),
a+c—-b=a+b+c-20=2(s-1D).
A (s—b)(s c)
be

and sin§—./(—-——s_bgc(s_07

3 — I_
Also 1+cosA_1+b—-+c L (b+c) a2

Therefore sin

%be¢ b’
(a+b+c)(b+c a) _s(s—a)
therefore  cos’ 2 e B’

4 /8(s—a)
and cos 5 = T

From the values of smA and co:a%1 we deduce

m__ \/(e_—l»(a 9.
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The positive sign must be given to the radicals which occar in
this Article, because g is less ‘than a right angle, and therefore its
sine, cosine, and tangent are all positive.

Similar expressions hold for the sine, the cosine, and the tan-
gent of half of each of the other angles.

218. To express the sine of an angle of a triangls in terms of
the sides.

Since sinA=2sin-g cosi;, we obtain

sind =2 \/(—"_L%——f_c)-\/’(‘;cl“—)

2
=E~/e(s—a) (8=8)(s—c¢).

Or we may find sin 4 directly from the known value of cos 4 ;
. g b +c*—a')®  2b%"+2c%" + 24’0 —a' — b —c*
thos sin®d =1 4cb'c’a) B ;

3.9 T T
therefore sinA=J2bc +2¢% +2§¢:b —a*-b =<,

the former expression may be shewn to agree with this by forming
the product of the factors s, s—a, s— b, and s—c.

Similar expressions hold for sin B and sin C.

219. We have proved the formule in Arts. 214...216 inde-
pendently from the figures; we may however observe that it is
eagy to deduce those in any two of the Articles from those in the
third. Thus we may first estab}ish as in Art. 216, that

a=boosC +ccosB, b=ccosd+acosC, c=acosB+bcosd;
multiply the first of these equations by a, the second by b, and the
third by ¢; then add the first two resulting equations and subtract
tho third ; thus we obtain
a'+0' - ¢' = 2ab cos C.
Similarly the other two formule of Art. 215 may be deduced.
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Then from these results we may proceed as in Arts. 217, 318,

sinA

and shew that —— = ,Ja (85a)(s—d)(8—c),
and that sn;B nd E]'Ecg are equal to the same expression,
Thus sind _sinB _sinC

a b c

Or we may begin by establishing the formule of Art. 214
directly from the figure, and then proceed thus:
sin 4 =sin (180"~ A) =sin (B+ C)=sin Bcos C +cos Bsin C ;

sinC b

sin B c
therefore 1=cosOS. +cos B =acosC+6-‘cosl)‘;

in 4 sin 4
therefore a=>bcosC +ccos B

Similarly the other two formule of Art. 216 may be deduced ;
and then those of Art. 215 will follow in the manner shewn in the
beginning of the present Article.

220. The reason why an ambiguity of sign occurs in the
formule for sin%1 and cos%1 of Art. 217 may be explained as on
former occasions, It will be observed that we have an expression
for cos 4, and we proceed to deduce expressions for sing and cos é;
and in Art. 96 it has been shewn that in this case we may expect
two values differing only in sign fos each of the required quantities,

221, Since the formulea in Art. 217 have been strictly demon-

strated, they must of course always furnish real values for sin ‘21 )

;, and tanA if the triangle really exist. That they do so

may be easily venﬁed from a known property of a triangle.
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Take for example the formula

A _(a+d-o)(a+ec— b)
i Rt ¥

that this may give a possible value for sm% the expression on the

right hand must be positive and less than unity. It 4s positive,
because from the fact that two sides of a triangle are greater than
the third, we have a + b — ¢ positive and a + ¢ —b positive. And
the numerator is a* — (¢ — )", and this is less than the denominator
provided a' be less than (c— b) + 4be, that is provided a® be less
than (b + ¢)*, which is obviously the case.

MISCELLANEOUS EXAMPLES.

1. The sides of a triangle are 2’ +x +1, 22+1, and «*-1:
shew that the greatast angle is 120°

2 If cosB————O,, shew that the triangle is isosceles.
3. In a right-angled triangle of which C is the right angle,
cot ..A_ = b_+9
2 a

4. If in a triangle atanA+btanB=(a+b)ta.n4—+—l—; shew

2
that 4 = B,

5. The angles of a plane triangle form a geometrical pro-
gression of which the common ratio is 4: shew that the greatest

44

6. If 4', B, C' are the external angles of a triangle, shew that
2bc vers A’ + 2¢ca vers B' + 2ab vers C'= (a + b+ ¢)".

7. From the angle 4 of any triangle 4BC a perpendicular

AD is drawn to the base, and from D perpendiculars DE, DF are
drawn to 4B, AC respectively : shew that

AE . EB.cos’C=AF.FC. cos' B,

gide is to the perimeter as 2sin— is to unity.
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8. If a, b, ¢ be the sides of a triangle and the opposite angles
bo 26, 36, 46, shew that tan’6 = (ﬁf_’-c)'- 1

9. ABC is a triangle of which C' is an obtuse angle: shew
that tan 4 tan B is less than unity.
10. If the sides a, b, ¢ of a triangle be in arithmetical pro-
gression, shew that
4 —0—=2smB and a cos® g+ccos 4 3b.
2 2’ 2 2772
11. If D be the middle point of the side BC of a triangle

cot BAD —cot B=2 cot 4.

12. If an angle of a triangle be divided into two parts such
that the sines are in the ratio of the sides adjacent to them
respectively, shew that the difference of their cotangents is equal
to the difference of the cotangents of the angles opposite to their
gides.

13. If the cotangents of the angles of a triangle be in arith-
metieal progression, the squares of the sides will also be in arith-
metical progression.

14. Given the vertical angle and the ratio between the base
and altitude of a triangle, find the tangents of the angles into
which the vertical angle is divided by tha perpendicular drawn
from it to the base.

15. If the base of a triangle be divided into three equal parts,
and ¢, ¢, ¢, be the tangents of the angles which they subtend at

the vertex
1 1\/1 1 1
(t*‘ + i') (t;+ Z.) =% (1 + Z;,).

16. If the sines of the angles of a triangle be in arithmetical
progression, the product of the tangents of half the greatest and
half the least is §.

17. If the side BC of a triangle be bisected at D and AD be

drawn, shew that tan 4 DB = 21;: sm.A .
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18. If 4, B, C be the angles of a triangle and oot;;, cotg,

oot % in arithmetical progression, shew that cot% cot—g—= 3.

19. Straight lines are drawn from the angles 4 and B of a
triangle dividing the angles respectively into parts whose sines are
in the ratio of 1 to n; these straight lines intersect at D : shew
that DC either bisects the angle C' or divides it into parts whose
sines are in the ratio of 1 to n".

20. If ! be the length of the straight line which bisects the
angle 4 of a triangle and is terminated by the base, 6 the angle
which it makes with the base, 2s the perimeter of the triangle,
shew that s(sin G—Sm%)zlcos%sin 0.

21. If 6 and ¢ be the greatest and least angles of a triangle,
the sides of which are in arithmetical progression, shew that

4 (1 - cos6) (1 - cos ¢) =cos 6+ cos .

22. From the angular points of a triangle 4 BC straight lines
are drawn making each the same angle a towards the same parts
with the sides of the triangle taken in order. Shew that these
straight lines will form another triangle similar to the former, and
that the linear dimensfons of the two triangles are in the ratio of

cos a — sin a (cot 4 + cot B +cot C') to 1.

Shew that in any triangle the relations given in the following

Examples, from 23 to 42, hold :

23. a(bcosC—ccosB):I:’—c’.

24. a(cos Bcos C +cos Ay =b(cos 4 cos C + cos B)
= ¢(cos 4 cos B + cos (),

25. (b+c-a)tan124¥=(c+a—b)tang—(a+b—c)tan§.

26. bcos B+ccos C=acos(B-C).
27. (a+b)cosC+(b+c)cosd+(c+a)cos B=a+b+o



29,

30.

31.

32.
33.
34.
35.

36.

37.

where

38,

39.

then

40.

41,

42.
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(a' - b%) cot C + (b° — ¢*) oot 4 + (¢* —a”) cot B=0.

(a-b) cot%+(c—a)cot—25—:+ ®-c) cot%:O.

A B 2¢
1-m5m7=a+b+c'

(@ +b + c) (cos 4 +cos B+ cos C)

4 f
=2a,cos'—2—+2bcos’%+2ccos'-§.
s_i_]}’_A_cosAgosAB cosAcosC+cosBcosC
a ab ac be

acosAd +bcos B+ccos C=2asin BsinC,

2a sin p_ii_r_l_g
a+b+c

o® — 2ab cos (60° + C) = ¢’ — 2b¢ cos (60° + 4).

cos A +cos B+cosC=1+

cols£~cosec‘i : cot£+cot vb+c—-a:2a

4 2 2 2

cos”;1 cos”goos’%=42 (2—00812—1) (E—cosg) (S.-cos%) ,

4 B
2E=cos§-+cos g +eos 5.

. . . B 4
The perimoter of any triangle is I cosg cos 5 sec ;B.

1f ysin®4 + zsin* B=2sin"B + ysin’C = 8in°C + 7 sin°4,

xz:y:2z:usin24 :sin2B :sin 2C.
A

8 sin —121- sin %s'm % is les® than 1, except when 4=5=C,

asin(B-C)cos(B+C—A)+bsin(C —A4)cos(C+4-- B)
+csin(4d~B)cos (4 + B-C) =0,

sind sinfB sinC sind BE_ILB sin__(,_‘
conBY oosC " cosd T cosC " oosd ~ cos B

= gin 4 +sin B + sin C + (cos 4 + cos B + cos () tan 4 tan Btan C.
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XIV. SOLUTION OF TRIANGLES.

222. Inevery triangle there are six elements, namely, the three
gides and the three angles. The solution of ¢riangles is the process
by which when the values of a sufficient number of these elements
are given we calculate the values of the remaining elements. It
will appear as we proceed that when three of the elements are given,
the remaining three can be found except when the three angles are
given, and then we cannot determine the lengths of the sides but
only the ratio they bear to each other. 'We shall have occasion to
introduce logarithms into our formuls, and we shall as before by
the word logarithm or the abbreviation log denote a logarithm to
the base 10; and by the letter Z placed before any Trigonometrical
Function, we shall denote the tabular logarithm of that function,
which is formed by adding 10 to the logarithm to the base 10.

We shall begin with a right-angled triangle and shall suppose
C the right angle.

223. 7o solve a right-angled triangle having given the hypo-
tenuse and an acute anfjle.

Suppose the hypotenuse and the angle 4 given ; then
B=90-4;

g=sinA, therrfore a=c¢sin 4,
therefore loga=logc+logsin A= logc+Lsind-10;
- sin B, therefore b= asin B,

therefore log b =log ¢ + log sin B = log ¢ + L sin B~ 10,
Thus B, a, and b are determined.
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224. To solve a right-angled triangle having given the hypo-
tenuse and a side.
Suppose ¢ and a given; then .

sin 4 =§, log sin 4 = loga —logc;

therefore Lsin 4 =10 +loga-loge;
this determines 4 ; then B=90°— 4,
And c*=a'+?" therefore b*=c"—a’= (¢c—a)(¢+a),
therefore b=w(c—a)(c+a),
logb = } log (¢ — a) + } log (¢ + a).
Or we may find b from the formula b= c cos 4.
Thus 4, B, and b are determined.

225. To solve a right-angled triangle having yiver o side and,
an acute angle.

Suppose a and 4 given ; then

B=90-4;
2 —sin 4, therefore ¢ = ¢ )
c sin 4
logc=1loga —logsin 4 =loga— Lsind +10;

a - %
5= tan 4, thereforc b= A

logb =loga — log tan 4 =loga — L tan 4 + 10.
Thus B, ¢, b are determined.

If @ and B are given, then 4 = 90"~ 1 ; thus 4 is known, and
we may find ¢ and b as before. °

226. 7o solve a right-angled triungle having yiven the two
sides.
Here a and b are given ; then
tan 4 =;—, therefore log tan 4 = loga —logd,

therefore Ltan 4 =10 +loga —logh;
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B=90"-4;

a
c

. a
=gin 4, t%lerefore e=—
therefore loge=loga— Lsin 4 + 10,

Or we may find ¢ from the formula ¢=,/(a’+?5"), but this is
not adapted to logarithmic computation.

Thus 4, B, and ¢ are determined.

227. We may remark here that when an angle of a triangle
is determined from its cosine, versed sine, tangent, cotangent or
secant, no uncertainty can exist about the angle, because only one
angle exists less than 180° for which any of these functions has an
assigned value. But when an angle of a triangle is determined
from its sine or cosecant uncertainty may exist, since there are two
angles less than 180° which have a given sine or a given cosecant.
But no uncertainty will exist in the case of a right-angled triangle,
because each of the other angles of the triangle must be acute.

We now proceed to the solution of oblique-angled triangles.

228. 7o solve a triangle having given two angles and a side.
Suppose 4 and C the given angles, and & the given gide ;
v
then B=180"-4-C;

a__sinA thoref _bsinA
b smB U CTnB

therefore loga =1logb+logsind—logsin B=1logb+Lsind - Lsin B;

similarly loge=logb+ Lsin C — L sin B.
Thus B, a, and ¢ are determined.
If A and B are the given angles then
C=180-B-4,
and we may proceed as before to find @ and c.
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229. To solve a triangle having given two sides and the in-
cluded angls.
Suppose b and ¢ the given sides and 4 the included angle.

We have smg b ; therefore —(Aﬂ

sind cosC+cos 4 sinC b
sin C

therefore

b
; that is smAcotC+cosA=-

thus cot ¢ is determined, and therefore C' can be found; and
then B.

But as this process is not adapted to logarithmic computation
another is usually given :

sinB b smB—smG b-c¢
wehave Lo =or therlore e i e
tan $(B-C) _b-
therefore tan}(B+C) b+c (Art. 88),
and tan } (B +C) = tan } (180° - 4) = cot % ,
b—c A
therefore ta.n&(B—C’):mcoté,

therefore log tan § (B —C)=log (b-c) - log (B +c) + log cot 4 ,

therefore L tan § (B — C) = log (b—c) — log (b +¢) + L cot 4 ;
this formula determines % (B - C'), and §(B+C) is known since
it is 90° - 3 ; thus B and C can be immediately found.

Also & =824 4 m which a can be found.
[/} sin

We have supposed b and ¢ unequal ; if however b =¢ then
B =0, and all the angles will be known, so that @ can be found as
in Art. 228,

T. T, 11
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230. In finding o from the expression just quoted we should
require three logarithms, namely, those of ¢, sin 4, and gin C'; in
the following method we shall only require two new logarithms.

a b ¢ a  b+e
Welave =B - m0’ oo o ~m B
and sin B+sinC'=2sin{(B+C)cos}(B-C) (Art. 84)
=2cos 4 cos § (B-C),
therefore (b+c)sind _(b+c)sind

“2cossdcon}(B-C) cosi(B-0) ;
a8 the logarithm of b + ¢ has been used in the former part of the
solution, we shall only require two new logarithms, namely those
of sin $ 4 and cos §(B - C).
We may observe that we have also
e __ b-c .
smAd snB-sinC’
and from this in the way already shewn we can deduce
_(b=c)cos} 4
T sin§(B-0)°
Thus we bave the two formule,
acos §(B-C)=(b+c)sin § 4,
asin §(B-C)=(b—~c)cosd 4.

231. We can also from the given quantities in the preceding
Article determine the third side without previously determining the
other two angles. For we have a* = b* + ¢* — 2be cos 4, by Art. 215;
and we can traunsform this formula into another, which is adapted
to logarithmic computation as follows :

¢a=b'+c'-2bc(2cos"3_1)=(b+c)'-4bcoos"-:,
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Now find an angle 6 such that sin*4 = @%;, oos’% ,
thus a'=(b+c) (1 —sin’6) = (b +c) cos’d,
therefore a=(b+c)cosb,

therefore loga=1log (b +c) +logcos @ =1log (b+c)+ Lcos 6 —10;
thus a is determined.

It is usual to give the name of subsidiary angle to an angle
introduced into an expression for the purpose of putting it in the
form of a product of factors. Thus 6 in the preceding investiga-
tion is a subsidiary angle. We are certain that an angle exists
which has the square of its sine equal to the given expression ; for
that expression is positive, and it is less than unity because 4bc is
never greater than (b +¢)' and coas’i21 is less than unity. The
equation for determining 6 gives by taking logarithms

2logsin0=log4+logb+logc—2log(b+c)+2logcos‘—1-,

therefore 2Z sin 6 =21log 2 + log b + logc— 2 log (b +¢)+ 2Lcosg .
232. The process of Art. 229 is sometimes facilitated by the
use of a subsidiary angle when the logarithmg of b and ¢ are known.

4

We have ta.n%(B—C):II:—:gcotﬁ.

b b—¢c tanf-1 n
Now let Er-ta.nO, therefore m=m—t&ﬂ(0—z),

4

[ ]
thus tn.n}(B—C’):tan(O—E oot % -

Or thus, suppose ¢ less than b; let c=bcos ¢ ;

b—c l-cos¢p . ,¢,
therefore _b+c_———1+cos¢—tan2’
th oo

us tan § (B - C) = tan §cot§.

11—2
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283. To solve a triangle having given two sides and the angle
opposite to one of them.

Letaandbbethegivensi'des,a.ndAthegivena.ngle;

' sinB_b

then 528 _8 . iherefore sin B sin 4
sind a a

therefore Lsin B=logb—-loga + Lsin 4.
If !’i.aﬂﬁ is less than unity, two different angles may be
bsin 4

found less than 180° which have for sine, one of these

angles being less than a right angle, and the other greater. If a
be greater than b, then 4 must be greater than B, and therefore
B must be an acute angle; thus only the smaller value is ad-
missible for B. If a be less than b, then either value may be
taken for B. When B is determined, C' is known since it is
180°—- 4 — B, and then ¢ can be found from

Thus if two values are admissible for B we obtain two correspond-
ing values for C and ¢, so that two triangles can be found from
the given parts. .
bein 4 . . .
If—a—= 1, then B is a right angle, so that only one tri-
angle can be found from the given parts,

Ifbllaif—4 is greater than unity, no triangle exists with the
given parta.

Thus, when two sides are given and the angle opposite the
less we can generally find two triangles from the given parts, and
this case in the solution of triangles is therefore called the ambigu-
ous case. We say that two triangles can be generally found in
order to have regard to the exceptions; for the triangle may be
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right angled, and then only one triangle can be found, or the
triangle may be vmpossible.

234. The ambiguous case may be illustrated by figures.
g

.. -~
..........

B D

et venetennnnssener et

Let CAD be the given angle 4, and AC the given side b ; sup-
pose a circle described from C as a centre with radius equal to a.
The perpendicular from €' on 4D is equal to bsin 4 ; therefore
if a be greater than bsin 4, the circle will meet the straight line
4D at two points, which we will denote hy B and B'. If a be
less than b, then B and B’ are on the same side of 4, as in the
first figure ; thus two triangles, namely 4BC and 4B'C, can be
obtained, each having the given parts a, b, 4. If a be greater
than b, then B’ and B are on opposite sides of 4, as in the second
figure ; thus only one triangle, nagely C4B, can be obtained hav-
ing the given parts a, b, 4 ; the triangle C'AB’ has an angle C4B’
which is 180° — 4 instead of 4.

If a be equal to bsin 4, the circle fouckes the straight line
4D, and the two points B and B’ in the first figure coincide ;
thus one triangle is obtained which has a right angle at B.

If & be less than bsin A the circle does not meet the straight
line 4D, and no triangle exists with the given parts 4, b, 4.



166 SOLUTION OF TRIANGLES.

235. In Art. 233 we first found the angle B, and afterwards
the side ¢; we may however adopt another mode of solution and

begin by finding ¢. For .
a'=b"+c"-2bccos 4 ;
therefore c*~2bccos 4 + ' —a’' =
by solving this quadratic equation in ¢ we obtain
c¢=>)cos 4 = ,/(a®— " sin’ 4),
and we shall now discuss the values thus found for c.

If a is less than b sin 4, the values of ¢ are impossible, and no
triangle exists with the given parts,

If a is equal to bsin 4, we obtain c=bcos 4. If A be an
acute angle, ¢ is positive and one triangle exists with the given
parts. If 4 be an obtuse angle, ¢ is negative, and this indicates
that the triangle is impossible ; and in fact a is less than b, since
it is equal to bsin 4, and so 4 cannot be an obtuse angle in
a real triangle.

If a is greater than bsin 4, then two values occur for ¢, and
these will both be positive if 4 be an acute angle and &cos 4
greater than ,/(a®~0"sin’4); the latter leads to the condition
b* cos® 4 greater than, o'-b*sin’4, that is, b’ greater than a’.
Hence we see as before that there are two triangles if 4 be an
acute angle and a be greater than bsin 4 and less than b.

236. 7o solve a triangle having given the three sides.
Let s denote half the sum of the sides ; then by Art. 217,

. A c—b(a-c A s(a—a)
ALY bc

(8—0) (s c)

Ta(s-a)

““‘7

mad ginrilar formulse are true for the other half an~les.
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The formulme for the langents of half the angles will be the
best to use with logarithms, because then we only requjre the
logarithms of 8, 8—~a, 8—b, and g—¢, in order to find all the
angles ; whereas if we use the formulee for the sine or cosine we
shall require in addition the logarithms of the sides.

237. When all the sides of a triangle are given, the angles
may also be found by dividing the triangle into two right-angled
triangles.

Thus, with the left-hand figure of Art. 214, we have

AD*= AB'— BD*, and also = AC*— CD*;
therefore AB*—~ AC*=BD*-CD’,
therefore (4B + AC)(AB - AC)=(BD + CD)(BD-CD);

from this we can find BD—- (D, and then since BD+CD is known
we can find BD and CD ; then

BD CD
cosB=A—B, cosC:m,

thus B and C are determined.

With the right-hand figure of Art. 214 we have as before
(4B +AC)(4B - AC)=(BD + CD) (BD-CD);
from this we can find BD + (D, and then since BD-CD is
known we can find BD and CD; then
cD

cos (180° - 0)=A—C'

BD
cosB=Z—B—,

thus B and C are determined.

238. We have seen in Chap. xi1. that the Tables of trigo-
nometrical functions cannot always be used with advantage; this
circumstance guides us in selecting the method of solution of a
triangle to be adopted when more than one method is theoretically
applicable, and leads us to modify the method of solution in some
cases. For example, suppose we have to find 4 from the equation
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gin A =n, where n is nearly equal to unity; this is an inconve-
nient equation for determining 4, because the difference of conse-
cutive sines is nearly insensible when the angles are nearly right
angles, We have however

w-4) - =)
- - /05

and this formula is free from the objection.

Similarly if we have to find 4 from the equation

cos 4 =n,

where # is nearly equal to unity, we may advantageously transform
the equation thus

e - /05

or thus l-cosd 1l-n,
l+cosd 1+mn’
therefore ta.n£=\/1;—">.
2 l+2

EXAMPLES,

1. Find the values of the angle 4 having given sin B =25,
a=5, b=2%.

2. One side of a triangle,is half another and the included
angle is 60°: find the other angles.

3. The sides of a triangle are in the ratio of 2 : \/6 : 1 +,/3:
determine the angles,

4. If 4=30°, b=100, a=40, is there any ambiguity

6. Having given A =18, a=4, b=4+,/(80), solve the
triangle, )
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6. Having given 4=15° a=4, b=4+,/(48), solve the
triangle.
7. Ifa, b, A be given, and a bs less than b, and if ¢, ¢ be the
two values found for the third side of the triangle, then
¢* = 2c¢c’ cos 24 + ¢* = 4a’ cos’ 4.

8. Find the sum of the areas of the two triangles which satisfy
the conditions of the problem in the ambiguous case. See Art. 247.

9. If B, C,, and B, C, are the angles of the two triangles
in the ambiguous case, then
gin O, N sin O,

smB gin B, =3 cos 4.

10. In the ambiguous case the area of one of the triangles is
n times that of the other; shew that if b be the greater of the
given sides and a the less, 9 is less than 7—% See Art. 247,

11. If loga+10=1logd + Lsin 4, can the triangle be ambi-
guous }

12, If 6 be an angle determined from the equation

cos 0 =aic:—b , prove that in any triangle

A-B (a+b)sinf A+B csing
8 —g— = 2J(ab) v 8T Ty /(e
13. If tan ¢ = 2"/(“6) , then ¢=(a-0b)sec ¢.

14 In a triangle 4BC in ®hich a=18, =20, ¢=22, find

Ltand 3+ having given log 2= 3010300, log 3 =-4771213.

16. The sides of a triangle are 32, 40, 66 : find the greatest
angle, having given
log 207 = 2:3159703, log 1073 = 3-0305997,
L cot 66° 18’ = 9-6424342, diff. for 1’ = -0003431.
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16. The sides of a triangle are 4, 5, 6: find B, having given
log 2=-3010300, Lcos27°53" =9:9464040, diff. for 1’=0000669.

17. Apply the formu.la. cos 3= J ’—(—‘--—1) to find the
greatest angle in a triangle whose sides are 5 6, 7feetmspeot-
ively, having given

log 6 =7781513,
L cos 39° 14’ =9-8890644, diff. for 60" =-0001032.

18. T¥o sides of a triangle are 18 and 2 feet respectively,
and the included angle is 55°: find the other angles, having given

log 2=-3010300, L cot 27° 30’= 102835233,
L tan 56° 56’ = 10-1863769, diff. for 1’ =-0002763.

19. Two sides of a triangle are in the ratio of 9 to 7, and the
included angle is 64° 12': find the other angles, having given

log 2 =-3010300, L tan 57° 54’ =10-2025255,
Ltan11°16'=9-2993216, L tan11°17 =9-2999804.

20. If a=70, 5=35, C'=36°52"12", find the other angles,
having given log 3 ="4771213, L cot18°26’ 6" =10-4771213.

21. The ratio of two sides of a triangle is 9 to 7, and the
included angle is 47°23’; find the other angles, having given
log2=-3010300, L tan 66°17"30”=10-3573942,
L tan 15° 53’ = 94541479, diff. for 1’ =-0004797.

22. In a triangle a= 30, b = 20, and the contained angle = 22°:
find the other angles, having givén
Lcot11°=107113477, L tan 45°48'=10'0121294,
L tan 45° 49'=10-0123821, log 2 = '3010300.

23. Given =14, ¢=11, 4 =60°, shew that B ="T1°44' 29",
having given
Ltan11°44'29"=9-31774, log 2="30103, log3="47712.

.
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24. Themdesofatm.ngleare’! 8 9: determ.mea.ll the
angles, having given
log 2 = 3010300, .
L tan 24° 5’ 40” =9'6505069, L tan 24° 5’ 50” = 96505634,
L tan 29°12' 20" =9-7474183, L tan 29° 12’ 30" = 9-7474677.
25. In a right-angled triangle the hypotenuse ¢= 6953 and
b=3: find B, having given
log 3:475 = 5409548, log 6:953 = 8421722,
L sin 44° 59’ 15" = 9-8493902, diff for 1” = -0000021.
26. Two sides are 80 and 100 feet, and the included angle
60°: find the other angles, having given
log 3="47712, L tan 10°53’ 36" = 9:28432.
27. Two sides of a triangle are 3 and 5 feet, and the included
angle is 120°: find the other angles, having given
" log 4:8 = 6812412,
L tan 8°12'= 91586706, diff. for 60" = -0008940.
28. A side of a base of a square pyramid is 200 feet and each
edge is 150 feet : find the slope of each face, having given
log 2 =-30103, L tan 26° 33’ = 9-69868, L tan 26°34' = 9:69900.

29. Find the other angles, having given g:l'é, C =60°,

log 3 ="4771213, Lcot9°49 =10-7618797, diff for 1'=-0007514.

30. If a=2, c=3, Lsind = 95228787, find C; log 3 being
-4771213. «

31. Shew how to solve a triangle having given the base, the
height, and the difference of the angles at the base; these angles

being supposed both acute.

32. Shew how to solve a triangle having given the three per-
pendiculars from the angles on the opposite sides.
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XV. MEASUREMENT OF HEIGHTS AND
DISTANCES.

239. We shall now give a few examples which will shew a
practical application of some of the preceding formuls ; we shall
assume that by means of suitable instruments an observer can
measure the angle subtended at his eye by the straight line joining
two visible objects. For a description of the requisite instru-
ments, and the method of using them, we must refer the student
to treatises on the instruments used in surveying.

240. To find the height and the distance of an inaccessible
object on a korizontal plare.

P

A V c

Let P be the top of an object, and let it be required to find its
height PC, and the distance of the object from a point 4 in the
horizontal plane through C. At A observe the angle PAC ; then
measure any length 4B directly towards the object, and at B
observe the angle PBC. Then in the triangle APB the side 45
is known, and the angle PAH; also the angle PBA is known,
gince it is the supplement of PB( ; therefore AP can be found.
Then PC = AP sin PAC, and AC = AP cos PAC; thus the height
PC and the distance 4C are determined.

If however it is not convenient to measure the length 4B
directly towards the object, we may proceed thus; measure the
length 4B in any direction from 4; at 4 observe the angles PAC
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A\‘ / c
B
and PAB, and as B observe the angle PBA. Then in the triangle
APB the side 4B and the angles PAB and PBA are known;

therefore AP can be found. Then, as before, PC' = AP sin PAC,
and 40 = AP cos PAC.

241. To find the distance between two wvisible but inaccessible
objects.

Let P and @ be the objects, 4 and B two accessible points
from which both the objects are visible. At 4 observe the angles
PAQ and QAB, and if 4, B, @, P are not all in the same plane
observe also the angle PAB. At B observe the angles PBA and
QBA. Measure AB. Then in the triangle 4 PB the side 4B and
the angles PAB and PBA are known: thus P4 can be found.
Again, in the triangle 4BQ the side 4B and the angles Q4B and

Q

B

QB4 sare known ; thus 4Q can be found. Lastly, in the triangle
PAQ the sides AP, AQ, and the angle PAQ are known; thus
PQ can be found.
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242. The lengths of the strasght lines which join thres points
A, B, O, are known ; at any point P in the same plane as A, B, C,
ths angles APC and BPC arg observed: it 1s required to find the
distance of ‘P from each of the points A, B, C.

Let the angle 4 PC be denoted by a, the angle BPC by B, the
angle PAC by «, and the angle PBC' by y; then a and 8 are

known, and when z and y are found the required distances PA,
PB, PC can be found ; for in each of the triangles PAC and PBC
two angles and a side will then be known. We will shew how 2
and y may be found.

Since the angles of the triangles 47°C and BPC are together
equal to four right angles, we have
z2+y=2r-a-B-C;

thus the sum of 2 and y is known.

From the triangle ACP we ‘have

AC sin PAC bsinx
PC==PC =5na

from the triangle BC'P we have

BCsin PBC asiny
PC="—wpr— = smA
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beinz asiny

therefore e = smp ;
therefore m_;m = ‘in: .
siny bsingf
asina
Now assume tan ¢ = bsn B’ then the value of ¢ can be found
from the Trigonometrical Tables ; thus
sinz
m =tan¢;

sinz-giny tang-1 _ 7\ |
therefore sinw+siﬁy_ta.n¢+l‘m(¢—4_z>’

tan} (z—y) _ _’_r).
therefore (Art. 88) tan%(x_'_y)_tan(cﬁ 1)
from the last equation we can determine -y, since z+y is
known ; thus « and y can be found.

243. It is sometimes important to know what amount of
error will be introduced into one of the calculated parts of a
triangle by reason of any error which may exist in the given parts;
such questions are best treated by the assistance of the Differential
Calculus, but we will give here two simple examples which will
shew how they may sometimes be treated *without going beyond
the limits of the present subject.

244, Suppose that the height of a building is determined by
measuring a horizontal straight line from its base, and by observing
at the extremity of this straight dine the angular elevation of the
top of the building above the horizon ; if a small error be made
in observing the angle, required the error in the estimated Leight
of the building.

Let a be the length of the measured straight line, ¢ the
observed angle, x the estimated height of the building ;

then =« tan 6.
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Let 8 + & be the true angle, and @ + ¢ the true height,
then z+é=atan(6+4);

asin b
cos (0 + h) cos §°

If A be small we may put A for sin 4 in the numerator, and
cos @ for cos (0 +4) in the denominator ; thus approximately

£= c—é:% ;

this gives the error in the height consequent upon an error in the
angle.

The ratio of the error to the estimated height

ah 3 2A
_—_w——s,—o;-:-atan0=m=gin—25;

thus this ratio is least for a given value of 4 when sin 26 is greut-

by subtraction, £=a {tan (§ +A)—tan 6}=

T

est, that is, when 20=§

245. A triangle is solved from the given parts, 4, b, ¢; if
there be a small error in 4, find the consequent small error in B,

We have for connecting B with the given quantities the
formula

inB=Lanc=lena+5........ Q).

Now suppose that 4 denotes the circular measure of the error
made in estimating 4, and % the circular measure of the conse-
quent error in B; then instead of (1), the correct formula is

sin (B+%) = Jsin (A + B+ b+ B).cv.ec.(2).
By subtraction,
sin(B+k)-sinB=g{sin(A+B+h+k)-sin(4+3)},-

from this equation we have approximately (Art. 181)
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koogB=g(h+lc)cos(A+B)=-—g(h+/c)0080;

thus Ic(cmli+bcos0)._—%’-'co30
sin B A sin B cos ¢
therefore k(COSB"'siTC'coso):"ﬁ_
therefore k=_h_5hi?°';0,
sin 4

thus the ratio of & to A is found.

EXAMPLES,

1. A person standing on the bank of a river observes the
angle subtended by a tree on the opposite bank to be 60°, and
when he retires 40 feet from the river’s bank he finds the angle to
be 30°: determine the height of the tree and the breadth of the
river,

2. From a station B at the base of a mountain its summit 4
is seen at an elevation of 60°; after walking one mile towards the
summit up a plane making an angle of 30° with the horizon to
another station C, the angle BC'4 is observed to be 135°%. Find
the height of the mountain in yards.

3. The altitude of a tower is observed to be 30° at the end of
a horizontal base of 100 yards metsured from its foot. Find the
height of the tower.

4. The angular elevation of a tower at a place 4 due south of
it is 30°; and at a place B, due west of 4, and at the distance &
from it, the elevation is 18°: shew that the height of the tower is

a
JEZ+25)°
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5. A spherical balloon whose radius is r feet subtends at an
observer’s eye an angle a, when the angular elevation of its centre
is 8: determine the height of the centre of the balloon.

6. A person wishing to ascertain the distances between three
inaocessible objects 4, B, C, places himself in a straight line with
4 and B; he then measures the distances along which he must
walk in a direction at right angles to 4B until 4, C and B, ¢
respectively are in a straight line with him, and also observes in
those positions their angular bearings: shew how he can find the
distances between 4, B, C.

7. Two posts 4B and CD are placed at the edge of a river at
a distance AC'=4 B, the height of C.D being such that 4B and CD
subtend equal angles at Z, a point on the other bank exactly oppo-
site to 4 : shew that the square of the breadth of the river is equal
to 07)%37’ and that 4D and BC subtend equal angles at E.

8. A flag-staff a feet high stands on the top of a tower b feet
high. Find at what point on a horizontal plane passing through
the base of the tower an observer must place himself so that the
tower and the flag-staff may subtend equal angles, the height of
the eye being .

9. A tower situaced on a horizontal plane leans towards the
North ; at two points due South and distant a, b, respectively from
the base, the angular altitudes of the tower are a and 8. Shew
that if § be the inclination of the tower, and 4 the perpendicular

height,

b-a b-a
t'a'no_bcota.—aocot,,B’ ‘= ootB-cota’

10. An object a feet high placed on the top of a tower sub-
tends an angle y at a place whose horizontal distance from the foot
of the tower is b feet : determine the height of the tower.

11. On the bank of a river there is a column 200 feet high
supporting a statue 30 feet high ; the statue to an observer on the
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opposite bank subtends an equal angle with a man 6 feet high
standing at the base of the column: required the breadth of the

nver, o

12. The height of a house subtends a right angle at an oppo-
site window, the top being 60° above a horizontal straight line:
find the height of the house, taking the breadth of the street
to be 30 feet.

13. Two chimneys are of equal height. A person standing
between them in the straight line joining their bases observes the
elevation of the nearer one to him to be 60°. After walking
80 feet in a direction at right angles to the straight line joining
their buses he observes the elevations of the two to be respectively
45° and 80°. Find their height and the distance between them.

14. An object is observed at three points 4, B, (' lying in a
horizontal straight line which passes directly underneath the object ;
the angular elevation at B is twice that at 4, and at C' is three times
that at 4 ; AB=a, BC =b: shew that the height of the object is

gy/1(@+3) (35-a)}.

If the tangent of the angle of elevation at 4 be 4, shew that
5a =13b.

15. A vertical tower whose base is Pn the same horizontal
plane with the observer, is observed from a station 4 to bear
directly North and to subtend an angle of 15°; the observer then
walks 100 yards so that the tower always subtends the same angle,
and then it bears North-east : find its height and distance from 4.

16. A person walking along ‘2 straight road observes that the
greatest angle which two objects subtend is a; from the spot
where this is the case he walks a distance ¢, and the objects now
appear as one, their direction making an angle 8 with the road.
Shew that the distance between the objects is

2¢ sin o sin B
cosa+cosf "
122
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17. A fortress was observed by a ship at sea to bear East-
north-east, and after sailing 4 miles to the East it was observed to
bear North-north-east: shew that the distance of the ship from
the fortress at the first and second observation was ,/(16 + 8 ,/2)
and /(16 ~ 8 ,/2) miles respectively.

18. A ship sailing towards the North observes two light-
houses in a line due West ; and after an hour’s sailing the bearings
of the lighthouses are observed to be South-west and South-
south-west. The distance between the lighthouses being 8 miles,
find the rate at which the ship is sailing.

19. From the top of the mast of a ship 64 feet above the level
of the sea the light of a distant lighthouse is just seen in the
horizon ; and after the ship has sailed directly towards the light for
30 minutes it is sean from the deck of the ship, which is 16 feet
above the sea. Find the rate at which the ship is sailing, con-
sidering the earth as a sphere of 4000 miles radius.

20. A man ascends a mountain by a path which is the shortest
distance between the base and the vertex. The inclination of the
path to the horizon at first is a, but afterwards suddenly increases
to B, and then continues the same. On reaching the vertex he
finds by the barometer he has ascended n feet in altitude, and
observes the angle of depression y of the point from which he
started. Shew that the distance he travelled in the ascent is

a +
ncos(~—2£-—'y>

21. If from two points irsa horizontal plane an object be
seen at angles of elevation a, 8, and if from a third point between
the two points and in the straight line joining them and at dis-
tances a, b from them respectively the object be seen at an angle
of elevation y, shew that the height of the object above the hori-
zontal plane is

sin a sin B sin y {ab (a + B)}
{asin’a (sin"y — sin’B) + b sin* B (sin'y — sin’a)}}’
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22. A person walking along a straight road observes the
angles of elevation a, a’ of the summits of two hills in front of him,
one behind and partially hid by the other. After walking ¢ miles
the farther hill becomes entirely hidden, and on observing the
elevation of the lower hill after walking another mile he finds it
to be 8. Find the heights of the two hills,

23. A tower is surrounded by a circular moat. At noon on
a certain day the shadow of the top of the tower is observed to
project 45 feet beyond the edge of the moat. When the sun is
due West on the same day the shadow projects 120 feet beyond
the moat. The distance between the extremities of the shadow is
375 feet. The angle of elevation of the top of the tower from any
point of the edge of the moat is 60°. Find the height of the tower
and the altitude of the sun at noon.

24. A tower stands upon an inclined plane, meeting it at a
point 4; at a point €' in the plane the tower is observed to subtend
an angle a; on proceeding to a point D in the straight line A(}
such that CD = AC, the tower is observed to subtend an angle 8:
if ¢ be the angle between the tower and AC, shew that

cot ¢ =2 cota— cot 8.

Also if similar observations be made in another straight line
AC'D', it is found that tan o’= 2 tan §'; the angle CAC’=1vy: prove
that if 6 be the inclination of the plane to the horizon,

sin 4 sin y = cos ¢.

25. In a triangle 4BC having given 4 = 30°% 6=3,/3, a =3,
solve the triangle ; and supposing that an error of 2” is made in
observing the angle 4, find approximately the corresponding error
in the angle B.

26. The distance between two objects on the opposite bank of
a river is known to be ¢. An equal distance is taken anywhere
along the bank on this side and the angles subtended by ¢ at the
extremities of this distance are o and 8. Find the breadth of the
river, the sides being paralleL
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27. A person wishing to obtain the breadth of a square fort on
a distant hill, observes that when he is due South of one corner,
the face towards him subtends en angle a. He then walks due
‘West, and at a distance of a feet from his first position, finds that
the face subtends the same angle as before. On walking & feet
further, he is due South of the other corner of the face. Shew
that the breadth of the fort is

btana

(a +b) sec ¢ feet, where tan¢=m .

28. A and A’ are the peaks of two mountains, and BC is a
straight horizontal road ; shew that if the nearer of the two peaks
just conceals the more distant at some point of the road, then
gin o 8in 8’ =sin o’ sin B, where a is the altitude of 4 as seen from
any point B of the road, B is the angle 4ABC, and o', B’ are similar
quantities for the peak 4’ as seen from any point B’ of the road.

29. A and B are two objects in the same horizontal plane,
P is a point in the same plane at which the angle a subtended by
AB isobserved ; from P two persons walk in this plane in directions
at right angles to P4, PB respectively, to points @, R, at each of
which the angle subtended by 4B is a ; the distances PQ, PR are
a, b. Find the length of 4B.

30. 4, C, B are three objects in the same plane as an ob-
server; AC =CB, and AC, CB are at right angles to each other.
At the point 0, AC, OB subtend angles a, B respectively. The
observer moves from O in the direction OO’ at right angles to CO
through a space 00'=d ; here he finds that 4C, C'B subtend angles
o, B respectively. Find the distance 45.

31. A tower 150 feet high throws a shadow 75 feet long
upon the horizontal plane upon which it stands. Find the Sun’s
altitude, having given

log 2 = -3010300, L tan 63° 26’= 103009994,
L tan 63°27'=10-3013153.
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32. A person standing at the edge of a river observes that
the top of a tower on the edge of the opposite side subtends an
angle of 55° with a horizontal straight line drawn from his eye;
receding backwards 30 feet he then finds it to subtend an angle
of 48°, Determine the breadth of the river, having given

Lsin 7°=9-08589,  Lsin 35°=9-75859,
L sin 48°= 9-87107, log 3 = 47712,
log 10493 = -02089.

33. A rope-dancer wishes to ascend a tower 100 feet high, by
means of a rope 196 feet long. If he can do so, find at what incli-
nation he must be able to walk up the rope, having given

log 2 =-30103, Lsin 30° 40" =9-70761,
log 7=-84510,  Lsin 30°41'=9-70782,

34, Two hills rise at the same point, with inclinations of 60°
and 40° to the horizon. At a distance of 64 feet from the base of
the latter hill the angles of elevation of the bottom and top of a
vertical object on the former hill are 40° and 70°. Find the height
of the object, having given

L tan 20°= 95610659, L cos 40°= 9-8842540,
log2 = '3010300;  log 26940031 = 7-4303981.

35. A vessel observed another o’ from the North sailing in a
direction parallel to its own. After an hour's sailing its bearing
was %, and after another hour y’ from the North. Find in what
direction the vessels were sailing.

36. In the problem discussed in Art. 242, shew that if
a+B+C =m then ¢=1—r,

and the solution cannot be obtained from the data.
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XVL PROPERTIES OF TRIANGLES.

246. The present Chapter will contain some miscellaneous
propositions relating chiefly to the properties of triangles.

247, To find expressions for the area of a triangle.

A triangle is half a rectangle on the same base and altitude;
thus if 4BC be any triangle, and 4D the perpendicular from 4 on
the opposite side, we have (see the figures in Art. 214)

area of triangle = §BC . 4D,
and AD = ABsin B,
therefore area of triangle = 4 acsin B, ..............., @);

thus the area of a triangle is half the product of two sides into
the sine of the included angle.

By Art. 218, sin B= Jle (s~ ) (s~ 8) (s~ )} ;

substitute the value of sin B in (1) and we obtain
area of triungle = /{8 (8 — «) (83— 0) (8 —c)}.......... 2);
this furnishes a convenient expression for the area when all the
gides are known ; the expression ,/{s (s — a) (8- b) (8 — ¢)} is often
for abbreviation denoted by S.
_bsind ° bsinC
““snB’ ‘" EmB’
substitute these values in (1); thus we obtain

. b*sin 4 sin C
area of tna.ngle= —m— .................. (3);

By Art. 214,

thus we can find the area when a side and two angles are given,
for if two angles are given the third angle is also known.
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248. To find the radius of the circle inscribed in a triangle.

Let ABC be a triangle, O the centre of the circle inscribed in
the triangle and touching the sides at the points D, £, F. Join
OD, OF, and OF. The angles at D, E, and F are right angles
by Euclid 111. 18, Let 7 denote the radius of the circle ; then

area of triangle BOC = 4 BC'. OD=ﬂ‘,
area of triangle (04 =104. 0E=.Iz,

aren of triangle AOB = } AB. OF =% ;
therefore, by addition,

(a+0+ c)g— = area of triangle ABC' =8, (Art. 247),

that is 78 =8, therefore r=§. .

The radius of the inscribed circle is thus equal to the area of
the triangle divided by half the sum of the sides; and hence dif-
ferent forms can be obtained for the radius by employing tho
different expressions already given for the area of the triangle.

It is easy to shew by Geometry that
AE=AF=8-a, BF=BD=s-b, CD=CE=s-c
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249. We may also obtain the value of r in another form,
which will be often useful.

By Euclid 1v. 4, the strhight lines 04, OB, OC bisect the
angles A, B, C respectively. Thus

BD=r¢::oi;l—9 C’D=rootg, therefore r(oot—g+cot-g)=a,

2’
asinési.nc
therefore rsing—;q =asxiné9 sin ¢ , therefore r = 2 3 .
cos
2
Or thus: r=AEta.n-‘2§=(s—a)tan%.

250. To find the radius of the circle which touches one sids of
a triangle and the other sides produced.

Let ABC be a triangle, and let O be the centre of the circle
which touches the side BC, and the other sides produced at the
pointa D, E, F. Join 0D, OF, and OF. The angles at D, &,
and F are right angles by Euclid 11, 18. Let r, denote the radius,
of the cirela
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The quadrilateral O BAC may be divided into the two triangles
OAB, 0AC ; therefore the area of t]ns quadrilateral is r +; r.
Again, the same quadrilateral may be divided into hhe triangles
OBC and ABQ; therefore the area of this quadrilateral is

gr, +8. Thus

¢ b a
§'I'1+—2-’)'l=-2-'l'l+S;

therefore (¢ +b—a 3 =S that is 7 (s —a) =S, therefore r, = -S—a
It is easy to shew by Geometry that
AF=AE=8 BD=BF=8-¢, CD=CE=s-b.

The centre of the inscribed circle is also on A0, and the dis-
tance between it and O subtends a right angle at B and at C.

Similarly, if », be the radius of the circle which touches C'A
and the other sides produced, and r, the radius of the circle which
touches 4 B and the other sides produced,

N N
r=—, = —

2Ts-b" ' s-c¢

A circle which touches one side of a triangle and the other
sides produced is called an escribed circle.  °

251. We may also obtain an expression for the radius of an
escribed circle similar to that in Art. 249 for the radius of the
inscribed circle.

For, in the figure of Art. 250, t.he straight line OB bisects the
angle which is the supplement of B, and the straight line OC
bisects the angle which is the supplement of ¢ Thus

BD =7 cot (90"—'§B), CD =7 cot (90"—%);

therefore r,(tan‘g+tang)=a;
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B C

3
Or thus: r,=AFta.n%=sta.n%.

2562. To find the radius of the circle described round a tri-
angle.

Let ABC be a triangle, and O the centre of the circle described
round it. Draw OD perpendicular to BC, then BC is bisected at
D by Euclid 111, 3. Let R denote the radius of the circle.

The angle BOC is double the angle BAC, by Euclid m. 20;

therefore BOD=A4;
a

. a
and BD:RsmA=§, therefore R_m—z,

thus R is expressed in terms of a side and the opposite angle.
By Art. 218, sinA=?§, therefore R=§%c.

., 253. Many theorems have been demonstrated with respect to
the circles which have been mnoticed in Arts. 248...252; as an
example we will find an expression for the distance between the
centres of the inscribed and circumscribed circles of a triangle.
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Let A4BC be a triangle; let O be the centre of the circum
scribed circle.

From O draw a perpendicular 0D on BC, and produce it to
meet the circumference of the circle at £, Then the arc BE is
equal to the arc CE; and therefore the straight line AE bisects
the angle BAC. Thus the centre of the inscribed circle will be
on AE ; let the point I denote it. Join O and IC.

The angle £IC'=4 (4 +C) by Euclid 1. 32: and the angle
ECI=ECB+ BCI=4(4+C): therefore the angle EIC = the
angle £CI: and therefore £1 = EC.

And  KC=2Rsin 4 ; therefore EI=2Rsin % .

Hence EI x IA=2Rsing- x ‘LI = 2Rr,

s 5

And (B-0I)(R+0I)=2Rr, by Euclid 111. 35;
therefore 01*=R* - 2Rr.
If we suppose /£ produced through £ to a point J such that

EJ = EI, the point J will be the centre of the escribed circle
which is opposite the angle 4 ; and we shall have
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254. To find the area of & quadrilateral which can be in
sortbed in a circle.
Let ABCD be the quadrilateral ; let
4B=a, BC=b, CD=c¢, DA=d

The figure can be divided into the triangles 4BC, ADC ; its aree
therefore

=4 (absin B + cdsin D) = } (ab + cd) sin B,
for the angles B and D are supplemental by Euclid 111, 22,

Now from the triangle 4BC,
AC*=a’ + b* - 2ab cos B,
and from the triangle C.DA4,
AC*=¢"+d* - 2cd co5 D = ¢* +d* + 2cd cos B;
therefore ¢ +d*+ 2¢d cos B=a" + b* - 2ab cos B,
e
2(ab+cd) ’

o (@b =y
t.llemfote sin’ B=1- —m:-’n.

therefore cos B=
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_{2(ab+cd)+c'+d"—a' - b} {2 (ab + od) — '~ d” + u + b}

4 (ab + cd)"
Me+d)~(@-b)}{(@+b)'~ (c-d)}
4 (ab + cd)"
_(c+d+d-a)@+c+d-d)(a+b+d—c)(a+b+c—d)
B 4 (ab + cd)’ )

Now let 4 (a+b+c+d)=s; thus

,B=16(s-a) (s—b)(a—c)(a-d)'

s £(ab + cd)’

Hence the area of the quadrilateral
=Ji(e—a) (s-b) (s — ¢) (s - d)}-
If we substitute the value of cos B in the expression for 4C°*,
2cd (u* + U —c'—d°)
2 (ab + cd)
cd(a®+b* —c* —d’)
ab+cd
_ (ac + bd) (ad + be)
T db+ed

wo obtain AC =" +d* +

=c'+d'+

Similarly it may be shewn that

A_a’+d’—b’—c”
e =" ad+be) ’

_(ac+bd) (a,b+cd).

2
3D ad + be

The radius of the circle described round the quadrilateral may
be easily expressed ; for this circle passes round the triangle 4BC,
hence by Art. 252 its radius

A0 1 /((ab+od)(ac+bd)(ad + bo)\
=2sinB=Z\/{(a—a)(a—?)_)(a-c)(a-d)f'




19z PROPER1InS OF TRIANGLES,

235. To find the radis of the tinscribed amd curcumseribed
circles of a regular polygon, that is of a polygon which has all
s sides equal and all its angles equal.

AS_D B

Let 4B be the side of a regular polygon of n sides; let O be
the centre of the circles, O.D the radius of the inscribed circle, 04
the radius of the circumscribed circle.

Let AB=a, OA=R, OD=r.

The angle A0B is the n™ part of 4 right angles, that is,

AOBJI, 40D=".
n n

] . ™

AD = =Rsin — =7 tan —;

2 n n

therefore / JL
. T m

2 sin - 2 tan —

n, n

256. The area of a regular polygon may be expressed by
weans of the radius of the inscribed circle, or of the radius of the
circumscribed circle. For with the figure of Art. 255, the area

of the triangle 408
aa ™

=4AB.0D=§§OOtn

a' T
=g oty
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therefore the area of the polygon
2
=“_Z— t"1.='nv}if"s]'_n""_"‘cot"—r=ER’sxin&r.
n n n 2 n

Also the area of the polygon = ns* tan® g cot 2 =nr' tang .

267. To find the area of a circle.

The area of a regular polygon of n sides described about a
circle of radius r

™
=nr® tan —.
n

Now suppose » to increase without limit, then the area of
the polygon approximates continually to the area of the circle as
its limit, and therefore the area of the circle will be equal to the
limit of the above expression. But when 7 is indefinitely great,

ntan:—::-ir, (Art. 119);

therefore the area of a circle of radius r = ',

268. To find the area of a sector of a ccle.
Let 0 be the circular measure of the angle of the sector; then

area of sector 0 . .
‘——m—m—g = 2; ) (E“Ll‘ld VL 33) H
S 6
therefore the area of the sector = w7 x 5, = "l,)-— .

Since # is the circular measure of the ungle of the sector, the
length of the arc of the sector is 70; hence the area of a sector is
equal to half the product of the length of tho urc into the radius.

The area of a ssgment of a circle can now be found. For a
segment of a circle which is less than a semicircle is equal to the
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difference between a sector and a triangle; so that if § be the cir-
cular measure of the angle of the sector the area of the ssgment is
g(a-sino). A segment of a circle which is greater than a

semicircle is equal to the difference between the circle, and a
segment less than a semicircle,

EXAMPLES.

1. The sides of a plane triangle are 24, 30, 18: find the area.

2. Two angles of a triangle are 15° and 45°, and the included
side is 10 feet: find the area.

3. The sides of a triangle are equal to 3 and 12 respectively,
and the contained angle is 30°: find the hypotenuse of an equal
right-angled isosceles triangle.

4. The area of a triangle = } (a® sin 2B + b" sin 24).

. a’—b*sin 4 sin B

5. The area of a trmngle———z— sn(A-B)

. 2abc 4 B C
6. The area of a tna.ngle=a1m €08 7 COB 5= COB 5.

7. Shew that the triangle whose sides are proportional to
gh(B*+T), Kk (g"+k), (k+gl)(hl-gk)
has its area and the trigonometrical ratios of its angles rational.
8. The sides of a triangle are in arithmetical progression, and
its area is to that of an equilateral triangle of the same perimeter
a8 3 is to 5. TFind the ratio 4f the sides and the value of the

largest angle.

9. If the alternate angles of a regular hexagon be joined so as
to form another regular hexagon, and again the alternate angles of
the latter hexagon be joined, and so on, shew that the sum of the

masof..utheﬁgumsofomed=§,where5isﬂwmofum
original figure.
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10. If we prooeed with a regular figure of n sides, and of
area S, as with the hexagon of Example 9, and 3 denote the
sum of the areas so formed, shew‘thatEsins?’rsing=Soos’%'—r.

n
Explain the cases where n =3 or 4.

11, Ifan equilateral triangle be described with its angular points
on the sides of a given right-angled isosceles triangle, and one side
parallel to the hypotenuse, its area will be 2a°sin 60° (sin 15°)°,
where a is a side of the given triangle.

12. Shew that, with the notation of Arts. 248 and 250,
C

4 B
7,71, = 1" cot’ 3 cot* 3 cot' 3
13. The straight lines which bisect the angles 4, C of a
triangle 4 BC meet the circumference of the circumscribing circle
at the points 4’, ¢": shew that 4’C" is divided by CB, B4 into

three parts, which are in the proportion
C
g

i 2 2si ésingsing' sin’
s1n ? H n 9 9 D] H 3 .
14. If % be the difference between the sides containing the
right angle of a right-angled triangle, and # its area, the diameter
of the circumscribing circle is equal to ./ (A* + 48).

15. The sides of a plane triangle are 3, 5, 6: compare the
radii of the inscribed and circumscribed circles.

16. O is the centre of the circle circumscribed round an acute-
angled triangle, and 40 is produced to meet BC at D: shew that

DO cos (B—C)=40 cos 4.

17. A circle is inscribed within a given triangle, and another
triangle formed by joining the points of contact; within this latter
triangle a circle is inscribed, and another triangle is formed as

13—2
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before, and 80 on continually: shew that the triangles thus formed
ultimately become equilateral.

18. The sum of the diameters of the inscribed and circum-
saribed circles of any plane triangle is equal to
acot A+bcot B+ccotC.

19, Perpendiculars are drawn from the angles 4, B, C of
an acute-angled triangle on the opposite sides, and produced to
meet the circumscribing circle: if those produced parts be a, B3, y
respectively, shew that

a b ¢
-+ =+ —=2 (tan 4 +tan B+ tan 0).
a By ( 9

20. In any triangle the area of the inscribed cirle is to the

qmoft.hetrimgleaswistocotg ootgcotg.

21. On each side of an acute-angled triangle as base an isoe-
oeles triangle is constructed externally, the sides of each being equal
to the radius of the circumscribed circle: if the vertices of these
be joined a triangle will be formed equal and similar to the original.

22. If R be the radius of the circumscribed circle of a triangle,
ac08 4 + b cossB + ¢ cos C' = 4R gin 4 sin B gin C.

23. O is the centre of the circle circumscribed about a triangle
ABC; from O the perpendiculars 0D, OE, OF are drawn to the
gides: shew that

4(0D* + OF* + OF") = a* got’4 +b* cot* B + ¢* cot* C.

24. If r be the radius of the circle inscribed in a triangle,
and r, the radius of the circle inscribed between this circle and
the sides containing the angle 4, shew that

l-sin‘-2 ( 4 'A)'
g \®1-"8f

r,=r

l+siné=r(oosf‘-+ainf4-)'.
2 4 4
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25. If r be the radius of the circle inscribed in a triangle,
and r,, 7,, 7,, the radii of the circles inscribed between this circle
and the sides containing the angles 4, B, C respectively: shew

that
N(rars) + J(rr) + Jrr)=r.

26. If a triangle A’B'C" be formed by joining the feet of the
perpendiculars let fall from 4, B, C on the opposite sides, shew
that B'C’ is numerically equal to R sin 24, where R is the radius
of the circle circumscribed about 4BC.

27. Perpendiculars drawn from the angular points of an
acute-angled triangle to the opposite sides meet those sides at the
points D, E, F: shew that if X and R, be the radii of the circles
described about the triangles ABC and DEF respectively, and r,
the radius of the circle inscribed in the latter triangle,

R,=4R, and r,=2R cos 4 cos B cos C.

28. Ifr, r, r, r, denote the radii of the inscribed and
escribed circles of a triangle, shew that

29. If A be the area of the circle inscribed in a triangle,
4,, 4,, A, the areas of the escribed circles, then

R S S S
h/ 4 h/ Al l\/ Aa ~/ Al )

30. If the sides of a triangle be in arithmetical progression,
the perpendicular on the mean side from the opposite angle, and
the radius of the circle which toushes the mean side and the other
two sides produced, are each equal to three times the radius of the
inscribed circle.

31, The distances of the centre of the circle inscribed in a

triangle from the centres of the three escribed circles are respeo-

tively equa.ltoasecé, bsecg, csecg.
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82. Two similar triangles have a common escribed circle
touching sides not homologous a,, b, Shew that
& : a=sinB+sinC —sin4 - gin 4 +sin ¢ —sin B.
33. If 0,, O,, O, are the centres of the escribed circles of a
triangle, then the area of the triangle 0,0,0,

. a b (]
=”m°ftmngl°ABo{l+b+c—a+a+c—b+a+b—c}'

34. The centres of the three escribed circles of a triangle
are joined: shew that the area of the triangle thus formed is
%, where r is the radius of the inscribed circle of the original
triangle.

35. A', B, (' are the centres of the escribed circles of a tri-
angle; 4', B, (" are joined so as to form & triangle: if » and 7' be
the radii of the circles inscribed in 4 BC' and 4'B'C’ respectively,
6'

V| B
, cotgcotgcotg

= "o

4 B
€OS 7 + CO8 5+ COS

2 2 2

<)

36. If r be the madius of the circle inscribed in a triangle
ABC, 2s the sum of the sides, 7/, 25" similar quantities for the
triangle which is formed by joining the centres of the escribed
circles, shew that

L gsm§sinq.
r'd 2 2 2

37. Let a, a, be the distances of the angle 4 of a triangle from
the centres of the inscribed circle, and the circle touching the side
a and the other two sides produced ; B8, B, similar quantities for
the angle B; v, v, similar quantities for the angle C': shew that

ufly By = (abe)’.
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38, Shewalsothatf: _,+“_”_1

"

39. Shew also that o’ (1__15>H3'(1-1)+7'<%-1)=o.

a ¢ a

b- LI - b

AR

41, There is only one point within a triangle, such that if

perpendiculars be drawn from it to the sides, circles can be in-

scribed in each of the three resulting quadrilaterals: prove this,

and if p,, p,, p; be the radii of those circles, and p that of the
inscribed circle of the triangle, then

GG GG G262 -
— =N ===)+ (= ==) = =)+ (=== (= =-=)=5.

P/ \ps P s P s P s P p/ P

42. A circle is inscribed in a plane triangle ABC. Another

circle is inscribed so as to touch the two sides 4B, AC, and the
last circle; again, a third circle is inscribed so as to touch the
same two sides 4.8, 4C, and the second circle, and so on. Circles
are also inscribed in the same way so as to touch BC, B4 and
CA4, CB. Shew that the area of the inscribed circle is to the sum
of the areas of all the other circles as 1 is to
B+(C 4 . C+4 B ., A+B c

—_— ‘-—— [a—— — —_— —_—
i 008002 +sin i cosec 3 +.sm 4 cosec IR

40. Shew also tha.t =0.

sin*

43. O and O are respectively the centres of the circles
described about and inscribed in a plane triangle 4BC. Join
04, 08,00, 0'A, O'B, 0'C,and let R,, R,, R,, r,, 7, T,, be respect-
ively the radii of the circles circumscribing the triangles BOC,
CO0A, A0B, BO'C, CO'4, AO'B. *If R be the radius of the circle
circumscribing the given triangle 4 BC, shew that

e _ R a2 b ¢ _abe
“abe atbrc M R TR, R TR

44, From any point P within or without a triangle 430,
perpendiculars P4’, PB, P(’ are dropped on the sides BC, C4,
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AB; and circles are described about the triangles PA’B, PB'(C,
PC’'4’. Bhew that the area of the triangle formed by joining the
centres of these circles is one-fourth of the area of the triangle
4BC. '

45. Three circles touch each other externally: prove that the

square of the area of the triangle formed by joining their centres
is equal to the product of the sum and product of their radii.

46. If the sides of a triangle be in geometrical progression,
and the perpendiculars from the angles on the opposite sides be
taken as the sides of a new triangle, then the angles of this new
triangle will be equal to those of the original triangle.

47. If o, B, y be the ratios which the sides @, , ¢ of a triangle
bear to the perpendiculars on them from the opposite angles
4, B,C,then o'+ 8 +y* —2(af + By +ya) +4=0.

48. On the sides of any triangle equilateral triangles are
described externally, and their centres are joined: shew that the
triangle thus formed is equilateral.

49. The sides of a triangle are 65 and 25, and the difference
of the opposite angles is 60°: find all the angles, having given
log 3 =-4771213, log 2=-3010300,
L tan 52° 24' = 101134508, L tan 52°25'=10-1137122.

50. If perpendiculars be drawn from the angles of an acute-
angled triangle to the opposite sides, shew that the sides of the
triangle formed by joining the feet of those perpendiculars are
acos 4, bcos B, and ccos C'; and tthenoe shew that

a* cos' 4 — b* cos® B — ¢* cos*C
2be cos B cos C = 008 24.

61. 8ix circles are inscribed between the three escribed circles
of a triangle and the angular points, each touching a side and
a side produced: shew that the products of their radii taken
alternately are equal.
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52. Straight lines are drawn from the angles 4, B, C of a
triangle through any point P meeting the opposite sides of the
triangle at the points 4’, B', (" respectively: shew that

AB .BC'.C4'=AC . B4’ . CPB.

53. Shew conversely that if the relation just expressed holds
then the straight lines 44', BB, CC" meet at a point.

64. Bhew that the perpendiculars from the angles of a tri-
angle on the opposite sides meet at a point.

55. Shew that the straight lines which bisect the internal
angles of a triangle meet at a point.

56. Shew that the straight lines which join the angles of a
triangle with the middle points of the opposite sides meet at a
point.

57. Shew that the straight lines which join the angles of a
triangle with the points where the inscribed circle touches the
opposite sides respectively, meet at a point.

58. Let a straight line be drawn from the angle 4 of a tri-
angle to the point where the escribed circle opposite to the angle
A touches the side opposite to it; let similar straight lines be drawn
from B and C' with respect to the other escribed circles: shew that
these straight lines meet at a point.

59. In the figure of Art. 250 shew that the straight lines
BE, CF, and AD produced meet at a point.

60. A quadrilateral figure ig so taken that a circle can be
described about it and inscribed in it. If its sides be produced in
both directions, and r,, r,, r,, 7, be the radii of the circles, in-
scribed in the triangles formed on two sides, and escribed on the
other two sides, then rrr, =1 where r is the radius of the
cixcle inscribed in the quadrilateral
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XVIL. USE OF SUBSIDIARY ANGLES IN SOLVING
EQUATIONS AND IN ADAPTING FORMULA

TO LOGARITHMIC COMPUTATION.

269. We shall now shew how to obtain the numerical values
of the roots of a quadratic equation by the aid of Trigonometrical
Tables.

(1) Suppose the equation to be
- 2px+q¢=0,
where p and ¢ are both positive; from this equation we obtain

z=p=/(0'-9)=p {1 *\/(1 _z%)}'

Now if g is less than p° assumez% =gin"6; thus

ﬂ'==1"(1"=<>089)=210cos'g, or 2psin’g,

If ¢ is greater than p® the roots are impossible; we may then
agsume }_’q_. =sec’d ; thus
z=p{l*,/(~1)tan 6}.
(2) Suppose the equation to be
'~ 2pz - ¢=0,
where p and g are both positive; from this equation we obtain

z=p=,/(p’+9) ="{1 = \/(1 +1%'>}'

Now assume tan'f = g—,; thus

cos O 1 cos @1
@=p(lssect)=p cos 6 = gin 6

0 0
=JJgoot; or — /gtanz.
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(3) If the equation is of the form &*+ 2px+ ¢=0, where
p and ¢ are positive, we can solve the equation «* — 3pz + ¢ =0, and
then change the signs of the roots (4lgebra, Art. 340).

(4) If the equation be of the form a® + 2 — g = 0, where
p and ¢ are positive, we can solve the equation z'—2px—g=0,
and then change the signs of the roots.

260. In like manner we may obtain the numerical value of
the roots of a cubic equation by the aid of Trigonometrical Tables;
we will exemplify this by considering one case.

Let the equation be &®—gx - =0, and suppose 27" less than
49" Put x =ny; thus

n’y’ —gqny ~r=0,
therefore ¥~ i—",’ - 7% =0.
Now by Art. 91, cos’a—% 0030.—0013“—0;
assume y=cosa, _f::y%; then7%=°°s43a,
thus n= (%)i, cos 3a = 4r (53)1 ;

the last equation determines 3a, and thus a is known, then

4q*
y=cosa and w='ncosa=(§ Cos a,
[ ]

The value of cos 3a is less than unity, since we have supposed
277" less than 4¢%

It appears from Art. 105 that we might also suppose

27
y = cos (—5 -ha) ,
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oonsistently with the value of cos 3a given above; thus finally the
three roots of the cubic equation are

() e s () on ()

1
where cos 3a= - (§) .
2 \¢q

261. “If in mathematical researches equations like those that
have been given of the second and third degree, presented them-
selves to be solved, their solution would be conveniently effected
by the preceding methods, and by the aid of the Trigonometrical
Tables; but the truth is, in the application of Mathematics to
Physics the solution of equations is an operation that very rarely
is requisite, and consequently the preceding application of Trigo-
nometrical Formule is to be considered as a matter rather of
curiosity than of utility.”—(Woodhouse’s T'rigonometry.)

262. To the examples which have already occurred of the use
of subgidiary angles we will add two more. See Art. 231.

(1) Required to adapt a+b to logarithmic computation.
If a and b are necessarily positive we may proceed thus: assume

Il:ta.n'ﬂ; then
a

a+b=a(l+%)=a(1+tan’0)=wsec’0.

If @ and b are not neoessu.'ily both positive we may proceed

thus: asuume%:ta.no; then

cos@ sin

a+b=a(l+%)=a(l+ta.n0)—a“/2(7§— +-:/—2—
_“"/2;1'11(0+4)
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(2) Required to adapt acosasbsina to logarithmio
computation. Let %stano ; thus

acosa*bsina:a(oosad-%sina)=a(cosa-k'amosina)

a a
=oo—s—ocos(a—0) or mcos(a+0).

MISCELLANEOUS EXAMPLES.
1. Solve 2*~6x+4=0.
2. Shew that the roots of the equation #® —3z—-1=0 are
2 cos 20°, — 2sin 10°, — 2 cos 40°.
3. Shew that the roots of the equation a®—pa® +gqr—r=0

] 4 ]
m2(§) cos a, 2(%9) cos(—251-ha), and 2(%) cos(%"*a),
§
where cos 50.-—-12' (g) ,
r 2 p 5
provided p*=bg and (§) be not greater than (3) .

4. Find the roots of the equation
o’ — 102" + 202 -8 = 0.

6. A person wishes to ascertain the side BC of a triangular
field 480, but is only able to make measurement of #nes within
the boundary of a circle which passes through 4 and touches BC':
shew how after measuring four straight lines he may determine BC.

6. Two men standing at the same point C' observe the hori-
zontal angle subtended by two objects 4 and B; they then both
move away, one in the direction 4C, the other in the direction BC,
until each observes the horizontal angle to be half what it was
before, The distance each walked being given and the horizontal
angle at C, determine the distance 4.B.
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7. The altitude of a balloon is observed at three places
4, B, C simultaneously to be 46°, 45°, and 60° respectively; 4 and
B are respectively West and’ North of ¢': form an equation for
determining the height of the balloon.

8. The distances b and ¢ of a station 4 from two other
stations B and C are known, and the angle BAC is required. It
not being practicable to observe the angle BAC, the angle BOC
(a) and the angle A0C (B) are observed at a position O situated in
the plane ABC, at a small known distance » from 4, such that
the triangle A BC is entirely within the triangle OB(. Shew that
if 6 be the circular measure of the angle (BAC —BOC) then

approximately . {m . B) i B}
= == ("

9. At a distance of 50 feet from the foot of a tower the eleva-
tion of its top is 45°: if the elevation and the distance be correctly
measured within 1’ and 1 inch respectively, find approximately
the greatest error in the height.

10. A person standing at a distance a from a tower sur-
mounted by a spire, observes the tower and the spire to subtend
the same angle: if b be the known height of the tower, express
the height of the spire (c) in terms of b and a.

If y be the error in the height of the spire corresponding to a
small error B in the height of the tower, shew that

Z_E{ M_}
c b 1+ &5y
11. The side a of a triangle and the opposite angle 4 remain
oonstant: shew that the small variations of the other sides y and
B are connected by the relation
ysec C + B secB=0.
12. The angular altitude and breadth of a cylindrical tower

on a level plane are observed to be a and B respectively; and at a
point & feet nearer the tower they are observed to be o’ and f':
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find the height and the radius of the tower. Find also the relation
existing between a, o, 8, 8.

13. In the preceding Example if the observed angular breadth
be subject to an error 8, and if p be the greatest consequent error
in the calculated radius (r), shew that p will be given by the
equation

2p

==oot (,B’ ﬁ){cosecgcosecg ootp B'}S.

If B= 60°, B =120° 8= the circular measure of 6, find approxi-
mately the ratio of the greatest error in the calculated radius to
the radius.

14. P, @, R are three known positions in a straight line, and
P@, QR are observed to subtend equal angles at a certain point S:
find the error in the calculated distance of § from @ in conse
quence of a small error o in the observed angles.

XVIII. INVERSE TRIGONOMETRICAL FUNCTIONS.

263. The equation sinz=a asserts that x is an angle of
which the sine is @; it is found convenient to have a notation for
expressing this relation in which % stands alone. The notation
used is this, x=sin"'a. Similarly the equation x=cos™a ex-
presses that  is an angle of which the cosine is a; and z=tan™'a
expresses that « is an angle of which the tangent is ¢; and so on.

264. Experience will prove that the notation here given is
often convenient; and we may shew that it is not altogether an
arbitrary notation, but one that n#turally presents itself. For, let
any function of = be denoted by f(z); then the same function of
J (), that is, f{ f(x)}, may be briefly and conveniently denoted by
JS*(x). Thus, for example, the logarithm of the logarithm of z
may be denoted by log*z. Similarly f[/{f(x)}] may be briefly
and oconveniently denoted by f(x); and so on. Thus with this
notation we have, when m and » are positive integers,

S (@) =),
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Now we may examine what meaning it will be necessary to
ascribe to f°(x), in order that the relation just given may hold
when m or n is zero. Suppose n =0, then the relation becomes

S @) =)

this leads us to settle that /°(x) shall be considered equal to a.

Again we may examine what meaning it will be necessary to
ascribe to f ~(z) in order that the relation /™ f*(x) =/™*"(x) may
hold when m or n is —1. Suppose m=1 and n=-1; thus the
relation becomes

Jf7H@) =S (@) ==,

80 that /~'(x) must denote a quantity whose function f is .

Thus sin~'z should denote a quantity whose sine is x; and
this is the meaning which we have already assigned to the symbol.

It will be observed that consistently with the remarks here
made, sin® z should stand for sin (sin x), and not for sin  x sin .
But as sin (sin) is a function which rarely occurs, it is custom-
ary to use sin’ z for what should be denoted by (sin z)".

265. Any relation which has been established among trigo-
nometrical functions may be expressed by means of the inverse
notation. 'Thus, for exa.mple, we know that

2tan 6
ta.n20= —tan’d’
this may be written
- f 2tané
26 = tan (1‘ m,0>
let tan § =a, so that 0 = tan'a; thus
- -1 2a
2 tan~'a = tan ll-a"

Similarly the relation &in 36=3sin6—4sin®d may be ex-

preased thus,
8sin~'a =sin~'(3a - 4a°).
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EXAMPLES.
.

Shew that tan™'§ = 2 tan™ §.
2. Find the value of sin (sin™} + cos™ }).

77 3 8
-1 _ -1
3. Shew that sin 8= gin~* 5 +8in i

4. Find the value of tan (tan™' + cot™ ).

5. Shew that tan™' § +tan™' } + tan™' } + tan™' § =f2',

6. Shew that tan™'a =tan™" a-b + mn"-é———c- +tan”c.
1+abd 1+ be
- 1 1 1 =
=1 -1 =1 __ _
7. TFind the tangent of 3 tan 7 + tan 3+t.:;\.l.1 %1

8. Shew that
tan~{(\/2 + 1) tan a} — tan™'{(,/2 - 1) tan a} = tan™'(sin 2a).
9. If tan (6 - a) tan (6 — B) = tan’0; then

b
10. Shew that cos™ ,J(S 3) + cosec™ ‘/(4L) = z
11, Shew that sxi.n“z;é ~sin™! 15—3 +sin™! fls—6 = %
12. Shew that 3 tan™ —+tan. ' 20 =7 - tan™ 1-%.
13. Shew that tan™ 2:J36 + tan™ 2:;; =3

14. Shew that tan (2 tan™' a) = 2 tan (tan™"a + tan™a?).

15. Shew that

tan™! (4 tan 24) + tan™" (cot 4) + tan™"* (cot’4) = 0.
T, T, 14
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16. Shew that
tan(4+§oos )+tan(-—§cos :)
17. Shew that
%'m(;m-'g & sec*(tan™ ) (@ +8) (@ + 7).
Solve the following seven equations in «:

18. sin~'x +sin

19, sin7'——

20. tan™'(z—1)+ tan™'z + tan™' (z + 1) = tan~' 3.

21. sin™ 2z —sin~'z /3 =sin~'z.

22, ta.n"{+2tan“§+ta.n"§+ta.n"£=g.
23. sin2cos™'cot2tan™'z=0.
1 1 1
) - -1 -1
24, tan™ ai tan +ta.n Py B
25. If sec 0~ cose00_3,shewthat0-- '%.

26. [If sin (r cos 6) = cos (r sin 6), shew that 6 == } sin™" .

27. Show that if sin0 +sifi‘p = §, then (2n+1)7 is ono of
the values of  which satisfy the equation
¢ =sin™ (sin 6 + sin ¢) + sin™ (sin 6 — sin ).
28. Find « from the following equation,

- 1 _,l Ll
3tan™ 5 F 3 e =t g
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29. Shew that one of the expressions

Ell_11_,2b+a:, . gin
a+c (a+c

is an odd multiple of ’5'

30. TFind all the positive integral solutions of
tan™' x + cot™' y =tan™' 3.
31. Shew that if ¢ be a positive integer, the equation
tan~ z +tan™'y =tan"" ¢
has no positive integral solutions; while the equation

“‘z+cot™ y=cotl ¢

has as many as there are different divisors of 1 + ¢

32. Shew that tan™ g =tan 1 98T Y | fap1 TG

oy +x o +1
+tant BT %, +tan~t So " %asL y pan1 1
cac! + 1 clc.’—l + 1 -
where ¢, c,,...... ¢, are any quantities whatever.

33. Shew that we can express theesum of any number of
2a/
: -1

1n

‘i s ————— 1
prEE PN L

angles of the form sin~

_,;?%m; , where m and n are rational functions of a, b, @, ¥',.

34, Write down the genefil value of sin™’ (_——21 , where m
is an integer.
35. Write down the general value of cos™ (:Elx. , where m
is an integer.
36. Write down the general value of tan™' (—1)™, where m
is an integer.
14—3
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XIX. DE MOIVRE'S THEOREM.

266. The student has already learned from Algebra that
although the square root of a negative quantity is the symbol
of an impossible operation, yet such roots are of great use in
mathematical investigations. It is usual to adopt the convention
that ,/(-a')=a,/(-1), and that such expressions as a,/(-1)
shall be subject to all the laws of algebraical transformations.
In the remainder of the present work it will be found that /(1)
occurs very frequently in our investigations; we shall for the
present assume that this expression may be freely used like any
real algebraical expression, and hereafter we shall give some re-
marks on the question of the validity of demonstrations which are
obtained by the use of the symbol ,/(—1). (See also Algebra,
Chap. xxv.)

It is becoming usual in mathematical works to employ a
simpler symbol instead of ,/(—1) in order to save room; the
letter ¢ is very conveflient for this purpose, and we shall ac-
cordingly employ it in some of the subsequent Chapters.

267. De Moivre's Theorem. Whatever be the value of n posi-
tive or negative, integral or fractional, cosnf+,/(—1)sinnfd is
one of the values of {cos 6+ ,/( — 1)sin 6}

Multiply cos a + /(—1) sin @ by cos 8 +,/(—1)sin83;
the product is

o8 a.cos B —sinasin B +,/(— 1) {sin a cos B + cos a sin S},
that is, 008 (a +B) + /(— 1) in (a + B);
multiply the last expression by cosy+,/(—1)siny; the product
is cosfa+B8+y)+./(~1)sin(a+B+7).
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By proceeding in this way we obtain the product of any num-
ber of fictors of the form cos a+ ,/(— 1) sina. Suppose there are
n of these factors, each factor being cos 6 + ,/(~1) &in 6; we then
have

{cos 0 + \/(— 1) sin 6}* = cos nf + ,/(— 1) sin nb.

This proves De Moivre's theorem when x is a posttive integer. .
Next, let n be a negative integer ; suppose n =—m, then
{cos 6 +,/(— 1) sin 6}* = {cos 8 + ,/(— 1) sin 6}
~foos 6+ J(l- 1)sin 6]~ cos m0 + Jt_ T)smmd’
multiply both numerator and denominator by
cos mf — /(1) sin mé,
cos mb — /(1) sin mf _

thus we obtain cos’*mf +sin*mb ’
that is cosmf — ,/(-1)sinmb ;
that is cos ( —mb) + /(- 1) sin (— mb),
or cosnf + /(- 1) sin nf.

This proves De Moivre's theorem when = is a negative integer.
Thus, since when n is any integer,
{cos 0 + ,/( — 1) 8in 6}" = cos nf +e,/( — 1) sin nb,
it follows that cosf+,/(—1)sinf is one of the values of
1
{cos nf + \/(— 1) sin n6}", when = is any integer.
Lastly, let n be a ﬁ-action;.suppose n=§, then
»
{oos 6+ ,/(—1)sin 6}" ={cos § + ,/(—1) sin G}¢
1

={cos pf + /(- 1) sin pb,
and, by what has just been shewn, one of the values of the last
»

expression is oosz-;-0+ J(—l)sm?

Thus De Moivre's theorem is completely established.
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268. We have shewn in the preceding Article that when
n is fractional, cosnf+ ,/(—1)sinnd is one of the values of
{008 6 + /(- 1) sin 6}"; we shall now shew how ail the values of

the last expression may be obtained. Suppose n=;—’. Now both

cos @ and sin @ remain unchanged when @ is increased by any
multiple of 2w, while by putting 6+ 2rr instead of 6, and
ascribing to r in succession different integral values the expression
cos nf + ,/(—1) sin nf assumes g different values and no more.
For suppose r successively equal to 0, 1, 2,...... ¢—1; then we
obtain the series of angles

p0 p(6+2n) p(6+4n) 2 (0 + 2qm — 2x)

7’ 7 g p ,
and we know that no two of these angles can have the same sine
and the same cosine, because no two of these angles are equal or
differ by a multiple of 2x. (See Art. 93.) Hence we obtain
g different values of the expression cos7f + ,/(-1)sinnf. We
shall not in this way obtain more thun ¢ different values, for if
r =8+ mq, where m i8 any integer positive or negative,

cosn (0 + 2rw) and sin » (6 + 2rm)

are respectively equal to
cos n (6 + 26) and sin n (6 + 2sm).

We can thus find ¢ different values for the expression

?

{cos 0 + /(- 1) sin 6};
that is, we can find ¢ different expressions, which by being raised
to the ¢** power, produce cos pf + \/(— 1) sin pf. And it is known
from the theory of equations that there must be ¢ values of x, and

no more, which satisfy the equation af=c¢, where ¢ is either real
or of the form a+b ,/(—1); thus we infer that we know all the

values of the expression

foos 0+ /(— 1)sin ).
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269. De Moivre’s theorem may be usefully employed in ex-

tracting any assigned root of an expression of the form a +5 /(- 1).
Suppose for example we require the,cube root. Assume

a=rcosf, b=rsgind; so that
P=a+ 8, and tan =2

Then a+bJ(~1)=r{cos0+ /(- 1)sin 6} ;
and therefore  {a+5 /(= 1)} =¥ {cos § + /(- 1)sin 6}2.

Ono value of {cos 0-+./(~ 1) sin 6} is cos & + J(=T)sin 3 an

the other two values are respectively

27r+0 +/(=1)sin 21r+0

270. 'We proceed to deduce some important results from De
Moivre’s theorem. In the equation
cos nf +,/(— 1) sin nd = {cos  + /(- 1) sin 6}",

suppose n a positive integer. Expand the right-hand member by
the Binomial Theorem, and equate the possible and impossible
parts of the two members ; thus

and co 41r+0

+0 4 (- Tysin

cos nf = cos" 6 - ( — 1) 08" 6 sm 6

+ n (7" - l) (n4_ “) (n— 3) cos™ 0 sin‘6

sinnf = n cos™™' f sin 0—-?——@—:1{3—(&—_ 2) cos*~® 0 sin®

 nin=1) (n—2l)5(n— 8) (% —4) e05m* 0~ ......

271. The preceding formulse hold whether n be odd or even,
but the last terms of the expressions on the right-hand side are
different in the two cases, and it will be useful to distinguish the
cases.
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If n be even, the last term of the expansion of {cos 6 +,/(— 1) sin 6}*
is. possible, namely, (- l)gsin" 0; and the last term but one
is impossible, namely, = (-' 1)1’-—1005 fsin"'9, which may be
written \/(-1) = (- 1)1;_' cos fgin*™' §. Thus when # is even the
last term of cos 76 is (~ 1)sin’ 6, and the last term of sinnd is
n(- 1)!;—’008 0sin""' 6.

If n be odd, the last term of the expansion of {cos § + /(- 1)sin 6}"
is impossible, namely (—17sin"f, which may be written

n-1
J(=1)(-1)* sin"f; and the last term but one is possible,
n=1
namely n(—1)* cos §sin"’ 0. Thus, when n is odd, the last

n-1
term of cosnf is n(—-1)" cos@sin"' §, and the last term of
n=-1

ginnd is (~1) * sin" 4.

272. From the formuls for sin nf and cos n6 we can deduce
an expression for tan nf in terms of the powers of tan 6.

For tannf = sin nt
cosnf
n 00s*~’ O gin 0 _1(_1»_—%_@—_2) cos" *@sin® G + ...

cos"G—ﬂ———(n_ 1) cos" *@gin’ 6 + ...
1.2
[}

Now divide both numerator and denominator of this expres-
sion by oos"f ; thus we find for tan nf the expression

hnﬂ—n( —lé(n—2_)tan,0+n(n—l)(n-—i%(n—:i)(n—«i)mn,o_m
—1 n (ln—zl)m,0+n(n— 1) (74—2) (n— :')tan‘o_ —_—
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If n be even, the last term of the numerator of tannf
is n(~1)7tan", and the last term of the demominator is
(—l);ta.n'o. If n be odd, the last term of the numerator is
(—1).!';—1ta.n'0, and the last term of the denominator is
n(- 1)"’;113&“""0.
These results follow from those established in Art. 271,
273. We may also obtain general formule for the sine, cosine,

and tangent of the sum of any number of angles which are not
all equal. We have seen (Art. 267) that

{cosa +,/( ~1)sin a} {cos B + /(- 1) sinB} {cos y + /( ~ 1) sin y}......
=cos(a+B+y+...... Y+ /(=1)sin(a+B+y+......).
Now cosa+,/(~1)sina=cosa{l +,/(~ 1) tan a},

co8 B+4/(~1)sin B = cos B {1 +,J(~ 1) tan B},

..............................

thus we obtain
cosacosBcosy...{1+,/(~1)tana}{l +,/(~1) tan 8} {1+ ,/(~ 1) tany}...
=cos(a+B+y+.....)+4/(=1)sin(@+B+y+.....)
Let s, denote the sum tana+tanB+tany+...... ; let s,

denote the sum of the products of the tangents taken two at
a time; let s, denote the sum of the products of the tangents
taken three at a time; and so on®
Then by multiplying together the factors 1+ ,/(-1)tana,
1+,/(=1)tanB, 1 +,/(~1)tany, ...... and equating possible and
impossible parts we obtain
cos(a+fB+y+..)=cosacosBcosy.. {l-s8 +8 —8+..}

sin (a+B+y+..)=cosacosBoosy...{s —8+8~3+..}
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By division,

tan (a+ B+ 7+ ...)=‘! —8,+8,—8+...

l-s,+3—-8+...

If » be even, the last term in the numerator is (-1)7 s _,

and the last term of the denominator is (- 1)'23.; if n be odd, the
n-1

last term in the numerator is (- 1) s, and the last term in the

n-1
denominator is (~1)* s,_,. If the angles a, B,... are all equal
the formula will coincide with that given in Art. 272,
274¢. We shall now prove formuls for the expansion of sin
and cos a in series of powers of a.
‘We have, when 7 is a positive integer,

008 76 = cos™) — ”{”;l)ws"'osin'o

+73._(n— 1)(n—2)(n-3)

L cos* *fsin'0—......

Let mf=a; and suppose n to increase without limit, and let
0 s0 change that z may remain a positive integer and 76 be always
equal to a; thus ¢ mhst diminish without limit. The preceding
equation may be written

(a - o) n—2 Pi‘;
T2 "\
a (a—6) (« ~26) (a—36) sin 6y
+ I cos""a( g ) e
Now when 7 increases without limit, and, therefore, § dimi-

nishes without limit, E%! is equal to unity, and so is every power

a s

¢0s a = cos™f — -

of -.l':—o up to (m_:_f)'; also cos @ is unity and so is every power of
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oos 6 up to cos"d (Art. 150). Hence the above formula becomes
a‘

cosa=1--2_4+2 _ 2,
1.2 " |4 (6

Also

sinn0=noos"’0sin0-ﬁt%(n—_—-2—)cos”03in'0+ ..... .
vy sind a@—6)(@-26) ., sm0>

thus s8in a = a cos™' § —— R -———-—E——eos 0(—0— Foreeee

Hence, by supposing = to increase without limit, we obtain
sita=a— E5 -7 + ......

The results of this Article are of the greatest importance; we
ghall make some remarks upon them in the next three Articles.

275. It must be observed with respect to the formulse esta-
blished for the expansion of sin a and cosa, that a is the circular
measure of the angle considered; for it is only when an angle is
estimated in circular measure that 51%2 is unity when 6 is indefi-
nitely diminished. It is easy to obtain the requisite modification
of the formule when any other unit of angllar measurement is
adopted. Thus, for example,

. e < 5
810 7% =G—L—§+
where a is the circular measure of t.he angle of n’; thus a_inso,

and we have
L mr) . 1(2”'.
sin n’ 180 @(180 5 \180

e nmw
Similarly oosn‘-:l-——(lso (180 ......
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276. The series for sina and ocosa ars convergent for all
values of a.
(_l)ﬁ—lu.'—l
12n -1

,numerical value of the ratio of the (n+ 1)* term to the n® is

ﬂ.

In(@n+1)’
£ ]
large that for such value of n and all greater values o (;n+ i

The n* term in the series for sina is ; hence the

and whatever be the value of @ we can take % so

shall be less than any assigned quantity ; hence the series is con-
vergent (Algebra, Art. 559).

Similarly it may be shewn that the series for cos a is always
convergent.

277. The proof given in Art. 274 involves one point that
may not at first appear quite satisfactory. The (r+ 1)* term of
cos a is strictly

(- 1),n(n— 1) (n—22)’:..(n—-2r+ 1) cos™ 6 sin™ 8 ;

this we write in the form

(- 1)'(1 (a - 0).(0.—;2;)‘...(0.— 276 + 6) cos™ "0 (Bin '

)

Now it is proved in Art. 150 that the Limit of cos™™d is
unity, and also that the limit of (SE; 0). is unity; the only ques-
tion is whether the limit of °

a(a—0)(a—20)..(a—2r0+6) . o
e ® o

Jor all values of r. This is obviously true when »=1; that is,
]
the limitof‘La:—o—)is%; and we can shew by induction that the
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required result is always true. For assume that
a(a—0)(@a—20)...(a~2r6 +6) o~

2 . E”'+R

where R diminishes without limit when 6 does so, so that the limit

. .o’ a-2r0
of the right-hand member is @ ; introduce a new factor %1’
a(a—6) ...(a—21'0)_{g.: o o0 |
thus Brel @*E}{fr""n "_2r+1}

L +_Rﬁ___%’ﬁ_{“"+lg ,
T2 +17 2r+ 17 2+ 1020 }’

and when @ diminishes without limit all the terms on the right-
o+l
hand side vanish except -, which is therefore the limit of the

[2r+1

left-hand member. Similarly we can shew that when another

a-2r0-6, . NV it
factor ———— is introduced the limit is
2 +2 |27 +2

; and so on.

278. The following example will shew how the series for
cos § may be practically useful. Suppose two sides a and b of a
triangle are known, and the included angle C'; if C be a very
obtuse angle we can give a convenient expression for the third side
of the triangle,

For suppose v—6 to be the circular measure of the angle C,
so that 0 is very small ; thus’

¢ =a"+b*— 2ab cos C'=a"+b"+ 2ab cos 6
=a'+b* + 2ab (1 - %-'> approximately,
abf’
= (@+ b -abt* = @+ ) {1 "(a—th)'}'
Hence, by exiracting the square root,

o= (a+b) {1 - -2—(%6—%.6—),} approximately.
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EXAMPLES.
1. Extract the square root of cos 44 + ,/( — 1) sin 44.
2. Find the values of (- 1)},
3. Obtain the six values of (— 1)},
4 Tind the three values of {1 +,/(~1)}*.
5

sinf 2165

Given —5~ = 376"

shew that 6 is nearly the circular
measure of 3°,
6. Given sin (g-«-@) =51, find approximately the value of

6, neglecting powers of § above the second.
ax’

a2
7. I tan x = a:c+—— —-+ ......
BB

shew that
_(2n+1)2n (2n+1)2n(2n-1) 2n - 2)
wn STy T et
+o (1) 2n+1)a, + (- 1)
8 If Ocotb=a,+a,0'+ab'+...
shew that
a,_, °a (-)7a (=1,
—_____L.i \
3 "1 T @axl "m0
hence find 6 cot § to four terms.
9. If secl=a,+a,0" +af'+ ... +a, 6"+
shew that .
. (-1)"a,

10. If cos 2a + ,/( — 1) sin 2a be substituted for @ in the ex-

. b . . o
pression @+d c(a+c)’ and similar quantities for b and ¢, and the

result reduced to the form 4 + B /(- 1), find the values of 4 and
B in terms of a, f, ¥.
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11. Shew that
{cos 6 + cos ¢ + ,/(~ 1) (sin @ + sin @)}
+{cos 8 +cos ¢ — . /(— 1) (sin 8 + sin @)}

=2 (oosq—;—‘#)-cos n(0+¢) 2+ ¢) .

12. Shew that if z=¢’VC"Y, and /(1 - ¢*) =ne~1,

[ n
l+ccoso=§7—l(l +nx)(l+;:).

13. Prove the following rule for finding the length of a
small circular arc: from eight times the chord of half the arc sub-
tract the chord of the whole arc, and one-third of the remainder
will give the length of the arc nearly.

14. Shew that the following rule for finding the length of a
small circular arc is more accurate than that in the preceding
example: to 266 times the chord of one-fourth of the arc add
the chord of the arc; subtract 40 times the chord of half the arc,
and divide the remainder by 45.

15. From the identical equation

(z—b)(a:—-c) (z—c) (x— a) (=— a)(m b)
@O0 6= @=a)" (c=a)c=8)"

deduce the following by assuming
x=cos 20 + ,/(~ 1) sin 26,

and corresponding assumptions foy a, b, and c:

din (0~ B)sin (0=7) . 5 p_.
sin (a - B) sin (a - 1) sin 2 (6 -a)
sm(0 y)sin (§ —a) . sin
“a@m s B-a) P
gin (6 — o) sin (6 - B) .

+ i (y = a sin (y= ) gin 2 (0 —y)=0.
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XX, EXPANSIONS OF SOME TRIGONOMETRICAL
FUNCTIONS,

279. Let x denote cos 6+ ,/(~ 1) sin 6; then

1 1 :
z "o fr y(=Damg - 0~ W(-Dsinb;

hus  w+i=20080, and z—1=2./(~1)sinb;

also  2*={cos 6+ /(~ 1)sin6)* = cos nf + /(~ 1) sinnf,

1 1 1
z {cos0+ J(—1)sm )  cosnb+ J(~ 1) sin nd

=cos nf~,/(~1)sinnf;

thus &+ = cosnd, and #- 2= 2y(-1)sinn,

We shall find this notation useful in the following investi-
gations.

280. To express cos"d in terms of cosines of multiples of 6
when n 18 @ positive integer.

. e a1l an=-1) _ 1
2cos0_(z+;) =atmat ok St T

n(n-1) 1 1 1
+ 13 z"a,*_"+m'a-:”:i+a7"‘

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and 8o on ; thus we obtain

1 .. 1 nn-17 . 1 .
nf‘+§+n(w" +z"")+ ) (a:" +w"")+""

4o=Bo0mnf, 2"+ =S con(n—2)6, and s0 on;

but " pr
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therefore
2°7" cog" 0 = cos nl + n cos (n—2) 6 +

+n(n—l) ..l;:(n—r+ 1)

”—(11‘;21—)005(”-4)“

cos (n—2r)0+...

The last term of the series on the right-hand side will take
différent forms according as % is even or odd. In the efpansion

of (:c + é). by the Binomial Theorem there are n+ 1 terms; thus
th
when n is even, there will be a middle term, namely the (g+ l) ’
which is
n(n=1)...(n=4n + 1)wg ; that is nn-1)...dn+ 1)‘
4= x’ 47

Hence, when n is even, the last term of 2"~ cos" 4 is

nin=1)...(4n+1)
2[3n )

When » is odd suppose it =2m +1; there are two middle

terms in the expansion of (a:+£) , namely, the (m + 1)®* and
(m +2)®: their sum is ¢

n(n-1)...(n— m+l)( +1>

Z)

|m

Hence when n is odd, the last. term of 2" cos" 6 is
n(n-1)...4(n+3)
3(=-1)

281. We shall find that sin® 6§ can be expressed in terms of
cosines of multiples of 6 if » be an even positive intcger, and in
terms of sines of multiples of 6 if » be an odd positive integer ;
this will appear in the following two Articles.

T.T. 15

cos 6.
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282. To express sin"0 in terms of cosines of multiples of 6,
when n 8 an even positive integer.

(- 1sn 0= (1) =a’- a2 Do 1o

5 () (T

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but

one, and 50 on ; thus we obtain

. 1 - _+n(n 1)( +1)
x +?—ﬂc( +x'_') 1.9 ) T

‘(- l);n(n-l)li";@n+l)'

Therefore

91 (1) sin" 0 = cos 06— cos (n— 2) 0.+ %L cog (- 4)0-

n(n=1)...(n—r+1)

+ (-1 I cos(n~2r)6+ ...
: D..(dn+1)
+ (1) lnm
23
283. To express sin"0 in lerms of sines of multiples of 0
when n 8 an odd positive integer.
. f:oa 1\ a1 nn-1)
__ll' =( ___>= ~_ T4 -
#(-1)ein®6 z) “a™ g 1.2 m.'m
_ n(n-—l)w, 1 1 1
1.2 " 7

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and 80 on; thus wo obtain .
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nin-1 1
_A)enesn e 1y

(= 1)'-‘%‘15 (n— 1)7;‘.;%(n+ 3) (a: _é);

but m‘—%:&/(— 1) sin %,

1,

a:""—w.l. =2,/(- 1)sin(n—2)8,

and 8o on ; therefore

27 (=- l)l?si.n"()=sinn0-—n8i-n(”“2)9+7i(&— Y éin (n—4) 0

_n(r=-1)(n-2)
13

284. 1If m be not a positive integer, the expressions for cos* 6

and sin" @ in terms of the cosines and sines of multiples of 0 are

very complicated. For these we may refer to the Theory of
Equations, Chapter xxx1.

gin (n—-6)0+...+(-1)*

Enn-1)...4(n+3) +3)
IS

285, In Art. 270 it is shewn that when = is a positive
integer,

cos nd = cos" 6——

(o),

8" *@sin® 9

cos” *0sin'0—...;

nn-1)(n-2)(n-3
(006209

since sin’@ =1—cos"6, o sin'6=(1-cos' )",

and so on, it is obvious that cos nf can be expressed in terms of
powers of cos§; we will now give a direct investigation of this
expression.

286. To express cosnl in a series of descending powers of
cos 0 when n 18 a positive integer.

Let x=cos 6 +,/(-1)siné,
16—2
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8o that =20c080, and w'+£——2cosn0

o
now (l—za:)( ) l-bz(w+£)+z'=l—z(c-z),

where ¢=2cos6.

Take the logarithms of both members ; thus
log (1 - 2x) + log (l ";ng) =log{l - 2(c-2)};
therefore 22 + }2"z' + §2°2° + +24 zl+§£+
z SRR bRl

=s(o=9) + 42 (c— o) + 42 (e= 2 + o2 o =)'+

In this identity we may equate the coefficients of 2" Or
the lefthand side the coefficient of 2" is ;L(x'+ :?), that is

%eosnﬁ; the coefficient of 2* on the right-hand side must be

obtained by picking out the coefficient of 2* from the expansion o.
& (c—#)" and of the terms which precede it
L]

The coefficient of 2" in -11-‘3"(0 -2)is c; ;

n=1 — »-1l
the coefficient of #* in 2= s 1 1y,
n-1 n—-1

S 1 (@=9(a-9)
n-2 n-2 1.2

the coefficient of 2" in
and generally the coefficient of 2" in ;—_l_—rz""(c -2)*"is

(-)y(r-r(n-r- l) (n—2r+l)c._,,.
n—r
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Thus 2 cos %8 =(2 cos 6)* - n (2 cos 0)“"+Zz—-§—n..—23) (2co86)"* -

b (=1) nn-r-1) (n—rlr— 2»...(n~-2r+1) (3 oo )"+ ...

The series on the right hand is to continue so long as the
powers of 2 cos § are not negative.

987. Tt is obvious either from the above series or from that
in Art. 270, that when n is an even positive integer cos nd can be
arranged in a series of powers of sin*f. Thus we may assume in
this case

cosnf=1+4,sin"0+ A, sin'f+ 4, 8in°+ ... + 4_sin" 6,

It is clear that the first term must be unity, because when
6=0 we have sin =0 and cosnf=1. Now we shall adopt an
indirect method of determining the values of the coefficients
4, 4, ...... Change 6 into 6 + % ; thus cos nf becomes

cos 78 cos nh — sin nf sin nh ;
now put for cosnk and sin nk their values in terms of nk by
Art. 274 ; thus the above expression becomes

7.9
cosno-nhsinne—%cosn0+

Again in the term 4, sin™ 6 change 6 dnto 6 + 4 ; we thus get
4, (sin 6 cos & + cos § sin 4)", that is,

4, (in0+hoos 0 ging— ..
If this be expanded in powers of 4 the term involving A" is
A.,{2—r—§2.——r;1)sin""000s'0—rsin" o} .
Equate the coefficients of 4*; thus

— % con nl= 4, {oos?t - sin®6) + 4, {2 . 3uin"0 cos"0 — 2 sin'0}

+ o +A,,{g,%21%1—)sin'"9ms'0—rsin"0}+...
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Now put 1 —sin®6 for cos® § on the right-hand side; then the
term oontaining sin™ @ will be
2r (2r~1 2r+2)(2r+1
RIS PN TN
mdthiseoeﬂ‘icient mustbeequaltotha,tofsin"ﬂintheueﬁes

for—iopsno ths.tls,to-2 A, ; thus

FAL =4 A, 4 1) (204 1),

n'— (2r)*
therefore A"+’——W-F_2)A".
By means of this law we may form the coefficients in succes-
sion ; we may consider 4,=1; then
n' n'

=T34 T

ﬂ' — 2! A ! (n 2’)

d=-5F4=795p
and so on,
Hence, finally,
n' . AWn'=-2) . . n'(n'-2%)(n'-4") . ,
mnﬂ:l—msm(h L §in‘0— 6 sin®0+ ...

In the above process by equating the coefficients of 4 we shall
obtain
—n6innd=4,2sin0 cosf+4,4sin" G cosf+.. + 4, 2rsin" " 0 008 0 + ...

Substitute the values of 4,, 4,...; thus

sinn0=noos€{sin0—".|§2 sin’0 J”"z'l’é(”'"")swo- }

‘When n is odd, we may start by assuming
#innf=A sinf+ 4 sinf+ 4.8in’f+ ...+ 4 sin"0;



EXAMPLES. CHAPTER XX, 231

then, by.proceeding as before, we shall find
nn'=1) . ,, n®w'-1)n-3" .,
B gin 0-5-—-———l§ gin®f -
_ =1, (n=1)(="-3") .
oosno_eoso{l g sin 0+—————l-_4——sm‘0—...}.
288. In the four formulse obtained in the preceding Article

oha.ngeointo’—r—o; thus we have, if % be an even integer,

(- 1)'oosn0 1—~—cos’0+—gr22)cos‘0—...

(-1)‘“sinno=nsina{coso-“|§ 9os'o+("”2')L§”"4')cos'o-...};

sin nf =n sin 6 -

and if % be an odd integer,
'n('n’—-l) ,okn(n -1) (n'-3" '5)
B LI

(- 1)'T-lsinn0=si.n0{l -W;. 3 cos® 9+(n -l)ﬁn 3')cos ‘60— }

n-1
(=1)" cosnf=ncos - ———

MISCELLANEOUS EXAMPLES.

Expand (sin 6)*"** in terms of cosines of multiples of 6.
Expand (sin 6)***' in terms of sines of multiples of 6.
Expand (cos 6)™ in terms of cosines of multiples of 6.
Prove that in any triangl$
a'cos} (B-C) +b’oos}(0 A)+c’cos§(A—-.B)
“cos 3 (B+0) cos 4 (C+4) cos 4 (4 + B)
=2 (ab + bc + ca).

5. From the angles of a triangle 4BC, perpendiculars 4D,
BE, CF are let fall on the opposite sides : prove that
asin (BAD ~ CAD)+ bsin (CBE — ABE) + ¢sin (ACF -~ BCF) = 0.

Ll A
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6. From 4 and B two acute angles of a triangle draw 4D
and BD at right angles respectively to AC and BC. If p be the
radius of the circle inscribed iy ABD, then

AB=p (sec 4 +8ec B + tan 4 + tan B).

7. Three equal circles of radius & touch each other: shew

that the area of the space between them is

(-3

8. The area of a regular polygon inscribed in a circle is a
geometric mean between the areas of an inscribed and of a
circumscribed regular polygon of half the number of sides.

9. The area of a regular polygon circumscribed about a circle
is an harmonic mean between the areas of an inseribed regular
polygon of the same number of sides, and of a circumscribed
regular polygon of half that number.

10. If the side of a pentagon inscribed in a circle be ¢, the

. . e J(6+./5)
radius is 710"

11, Three circles whose radii are a, b, ¢ touch each other
externally : prove that the tangents at the points of contact meet

at a point whose distance from any one of them is

AEEE

12. The sides taken in order of a quadrilateral whose opposite
ungles are supplementary are 3, 3, 4, 4: find the area and the
radii of the inscribed and circumscribed circles.

13. The area of a regular polygon inscribed in a circle is to
that of the circumscribed polygon of the same number of sides as
31is to 4: find the number of sides.

14, If the radii of three circles which touch each other be
a, b, ¢, and a, B, y be the chords of the arcs between the points
of contact in each, shew that

A= GG+ DG+
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16. Shew that the limit of (*“;‘ 0) when 6 is indefinitely

diminished, is e, .

16. The two diagonals of a quadrilateral figure whose oppo-
site angles are supplementary cannot be equal unless some one of
the sides be equal to the opposite one,

17. Two circles whose radii are @ and & cut one another at
an angle y: shew that the length of the common chord is

2ab sin y
N(a' + 2ab cosy + 8°)°

18. The radius of the circle inscribed in a triangle can never
be greater than half the radius ¢f the circle described about the

triangle.

XXI1. EXKPONENTIAL VALUES OF THE COSINE
AND SINE.

289. If we expand ¢ and ¢™ by the exponential theorem

we obtain °
e

1
é(e"+a“')=1+1—.—§+E +T§—+
k' k‘z‘ Ic”
& —¢ z+
) = BB T

If it were possible to make &'=-1, so that &'=1, &'=-~1,
and so on, then the right-hand member of the first equation would
be the expansion of cos#, and the right-hand member of the
geoond equation would be the expansion of sin x (see Art. 274).
Hence we are led to these results,

eV | gmaV D) . &V _ o= 3V

Cos = D) ’ smz=w—.
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The meaning of these equations is simply this: if we expand
eV and ¢~v-=, by the exponential theorem, in the same way
ag if /(- 1) were a real quantity, we shall by the above formule
obtain the known series for cos # and sin .

These expressions for cos # and sin z are called the exponential
values of the cosine and sine.

290." From the exponential values of the cosine and sine we
may deduce similar values for the other trigonometrical functions,
Thus, for example, .

VD _ ey

e I e

‘We shall now use the exponential values in establishing certain
results. In the remainder of this’Chapter and in the next Chapter
we shall employ the letter « instead of the symbol ,/(— 1).

291. To expand 0 in powers of tan 6.

290 9=

By Art. A ¢ tan =P’
l4+ctanf e*

therefore m—-;_—.;:e”.

Take the logarithms of both members ; thus
260 =log (1 + ¢ tan 6) — log (1 — « tan )

=2¢{tan0—%tan'0+%ta.n‘9— },

~

therefore hm&-%m’h%m“o-

This is called Gregory’s Series.
Let tan @ =2, so that §=tan™" x;

- 1 1
thus tan'z=z—§z'+3z‘-...
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292. The preceding investigation is unsatisfactory, because it
gives no indication of the extent to which the result may be relied
upon as arithmetically intelligible and true. The n® term of the

l—l 1
last series is -(-—12——-—- ; hence the numerical value of the ratio of

2" 1 :v' therefore the series is

the (n+1)* term to the n® is

convergent if  be less than umty (Algsbra, Art. 559). Ti® series
is also convergent when « is equal to unity (dlgebra, Art. 558).
For values of z greater than unity the series is not convergent,
and is therefore not arithmetically intelligible.

293. Moreover tan™'z has an infinite number of values corre-
sponding to the same value of x, so that one member of what
appears as an equation admits of* more values than the other;
this point is left unexplained in the investigation which has been
given.

The subject of series cannot be adequately treated without
using the Differential Calculus. The student must therefore be
referred to treatises on that subject for a satisfactory demonstra-
tion of Gregory’s Series. It is there shewn that so long as 8 lies
botween —J and ¥, the result = tan 0~ tan'6+ 3 tan'0 .
is absolutely true. (See Diferential Calculus, Chapter VIL.)

If, however, @ =nwx + ¢, where ¢ lies between — i Tand T 3’ then

¢=m¢—%m'?+%m°¢-...;

1

that is, 0—m=ta.n0—%ta.n'0 +5tantd ..

294, In Grogory’s Beries put 0=— then since t.u.nz-l

1.1
g—

[ R ]
]
—

wl Lo

Oll o

ﬂl —



236 EXPONENTIAL VALUES OF THE COSINE AND SINE.

This series might be used for calculating the value of #; bat

it is very slowly convergent, so that a large number of terms
would have to be taken to calculate = to a close approximation.

295. Euler's Series.

1 1
—+_
1 1 w2 3 . 7
tan™! 2 + tan 3 :f—ta.n 1—4,
[
r 1 1 1 1
thus =3-3H e T
+l —1—+ 1 1 +
37 3.375.35°7.%

296. Machin's Series. 'W» ghall first shew that

1_ .5 ., 12 _, 120
5= Atan™ g = tan” g = tan" gy,

Hence 4 ta.n"é is a little greater than g; suppose
1

st ) STt
120 _,> l+z.
then m tan( + tan 1—_—w,
. 1
from this we find @=ga5;
therefore ;=4tan"‘l—ta.n" 1

939"
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Therefore =4 {1 1 1 1 }

573, 5"'5.5"7.5’*'"

1, 1
{39 3(239)' 5(239)“‘7(239)'*'“}‘

1 1 1
-1 _ -1+ _ -1 2,
297. It may be shewn that tan 339 = tan rp—tanT o
thus 1—r=4ta.n"l—ta.n”‘l+tan"—l— °
4 b 70 99°
The series for ta.n" 0 and tan™ 91—9 are convenient for pur-

poses of numerical calculation.

The value of = has been calculated by two computers inde-
pendently to 500 places of decimals, and by one of them to 707
places of decimals : see Contributions to Mathematics...by William
Shanks, London, 1853 ; and the Proceedings of the Royal Society,
Vol. xx1. page 319, and Vol. xx11. page 45.

The value of 13—0 has been calculated to 52 places of decimals :

see the Proceedings of the London Mathematical Society, Vol 1v.
page 308.

298. @iven sinz=nsin (x + a), requwai to expand x in
powers of n.

Here & — g™ = {gletel — grintal)
therefore ¢ — 1 = {grorer _ g,
therefore e (1 —ne) = 1 —ne™,
l—ne™ o
therefore o = T !
therefore QxL = log (1 - ne—al.) - log (1 - mm)

=n (e —¢™) +gj,(9'"-f“)+7§(‘m“°%)+ .

] 3
. n . n .
therefore Z=nsina+ 5 8in2a +osinda+ ...
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As an example, suppose o= 7 — 2z, then n=1; thus .
. 1. 1. 1.
c=mn2z—§sm4:f+§sm6z—zmn8x+...
299. Given tanx=mntany, required to find a series for =
e — a"" e" e
Fren i)
-1 e -1
T T

Here

therefore

_(1+n)e™ +1-n
therefore = Tmesi+n

14+ me™ l-n
—emx T  wh =
=é where m =

1 + me™ ’ l+n

H

therefore
2= 2y + log (1 + me™) —log (1 + me™)

L]
=2y —m (¥ —e™) +"%—(e"‘—e“") -

2 3
therefore w:y—msin2y+%sin4y—'%sin 6y + ...

300. To find the coqﬁczentqfx in the expamsion of €= cos b
in powers of .
Here e cosbr=4e™ (" +¢7) = } ™4 | gom,

Expand these two exponential expressions by the exponential
theorem ; then the coefficient of " is

51@ {(@+ b)) + (a— b))

e )

Nowsuppose 2 cos 6, :—’_=sin0, go that +*=a'+d"
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Thus the coefficient of «* becomes
3
ﬁ“_'*—’ﬂ {(c08 6 + csin )" + (008 6 — ¢ sin O}

”
(“;Lb) (co8 70 + ¢ sin nf + 008 nf — usin )

(a [b cos nf.

Similarly the coeﬂ‘icient of 2* in the expansion of ¢*sin bz in

powersofa;is( +b') gin nf.

e

301. The series in Art. 298 may sometimes be of assistance
in the solution of triangles.

'We have sin B = -sm 4 ——sm (B +C); hence, by the formula,
b . b . b .
=_sin 0+Wsm20’+§;,sm 3C+...

If b be less than a the series is convergent, a.ndifg be a small
fraction a few terms of this series may give B to a sufficient degree
of approximation ; the series gives the circular measure of B, and
the measure in degrees or minutes or seconds may be deduced by
the aid of Art. 22

302. Given two sides of a triangle and the included angle, to
Jind a series for the logarithm of e third side.

Suppose @ and b the given sides and €' the circular measure of
the given angle ; suppose b less than a, we have

¢ =a"+b" - 2abcos C=a’ + " —ab (6" + %)
= (@ — be®) (@ - be™®)

#(1-3) (1-3¢°)s
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b b
thus 2loge = 3loga +log (1 ~Z &) +log (1- 7 )
=2 loj a-é(e”‘-pe""‘)__li(,m_,_ —20t .
g a %24° € )—"'J

b b b
therefore log ¢ = loga—;cosa—2—dcos20—3?cos30-

This series is convergent since & is supposed less than a, and
if g be small a few terms may give logc to a sufficient degree

of approximation.

EXAMPLES.

1. Apply the exponential values of the sine and cosine to
sin 260
shew that —]:008—'20 =cot 6.

2. If the sides of a right-angled triangle be 49 and 51, shew
that the angles opposite to them are 43° 51’ 15” and 46° 8’ 45”
nearly.

3. If the angle C of a triangle be given, and the other two
adjacent sides @, b be nearly equal, shew that the other angles are
nearly equal to

C 180°(a-b ,C 1lra-b _ CV°
0 PR— — — — —
0-3 "T{a+b°°t 3 3(a+b oot 2) }

4. 1In any triangle, if a—b be small compared with ¢, shew

that the circular measure of 4 -3 is equal to

2
2#@&(‘%”) sin 25 nearly.
5. If a and b be the sides of a plane triangle, 4 and B the
opposite angles, then will log b — log a
aoos2A—eos2B+%(oos4A—cos4B)+%(coa6A—eosGB)+..
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n 1 1 1
6. Shewthat§=r§+5-—.7+9—.u+...

7. If 4 + Bu.=log (m + n), shew that
ta.nB=£, and 24 =log (n* + m’).

8. Reduce oos (6 + ¢t) to the form a + S

9. Reduce sin (6 + ¢) to the form a + ..

10. If w=(a+ b**, express logu in the form a + S
11. Reduce (@ + b)*** to the form a + Bt

12. Prove that

{sin (a — 6) + 6o sin O)* = sin*"* a {sin (a — n6) + ¢ gin nf).

XXTI. SUMMATION OF TRIGONOMETRICAL
SERIES.

303. To find the sum of the sines of a series of angles which
re tn arithmetical progression.

Let the proposed series consist of the following » terms,

sin a + gin (@ + B) + sin (@ + 28) + ... + 8in {a + (n = 1) B}.

‘We have

cos(a—%ﬁ)-oos (a+§ﬁ)=2sin%/3sina,
oos(a+%ﬂ)-cos(a+gﬁ.)=2sin%,8§i.n(a+ﬁ),
3

oo8 (a.+-§ﬂ)—cos(a+-gﬁ)=25in%ﬂsin(a+2ﬂ),

oo (a4 2252 6) - oos (a4 2271 6) = 26in 3 Biin fa+ (n-1) )

T T, 16
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Let S denote the proposed series ; then, by addition,

eos(a_%p)-cos(u?";lp)=2Ssin%p;

cos (n—%ﬂ)—cos(a+2n2—lﬂ)
2@%3

therefore §=

csin(a+n;1/3>sin’—'2é

sin%ﬂ

304. Toﬁmdthesmnof-the cosines of a serws of amgles
which are in arithmetical progression.

Let the proposed series consist of the following n terms,
cosa + cos (a+ ) + cos (a+28) + ... +cosfa + (n-1)B}.

We have

ﬁ)—siv\(a—%ﬂ)=2sinéﬁcosn,

DO} -t

gin(a-l-
sin(a+g,8)—sin(a+%ﬁ)=.2Sinéﬂ°°5(“+ﬁ)’

‘nin(a+gﬁ)—sin(a+gﬁ\)=2sin%ﬁoos(a+2ﬂ),

................... Gescstsesesneansanse

sin(a+2nz-lﬁ)—sin(a+?m2-sﬂ)=2sin%ﬁoos{a+(n-—l)B}.

Let 8 denote the proposed series ; then, by addition,
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sin (a+ 222 g) —sin (o ; 8) = 29sin 3 ;

) B ),

therefore S=
2in - B
cos a.+— ,3)
2/3
305. Buppose in Arts. 303 and 304 t.ha.t B—— then since

sin’-‘—2§=sm-;r=0, the sum of thesines or the sum of the cosines of

the series of angles g, a+g$, a+-§;,...a+ﬂf# is zero.

This is a very important result, and the student should pay great
attention to it. Moreover we may give this wide extension to our
result: et m and n be positive integers, m being less than n, and

B=2-;-r, then the following sum is a number independent of angles,

sin™ a + sin™ (@ + B) + sin™ (a + 28) + ... + 8in" (a + 1 — 18).

The same theorem is true when sine is cha..nged into cosine. The
theorem is established by the aid of Arts. 280...283. Suppose,
for example, we take m=4, We have

sin‘ a = § {cos 4a — 4 cos 2a + 3},
sin' (a + B) = § {cos (4a +%B) — 4 cos (2a + 28) + 3},
and so on.
Thus the proposed series can be replaced by other series; the

sum to n terms of cos4u+cos(4a+4/3)+ .. is zero by Art. 304 ;
the sum to » terms of cos 2a + cos (2a + 28) + ... is zero by the

same Article ; thus the proposed series reduces to 38—73 .

16—2
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The condition that m is less than n ensures that the denomi-
nators in the expressions for the sums of the sines and cosines d¢
not vanish, - .

806. The series in Art. 304 may be deduced from that ir
Art. 303 by writing a+§fora; the sums of these series are re-

quired su often in the solution of problems, that the student
should be able to quote them from memory. As we have just
intimated, if the first result be known it is sufficient, since the
second can be obtained from the first by changing sine into cosine
in the first factor of the numerator. It will be seen that the
results are obviously correct when n=1, and when n=2; thus
there is a test of the accuracy with which the formule are quoted.
The cases in which 8= a may be specially noticed ; we have then

. n+l . na
§in —— a gin —
. . . . 2 2
sina +5in 2a +8in 3a + ... +sinna = - ,
§in -
2
n+l . ne
cos agin —
2 2
cosa+cos 2a+cos3a+ ... +Co8na= -
sin =~
. 2

307. We may now deduce the sum of the following n terms :

sina-sin (a + B) +8in (@ +2B8) ~ ... + (= 1)*sinfa + (n - 1) B}.
This series may be written .

sina+8in (a + B+7) +8in (a+ 2B+ 27) +... + sin{a + (n—1) (B+m)}.

‘We have then only to change B into 8+ = in the result of
Art. 303.

in{a (n=1)(B+x) . n(B+m)
Hencethemquiredmnis.m_n.{_:... 2,: }._m_z__
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Similarly
008 @ — 08 (o + B) + 008 (a + 28) — ... + (= 1)" cos {a + (n — 1) B}
008 {a L= 1)2(/3 +',,)} sin ™ (B2+ )

BinB+'lr

308. To find the sum of the following n terms:

cosec & + cosec 2x + cosec 4 + cosec 8x + ... + cosec 2" ' .

x
We have cosec & = cot 5~ cot z,

cosoc 2z = cot 2 — cot 2,
......... werreeaeans

cosec 2" '@ = cot 2"~ "z — cot 2" .
Let S denote the proposed series; then, by addition,

S = cot z_ cot 2" .

2
309. 7o find the sum of the following n terms :
ta.nx+;tan2+;,mn +. Elf,t;an2i_l
We have tana = cot - 2 cot 2z, *
%ta.n;—%cotﬁ—ootr,
100 5= g e~ g 0L
g tan o = g 00t g, = o oot 2

Let S denote the proposed series ; then, by addition,

S=%—1 oot%,—2oot2ac.
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1 1 .
The term = =1 00 %=;°°"ﬂ§n£§v where B=%; if we

suppose n to increase indefinitdly, cos 8=1, and Tl'f_ﬁ:l'
Thus t.he limit of the proposed series, when % is indefinitely
mcreased,u—-2oot2z
310. 7o find the sum of the following n terms :
sina+csin(a+B) +c'sin(a+28)+...+ ¢ 'sinf{a+(n-1)8}

Let § denote the proposed series; substitute for the sines
their exponential values : thus

208 = % + colatPh 4 Tglat3B) 4 4 ghlglatnp-pl
—e=%_cg-(at+Bh_clg-(a+3B)_  _ oP-lg~(a+nB-Bh,

We have now two geometrical progressions ; thus

1 —crend “l—c"c"\"
2.8 = c‘"l proaial el e o

u_g- u_c{,(c-ﬁ)t_c-(a-ﬁh}-cﬂ{g(¢+'\ﬂ)t-g-(¢+ﬂﬁ)n}+cn+1{,(na+¢-ﬂlt_g-(ﬂﬂ+c-ﬂ)c}
l-c(ef+e-F)+ ¢

therefore
S= gina-csin(a— B) ~c"sin(a+ nB)+ " 'ainfa + (n - l)B}
1-2¢ccosB+¢*

If ¢ be less than unity, then when n is indefinitely increased
¢® and ¢*** diminish without limit; hence if ¢ be less than unity,
the limit of the proposed series when n is indefinitely increased is

sin a — ¢sin (a — B)
1-2ccosB+c' *

Similarly we can shew that
cosa +0008(a+ ) + 6" 008 (a+2B) +...+ ¢ cosfa + (n - 1) B}
_cosa—cocos(a—p)—c cos(a+npf) +c* coafa+(n-1)B}
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This result may also be obtained from the preceding by chang-
ingaintoa+§. If ¢ be less than unity the limit of the proposed
series, when n is indefinitely increased, is

cosa —coos(a—f)
1-2ccosB+c" '
n the infinite series °

¢sm (a+ﬁ)+%.sin(a+2ﬂ)+lc—3asin(a+3ﬁ)+ .

‘]
and  cocos (a+ )+ cos (a+26) +§cos(a+3ﬂ)+
Denote the former series by § and the latter by C'; multiply
the former by ¢ and add it to theslatter: thus

C + S =celath) + 52'e¢(¢+’ﬂ) + '[-;Ee‘(ﬂﬂﬂ) + ...

= 6*(e% — 1) = ero(eromB+wcainp — 1) = gooosBga+csinf) — gua
= e¢o8B {cos (a + ¢ 8in B) + v sin (a + ¢ sin B)} — (cos a + ¢ sin a).

Equate the real and imaginary parts : thus
C =ecomB cos (a + ¢ 8in B) — cos a.
§ =ecosB gin (a + ¢ gin B) & sin a.

The method of this Article might be used in Art, 310; or the
metkod of that Article might be used here,

312, 'We shall not solve any more examples of the summa-
tion of Trigonometrical Series;*the student will find more exer-
cise of this kind in the collection of examples for practice. In
many cases the summation i8 effected by the artifice which is
employed in Arts. 308 and 309, by which each term of the pro-
posed series is resolved into the diférence of two terms. Practice
alone will give the student readiness in effecting such transforma-
tions, If he cannot discover the necessary mode of resolution in
any example, he will find no difficulty in recognizing it when
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he sees the result of the summation given in the ocollection of
answers. Thus, for example, required the sum of the following
n terms : .

800 a 86¢ 2a + sec 2a sec 3a + sec 3a sec 4a +...+ sec na sec(n + 1)a.

The result is cosec a{tan (n + 1)a — tan a}; and by putting n=1
this suggests the necessary transformation, namely,

. sec a sec 2a = cosec a {tan 2a — tan a} ;
then, sec 2a sec 3a = cosec a {tan 3a — tan 2a},
and so on.

The student who is acquainted with the Differential and In-
tegral Calculus, will be able to deduce numerous series from known
series by differentiation or integration ; and when the results are
obtained they can frequently be established by more elementary
methods, Thus, for example, differentiate both members of the
equality established in Art. 309 ; then

l sec® 1 . &
sec’ a:+2,sec 2 + g 800 5o+ .+ oy 800" 5oy

1
=—2n-l 2-—
Again in Art. 310 put 8=a; thus

sin a . . . . 5
s——s—————=8ina+csin2a+ ¢"sin 3a + c*sinda + ...
1-2ccosa+c®

Integrate with respect to a; thus

+ 4 cosec® 2z,

——21-¢log(l—2coosa+c')=oosg+%oos2a +%’cos3a+§cos4u+...

No constant is required ; for when a is zero both sides are
equal, ‘
EXAMPLES.
1. Find the sum of n terms of the series
sin’ a + sin’(a + B) + 8in’ (a + 28) + ...
2. Find the sum of n terms of the series
gin’a + sin*(a + B) + sin® (a + 28) + ...
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8. Find the sum of »n terms of the series

©08* a + 008" (a + B) + 008* (a + 2B) + ...
sin @ + sim 36 +8in 50 + ... to n terms
cos @ +cos 36 + cos 50 + ... to n terms’

5. Sum to n terms the series
208 8 cos (6 + o) + cos (8 + a) cos (0 + 2a) + cos (8 + 2a) cos (0 + 3a) + ...

4. Shew that tannf=

6. Shew that .
sin @ — sin 26 + sin 30 — ... to » terms n+l
cos 6 — cos 20 + cos 30— ... tonterms-m— (w+6).

7. Sum to n terms the series
sin (p+1) O cos 0 + sin (p + 2) O cos 20 + ...
" 8. Sum to n terms the series
gin a sin 20 + sin 2a sin 3a + sin 3a sin 4a + ...
9. Deduce from the result of Example 8 the sum to n terms
of the series
1.242.3+3.4+...
10. Sum to # terms the series
sin 30 sin 6 + sin 66 sin 20 + sin 120 sin 46 + ...

Sum to infinity the following series contained in the Examples
rom 11 to 16 inclusive:

cos 0 s? 0 s® 0

11. cosé + i~ cos 20 + 2 2cos39+—l§—oos40+
. sm20 sm30
12. smO—W+—-i-_3———,,
cos 20 cos 40
13. 1——1—-2—+T—....
3 ... 4
14. 20050+2cos 0+scos 6+ coso+

. sin 20 cos® 6 sm300030
15. sinfcosf + T * B

sin § sin®

16. 0050+—1—- 20+——9-oosso+
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17. Shew ﬂmooso-lm 2a+1mao-...=1og(zoos'§’).

18 Show that co8 26 + 3’508 60 + 1 008 100 + ... = 3 log (oot 6),
19. Shew that

mﬁgo—z'si;lza+z.si§3o—...=wt" 00mmo+cot:9).
20. Shew that

1 0+1 4 1 2-&- =1 sin 26
0g c08 6 + log cos 5 + log cos 5 ...-og( T )

Sum the following series to » terms contained in the Examples
from 21 to 35 inclusive :

21, sino(sing)'+2sing(sinf)'+4sinf(ain9)'+

4 4 8
6 6 6 0 6
22. m§m0+tanzsec§+tan§secz+...
23. cot 0 cosec 0 + 2 cot 26 cosec 20 + 2* cot 2°0 cosec 2°0 + ...
24 ! + 1 + 1 +
* gin @sin 20  sin 20sin 36  sin 36 sin 46
a5 SRS SRR S
' ginfcos20 cos20sin 30 * sin 36 cos 46
26. tan™’ 1 +tan™ 1 + tan™" —-—-——l +
) 1+1+1° 1+2+2° 1+3+3 ™
1 1 -1 i
27. tan™'z + tan” ——41 T3 z,+tan 33 =t
928. &inasin 3a +sin s 3"'+ in—‘—lsinﬁl+
ginasin 3a + sin g sin 5 + sin g, sin 75 + ...
29 ! + 1 + 1 +
* 0080 +00830 cosf+cosb0 ocos @ +cos 7
30. sin sin 26 sin 36 .o

008 20 + cvs § oos40+ooso+ooe60+cos0
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31 gin 0 . 3 sin 36 N 3'sin 3'6 .
* 1+2co86 14+2co830 1+ 2cos3%
32. cot™(2a7*+a) +cot™ (2a7L + 3a) + cot™? (2a7" + 6a)
+cot™ (267" + 10a) + ...

33. ;sec0+21 secesec20+; seo § sec 20 sec 2°0 + ...
34, %logta.n29+ logta.n2'9+ logtan2'0+ o
0 0 6 ., 6 6 0

35. 0082+200820052,+200520082, p+

36. An equilateral polygon is inscribed in a circle and from
any point in the circumference chords are drawn to the angular
points : find the sum of the squares of the chords and the sum of
the fourth powers of the chords.

37. Circles are inscribed in tmmgles, whose bases are the
sides of a regular polygon of » sides, and whose vertices lie in
one of the angular points: shew that the sum of the radii of the

sircles is 2r(1-nsin';'—,-), where r is the radius of the circle

sircumscribing the polygon.

38. Circles are inscribed in triangles whose bases are the
sides of a regular polygon of n sides and whose vertices lie in one
of the angular points ; r is the radius of the circle circumscribing
Jhe polygon : shew that the sum of the areas of the circles is

16" sin* {”sm' i "——4}.
n 4 Wt T8
39. Shew that if n be a positive integer
nsin 6 + (n - 1) sin 20 + (3 — 2) sin 30 + ... +8in nf
n+l 0 gn(n+1)d
=B ot g - ,5L'

481115

40. Shew that if n be a positive integer
(n+1)nsind+n(n—-1)sin20 +(n~1)(n—2)sin 30 +... + 3. 1sinnd

=n$n+3} tg_lm,g{mgq_m2n+so}.

] 2 2 2
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XXIII. RESOLUTION OF TRIGONOMETRICAL
EXPRESSIONS INTO FACTORS.

313. It is known from treatises on the Theory of Equations
that thé expression " —1, where n is a positive integer, can be
resolved into n factors, each of the form x—a, where a is either
a real quantity or an expression of the form a + 8./(—-1), where
a and B are real: and there is only one such set of factors. We
proceed now to resolve the expression z"—1, and some similar
expressions, into component factors, The factors of the expression
a" ~ 1 are found by solving the equation 2" — 1= 0 ; every root of
the equation determines one factor of the expression: thus if a
denote a root the corresponding factor is z — a.

314. 7o resolve 2* — 1 into factors.

The expression cosz—nrz-l-.‘/(—l)sing:l, where » is any in.

teger, is a root of the equation 2*=1; for the n® power of this
expression is by De Moivre’s Theorem cos 2rr = ,/( —1) sin 2,
that is 1.

First, suppose n even. If we put r=0 we obtain a real

4

root 1, and the corresponding factor is z—1; if we put '=§
we obtain a real root —1, and the corresponding factor is z + 1.
If we put for r in succession the values 1, 2, 3, ...... g-l

we obtain n—2 additional roots, since each value of r gives
rise to two roota. These roots are all different, for the angles

are less than = and all different, and thusoosg;—’eannot

have two coincident values. Therefore &*—1=(z—1)(z+1) P,
where P is the product of n -2 factors obtained by ascribing
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to r in succession the values 1, 2, 3, ...... g—l in the expression

o - OOB%,J(—I)!LB?—”: .

2rr

The product of the two factors x-— oos2———J(—l)mnT

and -~ cos2—lm+,,/( l)sm—, is the real quadratiq factor

8
(,,,_ml") +uin' 27T that is, o — 22 cos 2T+ 1,
n n n

Hence when » is even

—1=(@-1)(x+1) x’-2xcosg£+ l) (x’-2mcosi:;r+1)...

{m’—2xcos’i;—l—é1r + l}{w‘—2zcos£;—21r+ 1}....(1).

Secondly, suppose = odd. The only real root of z*=1

is now 1; the other »—1 roots are obtained by giving to

in succession the values 1, 2, 3, ...... '%—l in the expression

2rr 2nr

Hence when » is odd *

#-1=(@-1) ('~ 2 cos 2% + 1) (x'-zxoos%’u 1)..
. {m’—2zcose_—3r+1}{w‘—2zcos?—_—l 1r+l} ().
n n

315. To resolve "+ 1 imofactorc

The expression oos LI JE1) in 2 11r, where r is

any integer, is & root of the equation 2"=-1; for the n® power
of this expression is ocos (2r + 1) v ,/(—1) sin (2r + 1) 7, by De
Moivre’s Theorem, that is ~ 1.
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First, suppose n even; there is no real root of the equatior
"=—1; the n roots are all imaginary, and are found by giving tc

r in suocession the values 0, I, 2, 3, ...... g-—l, in the expressior

ws2r+lr*~/( 1)sin 2r+ 1 -

Thaq product of the two factors z—cos ZL—” w—J/(-1)sin 2r+l —
and a:—ooszr 7 +y/(—1)sin 2—"—2 w, i8 the real quadratic factor
(x—eoszr+l 2’; w, that is, o'—

Hence when » is even

2+ 1 =(x'— 2wo08 + l)(a:'— 9wcos‘°in’-'+1)(z' 2a:eos‘%r+ 1)

(z'—2moos”i;:—31r+l)(x'—2zcos”—11r+ 1)...(1).

Secondly, suppose » odd. The only real root of z"=-1
is —1; the other n—~1 roots are obtained by giving to r ir
succession the values 0, 1, 2, 3, ?—2_:—3 in the expression

m2r+1“~/(_1) 2r+l .

Hence when n is odd
3x
L3
¢+1=(z+1)(z'-2mcos;+1)(x'_2xcos;+1)...
n—-4 n-2
...(z'—2zoos—n—r+l)(a:' 2 cos T1r+1) ...... (2).
316. The four formulse established in the two preceding

Articles are identically true; we may deduce many particular
results by supposine particular values assigned to . Thus in (1)
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of Art. 314, divide both sides by z—1; the quotient on the Jeft-
hand side will be a*'+a**+ ... +@#+1. Now put x=1; thus
when n is even .

G S

and by extracting the square root,

“1 9%  Ar . n-4 . n-
Jn= 2’sm2"sm2: sm%—;‘iwmn’—'%ﬁw:....(l).

The positive sign of the radical must be taken on the left-
hand side, because the right-hand side is obviously positive,

Again, in (2) of Art. 314, divide both sides by z-1, and
afterwards put «=1; thus when n is odd

n= 2'(1 cos2’r)(l— 4”)...(1—-(:03”—3#)(1—005"—l-n' H
n n n

and by extracting the square root,

~1
Jr= g asm%I sin ;: .sin%swainﬁz;—lw.. 2).

Again, in (1) of Art. 315, put x=1; thus when n is even

2=2"_(1-cos’—r>(l-cos3—”)...(l—cos’ﬂ1r)(l cosn—l-,r),
n, n n® n

and by extracting the square root,

1_2Tsm2" sing:...sin%;—?’rsinn;nlw ...... (3)

Again, in (2) of Art. 315, putm:l- thus when n s odd
e TR (N}

and by extracting the square root,

w1, . 3w n-4 . n-2
—97 gin - gin o -4
1=2 smznsm%.. sin — g FED 5
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Four other results may apparently be deduced from the four
formulm of the two preceding Articles by putting z=—1; but it
will be found on trial that these results do not differ really from
those already deduced. Thus, for example, in (1) of Art. 314,
divide both sides by x+ 1, afterwards put x=-1, and extract
the square root ; thus when n is even

»./n=2-.'-l<>oa2—7rcos¥43 cos "o ® =2
2 2 In on
this however is the same result as that in (1) of the present Arti-

cle, the factors on the right-hand side being merely differently

arranged ; for
2r . m—2 co iiy_sinn—'i
oos-%_sm 5, ™ CoBg =sin——m, ...

317. To resolve ™ — 22" cos 6 + 1 into factors.

If cos § =1 the expression becomes (z" - 1), and if cosf=—-1
it becomes (2" + 1)*; in these cases the resolution into factors is
effected by what has already been given in Arts. 314 and 315, and
we will therefore suppose these cases excluded from what follows,
If we put

a™—2x"cosf+1=0,
we obtain a"=cosf«,/(—1)sinf; hence x is an n* root of
cosf +,/(—1)siné; bhe n'® roots are found from the expression

0052"4'0-&,/( 1) sin +6 by ascribing integral values to 7,
for it is obvious from De Mo1vre s Theorem that the n® power of
the last expression is cos (2ra + 6) % ,/(—1) sin (2rx + §), and if »
be an integer this reduces to ccsf&,/(—1)sin . If we ascribe
to r in succession the values 0, 1, 2, ... » —1 in the expression

ouz"+o*J(- 1)sin 2r1r+0 we obtain 2n different values for

the expression. For if v =p and »=¢ could give the same value
to the expression we should have

2p'+0-b~/(—l)si.n 2p1;+0=m2q1;+ O*J(—l)sin 2q1:‘+9;
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now by Art. 93 we cannot have m2p1;+0=m2qv;+9

gin 2_}"__+0=sin2—-——q’+0; nor cad 0052P"+0=00329”+0
n n n n

sin 23'%0; - Hm%qaj—f , for that, by Art. 94, would require

and

and

2”"__,;__"'04.-2—11%0 to be a multiple of 27, so that 6§ weuld be a

multiple of =, and this value of 6 has been expressly excluded
above. Thus we obtain 2n different values of .

The product of the two fuctors z—cos ~Et _ (= 1) six 2r1r+0

2ﬁr+0 +J(-1)si ..:1:,:&4._?0’ is the real quadratic factor

(w—eoszﬂr'"o 2“;;—0, that is, =* - 2x cos 2”:'24. 1.

’

and 2 - cos

Thus o™ — 22" cos 6 + 1
-=(x'—2a:cosg+l) (.'c'— 2mc0521r:-6+1) (x’—2zcosh+o+l)
n Py -

..{z‘— 2xcos(2—n%)—1f—t—-o+ 1} {z‘—-2agoos (-273:—%)';-0+ 1}.

818. We shall now deduce some important results from the
preceding general theorem. Suppose #=1; then

3(1-0000) =2 (1-c0s %) (12000 Z2) (1 - e 28) .

( 2n-n-—21r+0)
eo(1=cog —moonrn).
n

Let 6 = 2n¢ and 2"—7-'=a; extract the square root; thus

% gin n = 2*~' gin ¢ sin (2a + ¢) 8in (4a + ¢)......8in (2na — 2a + ¢).
T.T. 17
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‘We shall now prove that the upper sign must always be taken
on the left-hand side. First, suppose ¢ to lie between 0 and 2a;
then every factor on the right-hand side is positive, and so is
sinng. Next suppose ¢ to lie between 2a and 4a; then every
factor on the right-hand side is positive except the last, and
sinn¢ is negative. Next suppose ¢ to lie between 4a and 6a,
then every factor on the right-hand side is positive except the last
two, and sinn¢ is positive. By proceeding in this way we see
that for every value of ¢ between 0 and 2na, the upper sign must
be taken, so that we have for all values of ¢ between 0 and =

8in n¢ = 2" sin ¢ gin (2a + ¢) sin (4a + ¢)...... sin (2na - 2a + ¢).
‘We shall next shew that this formula is true for all values

of ¢ ; for suppose ¢ =mw+y where m is any integer, positive
or negative, and y is between 0 and =; then we know that

sin nyf = 2* gin ¢ sin (2a + ) 8in (4a + ¢)......8in (2ra — 2a + ¢);
but sin ny =sin (ng — nmar) =sin ne cos nmw = (— 1)™ sin ne,
sin = sin (¢ — mx) = sin ¢ cos mm = (— 1)" sin ¢,
gin (2a+y)=s8in (2a+ ¢p—mx)=sin (2a+¢) cosmmr = (—1)" sin (22 +¢),
and so on.

Substitute these values of sinny, siny, sin (2a+ y),...... in
the formula which expresses sinny in factors; then divide both
sides by (—1)™ and we obtain the required formula for sin n¢,

whatever may be the value of ¢.
In the expression for sinng change ¢ into ¢ +a; then n¢ is
changed into np + = ; hence v
cos np = 2" gin (¢ + a) 8in (¢ + 3a) &in (¢ + ba) ...8in (2na — a + ¢).
In the last result put ¢ =0; thus

1= 2" gin asin Sasin 5a....... sin (2na —a),

where a=g-
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Again we have

%?ﬂ--*sin(zaw)smgaw) ...... gin (9na— 2a + ¢) ;

now let ¢ diminish without limit; then since the limit of fl’;’;"

is » we obtain
n=2""sin 2a 8in 4a sin 6a ...... sin (2na — 2q). ®

These two formule are sometimes useful; the first includes
(3) and (4) of Art. 316, and the second includes (1) and (2) of
Art, 316.

If we divide the expression for sinn¢ by that for cosng we
obtain an expression for tanng; when n 18 odd this takes a
simple form which we may obtain more readily thus: in the

expression for sin n¢ change ¢ into ¢+g; we obtain

oosn¢sinn—;= 2™ cos ¢ o8 (2a + ¢)...cos (2na — 2a + §).
Divide the expression for sinn¢ by this; hence when n i odd
n-1
tann¢=(-1)"“tan¢tan(¢+:—:> ...... mn(th’—’%l )
319. The expression for sinz¢ in Art. 318 may be put into
a different form ; for
sin (2na — 2a + ¢) = 8in (7 — 2a + ¢) = sin (2a — ¢),
sin (2na — 4a + ¢) =sin (7 — 4e + ¢) =sin (4a — @),
and so on, *

Then by multiplying together the second factor and the last, the
third and the last but one, and so on, we have

8in ne = 2~ gin ¢ (sin® 2¢ —sin’ ¢) (sin’ 4a —gin* @)...
It will be necessary to examine separately the cases when n is

even and when n is odd.
17—9
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First sappose n even; then the factor sin (na + ¢), that is,
cos ¢, will oocur without any factor to multiply it: henoe if n be
even, we have .
gin ng = 3°' gin ¢ cos ¢ (sin” 2 — gin® ¢) (sin® 4a — sin’® §)...

... {sin® (n — 4) a —sin* ¢} {sin’ (n ~ 2) a —sin’ ¢}
Next suppose n odd; then we have
in ngp = 2" sin ¢ (sin’ 2a — sin’ ) (sin” da - sin’ )...
...{sin’ (n - 3) @ —sin’ ¢} {sin’ (n ~ 1) @ — sin’ ¢}.

Similarly from the formula
008 1¢h = 21 8in (¢ + a) 8in (¢ + 3a) sin (¢ + Ba) ... 8in (2na—a + ¢)
we obtain if n be even
008 np = 2°* (8in’ a — sin’ ¢) (sin® S —sin’ ¢)...

... {sin® (n — 3) @ — sin’ ¢} {sin” (n ~ 1) a — sin’ ¢} ;
and if n be odd
008 np = 2" co8 ¢b (8in® a — sin® ¢) (sin® 3a — &in’ ¢)...

... {sin’ (n — 4) a — gin’ ¢} {gin’ (n — 2) a - sin’ ¢}

320. We can now resolve gin 6§ and cos @ into their factors,
Suppose n¢ = 0 and that x is odd; then by the preceding Article

[3)
ginf= r-'ﬁnf(sin%-sm'f) (sin-4a_sin-f>
n n n,
Divide both sides by sing, and then diminish 6 indefinitely ; since

the limit ofsin0+sin-gis n we obiain

n=2""'sin® 2a gin’ 4a...;
therefore by division,

. .0 . 0
0 sin ,—. 81N ;
nnﬂ:nsm; l—m o l-mﬂ esee
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Now suppose n to increase without limit; then since a=—
. 0 0
sin- . am- p
thelnmtof-—é-ls~thehmtof-r——mz,a.ndsoon,

4
thus finally,

sino=o(1-§) (1-5‘;’%,) (1-3,;‘;,)...

We ghall obtain the same result if we begin by supposing n even.
Similarly we may shew that

46° 46
cos f = (1 - —) (l 3,",) (l 5 ,)
321. In the same way as z”'— 22" cos 6 + 1 was decomposed

in Art. 317 we may decompose «™ — 2x"a"cos 0+ a™, and each
quadratic factor of the last expression will be of the form

¥la

w'—2waoos2”+0+a’, where r is an integer ; and all the factors

are found by giving to r in succession the values 0, 1, 2, ... n— 1.

And oo 2=DTHE_ (w0 2n-wib_  dr-f
n n n n

and so on; thus all the factors will be found if we take

[ ]
«" — 2xa cos *0+a’, and use both signs and give to r in suo-

cession the values 0, 1, 2,.. uptso"Tl if m be odd, snd up to

gifn be even ; in the latter gase when r=2 we must take only

2
+0

omfantorw’—2zacosm +a

Nowaupposez=1+—z-,a.nda=l—%; thus

(1+ ) _2(1-_) ooso+(1——)
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is the expression to be decomposed into factors; and the gemeral
form of the factors is

() -3 1ot -2,
that is, 2(1+—) 2(1__) &"'_"9,

2r1r 9(1 2 oot nr*G

that is, e
Suppose n to increase indefinitely ; then
z\™ 2 \™
(1 * %) = (1 - 2,,) =e¢™, (dlgebra, Art. 552),

2 '27'#-!-9_‘ 2
also W on @by’

and by putting 2 =0 we obtain

(4 21r-l-0 JAmEl
4 gin* -2-=4sm §—4 o sin' T

thus finally
¢ -2co80 +e"=4sin’ 0{ Z,,}{l+( 7l::9),}{1+(‘L’:‘ia),}

Let « stand for ,/(— 1); then we may put

¢—2co80+e*=2 (cos 1z —cos f) = 4sm0——;fsin

¢

b-e,
g -
it will be a useful exercise to resolve sino—;:-"—z and sino—;—‘z

into factors by Art. 320, and to shew that the result agrees with
that which has just been obtained.

For 6 put = +¢; thus we can obtain a formula for resolving
¢ + 2 cos p + ¢™* into factors.
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822. It is usual in works on Trigonometry to give a brief
though unsatisfactory demonstration of the results of Article 320
in the following manner.

L)
Since sin @ vanishes when 6=0, or ®, or = 2, ...t follows
that sin @ must be divisible by 6, 0 + =, 6 —m, 0+ 2m, 6 -2m, ...;
therefore we may assume that

sin = A6 (6 —7) (6 + 7) (6 — 2) (6 + 27) (6 — 3)(6 + J)...
where A is some quantity independent of 6; thus we may

[ (R ATREAN

where @ is also some quantity independent of 6. Divide both
sides by 6 and then suppose § = 0 thus @ = 1, and consequently

0-0(-5) 1-42)(-45)-

3

Again, since cosd vanishes when 6= *2, or d=—27:, o 8
Jollows that cos @ must be divisible by 60—, 6+3, 0-1”21,
0+§L;_r .. therefore we may asswme that

or0-40-5)0- - D0-- D005

where A t8 some quanmtity independent of 0; thus we may

suppose ]
cos 0= a(l—g;) 3, , %)

where a is also some quantity mdependent of ; and by putting
0=0 we find a=1; thus

008 0= (1-—~ (1-4—":)( %)

The portions of the preceding investigations which are printed
in italics involve assumptions which cannot be considered legitimate.
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323. De Moivre's properiy of the Circle. Let O be the centre
of a circle, P any point within it or without it; divide the whol

circumference into n equal arcs BC, CD, DE, ..., beginning a
any point B, and join O and P with the points of divisior
B,C, D,... Let POB=0; then will

OP*™ - 20P". OB*cus nf + OB™ = PB*. PC*. PD*... to n factors.
For PB =0P'-20P. OBcos 6+ OB',

PC*= 0P - 20P. 00008(0+25)+ oc,

PD* = OP* — 20P. 0Deos(0+%)+0D’,

..............................

and the radii 0B, OC, 0D are all equal.

Thus, by Arte. 317 and 321, the product of all the terms ox
the right-hand side of these equations is

OP* - 20P*,. OB cos nb + OB™;
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The particular case when P is on the circumference may be
noticed ; then

203-sm?f_PB PC.PD ... ton factors.

Cotes's properties of the Circlse. These are particular cases of
De Moivre’s property of the circle.
Let OP produoed if necessary meet the circle at 4, ;nd sup-
pose AB=B(C =—; then nf=2x. Thus we obtain
(OP*-0B"y=PB*. PC*. PD' ... to n factors;
therefore OP*~O0B*=PB. PC. PD ... to n factors.

Again, let the ares 4B, BC, ... be bisected at a, b, ...; then
by the theorem just proved,

OP* ~0B* = FPa.PB. Pb. PC ... to 2n factors ;
therefore by division,

OP*+0B*=Pa. Pb. Pc ... to n factors.
324. It has been stated in Art. 169, that the tables of the
logarithms of Trigonometrical functions cag be calculated without

the use of the tables of the Natural functions ; we will here briefly
indicate how this may be effected. ~We have

sin =6 (1 - -)(1 2,",)(1_5’3%,) o

put %" g for ¢ and take logarithms ; thus
. mw m 1r m’
logsm;;§=log;+log§+log(l _Z;{')

2 ml
+ log (1 - 2,':7‘,) +log (1 - ?;,—4—”;) +
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The terms in the last line may be expanded: by Art. 145 in
series which will converge with sufficient rapidity ; thus we shall
have if u denote the modulus

log sin %‘ 5 =logm+logm-+log (2n+m)+ log (2n—m)—3 (log2 +log n)
(prors)a
—p y 6' 8'

1
2(44 64+8| );4'

EXAMPLES,

1. Sum the infinite series
1 1 1 1

pratmEtpte
2. Sum the infinite series
o1 1. 1,
1¢ " 2¢ "3 T4
3. Sum the infinite series
l+l+l+l+
A A G
4. Bum the infinite series
1 1 1 1

RS TR Il TR

5. Ifa—— shew that

#in a gin Ba sin 9a......sin (4n—3) a =274,
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6. A polygon of n sides inscribed in a circle is such that its
gides subtend angles a, 2a, 3a, ... na at the centre: shew that the
ratio of the area of this polygon to the area of the regular

L]

inscribed polygon of n sides is equaltothatofain"gwming.

7. The product of all the straight lines that can be drawn
from one of the angles of a regular polygon of » sides inscribed in
a circle whose radius is a to all the other angular points is %a"~",

8. If p,, Pyree-Pguys P, be the perpendiculars drawn from
any point in the circumference of a circle of radius a on the sides
of a regular circumscribing polygon of 2n sides, shew that

a
PPy Prucs + PoPy--- Pon = g3

9. A polygon is described about a circle touching it at the
angular points of an inscribed polygon ; the product of the perpen-
dioulars drawn to the several sides of the inscribed polygon from
any point in the circumference of the circle is equal to the pro-
duct of the perpendiculars drawn from the same point to the
several gides of the circumseribed polygon.

10. Shew that

16 cos 4 cos (72°— 4) cos (72°+4) cos (144°— 4 ) cos (144°+4)=00s54.

11, From the expression for sin # in factors shew that

36 144 324 576

*=3. 35143323 575

12. Shew that

a0

18. Shew that

a‘—c"=2w(l +;:) (1 +§$) (l+§-}f—:—,) weses
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14. Find the sum of the series formed by multiplying to-
gether every two of the terms of the series %, 21;, 31-,, 41,, -

15. If n be even shew that
m¢m(¢+:—:>m(¢+n) ta.n(¢+ =(-1)%
16 Shew that sin 5.4 — cos 54

=16 008 (4 — 27%) cos (4 + 9°) sin(4 + 27°) sin(4 — 9°) (c0s 4 — sin 4).
17. Shew that

2.2.4.4
“I3.35

QGQ
~roo

.8..
.9..

oo §

18. By aid of the formula cos 6= smg deduce the expressior
for cos § obtained in Art., 320 from that for sin 6,

19. Shew that

2_4:.36. 100.196. 324 ..
v 3.35. 99.195.323...°

20. Shew that
J3 8.80.224.440...
2 T 9.81.225.441..."

91. Shew that eosz+mn32-’sinm=

(102) (1-2) (5255) (1-6255) (55

22, Shew that oocz—oot%sinz:

(l'— ( y)(l o +y)(l+4r- )(l'hr-#y




waAMPLES, CHArrnh aalll, woy

CORT—COBY

(1‘3'.){1'(2: 7 (2:; y)'}{“uﬁy)'}{‘ (4::.'/)’}"'

94, Shew that S5EFC8Y

93. Shew that

T+cosy
O e | L (R = A
95, Shew that SDZXERY _
siny

x x
(3 (e 55) (- 5H) () ()
26. In Example 21 by expanding both sides in powers of »
and equating the coefficients of z, shew that
tan¥ = 2 2 2 2 2 2
2 r-y wty * 8al -y 31r+y br—y 51r+y
27, Shew in like manner from Example 22 that
y 2 2 2 2 2

eotd=__2 , 2 _ £ ,_° _

3y n-y 21r+y dr—y 4nw+y
28. Shew that

30. Shew that —l-— =
sy

1 1 LSS SRS SRS SRR S
Yay -y wty Fm+y Bw—y Gm-y Sx+y "

1
y
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XXIV. MISCELLANEOUS PROPOSITIONS,

325. Many demonstrations have been given of the very
important formulse of Arts, 76 and 77; see, for example, the
Messenger of Mathematics, Vol. 11 pages 100 and 123. The
demonstrations which we have adopted have the great advantage
of being readily applicable whatever may be the size of the angles.
The fo.lowing process is very simple for the case of angles which

are not too large.
D
; %
/\
v ¢ M

Leuv the angle COD be denoted by 4, and the angle C.DO
by B; draw CXN perpendicular to OD, and DM perpendicular
to OC produced.

Then the angle DCM =4 + B.

Now by similar triangles, or by two expressions for the urea
of the triangle OCD, we have

OC.DM=0D.CN......cooveeernnen. ().

DM _0D.CN _(ON+ND)CN
Therefore Gy =G0 0D~ 0C. 0D

CN ND ON CN
=0vc’ ¢b * o0 0D’
that is, 8in (4 + B) =sin 4 cos B + cos 4 sin B.
Aguain, by gimilar triangles, or by Euclid, 111 36, Cor.,
0C.OM=0N.0D;
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therefore 0C.CH +0C"=0ON.ND + 0N,
therefore 0C.CM=0ON.ND—=CN*....ooou...... ()
CM ON ND'CN CN

therefore 6D =00 0D 00" Th’
that is, cos (4 + B)=cos 4 cos B—sin Asin B.
Again, from (1) and (3), .

DM 0C.DM  OD.CN  (ON+XND)CN
CM ~0C.CM ON.ND-CN°* ON.NDZCN*
cy ox

__ON"ND
_I_U——N cN’
TON' ND
tan 4 + tan B
1-tan A tan B'

that is, tan (4 + B) =

326. Having given
gin (4 + B)=sin 4 cos B + cos 4 sin B,
and cos (4 + B)=cos 4 cos B —sin 4 gin B,
we can deduce the formulse for sin (4 — B) and cos (4 — B).
For put 4+ B=3; therefore 4=8—~B. Thus
sin S = sin (S —B) cos B + cos (S & B)sin B,
cos S = cos (S — B)cos B —&in (§— B)sin B;
multiply the first by cos B, and the second by sin B, and subtract,

and we obtain the formula for sin (S~ .B): multiply the first by
sin B and the second by cos B, aygd udd, and we obtain the formula

for cos (S — B).

Similarly from the formula for tan (4 + B) we can deduce the
formula for tan (4 — B).

We wight even deduce all the other formule from that for
gin (4 + B). For sinoe

(sin 4 cos B + cos 4 sin B)" + (cos 4 cos B ~sin 4 sin B)' =1,
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it follows that if &in (4 + B)=sin 4 cos B + cos 4 sin B, then
008’ (4 + B) = (cos 4 008 B —sin 4 sin B)",
and therefore
co8 (4 + B) = (c0s 4 cos B —sin 4 sin B);
and a little consideration shews that we must take the upper
sign.

327, In Chapter viir. we have given exact expressions for the
sines and the cosines of certain angles; we may add that the sines
and the cosines of some other angles can be readily obtained by
calculating the roots of certain equations.

For example, we know that

sin 30° = 3 sin 10° - 4 sin” 10°;

put « for sin 10°: thus

4

1
5833—45‘.

Now by Horner’s method which is explained in the Zheory of
Eguations we can easily calculate the numerical values of the
three roots of this equation; the least positive root will be equal
to sin 10°, and the greatest positive root be equal to sin 50°, and
the negative root to —sin 70°: see Arts. 105 and 106.

It is obvious that

sin 10° + sin 50° — sin 70° = 0,
so that the accuracy ot the calculation can be easily tested.

Since sin 10° can thus be found, and sin 9° is also known, we
can by ordinary arithmetical calculation find the sine and the cogine
of 1°; and then the sine and the cosine of any multiple of 1°.

328. The propositions whick are given in Chapter 1x. admit
of some extensions beyond the enunciations to which, for the sake
of simplicity, we have there confined ourselves. It will be suffi-
cient if we consider only positive angles.

'We have shewn in Art. 116 that sin 6 is less than 6 so long

uoiueumng; it is obvious then that sin @ is leas than 6 for

very v Inaof A
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Now consider Art. 120. The demonstration there given de-
pends on the fact that ta.ng is greater than g Thus it is really

shewn that sin 6 is algebraically greater than 0—%' as long as 0

is less than w: on examination we shall find that this holds for

every value of #; that is, sin 6 — (0 - %) is alwayy positive. For
[ ]

we find, by calculation, that %'_o is greater than unity when
6=, and it increases as 0 increases beyond this value: thus

i~ 0 + sin @ is always positive. And sin 6 is arithmetically greater

than 6 —% certainly as long as both are positive, that is certainly
up to 6 =2, which is beyond 6 = —:21- .

Next consider Art. 121. From that Article combined with
the extension just given to Art. 116, it follows that cos 0 is always
algebraically greater than 1 —02—.. And from Art. 121 combined
with the extension just given to Art. 120, it follows that cos§ is

algebraioally lees than (1 -%
than 2: hence it follows that cos @ is always algebraically less

]
than (l —% , for this expression is greater than unity if

g is not less.than 2. But cos§ is not always arithmetically
8
greater than 1—%,evenifOisﬂems than

)', certainly as long as g is less

™

)
o0s 6 is arithmetically less than (1 - %'), while 8 lies between

On the other hand

0 and some value which is greater than 1—; and less than .

Now consider Art. 130. In the same manner as we extended

Art. 120 we can shew that sin @ is algebraically groater than
T.T. 18
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0—%. for every value of 6, and that sin @ is arithmetically greater

than o-%, certainly up to 6=,/6. And cos § is algebraically

less than 1—€+%, oerta.inlyaslonga.sg is less than ,/6:

hence it will follow that cos 6 is always algebraically less

tha.nl-la—.+gi- Andcosﬂism-iﬂwneticallylessthanl—%'+—2§,
A

oertainly while 0 lies between O and g; for 1‘%*% is positive
throughout this range, and until 6=,/(6 - ~/12).
329. We may add the following proposition to those of

Chapter 1x.:

If 0 be the circular measure of a positive angle less than a

right angle ten 6 i grester than 6+ .

For ginf is greater than 0—2', and cos @ is less than
0' (a

1- CRETE therefore
;.
tan 6 iﬁgreat.erthan -—F—G?-;
1—-§+2—4

hence, by division, we find that

(

l'§+24

Now if 6 is less than = both the numerator and the denomi-
nator of the last fraction areoertun.ly positive ; and so tan is
greater than 6 + 6{.
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Also, since 20 - Zmamlessthan-oa-.,
and tan 6— 0 is greater than &,
we have 20 — 2 gin 0 less than tan6—6;
therefore 0islesstha.n%tan0+§m'n€.
[ ]

(Serret’s T'rigonometry.)

330. The following is an extension of Art. 149: the quan-
tity e cannot be the root of a quadratic equation with rasional
coefficients.

For suppose, if possible, that

ae’ +be+c=0,
wherc a, b, ¢ arc integers: we may take a positive. Divide
by e; thus

ac+ce +5=0.

1
Replace e by the series 1 +1 +3 ..;and e’ b
L L H y

the series 1-1 +% ——li- l—l — ..., which we obtain by putting
—1 for « in the expansion of ¢*: then multlply by |n. Hence
we obtain

& {1 + 1 + } P {l - -—1——+ }= an integer.

n+ 1 n+2 n+1 n+2

‘We can a.iways make s 1_0{—1 positive by taking n odd when
¢ is positive, and » even when c is negative. Then by supposing
n largo enough we have a fraction on the left-hand side of the
equation, which of course cannot be equal to an integer.

(Liouville’s Journal de Mathématiques, 1840.)

We may add that it has also been demonstrated that no

commensurable power of ¢ can be a rational quantity : see Algebra,

Art. 803.
18~2
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331. The following theorem is given for the sake of an
important application :
EDH is a triangle having I
the sides £D and DH equal.
Produce DH to any point
N; and EH to a point I,
such that EI'=4DH.DN.
Draw DM at right angles
to DE, and IM parallel to
DE, Then the circle which
has the centre / and the D 54
radius 7M will touch the cir-
cle which has the centre &
and the radius ND. .
Let DH=h, EI=j,
DN =n; DEH =6. E
Then EH =2hcos0; and from the triangle JHN
IN®=(i~2hcos 6)' + (n— k)"~ 2 (n— k) (v — 2h cos 6) cos 6
= +(n—h)'—2i(n+h)cos 6 + 4nh cos® 6
=(n+h)"— 2 (n+4)cos  +1* cos* 0
=(n+h—icosd)".
Thus /N = DN -IM ; therefore DN =IN + IM, which de-
monstrates the theorem.

332. The application of the preceding theorem which we
propose to make is this: the nine points circle of amy triangle
touches the inscribed circle and the escribed circles of the triangle.

For an account of the nine points circle the student is referred
to the Appendiz to Euclid, pages %15, 316, where the following
theorems are demonstrated: 4BC is a triangle, and P is the
intersection of the perpendiculars from 4, B, C' on the opposite
sides ; the circle which passes through the middle points of
PA, PB. PC passes through the feet of the perpendiculars and
through the middle points of the sides of the triangle; the
diameter of the nine points circle is equal to the radius of the
circumscribed circle of the triangle.

H
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Let ABC be a triangle, O the centre of the circumsoribed
cirole, D the middle point of BC ; let 4@ be perpendicular to BC,
let P be the intersection of tl.xe perpendiculars, F the middle

point of PA. Let OD be produced to meet the circumference of
the circumscribed circle at E; join 04, AE, and FD.
Since the nine points circle passes through D, F, @ it follows

that DF is a diameter; and therefore DF=04. Also OD=AF,

for it may be shewn that each = oo 4 .
28inC "’y

sides of OAFD are equal, DF is parallel to O4. Thus if H be
the point of intersection of £4 and F.D we have £D = DH,

Suppose that in Art. 331 the letters D, E, I indicate the
same points &s in Art. 253, Let

i=2RBi11%, h=gRsin'§; then n=§:

thus & is the centre of the nine points circle of the triangle; and
therefore the nine points circle touches the inscribed circle.

Again, suppose that in Art. 331 the letters D, Z indicate the
same points as in Art. 253; and let 7 now denote what was de-
noted by J in Art. 253; then we see that the nine points circle
touches the escribed circle which is opposite the angle 4.

Hence, since the opposite
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Since the nine points circle of the triangle 4BC passes through
the middle points of 4B, BP, and P4, it is also the nine points
circle of the triangle APB; and so it touches the inscribed and
escribed circles of that triangle! A similar remark holds with
regard to the triangles BPC and CPA.

333. For the following investigation of the theorem of
Art. 286,eand of a corresponding theorem, I am indebted to
the late Professor De Morgan.

It is easy to see that cosn2f can be developed into a series of
powers of cos §; we require the law of the coefficients.

We know from Art. 310 that if « be less than unity

1-2*

l——__—2:coose+z'=l+2”c°sa+ £2* cos 260 + 22" cos 30 + ... ;

but without using imaginary quantities this equality may be
demonstrated by clearing of fractions. The left-hand member
may be expanded by the Binomial Theorem into the series

1-2* ( (-2 (1 (1-2)a"

T+z" T +2°) T )
and by comparing this with the right-hand member we obtain the
following result : the coeﬁcwnt of (2 cos 0)™ tn the development of
2co8nb is equal to the' coefficient of x° in the expansion of

2cosf+ .. (2c080)"+...;

1 m
%ﬁi—?)%.ﬂuu i8 to the coefficient of x™™ in the expansion of
1-x
(L+xf)™
Hence n— m must be even, say equal to 2r, 80 that m=n - 2r.
The coefficient required is therefore that of y” in the expansion of

(l_::syn;,, and, by the Binomial Theorem, this is

I (n—2r+1) (n-2r+2)...(n—r) (n—2r+1)(n—2r+2) (n—r-1)
){ Ir [r-1 }
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(n-2r+1)(n-2r+2)...(n-r~1)

lr

thatis (- 1Y

In the same mannmer, starting feom

xsin 0

1-2zcosf+2°
wo soo that the cogfficient of (2 cos 6)® in the development of

smnoi& equal to the coefficient of x® in the expamsion of

=g8in 0 +2*sin 20 + 2’ sin 36 + ... ,

gin 0
m+1
(l—:x_’-)ﬁ . Hence we shall find that the coefficient of
(2 cos 6)**' in the development of I—SM is
sin 6
(n=2r)(n-2r%1)...(n-r-1)

(— 1)' {"

334. The following is a very general theorem in the summa-
tion of Trigonometrical Series.

Having given the value of
€, + &+ 6@’ + ... + 02"
where ¢, ¢, ... ¢, are independent of 2 ; r;equired the value of
c,co8a +¢, co8 (a+B) +... +¢,co8 (a+nf),
and ¢, sina+c sin (a+ )+ ... +¢,sin (a +nf).
Tet f(x) denote the known value of
6+ 0% +CE + ... + o2

For x put in succession ¢ and ¢~*#; multiply the former
result by e, and the latter by e~«, and add : thus

c,c08a +¢,c08 (a + B) + .. +¢,co8 (a +np)

= g{esen + emsen).
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Similarly
¢, 8ine+¢ sin(a+ B) + ... +¢,sin (a +nf)
- (e st cesn).
The expressions thus obtained on the right-hand side must be
reduced and simplified ; we have
¢ f (¢f) = (cos a + ¢ 8in a) f(cos B8 + ¢sin B),
e f (%) = (cos a~ 1 8ina) £ (cos B~ usin ) ;

and when a definite meaning is assigned to f(x) we can obtain a
definite result.

335. The investigations of Arts. 310 and 311 will furnish
examples of Art. 334 ; for another example take the following:
let

¢,=1, ¢c,=nh, c’._:"fﬁf‘,",‘_.l)},,-, c____’M@H’_‘:_z)h',

- 2
thus S @)= (1+ hax)"
Then f(e®)=(1 + hcos B + tk sin B)*
= 7" (cos ¢ + ¢ 8in ¢)"
=1" (cos ¢ + ¢ 8in nep),
where rcosp=1+hcos B, and r sin ¢ =ksin B,

go that  #*=1+2%cos B+, and tan ¢=T‘%'
Similarly  f (¢8) = (co8 ngh — ¢ 8in nh).
Hence finally -

oosa + i oon (a+ B) + Z%=Y) R cos (a4 28) + .. + h s a + nf)

=1 (co8 a co8 7 — 8in a gin n¢) = 7" cos (n¢ + a),
and

sina + nhsin (a+ B) + %) itein (a + 98) + ... + A" sin (a + nf)

=¢"gin (n¢ + a).
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Various particular cases are included in these general results;
for instance we may put A=1 or ~ 1; we may put a=0 or g8;
or we may put a=my and 8=—y or — 2y; and so on.

336. Algebraical identities of more or less interest can be
obtained by ascribing special values to the angles which occur in
T

Trigonometrical formulse, For instance put 4 = 1

formulse of Art. 270 ; put § =0 in the four formule of Art. 288,
observing that the limit of s:%:b—; is n when =0; put #=0 in

the two results of Art. 333.

in the two
b}

337. We will now make a few remarks on the symbol ,/(- 1),
which has been used very often throughout the latter portion of
this book. 'We may consider that the symbol has been used in an
ca?;en}rrwntal manner, and many results have been obtained by
means of it: the point now to be considered is how far these
results can be received as true.

In the first place, some of the results obtained by using the
symbol ,/( — 1) may be shewn to be true by other methods. Thus
for example in Art. 333 we demonstrated without the use of the
symbol ,/(—1) a result obtained in Art. 286 with the aid of the
symbol. So also the values of sin nf and cosmé obtained in
Art. 270 may be verified by induction. Moreover the resolution
of an expression into factors in Art. 317 may be effected without
the use of \/(~1): see Theory of Equations, Chapter xxx1.

Again, the following example will shew how in some cases
a strict demonstration may be obtained even with the use of
the symbol ,/(—~1). Let n be a positive integer, and suppose it
required to expand cos"f in terms of cosines of multiples of ;
we may proceed as we did in Art. 280, supposing = to stand
for ¢#v(-1, Now we know that

(& + 60) = 6 4 6 b (e 4 ) 4 ”*(”Tz‘l){ev-‘»+e-«-'»}+...
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thus 2""{14- %—+g+%+...}'
’.'/‘

e
n —2)* n-2)'y* (n-2)"y*
n{l+( lg)y'+( i + 6 +}

Now this is true for all values of g, that is, if all the opera-
tions indicated be performed, the two members of the equation
are identically equal. We may therefore put —6* instead of y*,
and the result will still be true. Thus

s » n*0 6
? {' L4 }_ _If*nLT‘
(n—-2)'6" (n-2)'¢"
+n{1— ‘_2 + L“ —}

Thus 2*' cos"§ =cosnf+ ncos(n—2)0 +......

See the Article Equations in the Encyclopedia Britannica by
Ivory, and Airy’s T'rigonometry.

Finally, the student may be informed that a theory has been
constructed which offers a complete explanation of the symbol
J(=1), and thus enabfes us to obtain rigid demonstrations by the
use of this symbol. It is not consistent with the plan of the
present work to give any account of this theory; the student,
however, is recommended hereafter to read the Z'rigonometry and
Double Algebra of Professor De D‘Iorgan.

338. The ratio of the circumference of a circle to the diameter
is denoted by w; this quantity = cannot be commensurable, nor
can »*: we will give a demonstration of the latter statement,
which of course includes the former. The demonstration depends
on the theory of Continued Fractions which is explained in the
Algebra, Chapter Lvi1, and will be readily intelligible to a student
who has mastered that Chapter.
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Let f(y) stand for

1__w_'_+ ol - il +
L.y 1.2.y(y+1) 1.2 3.y(y+1)(y+2)
]
e +1) - =% . 2);
n S+ 1) ~/0) Y(”l)f(w)
S@) @ fly+2)
.herefore .
f(7+1) YGHD fGEDT s
Lo+ - -2
Put 2 for f() , then z—T—_—_I—’—;zl wherep,-7(7+l),and
;3 is what 2 becomes when y is changed into y + 1.
Thus Siy+1)

i) can be transformed into an infinite continued

Taction of the second class; see Algebra, Art. 778. Put % for y,

a.n;o for 2 ; then f(y)=cos §, and f(y +1)= 0 ; then multiply

the reault previously obtained by 6, and mmphfy the fractions.
Thus we find that tan 0 is transformed into an infinite continued

fraction of the second class, in which the first component is 6,
2

the second component is 0,3 , and generally the 7*® component is

0’
2r-1°
Divide this result by 6, then invert and transpose; thus we
find that 1 -60cot @ is transformed into an infinite continued
fraction of the second class in which the first component is %’ R

" .
and the r*® component is el

2
In the last result put ’—; for 4; and if (g) is commensurable

denote it by!:—' where m and n are integers. Thus we have unity
(

equal to an infinite continued fraction of the second class, in which
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by simplifying the fractions we find the first component is —, the

31‘9

second component is 2 that is & , and the 7%t component is

on’ [
mn . m
-(—2,'—-._—:[-)—" that is ﬁ. SO th&t
1= m
’ - mn
3n—5n pomye
T n—...

But this result is impossible, for we know that such an infinite
continued fraction must be incommensurable, and so cannot be
equal to unity: see Algebra, Art. 792.

Hence #* cannot be commensurable.

339. There is in the investigation of Art. 320 a point which
may require examination.

Let ¢ stand for ‘3, and 8 for T then wo have to find the limit

when = is indefinitely great of

7 /3 , where r is an integer which
lies between 1 and —‘2—1 inclusive. 'We suppose that n is odd
the process is similar if » is supposed even.

Now if r denote any fized finite number, then when = is in-
definitely great the required limit is 7—,6; ; but we are not justi-

fied in making this statement when r itself increases indefi-
-1 =n-1

nitely with », as for instance when r=”—-2—— or —5—. The fact

however is that in such a case both 0' a.remdeﬁmtely

B
small, and we are not led into error by our use of the latter in-
‘+ dofth form-r This+ 5l navr hevr
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Let'm be an integer which may be as large as we please pro-
rided it remain fixed, o as not to change when # increases ; then
by the method of Art. 320 we shew gtrictly that

mo=o(1—§)(1—%,)... (1 —m‘f;,)Q,

where @ is the limit when n is indefinitely great of a set of factors

n?
of the type 1 —:::,’%, the integer r taking all values between
m+1 and "—;—1- inclusive. Now we have to shew that instead of

@ we may take the product of a set of factors of the type 1 - :%, ,

the integer r taking the same values as before. Let X denote the
product which we propose to substztute for @; then we must shew
they R = @, and this we do by shewing that each of them is cqual
to unity.

Now we may suppose m large enough to ensure that sin ¢ is
less than sin 78 ; hence every factor in @ is positive, and less than
unity; so that the limit of @ cannot be greater than unity.

Let s=n—_—1--m' then @ is greater than {l - __si_n&_}‘

2 g sin’(m+1)B) °’
for every factor of @ is greater than the first factor. But the limit
of the last expression when = is indefinitelp great is unity, as we
see in the manner of Art. 150.

Hence the limit of @ is unity.
In a similar manner we may shew that the limit of R is unity.

340, There is a point in Art, 321 of the same nature as that
just noticed with respect to Art. 320, and which we may treat in
the same manner. It is the statement that when = is indefinitely

t we have
grew 2 Jrmel

— oot - — = 5 -
4n/ 2n @rr+6)
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EXAMPLES,

1. vaethatsinaeose=85in;sin'-"+:—osin'"%g,

2
2. Prove that
,0_ ,Q 6 .0 .0 6 20
3. Prove that

tan 36 — tan 26 — tan 6 = tan 36 tan 26 tan 6.

4. Find z from the equation
tan® z + cot’ = m® - 3m.

6. The circumference of a circle is divided into 2n equal
parts at the points 4, P, @,.... Tangents are drawn at the points
4, P, @, ... and perpendiculers 04, OB, OC, ... are let fall or
them from O the extremity of the diameter O4. Shew that -

04+ OB + 0C* + ...... = 3n (radius)’.

6. ABC is a quadrant; AP, AQ, AR are three arcs in
ascending order of magnitude, each being less than 4B, and
their sum equal to twice 4B ; radii CP, CQ, C'R are produced
to meet the tangent at 4 at p, ¢, r, and a triangle is formed
with Ap, 4q, Ar. Find the condition that this may be possible,
and the inferior limit of 4¢ and the superior limit of 4p. Prove
also that in all suck triangles the radii of the inscribed and
circumscribed circles are inversely proportional.

7. ABC is a right-angled triangle, C being the right angle,
E is the point at whick the inscribed circle touchgs BC, and F the
point at which the circle drawn to touch 4B and the sides C4, CB
produced meets C4 ; shew that if EF be joined the triangle FEC
is half the triangle 4.BC.

8. Through the angular points of a triangle straight lines are
drawn bisecting the exterior angles. If § be the area of the
original triangle and S’ that of the new triangle, shew that

4 B c

1
8’=§Scosec-2-oosec§cosec§.
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9. ABCD is a horizontal straight line. From a point imme-
diately above D the known distances 4B and BC are observed to
subtend the same angle a. If AB=a and BC =}, shew that the
height of the observer’s position above D is

2ab (a + b) tan a
(a—-0)'+(a+ b) tan’a

10. If in any arc not greater than a quadrant a point be
taken, and from this point two straight lines be drawn, one to the
extremity of the arc, the other perpendicular to its chord and
terminated by it, prove that the sum of these two straight lines is
less than the chord of the arc.

11. Buppose a the angle of elevation of a cloud, 8 the angle
of depression of the image of the cloud seen by reflection frow
a lake, & the height of the observer’s eye above the lake, then
e height of the cloud is

ksin (B + )
mE-a)

12. At noon a person standing on a cliff A feet above the
level of the sea, observes the altitude of a cloud in the plane
of the meridian to be a and the angle of depression of its shadow
on the surface of the water to be B; the sun being behind the
observer when he is looking at the cloud: shew that, if y be
the sun’s altitude at the time of observa.tlon, the height of the
cloud above the surface of the water will be

hsin ysin (a + B)
sin Bsin (y + a)
13. Shew That the formula of Art. 280 may be verified by
induction. °

14, Shew that the formuls of Arts. 282 and 283 may be
obtained from that of Art. 280 by changing 6 intog -6

15. Express cos 6 (tan™" ) in terms of .

16. If a quadrilateral can be inscribed in & circle and can
also have a circle described about it, the area of the quadrilateral
is equal to the square root of the product of the four sides.
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17. Themdesofaquadnla.temlﬁgmarea,bc,d and
the sum of two opposite angles is §. If § denote the area of the
figure, and s half the sum of the sides, shew that

8= (a-a) (s= ) (s— ©) (s - d) — abed cos®

18. Shew that
cos" omsne_l_"(nﬂ)tan.a n(n+1) (1|»_+2)(n+3)mn‘0

(2
19. Shew that

M”Gsinnﬂzntana_’w)

18
6

. e ™
20. If 6 is a positive angle less than 9 shew that Y

tan® 6 + ....

continually increases with 6.

£

. ) w
21. If 6 is a positive angle less than 9 shew that Y

continually decreases as 6 increases.

22. In the diagram of Art. 332 if PO be joined, shew that
it bisects DF, and is bisected by DF.

23. Shew also that PO divides D4 into parts which are
in the ratio of 1 to 2.

24. Shew that the following four points connected with any
triangle are in a straight line: the centre of the circumscribing
circle, the centre of the nine points circle, the point of intersection
of the perpendiculars from the angles on the opposite sides, and
the point of intersection of the straight lines grawn from the
angles to the middle points of th?, opposite sides.

25. Shew that the length of the perpendicular from the
centre of the nine points circle on BC is % R cos (C - B).

26. Shew that the length of the perpendicular from the
centre of the nine points circle on A@ in the diagram of Art. 332

is 3 Rein (0 - B).
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27. In the diagram of Art. 332 shew that
OP'=R* (1 -8 cos 4 cos B cos C).
28. Shew that the distance of the centre of the nine points
cirelo from the angular point 4 is > /(1 + 8 cos 4 sin Bsin 0).
29. The centre of the nine points circle cannot coificide with

the centre of the circumscribed circle unless the triangle is
equilateral.

30. The centre of the nine points circle cannot coincide with
the centre of the inscribed circle unless the triangle is equilateral,

19
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1. If an angle of 3° be represented by ‘15 find how many de-
grees are contained in the unit of that measure. Find also what
number will represent a right angle in the same measure,

2. The difference of two angles is 1°; the circular measure of
their sum is 1: find the circular measure of each angle.

3. Find tanx from the equation tan & + abcot x=a +d.

4, If sin 30 =sin 0 cos 26 t'.hen0=n—2"r where n is zero or an
integer.

6. If an angle be divided into two equal and also into two
unequal parts, the product of the sines of the unequal parts
together with the square of the sine of the angle between the
d.1v1d1ngstrmghthnesmequaltothesqumofthemneofha.lfthe
angle.

6. Shew that

(sec 0 sec ¢ + tan 6 tan ¢)° — (tan O sec ¢ + sec 6 tan ¢)*
2 (1 + tan® @ tan® ) — sec’® § sec’® ¢
_ sec 20sec 2¢
" sec’@sec’p
7. If A+ B+C = 360°, show that
1—cos® A—cos® B—cos"C -+ 2cos 4 cos Beos C=0.

8 Isind=3, sinB=12, andsinC= 1, whero 4, 5, and
2 are positive angles less than 90°, find sin (4 + B + C).
9. If o=rein] (9—a)and y=rsin} (9+a), shew that

&' ~2zy cosa + ' = #gin’ a.
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10. Eliminate 8 from the equations
(a—B)sin(0+$)=(a+B)sin(6-9), atanj-btanPuc
11. The number of degrees in one of the acute angles of a

right-angled triangle is three-tenths of the number of grades in the
other: determine the angles in degrees,

12. Shew that if the circular measure of an amgle is '2—"% ,
where » i8 any integer, the angle can be expressed by an integer
both in degrees and in grades.

13. If sin (a+ f3) cos y=sin (a + y)cos B, shew that B~y is a
multiple of , or a an odd multiple of g.

14. Shew that .

«, sin4dten‘d +4tan’4 +2sin 44 tan®4 —4 tan 4 +sin44 = 0.
15 Shew that sin® 24° —sin’ 6= 471
16. If A+ B+ (= 360°, shew that
2 (cos 4 ein B gin € +cos B sin C'sin 4 + cos C'sin 4 sin B)

+gin*4 +sin* B + sin*C'=0.

17. If a and B are the two values of § in the equation

cosfcosy  sinfsiny 1
+ =-
a b ¢

shew that
(" +c"—a¥)cosacos B+ (a*+c"— b)sinasin B=a'+b'—c".
1

18. If sind =3, and sin B= 7, where 4 and B are positive

angles less than 90°, find sin 2(4 + B).
19. Solve the equation cos 4« + cos 2% + cosx = 0.

20. If 4+ B+ C+ D=2360° shew that

eosA+WBB+WSC+OOBD=4OOBA:BOOSB;GOOBG;A.
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43. Bhew that
ocosec 4 cosec 24 + cosec 24 cosec 34 = cosec 4 (oot 4 ~ cot 34).

44. Shew that

1 oot’%A—oot'gA
sec’ - Asec 4 =8,
2 3
1+4cot®* ;4
2
45. Shew that
{seoA+oosecA(l+secA)}{1-tan’%A}{l-tan’%A}
1 1 1
=(sec§A+cosec-§A)sec'ZA.
46. If
(a—b)secd = \/(a+ Z l , and {a + b)sec ¢ = Ja+——~
then tﬂn§(0—¢)=a~/(T_l—).

47. Fliminate 0 and ¢ from the equations
a _sin(¢-0) c_ b sinf
Fesmerd)’ =000 =g

48. Find cos; from the equation
oosmoos( sinﬁcos‘f
i 2 2°
49, If

cos (6 + 3¢) = sin (26 + 2¢), and sin(¢+30)=cor(26+2¢),
shew that 0 =(3m— 5n)8 a.nh¢ (3n - 5m)8 16’

or else ¢-0-2m—2,wherema.ndnn.remtegers.

850. Shew that

(1 + 860 26) (1 + sec 46) (1 + sec 86)......(1 + sec 2°9)
tan 2° 6
tané °
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51. The circular measure of a certain angle is equal to the
ratio of the number of degrees in it to the number of grades:
find the magnitude of the angle in degrees.

52. Shew that
{sin (4 — B) +sin (4 + 3B)}sec 2B = (cos 3B — cos 24) cosec (4 — B).

tanf 1+ cos*d
8. I o = Tesm'e’

54. Solve the equation
cos 30 + cos 50 + ,/2 (cos 6 + sin §) cos 6 = 0.
656. Eliminate ¢ from the equations
nsin @ —mocos @ =2msin ¢, nsin 26 — m cos 2¢ = n.

56. Solve the equation

8 sin(o-g)cos'h8005(9-g)sin'o-ssm(2o-§)=J3.

57. Among all values of 6 between 0 and = find that which
makes gin 6 cos (- 6) greatest; B being a given angle between

Oand =,

2
58. Shew that cos 55° + cos 65° + cos 176°= 0,

o8 55° cos 65° + cos 65° cos 175° + cos 55° cos 175 =-§ ,

shew that sin (3 +a) = 7 2in (0 - a).

cos 556° cos 65° cos 176° =— ——— 5~ .

59. If «cos(a+pB)+cos(a—p)
= cos (B +y) +dos (B - y) = 008 (y +a) +co8 (y - a)

then tana  tanf8  tan ¢

wnl(Bry) tni(y+a) tni+h)

60. If A+B+C+ D=360° shew that
A+B . B+C 21_4

oosA—oosB+oosO’—oosD=4sin——§—mn 5 008 —p
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61. The number of degrees in an angle of one regular polygon
is to the number of grades in an angle of another as 3 is to 5:
find the number of sides in each polygon, shewing that there
are only three solutions,

62, Bolve the equation sec’

z
2
63. Eliminate 6 from the equations
" mein20=nsinb, pcos20=g cosb.
64. Find 6 from the equation
c08-0 —gin 6 = cos a — sin a.
65. Shew that if sin (4 + B+ C + D) =0, then
sin (4 + C) sin (4 + D) =gin (B + C) sin (B + D).
66. Shew that all the values of § which satisfy the equations
sin@+sinp=p, cosf+cosd=yg,
are contained in the expression nw—a+ (- 1)* B8, where a and 8
are angles determined by the equations

, in i (5" + ).

+ cosec’%: 16 cot .

tan a =

67. Shew that

cosz—cos?lrcoss—’r 4x bn 6 Tr _ _1_7
15 °® 15 15°°“T5°°’T5°°°ﬁ°°“175‘2)'

68. Shew that whatever 0 may be,
a sin’ 6 + b sin 6 cos 0 + ¢ cos* 6

A
P

lies in value between .
%(a+c)+%,\/b’+(a—c)'and%‘(a+c)—%Jb‘d—(a—c)'.
69. Shew that
+ 2"'+ + 2m =0
008 a 005(°3—' G) M(T— )— y

cosoon 2+ conatna (2 - ) o0 (2 on (2T —e) -2
[ (3 a eos:woa(3 —a)+oos(?+a)oos(3- e)==0

CO8 a CO8 ?lr+ )008 2x 008 3a
(3 @ '3““)“ i
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70. Find an expression for the product

71. An angle is the excess of a’d’ above p?q': find the ratio
of this angle to a right angle.

72. Solve the equation 2 sin'z + gin® 2z = 2,

73. Shew that
tan 4 + 2tan 24 + 4 tan 44 + 8 cot 84 = cot 4.

74. Bolve the equation cos 2 ~ cos 42 = sin z.

76. If the sum of the angles 4, B, C, D be four right angles,
and their tangents in geometrical progression, shew that the
™Mip=—1; or else that tan 4 tan D =tan Btan € =1.

76. The angles 4, B, C of a triangle are in Arithmetical
Progression.; and cosec 24, cosec 2B, cosec 20 are in Arithmetical
Progression : shew that the cosine of the common difference of

the angles is \/g .
2

77. Bhew that cos 4 +cos 24 + cos 34 = —_—

gin—

2

34

78. Shew that

(w—2cos2—7r :c-2cos4—") m-2c056—">=m'+w'—2m—l.
7 7 7
79. If 4+ B+ C=180° shew that
4 B C 34 3B 3C
s - 8y 4 B C 34 3B _3C
smA+smB+smC'—3cos2oos2oos2+cos 5008 - C08 5.
80. Investigate the conditions which must hold in order
that the equation sin’z + 2bsin 2 +¢=0 may give swo admissible
values for sin 2, when b is positive.
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81. The number of the sides of one regular polygon is to
the number of the sides of another as m is to »; and the number
of degrees in an angle of the first is to the number of grades in
an angle of the second as p‘is to ¢: determine the number of
sides in each polygon.

82. Solve the equation cos + cos Tx = cos 4.
883, < Eliminate a from the equations
ztan (a—B)=ytan (a +B), (x—y)cos2a+ (z+y)cos2B =4

84. If x and y vary so that their sum is constant, find be-
tween what limits sin 2 sin y ranges, and its greatest value.

85. If A +B+C = 180", shew that

. . . 4
m(A+-g)+m(B+g)+m(C+§)+l
_ A-B B-C (-4
=4 cos g Co8——cos yaud
86. If cos’4 +cos’ B+cos’C=1, cos®a+cos’B+cos’y=1,
and cos Acosa+cosBcos B+ cosCcosy=0;
shew that
gin a sin 2a sin,Bsin2B+sin'ysin2y 2cosaoosBoosy_o
cos 4 cos B cos C cosd cos Beos 0

87. Shewthatsin%rz=i(l+~/2—~/3),\/§—4/2.

1+2¢ .
T—o b

T ¢\ _l4e T
wi ton (4 §)= 2o (7 + ).

theneithersin0=-;orelseoosa=0.

88, If tang=

89. Find cos« from the equation cos 2x+beosa+c=0,
Investigate the conditions which must hold in order that there
may be at least one admissible value of cos , supposing b positive.
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90. Ify is not greater than 7 shew that sin 6 {1 + sin (y- 6)}
continually increases as § increases from 0 to y.

91, Shew that there are elevel.x, and only eleven, pairs of
regular polygons which are such that the number of degrees in
an angle of one of them is equal to the number of grades in an

angle of the other ; and that there are only four pairs when these
angles are expressed as integers.

92. If seca sec B+ tan a tan B =tan y, shew that cos 2y cannot
be positive.

93. Find the general value of an angle such that its cosine
is to its tangent as 3 is to 2.

94. If z and y vary so that their sum is constant, find
B®geen what limits sin 2 + sin y ranges, and its greatest value.

95. Solve the equation cos 6 - sin § = /2.

96. Express in four factors
sin® 4 + sin® B + gin® C' — 2 sin 4 sin Bsin 0 - 1.

97. Shewthatoosm 4( 1+,/2+J3)J2+ /2

98. Eliminate 6 between .

asin (6 +7) +dsin (8- 7) =7,

and aoos(o—:-;)+bws(6+z)=csin(20+£).

99. If 4, B, C be any quantities, and a, B, y angles such
that

A cota + Beot B+ Ccoty=(4 +B+C)cot acot Booty,
and

(B+C)cot Beoty+(C+A)cotycota+ (4 +B)cotacotf=0;
shew that A sin 20 + Bsin 28+ C'sin 2y=0.
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100. If oos0=ocosacosB—sinasinB,/(1 - o sin’ 6),
and €08 ¢ = cos a 008 B+ sin asin B ,/(1 — ¢’ sin’ ¢) ;
shew that

2cosacos B cos’ a +cos' B
I=Fatasnp 2041+ cosfoosd=1

—c"sin"asin'g
Henoe find sin 6sin ¢ and ta.ng tan %,

101, Shew that cos1l4 + 8cos94 +3 00874 +cosbd
=16cos'Aoos(4A +§)cos(4A—E),

0080+ cosp =

102. Find approximately the distance at which a coin an inch
in diameter must be held from the eye looking towards the moon
80 as just to conceal it, the appurent angular diameter of the moon
being half a degree. el

103, Solve the equstion cos® 0sin 39 +sin® 0 cos 30 = .

104. Eliminate 0 and ¢ from
cginf=asin(0+¢), asin¢p=>bsind,
008 6 — cos ¢ = 2m.

1056. In any triangle
asin (B —C)+ bsin (O~ 4) +¢in (4 - B) =0,

106. Shew that
oos" 18° sin® 36° — cos 86° sin 18°=—1%.

107. The perpendiculars frofh the angles of a triangle on the
opposite sides meet at 0; and 04 =z, OB=y, 0C =2; shew that

108. The top of a pole placed against a wall at an angle 4
with the horizontal plane just touches the coping; and when its
foot is moved a yards further from the wall and its angle of ineli-
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nation is B, it rests on the sill of a window: shew that the per-
pendicular distance between the coping and the sill is
aeot“—;'—g.

109. AB is the diameter of a circle, C' its centre; a straight
line AP is drawn dividing the semicircle into two equal parts;
0 is the circular measure of the complement of the anglg PCB:
shew that cos §= 0.

110. The gides of a regular pentagon and of a regular decagon
inscribed in a circle of radius R are a and o, and the radii of the
circles inscribed in them are r and 1’ respectively: shew that
L a 2R

e
- 111 IfA+B+C=(2n+1)1r,shewthat

A ]

a'—-a'= R, and

cos* ‘23 + cos‘g +co|s‘(-;-v -2 (cos' i;—cos'§+e¢m'—12-gcos' %+ eos’%oos’%)

A B ,C
+ 4 cos® -2—005 Ecos =0,

112. If tan® 0 is less than unity, shew that
1 l . ) 1 ot 1 Tt
tan’0——2—ta.n‘0+§tan'0 ...... = gin 0+§sm 0+3.am O+......

®
113. Solve the equation cos 6 — cos 20 =sin 36.
114, In any triangle
a'sin (Be- C) b'sm(O’ A) ¢*sin (4 - B) ~0.
sin 4 sin ¢

115. Solve the equation cos ;0 + s8in 30 = cos @ +sin 6.
116. If tan’ =tan (a + «) tan (e — ) then sin 2z=,/2.8in a
117. If
tan® 4 tan 4’ = tan* B tan B’ = tan’ C tan (" = tan 4 tan B tan C,
and cosec 24 + cosec 2B + cosec 2C = 0,
shew that tan (4 — 4") = tan (B—B) =tan (C' - (")



302 MISCELLANEOUS EXAMPLES,

118. If cos 60°= sin 36° cos 4, cos 36°=sin 60° cos B, and
008 C' = 008 A cos B, then one value of 4 + B + C is 90°.

119. Two rows of hourss of equal height stand at an angle
to each other. On a sunshiny day the distance of the corner of
the shadow from the corner where the rows meet is observed twice
and found to be a and b respectively. Shew that if A be the
height of the houses and a the difference between the altitudes of
the sun on the two occasions

K +h(b-a)cota+ab=0.

120. P is any point in the arc of a semicircle 4PB; two
circles are described touching the semicircle and also touching 4P,
BP at their middle points: shew that the rectangle contained

by the radii of these circles is one eighth of the square described
on the radius of the circle which is inscribed in the triangle APB.

121, Shew that
gina sin (B — ) cos (B +y — a) + sin B sin (y — a) cos (y + a — B)
+sin ysin (a — B)cos (a + B —y)=0.
122. Shew that
log oot 6= con 20+ 5 (008 36)" + 3 (c08 20)°+ ...

123. If A + B+ (=(2n+ 1) w, shew that
cot 4 + cot B + cot €'~ 2 (cot 24 + cot 2.B + cot 2C)

=(cot%+oot§+cotg) (sec 4 - 1) (se0 B— 1) (sec C — 1).

2
124, Shew that .
#in 4 sin B sin (4 —B) + sin Bsin C sin (B—C) +sin C sin 4sin (C—4)

=%{ain (24 — 2B) +sin (2B - 3C) + sin (2C — 24)}.

126. In any triangle

1 4.1 B 1 ,C_ (a+b+of
A0 GG H 0N 5=,
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126. Find = from the equation
se0 (E + m) +sec<§ —‘z)= 2./,

127. Shew that
gin (0 — a) gin (0 — B)
#n(a—p)sn(a—y) ' #n(B-a)&m (B—7)

4 En(0-7)
& (- (= B) "

128. From each of two stations on a horizontal plane, at a
distance ¢ from each other, a pillar on a distant hill, in the vertical
plane passing through the stations, is seen under the same visual
angle, and the angles of elevation of the top of the pillar at the
stations area and 8. Shew that tlte length of the pillar is equal to
- 'S ¢ cos (B + a)

sin (B-a) ’

129. If in a right-angled triangle twice the distance between
the centres of the inscribed and circumscribed circles is & mean
proportional between the hypotenuse and the excess of the sum of
the sides over the hypotenuse, shew that the radius of the in-
scribed circle is equal to one sixth of the hypotenuse.

130. In any triangle shew that .

1

1 1 r
cos 2A + cos 2B+cos 20_2+2R'

181, 1 Sn@+d)  fendd o= tan 4 ten B,
sin (z+B) A/ sin2B
132. If A+B+C=(2n+1)n, shew that
gin® 24 + sin® 9B + sin® 3C + 2 cos 2 008 3B cos 3C = 2,
133. Sum the infinite series
(+2)log2+ = E og 27+

2

3
+2 (log2)* + ...

1
18
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134, Shew that
gin (4 ~ B) 008 (C ~B) 008 (4 ~C) + sin (B~ C) o8 (4 — C) oos (B—4)
¢ +8in (C ~ 4) cos (B~ 4) oos (C — B)
= 1 sin (2B - 24) + sin (20~ 2B) + sin (24 - 20)}
135. In any triangle :’:8:2 =a';b'
136. The disgonsls of a quadrilateral figure are in length
h and % respectively, and inclined at an angle 4: shew that

the area of the greatest rectangle which can be drawn with its
four sides passing through the four corners of this quadrilateral is

2 bk (1 + sin 4),

137. A person standing ‘at the door of a house observes
that he can just see the top of a church spire over the interveni‘rfg
wall at an angle a; he then ascends to the roof, whence he is
just able to get a view of the entire building, and he observes
that the elevation of the spire top is 8. Having given the height
of the house, that of the observer being neglected, determine
the heights of the spire and the wall.

138. In any triangle shew that
acos'—;-A:+beos’%B+ocos'%0=a+%.

139. A, B, C are three points on a plane inclined to the
horizon, C' being the lowest; it is found that C'4 is inclined to
the horizon at an angle @, and CB at an angle 8 ; and the angle
ACB is y: if 6 be the inclination of the plane to the horizon
shew that

sin’ § sin® y = sin’ a + gin’ B — 2 sin a gin B cos y.

140. If o, ¥, ¢’ are the sides of the triangle formed by

joining the points of contact of the inscribed circle with the sides

of & triangle, shew that
’ ab’d _r’_
abe 2R*
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141. Find tan 0 from the equation tan 36 + tan 26 + tan 6 = 0.
142, Shew that

(on)s (o )+ () (w0 ) -1
143. Ifacos ¢ =boos then ooty (¢+0)oot2(¢ o)_ﬁ?

144, If A, B, C be the angles of a triangle, shew that

co s‘;cosgcosgmnnot begreatertha.n?"‘/a

145. In any triangle

cotA+ctB+cotC atb+e tA
373 2 b+¢-a2' 3"

e
146. The diagonals of a foursided figure are 4 and %, and
the area i C': shew that the area of the circumscribing square is
B - 4C°
B+ -40°
147. Shew that =, y, 2 can be so taken that for all values

of 6 the following expression shall have a given constant value,
«gin (§ —B) sin (6 - y) + y sin (6 - y) sin (0 - &)+ 2 8in (6 —a)sin(6-pB).

148, If from the extremities of a side of a regular pentagon
‘ngeribed in a circle straight lines be drawn to the middle of
she arc subtend8d by the adjacent side, their difference is equal
5 the radius of the circle, theis product is equal to the square on
she radius, and the sum of their squares is equal to three times the
square on the radius.

149. If a flag-staff at the top of a tower of height a subtend
_small angle 6 at the eye of an observer when at the distance b

2 2
Yom the tower, shew that the length of the flag-staff is g ;b 0
1early.
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150. In any triangle
(8—a)'sin 4 + (s~ b)"sin B+ (s—c)*sin C
e 4 B ¢
=4T(ZR—T)OOS§008—2'OOS-2.
151. Shew that
2¢in 74 008 A + 16 sin A cos® 4 =sin 64 + 4 sin 24 (1 + 2 cos® 24).

162. Find the logarithm of 32 to the base .4, and the
logarithm of 81,/3 to the base /9.
158. If tan (4 + B) =3 tan 4, shew that
sin (24 + 2B) + sin 24 = 2sin 2B,

154. In any triangle

1.,1 1.,1 1..1,_

g i §A+Esm 2B+-‘;sm 20’-

155. The sides of a quadrilateral figure are divided in order

in the ratio of m to n, and a new quadrilateral is formed by joining

the points of division : shew that the area of this quadrilateral is
to the area of the original quadrilateral as m’ + n* is to (m + 2)".

2ab+2bc+2ca—a'—b’—g: .
4abc '

156, Shew that 9050=—% is a solution of the equation

cos 0 + cos 36 = :12-; and find the other values of cos 6.

157. Shew that
cos B cos y sin (y — B) + co8 y cos a Kin (a — ) + cosa cos B sin (B - a)
=gin (a — B) sin (8 — y) sin (y - a).
1568. If 4 + B+ C = 180, shew that
sin A sin (.f — B) sin (4 — C) + sin B gin (B - C) sin (B - 4)
+8in C &in (C' — 4) sin (C - B)
=8iu 4 sin Bgin /{1 — 8 cos 4 cus B cos C}.
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159. A person with his eye on the level of the ground close
to a pole, observed that he saw the top of a distant window
over an intervening wall at aneelevation a. He then climbed
up the pole ¢ feet, when he saw the whole window, and the
elevations of the tops of the window and wall were then 8 and y,
Shew that the height of the lowest part of the window above
¢(tan a - tan B + tan y)

tan a —tan 8 '

the ground was

160. ABC is a triangle; straight lines bisecting the angles
4 and B meet the opposite sides at D and Z respectively : shew
that the area of the triangle CED is

161. If p=2cos 4 —5cos® 4 + 4 cos® 4,
and ¢g=28nd-5sin"4+45in’4;
shew that pcos 34 +gsin 34 =cos 24,

and p8in 34 - g cos 34 =%sin 24.

B
p -
162. Find the limit of (cos ‘i)“’ " when 7 is infinite.

163. Sum the infinite series
_1+2+1+2+2’+1+2+2'+2'+
3 3 Tt
BB, B

164. Find cos (% — y) and cos (2 + y) from the equations

1+

secacos(z+y)=1+tanztany, secBcos (x—y)=1—tanxtany.
165. In any triangle

1 1 1
acosg(B-O) . b cos E(G‘A) 6 008 E(A -5) _ 2(ab+be+ca)

+
bo oon = (B+C) cacos s (C+d) aboos(4+B)
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186. O is any point in the interior of a quadrilateral 4BCD;
OP, 0Q, OR, 08 are perpendiculars on the sides 48, BC, CD, DA
respectively: shew that the arez of PQRS is

) ABCD - }(04"sin 24 + OB*sin 3B + 00" sin 3C + 01" sin 3D).

167. , In any triangle

B-C A+bsin0—-——Acosecl—;+csin A—;Bcosecg=0.

G 8ln—g—00secy ) 2 3

168. Shew by the aid of Trigonometry that if x + y + 2 = ayz,

hen 32" w' Ly B2 (3z-o")(3y—y") (32-#)
aen gt 3y l—3z’ (T=3A 13/ (T-38)"

169. If!, m, n be the perpendlcu]m from the centre of the
sircumscribed circle on the sides of a triangle, shew that '

4(2 + 9 + f) = g&c.
Il " m n) lmn’
170. If A4, B, and C are the angles of a triangle, shew that

4 ..,B .,C 3
m'§+sm'§+sm_—2mnnotbelessthanz.

171. Find the limit when 6 is indefinitely diminished of
qm ab vers af

eintd 24 Cve

172. Shew that .
1 1 1
log,/2——{1 i 2.3+3—.5—+...}.

178. If A + B+ C =180 shew that

A A B C B B C A
tan g + 00 g sec 5 800 5 =tany + 008 7 860 3 BeC 5
() C A B
=tan 5 + cos ;; 8ec 5 sec 5 .
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- 174, If sin (w oot 0) = cos ( tan ) shew that either cosec 26 or

oot 2 is of the form m +%, where m is an integer positive or nega-
tive. .

175. Ih any triangle
gin 4 + sin B + sinC\* _acos 4 + b cos B+ ccos O
a+b+c N 2abe
176. A circle of radius r is inscribed in a sector of a circle of
radius @, and 2¢ is the chord of the sector : shew that
1
o
177. If tan z+ tan 22 + tan 3o + tan 48 =0, shew that either
bz = nm, or 2z = (2m + 1) m, or cos 2c =1 ,/17.
o 178. Shew that
gin (9 - B) sin (§ — y) sm(9 y)sin (6 — a)
sin (a—f)sin (a—y) * sin (B—7) sin (6= o)
+snn(@ a) gin (6 - B) _
sin (y ~ o) sin (y— B)
179. ABC is a triangle; straight lines are drawn bisecting

the angles 4, B, C' and meeting the opposite sides at D, £, F
respectively : shew that the area of the tgiangle DEF

CYE

1
—+
a

A. B.C
) 2Ssm25m§sm2
. —;;s ;‘—Oooso—AcosA B’
2 2 2

180. From the top of a TMountain the angles of depression of
two stations in the plane at its foot are observed to be a and S,
and the difference of their bearings is observed to be y: shew that
if ¢ be the distance between the two stations the height of the
mountain will be

¢ in a sin 8 sin 2asin 28 .5

Em)—m¢,wm Bin.¢-_m (a+ 0089.
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181. Find approximately the angle subtended by a target
two feet wide at the distance of 450 yards.
182. Sum the following infinite series :
1 4 9 16
BTRTETET
183. If 2 sec @ = sec (0 + 2a) + sec (6 — 2a), shew that

r

. cos’ 0 = 2 cos” a.
184. Solve the equations
2 (sin 20 + sin 2¢) = 1 = 2 sin (§ + ).
185. In any triangle
(sinA+sinB+sino)(tmf§‘+mg+m%)

=4+4siniisin ésin g

272 2
186. 4, B,C, D, E,... are the angular points of a polygon
inscribed in a circle; from the centre of the circle perpendiculars
are drawn to the sides, and a second polygon is formed by joining
the feet of the perpendiculars: shew that if the area of the first
polygon is double that of the second,

gin 24 + 8in 28 + 8in 2C + sin 2D +sin 28 + ... = 0.
187. In any triangle

. B-C 4+b . O—AmB_,_ . A-B 6’_0
a 8ln 3 5802 sm—2— —2- csin 3 8ec §— 3
188. In any triangle ‘

a’sin(B-C')+b'sin(0—A5'+c’sin(A~B)_o
sinB+sinC ginC+sind sind+sinB
189. If a be the side of a regular polygon inscribed in a

circle of radius r, and b the side of another regular polygon of twice
the number of sides inscribed in the same circle, shew that
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190. 1If 4 + B+ C =180 shew that

(l—sing) (l-sing)cosg-:- (1 —sing) (1-sing)eos§

+(lasin£)(l —sing)cosg =oos~"1 cos}—gcosg
2 2 2 2 2 2°

191. A person walks in a straight line towards a very distant
object, and observes that at three points 4, B, C, the elevations
of the object are a, 2a, 3a respectively: shew that 4B=3.BC
nearly.

192. If z is less than unity so also is
1, 1
z log(l-=)’
193. Having given '
6sinB _ 3sin2B _  2sin3B
cos (4 + B) cos(A+2B) cos (4 +3B)’

shew that it is impossible that any value can be assigned to B
other than nr.

sin'6+ cos’d 6
v s 4y’
general expression for the value of 6.

find a

lo4, ¢ Sn0_80 4
z

.

195. If 4, B, C are the angles of a triangle, and sin 4, sin B,

sin 0 are in Harmonical Progression, then 1-oos 4, 1-oc08 B,
1-co0s C are in Harmonical Progression.

196. If R be the radius ofes circle described about a regular

pentagon whose side is @, shew tha ‘§= ;—(7) nearly.
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198. If O be the centre of the circle inseribed in a triangle
ABC, and D, E, F the points of contact with BC, C4, 4B
respectively, shew that

0A.0B.OC(AF + BD'+ CE) = 4R. AF.BD . CE.

199. In the semicircle 4.B(, whose centre is O, and radius p,
the straight line OB is drawn at an angle 2a to OC. Circles
are inscribed in the triangles OAB, OCB. Shew that the distance
between their centres is

p /(2 — sin 20)
J(I +aina) (I +cosa)

200. A man walking along a straight road observes the
directions with respect to the road of two objects when the angle
which they subtend is greatest, ‘and then measures the distance
from the point of observation to the point whence they appear
in the same straight line: find the distance between them.,

201. Shew that r +r,+7r, - r=4R.

202, Shew that sin™ —— +cot™ 3=

,,/5

- 203, ABCisa trmngle a second triangle is formed by the
external bisectors of the angles of ABC ; then a third triangle is
in like manner formed from the second, and so on: determine
the angles of the n triangle.

204. Find in terms of a the vglue of cos 4 (tan™ a).

206. Find the general term in the expansion of ¢* cos (b + ¢)
in powers of .

206. A circle touches the sides AB and AC of a triangle
produced, and touches the side BC at D : shew that

a(8"—A0%)=4s(s—b)(s—c).
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207. If oos™ (a +BJ- 1)=0+¢. 1, where the letters
denote real quantities, shew that

al

-

B o' 2
o =L ad et By T

208. Shew tha log sec §
=2{sin’0—-12-sin’ 26 + %sin’ 36 -%sin'w o, }

209. Shew that the sum of » terms of the series
sec a sec (a + B) +sec (a + B) sec (a + 28) + sec (a + 28) sec (a + 3B)

= cosec B {tan (a + nB) — tan a}.

210. In a regular hexagon, one of whose sides is equal to a,
a circlo is inscribed ; and in this circle another regular hexagon,
and 80 on until there are in all » hexagons: shew that the sum
of the areas of the hexagons is

6.3 {1 - @} o

211. Adapt the expression @ cos A +bcos.B +ccos C to
logarithmic computation, the letters denoting the sides and the

angles of a triangle.

212. A, B, C are telegraph posts at equal intervals by the
side of a rail-road; ¢ and ¢ are the tangents of the angles which
4B and BC subtend at any point P; 7' is the tangent of the
angle which thg road makes with PB: shew that

2 1 1
™1
213. Shew that
1—'—4ta.n"1 2 tan™ —— 1 +tan™! ——— 1
4~ 5 108 1393

214, If P denote the point of intersection of the perpen-
diculars from the angles of a triangle on the opposite sides,
chaw that. P4A*=4R*- nt,
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215. If =15 find the value of
(cos a + /=1 sin a) (cos 2a +,/=T sin 2a)
cos3a—./‘—lsin3a
216. ABC is a triangle; a new triangle is forped by the
external bisectors of the angles : shew that the sides of the
new tm.nglo m4Roos 4, 4Rcos B a.ndu?cos C re

spectlvely.

217. Shew that the sum of the squares on the sides of the
triangle formed as in the preceding Example = 8 (4& + 7).

218. Reduce to its simplest form

cos 60 + 6 cos 40 + 15 cos 26 + 10
cos 56 + b cos 3G + 10 cos §

219. Ifﬂbeaposiﬁvemglelesstha.n;shew that ,/cos 6 is

1
ess than cos — J2

220. If any point be taken within a regular polygon of
an even number of sides from which perpendiculars are drawn
to the sides taken in order, then the sum of one set of alternate
perpendiculars is equal to the sum of the other set.

221. Shew that ,,/m r, =8
3

T _ -1 -1
222. Sherwthat4-5ta.n 7+21;a.n 5

223, Assuming the expression for tan n6 in terms of tan 6,
shew that if n be an odd integer ¢the following two series are
numerically equal,
nn-1) +¢_a(n— I}(n-2)(n-3)

12 4

1-

_n(n-l) (n-2) +n(n-1)(n—2)(n-3)(n-4)_ .
3 1] o

and if # be an even integer one of the two series is zero.
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224. Shew that sin* 4 cos®§

256(00590+cos79)———(00550+00639)+m0050

225. Shesv that sin® 2

=§{?—’—.L%—lz'—%m‘+ +(—l)“‘@x'"‘ }

226. If ¢—~— shew that
cos¢+cps3¢+cos9qs=-1—+—;/—~ﬁ,

and cos 5¢+cos7¢+cosll¢=1——%/—ﬁ.

£27. A point is taken inside a regular polygon and per-
pendiculars are drawn from it to the sides of the polygon; a
new polygon is formed by joining the successive feet of the per-
pendiculars : find the sum of the squares on the sides of the new
polygon.

228. Shew that lfﬁ—— then cos 56 + sin 56
=— 2*sin (0 - 3pB) sin (0 + B) cos (6 + 383) cop (6 - B) (cos 6 +sin 6).
229, Given sin 6 {1 + tan’ a tan® B} + cos 6{1 — tan" a tan’ B}

= tan a + tan 3,

shew how to determine 6 by formulse suitable to logarithmic
computation.

230. If 4, B, C are angles of a triangle, shew that
gin 4 + gin B + sin C is never less than sin 24 + sin 2B +sin 2C.
281. A regular polygon of n sides is inscribed in a circle,

and from any point in the circumference chords are drawn to the
angular points ; if these chords be denoted by ¢,, ¢,,...c,, beginning
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with the chord drawn to the nearest angular point, and taking the

rest in order, shew that the quantity
00+ 00+ ... +6,_16, —cCc

is independent of the position of the point from which the chords
are drawn. ‘
232. Two circular sectors have a common chord and equal

areas, and their angles are as 2 is to 1: shew that one of the
sectors must be a semicircle and the other a quadrant.

LN 2e—-k

- -1 _ - 40—
233. If ¢ =tan S’ and @ = tan 3’ shew that one
value of ¢— 0 is % .
234, If 21;_0 = gg—z, shew #hat 6 contains very nearly 5°.

235. ABC is a triangle, and DEF is another triangle forfied
by joining the centres of the escribed circles of ABC : shew that
the circle described round 4.BC is the nine points circle of DEF.

236. From the expansion of sin™*'@ in terms of the sines
of the multiples of 6, shew that zero is the sum of n+ 1 terms of
the following series :

1-(2n-1)+ 22 (ZL;‘ =3)_ 2”(2”‘é)(2"‘5) o

237. If cos (0 +¢./ -1)= cos a +,/— 1 sin a, where the letters
denote real quantities, shew that sin’ 6 = s sin a.

238, Shew that

sin  — gin 32 + sin 5z - ...to n'ﬁerms_tan (nx+ n-1 1,-)

008 & ~ c08 3% + €08 5 — ...to n terms 2 )

239. ABCP and DEFQ are two concentric circles, 4 BC
and DEF being any two equilateral triangles inscribed in them.
If P and @ are any two points on the circumferences of the
circles, shew that

Q4" + QB'+ QC*=PD'+ PL' + PF",
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240. Tf tan6=3"— °*- and s*=1-2a cos &+ a, shew that

l—facosw.+'ﬁ"_—l)a’oos2cw—.... +(~1)" a" cos nex =" cos nb.

1 2
241. Eliminate 6 between
gin’f—psin 6+1=0 and cos®§—gcosd + T-0
242. Shew that the area of a triangle
(a+b+c)

A B N\’
4 (c°t§ + cot 3 + cot 5)

243. If tan™'ax + 1§ soc™! b = ; , then one solution is

1
“2b—a"

244. If O is the centre of the circle described round a
triangle, and P the point of intersection of the perpendiculars
from the angles on the opposite sides, shew that

«

0P'=2R'(g+005211 +cos2B+cos20).

245. If e, B, y are the lengths of the straight lines joining
the centres of the escribed circles of a triangle with the centre
of the inscribed circle, and x, y, 2 the lengths of the straight
lines joining thescentres of the escribed circles, shew that

Be+yy yB+oz _ay+fe
x  y &

246. If w—0 denote the angle opposite to the side 4 of a
triangle, and 6 be very small, shew that approximately

al® (o 3a' 3a*\ 6
c=(b—a){l+3@- _b—Tr—_b.- E}.

247, Express sin® 6 cos® § in terms of sines of multiples of 6.
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248, Iftan(0+¢,/-1)=cosa+,/=1 sina, where the letters

denote real quantities, shew that f =nw & T where n is an integer.

i
249. Shew that
11 1 1
,sogtngtglangsetanss.

250. Shew that the coefficient of * in the product

(l+z)(1 +2£,)( 3,). admﬁmtumm@

251. Shew how to eliminate 6 between

sin*0—psin 6+ m =0, and cos’§-gecosf+n=0.

252. The internal bisectors of the angles of a triangle are
produced to meet the circumference of the circumscribing circle:
shew that the area of the triangle formed by joining the three

points thus obtained = {;-8 .

263. If sin' T 4gin'Y=gin~' S, then
a b ab

b'z® + 22y (a'd* - Y +atyt =t

254, From a point P each of two straight lines C4 and C'B,
which are at right angles, subtends an angle y. If C4 =a, and
CB =1, shew that .

ab ots 2y
gin y ,/(a® + b°— 2absm 2y)°

255, Shew that the roots of the equation «*—&*+ 2"~z +1=0
are cos 36° & ./ — 1 sin 36° and cos 108° ,/— 1 sin 108"

256. If an angle of a triangle be 30° one of the adjacent
sides 1 foot, and the opposite side 250 feet, find appronmately
the number of minutes in the other acute angle.

CP=
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257. Shew that the area of the triangle formed by joining
the points of contact of the inscribed circle, or an escribed circle,

ofatria.ngleisg—;,wherepisthémdiusofthedrcle.

[ ]
258. If tan (0 + ¢ /- 1) =cos a +,/= 1 sin a, where the
letters denote real quantities, shew that a'¢=-l=ta.n(£+ ;;)

259. If s= 1+zoos€+ cos20+l3cos36+

and =280+ sm20+ sin 360 + ..

2 E
then zsin0=ta.n"’;, and zcos0=%log(s’+o’).
* Find the values of 8 and o wlken 0=§'

260. Through a given point straight lines are drawn parallel
to the sides of a regular polgyon; and from another given point
perpendiculars are drawn to the straight lines: find the sum of the
squares on the perpendiculars.

261. Shew how to eliminate 6 between

atanf+bsecO="h, and acqhb+bcosf=k.

262. Perpendiculars are drawn from the angles of an acute-
angled triangle on the opposite sides, and the feet of the perpendi-
culars joined ;o shew that the perimeter of the triangle thus

28

formed =% 'y

263. The internal bisectors of the angles of a triangle are pro-
duced to meet the circumscribing circle : shew that the area of the
triungle formed by joining the points of intersection is never less
than the area of the original triangle.

(7, +r)(r +7)(r, +r)

" T T,

264, Shew that 4R =
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265. The shadows of two vertical walls which are inclined to
each other at an angle vy, and are ¢ and a’ feet in height, are ob-
served when the Sun is due Sputh to be b and ¥ feet in breadth.
Shew that if a be the Sun’s altitude above the horizon, and 8 the
inclination of the first wall to the meridian,

] bll ’
‘ oo‘.'a=(? +an>ooseo’y+i—l:‘b7 cot y cosec y,

,

cotﬁ=:Tbb cosec y + cot y.

266. Shew that (a+b.,/=1)***V" will be wholly real if

g log (a* +b") + a tan™’ % is zero or an even multiple of g

267. Apply the exponential values of the sine and cosine to
shew that

Foarrgrarg= 4 (o 0 getuint 26+ gtaint 30—}

log gin® 6

a
when a=-a;é.
a+b

268. A triangle is formed by joining the centre of the in-
scribed circle of a triangle with the centres of the escribed circles
which are opposite to thé angles 4 and B: shew that the area of

A . abe C :
this triangle is 55 b3

269. 1If O be the centre of the circle inscribed in a triangle
ABC, and r,, r,, r, the radii of the circles inscribed in the tri-
angles 0BC, 0C4, OAB, shew that

a b ¢ .| B 0)
a+£+;.=2(00t2+60t—4-+00tz .
270. Sum the series
1 1 1

-1 -1 -1_=_
tan 2+tm 8+...+tan =t
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271. If a series of triangles be described of the same area,
shew that the sum of the cotangents of the angles varies as the
sum of the squares on the sides. «

279. Let I denote the centre of the circle inscribed in a
triangle, O the centre of the circumscribed circle, D, E, F the
centres of the escribed circles : then shew that °

o
OI'+OD'+ OE*+ OF"=12R"

273. Shew that 2ta.n' / ta.n -1 2+ acos
a+boosz’

274, A chord is drawn cutting two concentric circles whose
radii are as 1 to n, so that the intercepted portions subtend angles
2a and 28 at the centre : shew that the chord is divided at either
point of intersection with the inner circle in the ratio of

¢ n'—2n co8 (a—B) + 1 to n*—1.
275, Shew that (& +5,/=1)***V=1 will be wholly imaginary
if glog(a'+ ) +a.ta.n"‘gis an odd multiple of g

276. Shew that the area of the triangle formed by joining the
centres of the escribed circles of a triangle is

abe(/1 1 ¢ /1 1 4de /1 1 B

277. Sum the following series to n terms:
log (1 +2 88 6) + log (1 + 2 cos 36) + log (1 + 2 cos 3° 6) + ...
.

378. A regular polygon of n sides is placed with one of its
gides in contact with a fixed straight line, and is turned about one
extremity of this side until the next side is in contact with the
straight line, and so on for a complete revolution: shew that tho
length of the path described by any one of the angular points of
the polygon is 4—R cot o— o) where R is the radius of the circle cir

cumscribing the polygon.
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279. Bhew that the sum of the areas of the sectors of the
circles which correspond to the path in the preceding Example
= InR®,

280. Sum the following series to 2n terms :

gin 26 gin 46 gin 60
SnfmnS) sn30snbl  anblsn7d

281, In an acute-angled triangle let P denote the point of in-
tersection of the perpendiculars from the angles on the opposite
sides ; and let AP=a, BP=f8, CP=vy: then

S=‘11(aa+bﬂ+c7),
2abe = a"a cosec 4 + b3 cosec B + ¢y cosec O

282. Let R denote the radius of the circle circumscribing a
triangle ; and let 7, ", #” denote the radii of the greatest circles
which touch the former circle and the sides of the triangle, being
outside the triangle : then shew that

64 Rr'r'r" = (____abc ),
a+b+e

283. Shew that one value of
: -lN/(x’—c’)_sin—ch(a.—m')- . oy & —ac

J@ =) T e @ =) B sy
284. If the lengths of the three straight lines drawn from the
angles of a triangle to bisect the opposite sides be denoted by
h, k, 1, shew that
4 (B + K+ I°) = 3 (a® b + c),
16 (2°k* + &0 + TR*) = 9 (a®b* + &°¢” + c'a’),
16 (A* + &'+ 1) = 9 (a* + b* +¢*).

285. The area of any triangle is to the area of the triangle
whose sides are respectively equal to the straight lines joining its
angular points with the middle points of the opposite sides, as 4 is
to 3. .
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286. Shew that one value of
{a(cos 0 + /= 15in 6)— b (cos 0= a + 4/ — 1 sin § — a)}"
i TCET N N Y
bsina
a—boosa. :

287, Any point is taken within a triangle 4ABC; its distances
from 4, B, C are h, k, { respectively, and its perpendicular dis-
tances from BC, C4, AB are a, 3, y respectively : shew that

h*a sin 4 + %°8 sin B + Iy sin G = aBy + bya + caf.
288. If D, E, F be the feet of the perpendiculars drawn frow

the point in the preceding Example on the sides of the triangle,
shew that aBy + dya +caff =4 R x ares of DEF.

289. Sum the following series to n terms:

when k*=a"+b°~2aboosa, and tan 8=

sin § + sin 30 + sin 56 +
cos* 0 cos'20 cos*f  cos® 30 cos® 20
290. Find the general value of § which satisfies the equation
(cos 6+# =1 gin ) (cos 26 + ¥/ =1 sin 26)...(cos nf+4/~1 sin nd) = 1.

291. D, E, F are the centres of the escribed circles of a
triangle opposite to 4, B, C respectively : if +/, 7”, ¥" denote the
radii of the circles descnbed round DBJ ECA, FAB shew that

l,/l Jn 2‘Rﬂr

292. If two sides @, b, and the included angle C of a triangle
are given, and "a small error y exist in C, the corresponding error
aby

e
in the radius of the circumscribed circle is Do cot 4 cot B.

293. A quadrilateral is formed by connecting two points in
the produced sides of a right-angled isosceles triangle, equidistant
from the vertex, by a straight line whose length is n times that of
the base : shew that the angle between the dmgona.ls of the quadri-

an-1
lateral is 2 tan 1
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294. In the equation 6= ocos§, shew that there must be &
solution, and only one ; and that the value of @ is less than ’Zr

295. If B is an approximate value of 6 in the equation
cos § =6, and too large, shew that B—'f::;’:ﬁis a closer value,
and also too largh.

296. If tan (0+ ¢/ — 1) = tana +,/ =1 sec a, where the let-

ters denote real quantities, shew that 62 = & cot '—‘2- .

297. A regular pentagon’and a regular hexagon are inscribed
in & circle of radius r, 8o as to have an angular point in common ;
and the other adjacent angular points are joined shew that the

. 4r gin 18°sin 15°
perimeter of the figure so formed is _—s—m—f‘}—"—

298. Sum the following series to n terms:
2
cos 6 cos® Ooosec %—Q+00530 32ooosec'32—9

2 8
+ cos 3%0 cos* §_f cosec” ?_Q
299, A series of radii divide the circumference of a circle
into 2n equal parts: shew ¢hat the product of the perpendiculars
let fall from any point of the circwnference on n successive radii

25:1 gin n¢), where r is the radius, and ¢ the angle between the

radius to the given point and one of the extreme radil.

300. There are n stones ammga‘a at equal intervals round
the circumference of a circle: compare the labour of carrying them
all to the centre with that of heaping them all round one of the
stones; and shew that when the number of stones is indefinitely
increased the ratio is that of = to 4.
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ANSWEHRS,
L IL, IL IV,

L pdfe6. 1. 18, 27" 2. 15, 45°. 3. 30° 15°
60n° 27n’

4. 00945, b. - Ry 6. 2.} 7. 3
8. One polygon has 8 sides, and the other 12 sidef; so that an
angle of the first is § of a right angle, and an angle of the second
§ of a right angle. 10. The ratio is that of 6 to 162.
11. Express the given angle in degrees and decimals of a degree,
and then transform it to gradek: thus we get 395 T 50"
12. 62° 189"

3 180

IL pages13,14. 2. $5x—. 38 gz, 4 mx00505.
5. 279, 9% 18% 6. .%r , 28%125, 31%:25. 7. 40° 60°, 80",
8. 30% 60° 90°. 9. <"—‘n2—)~" 10. 82y, 91y, %’-’ .

IIT. pages 22, 23. 5. Bring the left-hand side to a common

in? L t]
denominator; it will thus be found to be w
gin 6 cos 6

7. 6 =%’ . Observe that by the definjtions of the sine and cosine

they cannot be greater than unity. 8. cos §=1-siné; square,

thus cos® 6= (1 —sin 0), that is, 1 —sin®6f=(l —sin 6)': hence

find sin 6. We get 6=0 orx ; see Art. 56. 9. 0=% org;
°

soe Art. 57. 10, 6=3. 1L f=ForZ. 12 6=7.

61
13. A=45°; B=15" 14, A=52), B=T§"

IV. page 41. 1. The same as for an angle of 225°,
2. The same as for an angle of 330°. 3. The same as for an
angle of 210°. 4. The same as for an angle of 300°,
5. 45° 225°, 405° 585° 765°
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6. 45°, 185°, 225% 315° 405°, 495°, 585°, 675°, 765°, 855°.

1 1 1 /3 1 /8
7. 0,1'—:/—, 1,1+72-, 2. 8. §, 2,—5,-2 .
9. We have gin §=—cos 8 ; therefore 6=135° &e.
10. o086 =-%; therefore §=120° &eo. 14. (No.
V. page 49. 1. mr+§. 2. (2n+d)m 3. 2nm.
1
4, 2nw-l--§g. 5. nrea. 6. m,-...l:;, 7. nmrea
8. mr-l-’zr. 9. nmwea, 10. mr-l-%-. 12, 2mr+'—(g.

VI page 62. 34, The right-hand side
= 008® A +8in*34 — 2 cos A sin 34 sin 24
= 08 A (008 A — sin 34 sin 24) + sin 34 (sin 34 — cos 4 sin 24)
=co8 A cos 34 cos 24 +8in 34 sin A4 cos 24 = cos 24 cos 24. .
86. &in 50=5sin 6 20 sin® 0+ 16 sin® 6.

3. Gmnmul. 38. Denror Za(nrim
39. 80=nr or 40=2nww7. 40. o-’z’=2mr-u’§'.
41, O=mnr or mr-k%. 42, .20=(n+1})1r0r 0=2n1r-b—2g.
43, 20=nm or a:zm-f%”. M, W=nrs(~1F.
45. O=(n+3) or 4o=mr+(-1)-§. 46. q+;=m--’§'.

VIL poges 70, 71. 2. 2cosz=/(1+sind)-,/(1-sind).

3. 2sin%=—y/(1+sind)—/(1-sin 4)

4. 2m+3T'a.nd 2mr+§{. 8. 2m-+577ra.nd 2n1r+7—I.
x - 1 3-1
6- 2mr--4-and 2”4-2. 10. '§. 11. —W,
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4 3 3
12. gind= -l-s,oosA -I-B-, or gind = -l--g,oosA=q-§.

13. J/3-2 26, =1, . 27. 4 28. -3%.

VIIL gpages 78...80. Example 20 may be deduced from
Exsmple 16 by changing 4 into 4 (180°—~ 4) and making similar
changes for B and C'; Example 21 may be deduoed from Example
17 in the same way. -

3g, BT —cosa _sin"acos 8
" cosxz—cosB sin’Bcosa’

sin® B cos’a—gin’a cos’ S cosa+cosf |
sin Boosa —sinacosB 1+ cosacospB’

therefore cos x=

1-cosz tan*d tan‘a .
thell ﬁnd oosm' 39. m— ba.n_'7’ th&t 18,
-— — ’ '
cos,B oosa$cos/3 c?sa=tan’a'; therefore
. cos a cos a tan® o’
cos B —cosa sin'acosa’ sin’ o’ cos® a — sin* a cos® o’
;= 3 OOBB_
cos B —cosa’ sin'a’ cosa sin® a’ cos a — sin’ a cos a’
_ cos’ a — cos’ o’ _ cosa+cosa’
“cosa—cosa’ —cosacos'a +cosa’ cos’a 1 +cosacosa’’
then find _l__c_o_sg 41, We have to shew that
1+cosfB
cot 8 — cot (a + 6) = cot 6 + cot (a - B),
that is gin(a+6-p) sin(e—B+6)

sin Bsin (a +6) sinfsin (a—pB)"
43. Find cosf from the first equation and substitute in the

!
second : thus we shall get ogs’p =—— ,:, ; &e.
2 tan} . o
48. Put Tt} o for tan¢; then solve the quadratic; thus

(oose+sm0’)-l-(1+sm0'0030)
sin 6 cos &

the upper sign gives the required result, The lower sign gives

-~ g et (7 -):

we ghall find tand ¢ =




Oiuts ANoWnhu. la.

52. By Example 23, page 78, we get cos 4 cos BcosC =0, so
that one of the three angles is a right angle.
59. cos 50=16 cos® 6 — 20 cos® 6 + 5 cos 6.

IX. pages 91...93.
_ gy _(n—1)tang _ n-1 .
b. tan(0-9) =T tmrs ~(Jintang) = Jook gF T2 T’
the greategt vAlue of this is when the first term of the denomi-
nator vanishes. 0+¢
—

6. 2sin6 sin®

8. The height in yards = 1760 x tan 1'= 7O nearly.

. . 3 1° 3 L

9. Iﬁtmmches bothe d]smoe, E—tm-z’ thus;:W
nearly. 10. We get ia d = ,/(3—n). 12. 6.
13. 2cos’4d =14cos 24 ; therefore 4 cos*A =1+ 2cos 24 + cos*24 ;
but 2cos*24=1+cos4d; therefore, by substitution, we have
"8 cos* 4 =3+4cos 24 +cos 44 ; square again and reduce. Simi-

Yarly proceed with 2 sin®4 =1 — cos 24. 16. 8.
17, 0-Fatum 18 0+F=2nra’r. 10.7-20=2nru0
20. 3??=mr org—g=2mrd=§2~0. 21, 0=mr+:—;£ or
W=nrs (-1 5. 28 0=nrs T or sin20=3(y2-1)

28. 6=(n+1)5 or nr7. 24, 0=(2‘n4‘-1)§.

26. oénwﬁ% or M*%' C6. g=mr or 2n1r-h§.

27. 0=’%". 28. 0=mr-l-"zr or mr-k’—g. 29, 0=mr-l=’zr.

30. 0=m-orm+-3£. 31. sin5—:=0, or cos0=0, orcosgeo.

32. o080+ in30=0, that is, ooso=oos(3o+’§’).
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”
33. 20=nr= 12°

35. 20=(2n+1)3, or TO=nm4(-1)F.

84, ginf=-1, or sin-g=0, or tang=2.

It shoul® be remarked that answers may be given under
apparently different forms; thus, for example, suppose we have to
solve the equation sin 20 = cos 6, or 2 sin 6 cos 6 =cos 6, this gives
m
2

oos(g— 20):0030; therefore 1—;—20=2mr-l- 6.

.4
0 =2nm e 5 and 6 =nr+ (- 1)'%; but we may write the equation

X. poges 104..107. 1 3. 2 243Y9=(3). 3. 7;-4;-}

. . - 1 1 11 -
4. 1-06. 6. 3,—1. 10. @—B-f-E—E-P.“—O .

12. 2w-a=2mr-|-g. 13. x=acos(a—B) or —acos(a+B)

T 3 T a
14, @=2nmaz or e & 15. cos(a:+1)a=cos(§—-2-).
B B

16. m=aec(a—§> or—2cos—2-seca. 17. We can get

. . . a—0 4.0 .. . g
gin 2*a=sin 3a.  18. ama2—= (:L:) smﬁ;thmgwesta.nﬁ.
[

19. O=mr+3or (n-1)0=2mmaz.

.6 50
20. cos0=0, orsing=0, or cos =0, 22 th‘s 23. n=2

24, sin’e—;-‘i sin 39; %-0. ®*  31. Write for « successively

z._xmd’z'w. 34. By Art. 114, tan’ 4 + tan’ B + tan'C'
=1+} (tan 4 — tan B)" + § (tan B — tan C)" + } (tan €' — tan 4)".
86. cot B + cot C' — cosec 4
gin(B+C) 1 _sin'd-ginBsinC
~snBenC ®ad- sndsmBemC ' %
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87. If A+ B+C =180 we have

oos' 4 +cos* B+cos*C=1-2c0o84 cosBoosC...........(1).
Thus, if 4, B, C, are all adute, the sum of the squares of the
cosines is less than unity. Hence if we require the sum of the
squares of the cosines to be egual to unity, one or more of the
acute angles must be diminished, so that their sum will then be
less thac: 180,

38. From the value of sin (4 + B+ (), given in Art. 113,
it will follow that &in A +sin B +sin O —sin (4 + B+ ()
=gin 4 (1-cos B cos ) +sin B (1- cos 4 cos C) +8in €' (1-cos 4 cos B)
+gin 4 sin Bsin ' ; and évery term of this expression is positive,
39. ¢". 40. Zero. 41. It depends on (1—cosf)'(1+ 2 cosf)
being greater than zero. 49. Take the logarithm of the given
expression. ‘

XTI page 122. 14. Denote it by w; then logu=,/5log b
=2,/6log \/b; therefore log (logu) = log 2 + log /5 + log (log ./5)
=+301030 + 349485 + 1543428 = 193943 ; therefore log u
=1562944 ; &e.

—sinasin B

XIL pogen 143..147. 3. tan0 =002 8 4 1y
0 1 c—1
5. cobg-cotf=——z. 6 lor "\/HT 7. a'=b"
c’ ¢ Yy
8. a"+b'+ 1L a+F'-2=2. 12. w‘+y'=a’(l+-b—, .

§ing
1 a2 Y

3 W SZ+%=1 16 ¥=a'- Jaccos3g+e
17. Find = and y from the given equations ; hence we shall see
that 2+ y=a (sin ¢ + cos ¢)’, - y=a (sin ¢ —cos ¢)*, &e.

18. From the last equation we get

=in? A «in® ch — (=in R gin v — 00 ' A oo Y, .

13. oot'.o=l
a
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Eliminate 6 and ¢ by the first two equations, and we get
sin’ o — sin® B — gin’ y = (gin® a — 2) sin’ Bsin’ y;
therefore sin’ o (1 —sin’ B sin’ y) = sin* B cos” y + cos” B sin’ y.
Hence find cos® @, and then by division tan® a.
L ]

19. (mn)l {md +0Y}=1. 20. %:.,.Z
22, We have @* +y' + (y* — 2°) cos 20 = 2b* sin’ a; there!bre

a* +b* + cos 20 {(a + b°)* — 4a%b" sin” o} = 28%sin’ a ; &e.

29. sindsin ¢ = sinasin, therefore 4 sin*'%-uin‘ﬂ: sin’asin’

2 sin’ ¢
.0 0 sm asin’ 8
therefore 4 gin* §—4sm 2+1 l—v,
cot* =
" ang sin® ¢ = 2, therefore

coi;'-;-l +cos’ 8

2“"'%’1:*\/{1 ~ 4int? cot'g+cos'ﬁ) sin'ﬁ};
this reduces to 2sin'%—1=-(1_2sin=§sin'p).

30. = must lie between —2 and — 1 or between 1 and 2.

31. By Art. 114 we may suppose = = tar’4, y =tan B, 2z = tan C,

where 4 + B +C=180". Therefore 24 + 2B + 2C = 360°; and
tan 24 +tan 28 + tan 2C = tan 24 tan 2B tan 2C.

This gives the required result.

32. vsinc¢=sin2=—sinx cosY — cos zsin »
=—vsing cosy—vsind cosw, or gina cosy=—sinec—sinb cosw;
and gin asiny=sinbsinx; square and add, thus
gin® @ =sin’ b + sin® ¢ + 2 sin b sin ¢ cos z; therefore
sin'a - sin*$ - sin’o
2sinbsine
Similarly cos y and cos ¢ may be fonnd.

CoOS &=
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o
33. oW, 37. We have universally
gin® (4 + B) =sin® 4 + sin" B + 2 8in 4 sin Beos (4 + B)......(1);
also in the presentecase sin' 4 + gin* B = cos* C...... 2).
If 4 + B is greater than 90°, then a fortiori A + B4 C is 80 also.,
If A+ B is less than 90°, then sin® (4 + B) is greater than
gin’ 4 +sin* B by (1), that is, greater than cos®*C by (2);
therefore 4 + B is greater than 90°— C.
XIIL pa.ges 154...157.

5. Let - = a so that the ungles of the triangle are 2a, 4a and 8a.

14
Then the ratio of the greatest side to the perimeter
_ sin 8a _ sin 8a
" §in 20 +8in 40 +8in8a  sin 2a + sin 4a + 8in 6a
2 sin 4a cos 4a 8in 4a

= 25in 30 cosa + 2 8in 30 COS 3a  COS a + Co8 3a ,
_ 2sin 2a 008 2a
" 2cos2acosa
8in 20 +8in 46 a+c a+c

8. ——mo—- —-—b—', therefore 2 cos = —— .
b6-¢

21. sin 0+sin ¢ =2s5in (6 + @) ; therefore cos
6. ¢

therefore cosacos%—Bsm sm2,

2
therefore (1 0) (1 sin® ) 9 gin® 3 sm'f
. 9

. .0
therefore 8 gin’ -2-s1n §_1 sin’ §—sm 5

therefore 16 sin® -sm'i’_z 2sin'%—2si.n'

2
)
Or thus, wsﬂ:%m«ib:%—;
a—c+_b__6a—3c_
a 2 4a ’
be~-3a
4¢

=2sina,

o

9+¢

=92 cos —— 3

[ )

o6

=08 6§+ cos .

Q

therefore cos 0 =,

similarly 0B =
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87. This will follow from Examples 20 and 21 of Chapter virL

40. We have to shew that (b+¢—a)(c +a—b) (a +b—c) is less
than abec except when a=>b=c¢. By squaring, this amounts to
shewing that ¢a*— (¢ — b)'}{d"— (a — ¢)*}{c"— (a—b)*} is less than
a’b%*; and each factor on the left-hand side is less than the cor-
responding factor on the right-hand side except when a°=b =e.
[~
XIV. pages 168...171. 1. 4 =30° or 150°. 2. 380° 90°.
45°, 60°, 75° 4. The triangle is impossible.
B=90° C=172° c=4,/(5+ 2,~/5).° 6. B=45"or 135"
From Art. 235 we have ¢+ ¢/ =2bcos 4 and c¢’ = b* - a”,
b*sin 4 cos 4. 11. No; the triangle is right-angled.

[

12. Wo got sin 6= /%) gin 40, and seo Axt. 230,

13. ¢'=a"+b" —2abcos C'= (a—b)"+4absin® } C; &ec.

14. 9:6733937. 15. 132° 34 32", 16, b55°46'16".
17, 78°27' 471" 18. 119°26’51”; 5°33'9".

19. 69°10° 10”; 46° 37/50”. 20. 116° 33’ 54”; 26° 33’ 54”.
21. 82°10’50”; 50° 24’ 10”. 22. 124°48'59”; 33°11'1".
24, 48°11' 23"; 58°24'43"; 73°23' 54",

4 3415°
'—-—-_
26. oosA—6953, therefore sin 5953

26. 70°5336"; 49° 624", 27. 38°12'487; 21°47'12",
28. 26°33'54". 29, 69°49 "5 50°10°25",  30. 30°or 150°,

B=129".

XYV. pages 177...183. In order to solve some of these ex-
amples the student must be acquainted with the Mariner's Com-
pass. In the Mariner’s Compass the circumference of a circle is
divided into thirty-two equal parts, so that each part subtends

at the centre of the circle an angle of %’ degrees, that is, an
angle of 114°. The following names are assigned to the points
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XVIL pages 205...207. 1 2,,/3-1, —/3-1.

4 -3, 220089, 2,200863, 2 /200881 2,2 oc0s 153"

7. Let a be the height of the balloon, and 4, b, & the sides of
the triangle ABC ; then 40%* — 36a"'x" + 9a’b’c" =0.

Q

9. About 1§ inches. 12. Suppose 4 the height of the
tower, r the radius, = the distance of the first place of obser-
vation from the centre; then ;’_mwﬁ ?—rf cosec%,
h=ztana, & =(z-a)tana’. From these four equations we
may eliminate , and find 4 and r, and also the required

relation between a, o/, B, B 13. From the preceding
questio; g=oosec§—oosecg If we ‘suppose that an error

8 of the same sign is made in B and S these errors tend to
compensate each other ; the greatest possible error in + will be
determined by supposing that errors of opposite signs are made
in B and B’. Suppose then that instead of B we ought to have
B -9, and instead of B' we ought to have §'+8. Then by
Art. 194 we shall find

cosB oos%)
+
sin’ sin’g-,

Divide by the value of g and tle required result is obtained.

(cos S +cos %) (1 cos gcos 32’)

sin” ’g sin’ %' )

18
L\')I 0'1

8
)

v Tl I

14. If PQ=a and QR =), it may be shewn that
_(a-b) (at+d)

SQ' & T i
then the change in SQ arising from a small change in 8 can be
ocalculated. .

tan’ 8;
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XVITL pages 209...211. 2. L. 7. o—. 18. w-i7(5 2./2).

vo57
19. -“_*az. 20. =0 pr =4 21, 2=0 or &}
2. »=-2. 23, m=ul or (1« 9.

24, z=a orad'—a+l. 28 z=2. 30. =1,y-R;x=2,y="17.
e

84, mm+(-1)™"F, or (mim)m+(-1yT. 85 (@nam)mal.

86, wm+(-1)"7

XIX. page 222. 6. The expression on the left-hand side is

-
sin%coso+cosgsin9; then pu} 6 for sin § and l—e—forcose.

10, A= cos (B +y— 2a) Be sin (B + y— 2a)
’ 4 cos (a~B)cos(a—7)’ 4 cos(a—pf)cos(a—1vy)°
XXII. pages 248...251.

1. Usesin®*a=4(1~cos2a). 2. Usesin®a=}(3sina - sin 3a).

cos (26 + na) sin na na.

5. § cosa+ 3 win a 10. 4 (cos 26 —cos 2**' 6).

11. €@ cos ( + cos 6 sin 6). 13.  § (e829 + ¢™*n¢) cos (cos 6).
cos 0 . (8in 20
14, T—__—cb—s—a-—log (1 ~ cos 6). 14 gm0 sm( 3 )
16. esine0s8 cog (6 + gin® 6). 20. See Art. 129.
1y o 1o 6

21, 2 2__, - Z sin 26. - 22. tan 0 - tan §.
23. —1 -~ = LA . 24. cosec 6 {cot § - coti(n + 1)6}.

5. coseo (8 +’-25){tan (n+1) (a +;’)—m(0+g)}.

2. T-tn™ . o7 tenra 2. : 008 gy ~ 008 4a)

29. 4 cosec @ {tan (n + 1) 6 — tan 6}.
T. T 29
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30. 1oosec-0-{5302’“'1G—suacg}. 31. l{ooto—S'oots;o}

7 5 3 3 1\°t2 3

32, oor'g-oor""—;fla. , 33, cos 6 — sin § oot 2° 6.
. log 2 sin 2**' 9 gin 0 9 0

34, log2sin2g- 82T 0 g5 £ {cot oo — oot 5}.
. o ot - art

XXITL pages 266...269. 1 7%. 2.7 8.5, 4 7.

The four preceding results are obtained by expanding the values
of log 00 and log cos §, which are given in Arts. 274 and 320,
in powers of 6, and equating the coefficients of like powers.

"‘
14. 196
XXTIV. pages 286...289. 4. We have
(tan 2 + cot z)® — 3 (tan = + cot ) = m® - 3m ; &e.
1 ‘8
15. m{l—l5x’+l5x—m}.
MiscrLrLANEOUS ExampLEs, Pages 290...324, 1. 20°; 44.
56
2. ( 180) ( 180) 3. aorbd 8. 65"
10. a*m%’=(b+cm%’>(c+bmi§). 11 224, 674
4,/2+7,/3 1 prs
18, LY 19. z=x"’2n+1)-—or§(.‘mr*~3—).
21. 20", 30" 22, sina::l\/gz—l‘ 23. m=mr*§.

9. 1. 27. 6=(@m+1)r or 6= {m1r+( 1)'}

29, w=m-§. 31. 60°,45°,135°120°, 33, 0=mrormrd-%
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34 Ara” p{ 2
- {1t
36. The other values are to be foind from cos® -+ cos 2 sin a =cos'a.

[ ]
39, _4sinA+129+C'sinB+(;'—Asin0+‘;—BsinA+g—0.

[ ]
41, 150 degreos, 166% grades, o7 . 47. o (b—a) = (Jo—-a-b)
. B 1 162
48. OOB(I—E) or —m. bl. T.
cos(-~5

54 6=(2n+1)7 or {2n“(_ + o
. T L4
§5. (nsinf+mcos6)’=2m (m+mn). 56. 20+3=mr+(—1) 3
7. 6=~g+§. 61. In the first polygon 3, 4, or 6 ; and in
the second 4, 8, or 20 respectively. 62. 2zx=nw+ (- 1)'%

63. p(n'—2m’)=gmn. 64. 0+£=2n1r*(a+§).

70, 1.osa-—ocosf 71 S0awb_ 100p+g

T2 e B * §0x90 " 100 x100°
008?—“?

72. w=(2mL1)T or(2m+1)5. T4 z=nmor 1{nr+(— 1)‘2} .
1 Jz 3 6
2
81. mx and nx respectively where & = —-2
d mm (9 — 10p) °

82, z=(2n+1) gor%{%mhg}. 83. 2"+ 4ay =22 (x+y) 0os2B.

84. The value of sinxsin y ranges between —oos"; and sin ‘—; ,

where 4 is the constant sum. 93. nmw+(- 1)‘ 3
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94. The value of sin #+ sin y ranges between -2sin—A§ and

2@%, where 4 is the oconstant sum. 9. 0+%=nm
o

96. —4cos (2— ;) cos (E—A+E)cos(2—B+ l—r)cos (3—0’+E) ,
(

P
where 2=§(A+B+C’). 98. c'=d'+0b"

s a. . cos'a—cos'B 6, ¢  cosa—cosf
100. sin fsin ¢ = s e gy R g AL = B
102. 1146 inches. 103. o=(4n+1)’§’.
104, (a*=¥") (a+b) = (a—b) o <dabem.

39 0 30 \
8. 5 =nm org—g=2nray. 115 30—2—-=2mr-h(9—1—r>.

126. 20 =2nnkz, 133. 4. 141, Oor = ,/3 or =—

¢2
o3
152, 125, 1; 156. 1"’*/3. 162. ¢ . 163. ¢ —e.
164. cos(x+y)= 2°°B°Jc°s'8,cos(m-y)=2—i.—i—ﬂ—~/—cg—_.
Jeosac \Jcos B J cos a+,/cos B
17L g, %, 181. 5 minutes. 182. ¢-1.

¢

184, O+p=nm+(-1) 7, and 6o =2mmars.

3 1\

g ormmag, 208 % ( _§>(_§),
=l =l 1-6a® +a'

_+(B 3)( ), 3 (0 )( > 204 Tl

.
205. (G‘:b')'oog(n0+c)whereOissuchthattan0=g, .

194, O=nr*
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211. The given expression = 2a sin B sin C. 215, J-T1.
218. 2cosé. 227. Let » be the number of sides in
the polygon, r the radius of the scribed circle, ¢ the distance

of the assuhed point from the centre of this circle, B=2?:f;
then the required sum is 4nr*sin’ + nc'sin’ B,

UL 3/(p'+¢"-6)=p Jig" - 3) + g (7"~ 3).
247. 2_1,5{sin 110 + sin 90 — 5 (sin 76 + sin 56) + 10 (sin 30 + gin O)}.

266. Nearly 7.  259. If6=7 we have s=cosz and o=sinz

260. If n be the number of sides of the polygon, and ¢ the
di%ta.noe between the two points, the required sum is —-.

2
o n . 80 . [}
270. tan Pk 277,  logsin 3 log sinz.
1 (1 1 ,
280. 2—0—65—0 {si_ﬁ—@ - m} . 289. cosec 6 tan® nf.

p nn+l) , 1 1 1 }
290. _2——-0—2"”' 298. 1{1—0050_1—0033"0 :
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