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PRETFACE.

It has been found, almost invariably, that students
beginning :he Calculus meet, at the outset, with a
stumbling-Dblock.  The Differential Co-efficient is
shrouded in a haze. The few pages which follow

may help to bring the idea of a Differential Cec-

efficient more within the grasp of beginners.

ALEXANDER KNOX.

brh June, 1834,






1L

II1.

IV.

VI.
VIL
VIIL
IX.

XI.
XTI

CONTENTS.

Point, line, superficies,

The Prms a x 0 and %,

Newton’s Lemma. I., recurring decimals,

The form g,

Function, differential co-efficient, ditferen-
tial co-efficient of a simple function,

Differential co-efficient of 22,

A falling body, .

Differential co-efficient of 12, 22, 3* and 42, .

Differential co-efficient of 1%, 23, 5% and 74,
and the second and third differential
co-efficients, .

Method of differences applled to a fallmg
body, . . . .

Differential co-efficient of an inverse function,
Newton’s Lemmas VI. and VII., .

40

45
46
51



viii CONTENTS.

XIII. Differential co-efficients of the Trigonomet-

rical functions (grometrically), . . 53
XIV. Differential co-efficients of the inverse

Trigonometrical functions, . . . GO
XV. The value of 2%, . . . . . . 61

XVI. Differential co efficients of the Trigonomet-
rical fuuctions (arithinetically), . .62

XVIiI. Differential co-efficient of a logarithmic
function, . . . . . . 65

XVIII. Successive differentiation, Maclaurin’s

theorem, . . . I .67

XIX. Maxima anl minima, . . . . . 82
XX. The tangent to a curve, . . . . 8D
Arppixpices I anxo I, . . . . . . 93
ExaymrLrs WORKED oUT, . . . . . . 95
FXERCISES, . . . . . . . .49

ANSWERS TO THE KXERCISES, . . . . . 100



ON CERTAIN INFINITESIMALS, LIMITS,

AND

DIFFERENTIAL CO-EFFICIENTS.

1. DPoint, Line, and Superficies

L
1. A point is defived as ‘‘that which has no parts
and no magnitude.” In order to obtain some more
precise comprehension of the meaning of this term
pownt, the following considerations may be of assistance
2. If we take two ciicles, having the same centre,
and take auy point in the circumference of the outer

circle, and join this point with the centre by drawing a
straight line between the two points, it is evident that
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there will be a corresponding point on the circumference
of the inper circle at the point where the straight line
cuts this circle.  Let O be the common centre, 4 the
point on the circumference of the outer circle, and B
the corresponding point on that of the inner circle.
Then it is evident that for every such point on the
circumference of the outer circle (as 4) there will be
a corresponding point on that of the inner circle (as B).

For if another point C be taken very near to 4, then
the radius CO will cut the inner circumference in some
point D, other than B, because if CO were to pass
through B, two straight lines 40, CO would have a
common segment BO; or two straight lines B0, DO
would enclose a space, and both of these are impossible.
Therefore there will be a corresponding péint (1)) ou the
inner circle, other than B; and this will hold good

when C is as near to 4 as is conceivable; and it will
also be the case, however large the outer circle, and
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however small the inner circle may be. For if we take
auy circle smaller than that on which are the points
B and D, the straight lines 40, ('O will cut it in two
corresponding points £ and F, and so for any still
smaller circle.

Now, evidently, the larger the circle the larger
is the circumfereuce ; and however long the circum-
ference of the outer circle may be, and however short
the circumference of the inner circle, and however
great the nunber of points taken in the circumference
of the outer circle, there will still be found a like
number of corresponding points on the circumference
of the inner circle. If we take the outer circle as
described with a radius reaching from here to the
fixed stars, and the inner circle as represented by
the prick of a needle on this paper, then, for every
possible point, which can be conceived, on the circum-
ference of this enormous outer circle, there will be
a corresponding point on the circumference of the
circular puncture made by the needle.

3. Again, if we take any terminated straight line 4 B,
and from the points A4 and B draw two parallel
straight lines AC, BD in opposite directions, and
take any fixed point D in BD, and take any other

A 3 (o]

£

—,

D

point E in AC, and join DE by a straight line, this
will cut 4B in F (say), and, similaily, for any other
point taken in AC, there will be a corresponding
point in AB; and remembering, as before, that two
straight lines can neither enclose a space nor have a
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common segment, this will be true however near to £
the point be taken. If then the stiaight live AJ3 re-
main of fixed length; and £ le a tixed point, and AC
Le supposed to be of unlimited length, extending, say,
to one of the fixed stars, then, for every conceivable
point in the whole length of A, there will be a corre-
sponding point in A/ and this is the case however
small we may take AL to be. It will thus be seen that,
if we take any very long line and take in it any very
large number of poiuts, we can always tauke a shorter
line having the same number of corresponding points
in it, and o still shorter line baviug the same number
of correspouding points, and :o ou, until the second
line is of ivappreciable length, and, ygt, in it can
be taken the same number of corresponding points
as in the longest line which can be conceived. The
point, then, under these circumstances can have no
parts and no magnitude, as it does not matter how
long a circumference or how long a straight line
may be taken, or what infinite number of points be
taken in either, we can always take thie same infinite
number of points in the shortest circuanference or the
shortest straight line, or in one shorter than any
assignable circumference or straight line.

4. Hence we may always take more points than any
assignable number in any line, however short.

5. Suppose, now, that there be an enormously large
suiface-—for simplicity’s sake let it be supposed plane,
though the result would be the samne of whatever char-
acter the surface be; and suppose this surface, again
for the same rcason, to be bhounded by straight lines—
say four. Then in one of the bounding lines we can
take a larger number of points than any assignable
number, and consequently we can draw through these
points a number of straight lines, parallel to one of the
adjacent sides, larger than any number that can be
mentioned.

Suppose the side, in which the points were taken, to
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become smaller and smaller, we can still take the same
number of poiuts and draw the same number of straight
lines.

Let the space be now represented A € F g
by the figure ADBCD. Then as AB
becomes shorter we can still draw the
same number of straight lines, such as
LG, FH, parallel to 4.0, as we could
when 4B was of enormous length, aud
when AB becomes shorter than any
straight line that can be imagined, tle
same number of parallels can be drawn;
that is to s1y, a line has length without
breadth, for # the narrowest space,
narrower than any that can be men-
tioned, there can be drawn a number
of parallels larger in number than any
number that can be assigned.

6. The manner in which we ave ac-
customed to represent points and lines PG H  ©
creates a mental prejudice against the acceptation of the
definitions, for our points and lines have endless parts,
considerable magnitude, and undoubted breadth. A
simple method of 1epresenting a line, of putting the
mind in possession of indubitable evidence of the exist-
ence of such a thing as a mathematical line, a length
without a breadth, is to take two smoothly-planed
square-cut blocks of wood of different colours and place
them side by side in a vice, so that the two upper
surfaces may be in one plane, and squeeze them tightly
together ; there will then be repre-
sented a (ine, length and uo breadth
—or, better still, paint a piece of paper,
divided into two parts, two different | Seoe e
colours, and then again a line will be
agpa rent at the division or separation
of the colours, or rather at the junction
of the two colours, without any objection, which may
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be raised in the first instance, of intervening particles
of air.

A 7. Similarly, a point may be repre-
DARK sented by painting such a space as
YELOW L reo ADBCD in four colours, making two
continuous lines cutting one another,
oamk | and the intersection of the two lines,
BLUE or the meeting of the four colours
'C will be a point.

NoTte—1It would be a better method to paint the
whole suiface oue colour first, say yellow ; then one
half blue over the yellow ; and finally half of each of
the resultant colour and the yellow, at one wash, with
red. This would avoid niceties in laying on the colour.

8. Again, suppose 0.Y, O} to be in the plane of the
paper, and OZ perpendicular to that plane; then,
employing a similar method of reasoning to that already
adopted, we may take in OZ a number of points greater

Y

Z

than any assignable number, and through these points
we may diaw stiaight lines parallel to (.Y and 0}, and
through each pair we may suppose a plane to pass.
Then when 0Z is made shorter and shorter we can still
have the same number of planes parallel to the plane
of the paper, and when 07 is made of less than any
assignable leugth, we can still have the same number of
planes, greater than any assigned number, and hence
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the planes have only length and breadth but no
thickness.

% Again, suppose we have a sphere of radius 0X, or
OY or OZ ; then, since we can take in any one of these

4

(which are equal) a number of points greater than any
assignable number, we can draw spheres passing
through each of these points, and we can do this when
0Z Lecomes shorter than any assiguable length ; that is,
when the number of spheres is increased beyond any
assignable number, the crust (so to speak) of each
sphere has no thickness; and each sphere presents
merely a surface with no depth. From these consider-
ations it will be seen what is meant by saying that a
surface or superficies has only length and breadth.

10. These three properties of points, lines, and surfaces
may be enunciated otherwise thus:—
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(1.) If AB be a straight line, and B move up con-

A tinually towards A4, then

when, ultimately, B coin-

cides with A4, or when AB is indefinitely diminished,
the limit, that is the final value, of 4 B is a point.

(2.) If ABCD be a smrface and the line DC move

up continuously towards 4B, then when the breadth

A

G

4D is indefinitely diminished, the limit, or final value
of ABCD is a straight line.

(3.) If 4G be a cube, then, when AB is indefinitely
diminished, the limit of 4G is a surface.

I1. The Forms—ax0 and g.

11. If one number be multiplied by another, the
product becomes less as one of the numbers diminishes.
Thus ax10 is greater than ax9; and so ax 01 is
smaller than @ x°1; and when the number which is
diminishing is very small (say *000001), the product is
very +mall, and ultimately when the diminishing vum-
ber becomes 0, the product becomes ax0 or 0. In
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other words, the limit of az when x gradually diminishes
and ultimately vanishes is 0 ; or the limit of the product
of two quantities, when one of them ultimately vanishes,
is zero.

12. When one quantity is divided by another, the
quotient becomes larger as the divisor becomes smaller.

Thus T%’ g, g, ete., are in ascending order of magni-
tude ; and again,
a--1 =a.
a1 =10a.
a--01 =100a.
ete. = etc.
a--'000001=100000a.
ete. = etc.

And a divided by 1 preceded by the decimal point
and 100 zeros = ¢ multiplied by 1 followed by 100
zeros ; and before the divisor reaches the value 0, the
quotient will have reached any value, however great,
and ultimately, when the divisor reaches 0, the quotient

s a . . s
becomes infinite, or ) where 2 is continually diminish-

ing, and ultimately vanishes, is in the limit .

II1. Newtow's First Lemma—Recurring Decimals.

13. Before proceeding farther,it will be advantageous
to notice Newton’s First Lemma, viz. :—* Quantities
and the ratios of quantities which tend constantly to
equality, and may be made to approximate to each
other by less than any assignable quantity, become ulti-
mately equal” Take any two quantities, and let them
tend constantly to become equal ; for instance, take a
circle and inscribe in it a regular polygon, and let the
number of sides be doubled, then the area of this figure
is more nearly equal to the area of the circle than was

B
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that of the original figure. Let the first figure be a
square, then the eight-sided figure formed by doubling
the number of sides is evidently more nearly equal to
the area of the circle by four such triangles as 4 BC.

C

—

Again, let the number of sides be doubled, and the
area of the new polygon will be still more nearly equal
to that of the circle.

It is, then, asserted, that, if this process be in-
definitely continued, ultimately, when the number of
sides of the inscribed polygon is infinite, the area of
the polygon is equal to the area of the circle. For if
they are not ultimately equal, let them be ultimately
unequal. Then there must be a difference between
them. Let uy suppose this ditference to be /.

Now ultimately, on this supposition, there is a fixed
difference between them—that is to say, the two areas
cannot approach each other more nearly.

But, by hy{)othesis, we can make them approxi-
mate to each other by less than any assignable quantity,
and therefore by less than D.

Therefore ultimately there is not a difference D, and
they are not unequal—that is, they are equal.
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This is expressed by saying that the limit of the
inscribed polygon, when the number of sides is in-
definitely increased and their length diminished, is the
circle.

And the limit of the circumscribed polygon may be
shown to be the same.

14. If we convert § into a decimal, by dividing the
numerator by the denominator, we obtain ‘11111....,
the 1’s going on for ever,

=-11111....

1,1 1
e =107 100" T000+ ete
to an infinite number of terms.
1_1_10-9_1
Now 9 10 90 90
1 /1, 1\ 100-99 1
1 1 (1., 1y =
also 9 (1o+1oo) 900 900’

(=]

or 9

1 1 1 1 1
d (=t )=
an o~ (15 100+ fo00) ~3000
Thus, if we take one term of the series
1 1 1

1
Tf)+1_00+ +-— + etc,

1000 10000
o0 3 1 1
find tl rom - o
we find that it differs from 8 by 30

1

L. 1
If we take two t t differs fr by .
¢ take TwWO terms 1 iiers irom 9 'y 900

If we take three terms it differs from sl) by %160 ;
and, by taking any number of terms, we may make the
series differ from 3 by as little as we please,—i.e., we
can make it approximate to § by less than any assign-
able difference.
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For suppose we wish to make the series differ from

1
3 less than — " .,
% by less an o o

. 1
k 1 —
Take, as the last term of the series, 1660

000000 °

then the series differs from Sl) by 90000100000’
cas 1
. sl S ;
which is less than 100000000

and similarly for any other assigned quantity.
Therefore we say that ultimately when the number

of terms is indefinitely increased, the serios =3 =-1.

IV. The Form 8

215. Suppose we have to find the value of the fraction
al— 9
a-b
ultimately becomes equal to a.

If we take the limit of a2— 02 when b becomes equal
to a, we find this to be 0; and also the limit of «—b,
when b becomes equal to a, will be 0, and we shall have

in the limit, when b continually increases, and

a-b6 0 -
Again, by actual division
a?—
=a+b
a-b

=2a, when b becomes ultimately equal to a;
and this is the limit required.

Now, it must be borne in mind, that what is meant
by the value of a fraction in the limit is not the value
obtained by dividing the limit of the numerator by
the limit of the denominator; but the value of the
quotient, actually obtained by division, in the limit, or
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the value of the ratio of the numerator to the denom-
inator, as the numerator and denominator approach
the limit, and ultimately arrive at it.

16. The value of a ratio is not altered if we divide
its two terms by the same quantity, or, which is the
same thing, the value of a fraction 1s not altered if we
divide both the numerator and denominator Ly the
same quantity. Iowever small the two terms of the
ratio may be made, by division by another quantity,
they still retain the same ratio, no matter how in-
significant they may be in themselves.

17. We must regard the relation existing between two
quantities, not as expressed by the difference between
them, or how much one is larger than the other, but
as how many times and parts of a time the one iy
contained in the other, or what multiple one is of
the other. This is, in fact, the manner in which we
regard matters of every-day life. 'We compare them
with others of a like nature, and so pronounce them
small or great. The quantities may be either great
or small in themselves ; hut it is their relative value
which gives us a notion of them as great or small.
Thus, if there were 300 men in one assembly and
3000 in another, we should say, as a rule, that there
were ten times as mony in the latter as there were in
the former, and not that there were 2700 more ; and,
again, the actual number 1000 may vary through any
values, from very great to very small—it is all a
matter of comparison. If it were stated that 1000
horses started in a race, we should say that it was
simply ridiculous, the number was too large; if that
1000 men lived in one hamlet, that it was very large;
if that there were 1000 men in one regiment, that it
was large or beyond the average; and if that the
1000 men composed an invading army, that it was
insignificant. Let us take an improper fraction

lQlO(_)(_)Q, this is equal to 1000 or
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10000 _ 1 900.

10

‘1
also - 1000.
*0000001
00000000001 1000,

&e. =&e.,
and the decimal point followed by a million zeros and 1 _ 1000,

2 ”» a mullion and 4 zeros and 1 )
Therefore, it follows, that we may make the numerator
and denommator differ by less than any assignable
quantity, and the ratio of the numerator to the
denominator still remain equal to 1000.

It will be seen then that it does not matter how
small the terms of a ratio are, the value of the ratio
remains unaltered.

Similarly

. 2 _
18. Let us now revert to the limit of a__%z.
a_
A T T T 8,
Q =7 1Y
= v
Q R v
o s & 5 ©
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Let ABCD be a square whose side is a, and QRSD
a square whose side is b.
Produce S& and Q& to T and V.

Then AB=aand QR=b=AT,
therefore ABCD=a% QRSD=02
and the gnomon AVS=a?-0?
and TB=a-b.

Now AVS=24R+ TV,
=24 T.TB+TB;
atl-b AVS
therefore b = TR
_2AT.TB+TB?
P - '_qu—’
=24T+TB. 1)

Now suppose b or D@ to become larger and be
represented by D@ or A7". Then it will be seen
that a?—0? becomes smaller, and is now represented
by 4V'S, and that the rectangle, which was origin-
ally AR, has become longer and narrower, and is now
represented by AR, and also that 4 V'S is more
nearly equal to 2.4 £’ than A V.S was to 2.1, since the
square, which was originally 7'V, has become 7" V.

Suppose, now, that b becomes still larger, and let
it be represented by A7”. Then the rectangle will
have become still narrower, and the square 7"V"” very
small, and the gnomon 4 18" is more nearly equal to
24 1" than A 178" was to 2.1 1.

By proceeding in this way, it will be seen that,
eventually, when 7' moves up to B, that is, when b
becomes equal to a, the rectangle will have become
indefinitely narrow, and the square 7'V will have
vanished altogether; that is, the gnomon will be
represented by twice the line AB, since it will be
represented by 4B and BC; or, from (1), the limit
of the ratio of a?-4% to a—0, when O ultimately
becomes a, is equal to 247 or 2a.
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19. This result might have been obtained thus :—
Let b=a—h.
Then, when h=0, b=a.
Substituting this va.lue for b, we have
-0 _a—(a—h)
a- b a—(a—h)
_a?—a?4-2ah— /2
a—a+kh
_2ah— A2
h
=2 —h
=2a, when k=0 or b=ua.
20. We will illustiate the truth of these 1emaiks
by numerical examples.

Let a=10 and =9,
02 10%2-
—_——= = 9
then 23 = 1055 19,

and this differs fiom 2« or 2x 10 by ', part of itself.
Again, let a=100 and 5=99,
at-0 1002 992 _
“=% =T100=99 2%
and this differs from 2a¢ or 2x100 by iy part of
itself.
Again, lct a=1000000,
and b=999999.
«?— b?_ 1000000 - 9999992
«—b " 1000000 — 999999
=1999999,
which differs fiom 2« or 2 x 1000000 by 15

of itself.

then

then

9)39 part
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It is clear, then, the smaller the difference between

2 _ 2 R
¢ 2 approximate to

a and b, the more nearly does

2«¢; and, therefore, we say that ultimately, in the
2_
limit, when b=a, %_%2=2a.
(Sce also Art. 91.)

V. Function—Differential Co-efficient— Differential Co-
efficient of a Simple Function.

21. If one gmantity depend upon a particular value
of another variable quantity, the first quantity is said
to be a Function of the second ; or, if one quantity or
cxgression involve another in any form, it is said to Lic
a function of that quantity. The quantity upon which
the other depends is called the wndependent variable,
and the function the dependent variable.

Thus 3z, 2, 713’7_;2, etc., are all functions of #. The

independent variable is 2, upon whose value the value
of the expression, or function of xr, depends ; similarly
the arca of a square is a function of its side, the side
being the independent variudle, upon whose value the
value of the area depends ; the-wolume of a cube is a
Junction of its edge ; the circumference and area of a
circle are, each of them, functions of its radius; the
volume of a spere is a function of its radius—the edge
of the cube the radius of the circle, and the radius of the
a{»here being the independent variables in each case, and
the volume of cube, area, and circumference of the circle,
and the volume of the sphere, the dependent variables.
22, Our object is to find the ratio of the rate of
variation (i.e., the rate of increase or decrease) of the
Junction to the rate of wvariation of the independent
variable, as the independent variable undergoes infini-
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tesimally small variations. This ratio is called the
Differential Co-efficient of the function.

23. If a variable quantity increase uniformly, the
function either increases uniformly or accordingly to
any variable law.

t £ be a variable quantity, and let it increase
uniformly by the quantities 1, 1, 1, etc.

Then the successive values will be

z+1, z+2, x+3, etc.

Then also any number of times of x will increase

uniformly—say 3z—the values being
3x+3, 3z+6, 3r+9, elc,
which increase uniformly by 3.
Again, take pz, then the succesgive values are
pr+p, pr+2p, pr+3p, etc.,
which increase uniformly by p.

Further, let x be a variable quantity, and let it in-
crease uniformly by the quantities q, a, a, etc., then it
will, at the successive stages, become

r+a, r+2a, z+3a, ete.,
and, as before, any number of times of x will increase
uniformly.

First, take 3z, then the successive values become

3z + 3a, 3z + 6a, 3z + 9a, etc.,
which increase uniformly by 3a.

Next, take pz, then the successive values become

px+pa, pr+2pa, px+3pa, ete.
which increase uniformly by pa.

24. It is evident that if a constant quantity (i.e., one
which does not vary) be connected with the function
px by the sign + or —, the function will still increase
uniformly, for the successive values will be

px+pa+ C, pr+2pa+C, pr+3pa+0, etc.,

25. Again, to illustrate this geometrically, suppose
we have a straight line 4 B, and draw AC, making any
acute angle with 4 B, and let a variable straight line Pp
move from A4 so as to remain always perpendicular to
ADB, and have one extremity in 45 and the other in
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AQ, and take up, at successive periods, such positions
as Fp', P"p’, ete. ; then it is evident that, as Ap in-

7T

A i P’ Iz B
creases uniformly, and becomes Ap’, 4p", ete., Bp in-
creases uniformly, for

AP_AP _4P" .

and so for any other position of Pp.

Again, let /7E be parallel to 4B, and let Pg be the
new variable line.

Now Pg=Pp+pq, and pg is constant; and it is

pL—"
p "]

3 ny g B

0

cvident that, as 4p increases uniformly, Pg increases
at the same rate as before.

26. Now let = be any given variable quantity, and
3z a given function of z, then as z becomes x+4, 3z
becomes 3(x+4) or 32 + 34, and the ratio of the rate
of increase in the function to the rate of increase in

. 8h_3_
the variable= o1 3.

I
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Now let A become less and less; this ratio still
Lolds good, and, ultimately, when % is indefinitely
diminished, 7z.e., in the limit, the rate of (increase in
this case) variation in the function is to the rate of
variation of the independent variable as 3: 1, v.e.,, the
differential co-eflicicnt of 3z is 3, and a similar argu-
ment will hold if we take az instead of 3z. Thus it
will be found generally that

the differential co-efficient of ne with
respect to x, f.e., where x is the inde- p =n.
pendent variable,

27. Let us take a quantity a4, wheie 2 is the
‘independent variable, and take a(v+ C) as a function
of this, € being constant ; and let xercceive a small
increment and become &+ 4

then 24 (' becomes (»+12)+C,
and n{x+ (') becomes a(x +A) +nC
or aa + nh+ nCy
and the ratio of the rate of variation of the function

to the rate of variation of the vnriable=77/f=n-

NoTe.—1t is obvious that if the ratc at which two quan-
titics increase be added together, the sum will be the
1ate of incrcase at which the sum of the quantities in-
creases ; and the difference, the rate at which the difference
increases. Thercfore, if we have two functiong of the
same variable connected by the signs + or —, the difier-
ential co-eflicient of the whole expression will be the sum
or difference of the differential co-cfficients of the two
parts.

V1. Differentia! Co-efficient of x2.

28. Let a squave have a side of 4 feet, then the arca
of the square =16 square feet, that is if
r=4
z%=16.
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Now, suppose the side to receive a small increment
and become 4001 feet, then the square becomes
16-008001 square feet.

If we omit ‘000001, then the ratio of the increase of
the function to the increase of the variable, or of

‘008 :°001=8:1
=twice side of square : 1.

Again, suppose the side to receive a still smaller
increment and become 4'000001 feet ; then the area of
the square =16-000008000001 square “feet.

Here by omitting ‘000000000001 we commit an
almost inappr eciable er ror, and, as before, and still
more truly, the ratio of the increase of the function to
the increase of vhe variable is

000008 : 000001, or 8 : 1,
or 2 x side of square : 1.

Therefore we may state that, ultimately, when the
increment of the side is indefinitely diminished, or
in other words is made indefinitely small; the ratio of
the rate of increase in the function (square) to the rate
of increase of the variable (side) is 2z : 1,
or the differential co-cflicient of x% is 2x.

Let 4B be a straight line, and let a square be
described on 4B, Then this square is a function of
AB. Now let .1 B receive a small increment BC ; the
straight line has now become AC, and the square has,
in consequence, received an increment of the two
shaded rectangles and the small square a.

Let the strai ght line receive a further increment
CD (= B(), then “the square will have received an incre-
ment of four rectangles and four such squares as a.

Now let the s’traight line receive a further increment
DE (=CD=BC), then the square will have received
an increment of six rectangles, such as the shaded
rectangles, and nine such squares as a.

Thus we see that, as the straight line increases uni-
formly, the square increases, but not unifor mly.

30. Again, when the side has an increment BC, the
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s?ua.re has an increment of two shaded rectangles (one
of whose sides is equal to the side of the original

o

A 8 C E

square) and a small square—.e., small when compared
with the original square.

The secong square, whose side AC receives an incre-
ment CD, recerves an increment of two rectangles such
as DF (one of whose sides is equal to the side of the
second square) and the square b, which is even smaller,
when compared with the square on 4C, than a is when
compared with the square on A5,

Now let the side AD receive a further increment
DE, then, as before, the square receives an increment
of two rectangles such as £G (one of whose sides is
equal to the side of the square on 4.0) and the square
¢, which is very small when compared with the square
on AD.

Suppose, now, that the side 4 £ receives a very small
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increment indeed ; then the square receives an incre-
ment of the two very narrow rectangles (one of whose
sides is equal to the side of the square on A E) and the
minute square at K.

Finally, when the breadth of the rectangles is in-
definitely diminished, or, which is the same thing, when
the side receives an infinitesimally small increment,
the rectangles become coincident with the sides of the
square (see Art. 10), and the small square vanishes,
when compared with the square on 4 £, and the incre-
ment in the square corresponding to the infinitesmal
increase in the side is made up of two rectangles
coincident with the sides—i.e., the ratio of the rate of
increase of the square to the rate of increase of the
side, when the increment to the side is infinitesimal,
is 2 x side : 1, as before.

Now, let us look at this from a different point of
view.

Let AC be a square on A B—ADB being a variable ;
and suppose the square to be growing continuously as

H G
D c__E
1)

A B F

A B increased, having originally been .f¢, and let 4B
have arrived at the value x; in consequence of which
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AC=2?; and let BF represent the increment which z
would receive in the next unit of time.

Now, let the square be checked in its increasing
course as soon as it has arrived at the value 22

The rate of increase of the square (since it is moving
with accelerated motion) will not be represented by the
increment which it would receive in the next unit of
time, but by the increment it would receive if it
increased with uniform motion at the rate which it had
at the instant at which it was stopped.

Therefore, in order that the motion may be uniform,
as the sides BC, DC move outwards, they must
remain of the same length.

Hence, BF or DH representing the increase in the
variable, the corresponding increase in the square will
be represented by the two rectangles BE and CH.

i.e, by 2xBE.
But DB E=side of square x rate of increase of z,
since BF'=rate of mcrease of z.
.*. rate of increase of square
=2z X rate of increase of z,
rate of increase of x? o
— — =22,
rate of increase of

or differential coeflicients of #%=2x,

1.e.

VIL. A Falling Body.

31. Firstly. Suppose a body to fall from rest for
", it will have fallen through ‘16 feet and have
acquired a velocity of 32 feet per second. Suppose it
then to receive a check which brings it to rest, and
then let it, without loss of time, fall, as before, for &";
it will, as before, fall "16 feet, and again acquire a
velocity of 32 feet per second. Let the same process
be repeated until, in all, the body has been let fall for
107, that is 100 times ; then the body will have passed
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through 16 feet, and the velocity at the end of the time
will be 32 feet per second.

32. Secondly. Suppose that after the body has
Deen arrested at the end of %", we give it an 1mpulse
equal to the velocity it had acqulred Lefore it was
arrested, viz., a velocity of 3:2 feet per second.

Then at the end of the second %" it will have a
velocity of G4 feet per sec., and the space described
will be the original space of 16 feet

+that which the body would have described
moving uniformly with a velocity of 32
feet per scc.

+the space which it would have described
wighout that 1mpulse

=(in feet) '16+ 32 x *'*' (10)

=-16+'32+°16
=64 feet.
If the body had not been arrested, the space fallen

2
through from rest would have been %x(i%) feet

=64 feet.

Now let the same process be repeated for the third
tenth of a second. g‘he starting velocity will be 64
feet per second, and the \elomty at the end of the
third %" will be 96 feet per second ; and the space
travelled through will be

that arrived at at the end of the second %"

+that which the body would have descnbed
moving uniformly with a velocity of 64
feet per sec.

+the space which it would have described
without that impulm,

»  =(in feet) 64+64XT0 2 (10)
='64+64+16

=144 feect.
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If the body had not been arrestetg, the space fallen
through would have been % X (% ) feet =1-44 feet.

If this process be repeated 100 times, the time of
falling will be 10”, and

the velocity acquired will be=320 ft. per sec.
and the space described =16 x 100 ft.
=1600 ft.

33. In the following table the first column re-
presents the time in seconds during which the body
1s falling ; the second column gives the corresponding
spaces through which the b0§y falls (in feet); the
third column is obtained from the second by sub-
tracting each number from the one imnfediately above
it, and gives the spaces fallen through in each 1'%"; the
fourth column is obtained from the third in the same
manner in which the third is obtained from the
second, and gives the difference between the spaces
fallen through in the consecutive 1%"s seconds, and it
will be remarked that these last are all the same.

See. Space fallen through.
1 16

304

‘9 16 x'81=12'96 32
272

‘8 16 X '64=1024 32
2°40

7 16 x49= 784 32
208

‘6 16 x°36= 576 32
176

5 16 x 26= 400 32
144

4 16 x'16= 2'56 ‘32
112

3 16x09= 1-44 ‘32

‘80
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Bec. 8p.ace fallen through.

2 16 x04= 64 32
‘48

1 16 x01= -16 ‘32

16
Thus we see that the space fallen through in the
interval between any two consecutive tenths of seconds
is 32 feet.
This space for 100ths secs. = 0032 feet,

» 1000ths secs. = 000032 feet,
” 1000000ths secs. = ‘000000000032 feet,
etc.=etc.,

and, when the intervals are made infinitesimally
small, the spfce becomes infinitesimally small, but
is always a multiple of 32. We may say, then, that
when there is a continuous fall; without any inter-
ruption, the motion becomes continuous, losing its
jerks and impulses (the jerks becoming inappreciable),
the space fallen through is increasing, at any instant,
by an infinitesimal multiple of 32.
(See also Art. 48, ctc.)

VIII. Differential Co-efficient of 1%, 2%, 3% and 42

34. (1) Here 1 is supposed to receive small increments
of ‘01 ; therefore 1 will be the variable.* The function
considered is the square of the variable.

Independent Function First Second
Variable. (Square). Difference. Difference.
101 1-0201
‘0203
1-02 1:0404 ‘0002
0205
103 10609 0002
0207
104 10816

*When varialle is mentioned indcpendent variableis implied.
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(2) Here 2 is supposed to receive small increments
of ‘001 ; thercfore 2 will be the variable. The function
under consideration in this case is also the square of
the independent variable.

Independent Function Firat Socond

Varable. (Square). Diffcrence. Difference.

2:001 4:004001
001003

2:002 4008004 ‘000002
‘004005

2:003 4012009 ‘000002
004007

2:004 4016016 4

(3) Here 3 is supposed to receive small increments
of *0001 and the function again is the square.

3:0001 900060001

‘00060003

3:0002 900120004 ‘00000002
‘00060005

3:0003 9°00180009 00000002
‘00060007

30004 900240016

(4) Here 4 is supposed to receive small increments
of ‘00001, and, as before, the function is the square.

400001 16:0000800001

‘0000800003

400002 160001600004 ‘0000000002
: *0000800005

400003 16-0002400009 *0000000002
*0000800007

4:00004 16'0003200016

The first column in each case represents the inde-
pendent variable, as it increases uniformly by incre-
ments of ‘01, "001, 0001 and ‘00001 respectively.
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The numbers in the second columns are the squares
of the successive values of the variables.

The numbers in the third columns are the first
differences, each being the difference between the num-
bers immediately above and below it in the column to
the left.

The numbers in the fourth column are the second
differences, each being the difference between the two
numbers immediately above and below it, in the
column to the left.

In each of the cases (1), (2), (3), (4) the function is
the sguare of the independent variable.

It will be seen that in (1) the first two figures of the
first ditferenceg are the same, viz., 02.

When the independent variable is 101, the function
iy 1°0201 ; when the independent variable has received
a further increment, and has become 1+02, the func-
tion, in consequence, has become 10404—.e., it has
increased by ‘02 approximately, if we omit *0003.

When the variable arrives at the value 1:03, the
function has increased from 1'0404 to 1°0609; or, again,
by ‘02 approximately, if we omit "0005 ; and similarly,
when the variable assumes the value 1:04, the function
again increases approximately by ‘02.

Thus, if we omit the ten-thousandths, we may say
that, as the independent variable increases by incre-
ments of ‘01, the function increases by '02. That is
to say, the ratio of the rate of variation (increase in
this case) of the function to the rate of variation of
the independent variable is '02 : 01 or 2: 1.

This may be stated as follows :—If 1 receive small
successive increments, the differential co-efficient of
1!=2=2x1.

35. If we now consider (2), we see that the incre-
ments in the independent variable are smaller than in
%l); and that, as this variable increases from 2001, the

unction increases by increments of ‘004, if we omit
millionths ; and therefore this increment is more
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approximately true than was the increment ‘02 in the
first case, for there we omitted ten-thousandths. In this
case, (2), the ratio of the rate of variation of the
function to the rate of variation of the variable is
‘004 :°001 or 4 : 1—i.e,, if 2 receive small increments
successively, the differential co-efficient of 22=4=2x 2.

Similarly, by omitting hundreds-of-millionths in (3),
we tind that the ratio of the rate of variation of the
function to the rate of variation of the variable is
‘0006 : ‘0001 or 6 : 1—7.e.,, as before, the differential
co-efficient of 32=6=2x3. And in (4) this ratio, which
is still more approximately correct, is ‘00008 : ‘00001
or 8:1.

36. The results of these four cases are

Differential co-eflicient of 12=2x1, (a)
” " 22=2x 2, (8)
» ” 32=2x3, (7)
» ) 4#=2x4, (%)

and we notice that the differential co-efficient was
obtained from the firs¢t difference by approximation, or
Ly omitting quantities which, when compared with
“the quantities forming the ratio, were of insignificant
value ; and we notice algo that the smaller the incre-
ment the more are the quantities omitted insignificant.
And eventually, when the increments are infinitesimal,
there is no need of omission at all.

37. Now to refer to (1) again and take into account
the more minute quantities, we notice that, as the
independent variable increases by small increments,
the function also increases, and, if we refer to the
second difference we see that the first difference
also increases with the increase of the independent
variable by increments of ‘0002.

Now the ratio of the rate of variation of the first
difference to (the rate of variation of the independent
variable)? is called the second diferential co-e_p&imt of ,
the function, and we see that in
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) 0002_  0002_¢2
o1z 0001 1

@ 000002 000002_2
0012 000001 1

(3  00000002_  00000002_2
00012 00000001~ 1

) *0000000002 _ "0000000002 _ 2
“000012 0000000001 1°

38. These results may be obtained independently
from the first differential co-efficient ; for, as we have
already seen (Art. 26), the differential co-eflicient of n.r,
where z is thegindependent variable, = n.

Therefore, é} in (a) the 1 varies, and in (8) the 2
varies, in (y) the three varies, and in (8) the 4 varies,
we have

Differential co-eflicient of 2x 1=2,

” » 2x2=2,
» ) 2x3=2,
Ix1=9.

”» »

So that the second differential co-eflicient of a function
is the first differential co-eflicient of its (function’s) first
differential co-eflicient.

39. We must further notice that, working upwards
from the quantity 2 (which is constant for all variations
of the variable), this quantity 2 is the origin or germ
of the whole system of variable squares, and also of
their differences, and that the square is always varying
by some function of 2, for since

02=2x 01,
004 =2 x ‘002,
“0006 =2 x "0003,
‘00008 =2 x "00004,

it follows that ‘02, ‘004, ‘0006, and ‘00008 are all of
them functions of 2.
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IX. Differential Co-¢fficient of 13, 28, 5% and T

Independent
Variable.
(1) 1:00001
1-00002
1-:00003
1-:00004
1-00005
First Differences.
*000030000900007
+000030001500019
*000030002100037
*000030002700061

Independent Function
Variable, (Cube).

(2) 201 8120601
202 8242408
203 8365427
204 8489664
205 8615125

Function
(Cube).

1:000030000300001
1-000060001200008
1-000090002700027
1-:000120004800064
1:000150007500125

Second Differences. Third Differences.
+000000000600012
*000000000000006
*000000000600018 !
*000000000000006
+000000000600024

18t 2nd
Differences. Differences.

*121807
001212

123019 *000006
‘001218

‘124237 ‘000006
001221

*125461

40. In (1) the number 1 is supposed to receive small
increments of "00001 ; and in (2) the number 2 to reccive
small increments of ‘01.

The third differences are obtained from the second
differences in the same manuner that the second differ-
ences were obtained from the first differences, and the
first differences from the function in VIII. The func-

tion, in each of the

cases at present under considera-

tion, is the cube of the independent variable, as the
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variable in the two cases receives increments of ‘00001
and 01 respectively.

41. Now, considering (1), it will be seen that, if we
neglect hundreds-of-thousands-of-millionths, the ratio
of the rate of increase of the function to the rate of
increase of the variable is

‘00003 : 00001 or 3 : 1,
t.e., the differential co-efficient of 13=3=3x 12,

And the second differential co-efficient of

13=3x2x1=6,
for the ratio of the rate of variation of the first differ-
euce (which ¥s given by the second difference) to (the rate
of variation of the variable)? = second differential
co-efficient of ¥
_ 0000000006
‘000012
__"0000000006
‘0000000001
_6
1
=6=3x2x1.

Again, the rate of variation of the second differences
is given by the third differences, and the ratio of the
rate of variation of the second differences to (rate of
variation of the variable)? is called the third differential
co-efficient of the function.

Thercfore the third differential co-efficient of 13

_"000000000000006
00001/
_"000000000000006
000000000000001
6

1
=6=3x2
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42. Now the second differential co-efficient might
have been obtained from the first, for the differential
co-efficient of 3x 13, if the 1 be supposed to vary, is
3x2x1, which is the same result as was previously
obtained.

Similarly, the third differential co-efficient may be
obtained from the second differential co-efficient, for
the differential co-efficient of 6 x 1, if the 1 be supposed
to var{‘, is 6.

43. Precisely similar results will be obtained from
(2), but in this case the approximation will not be so
far from error, ina,smucﬁ as the increments in the
variable are not so small. For the first differential
co-efficient we shall have to neglect thousandths, and
for the second differential co-efticient Aundreds-of-
thousandths.

Here first differential co-eﬂicient:%f='l2=3x2‘~’ ;

_ 0012

- 012 ?

_ 0012
0001’

12

=

=3x2x2;

000006

s

= ‘W@
“000001’

=6,

=3x2.

44. We shall obtain similar results whatever num-

ber we take as the variable : for instance, let us take
5, and let it vary by increments of ‘0001.

second ’

third » ’
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Variable. ”;’é}fg;f’;‘ First Difference.
50001 125°007500150001
*007500450007
50002 125.015000600008
007500750019
50003 125°022501350027
‘007501050037
50004 125:030002400064
007501350061
50005 125-037503750125
Second Difference. Third Difference.
*000090300012
*000000000006
*000000300018
000000000006
000000300024
Here, again, the results will be
first differential co-efficient of 5°= 08(’)? 75=3x5%;
‘00000030,
second » = 0(70_1"3 H
_ 00000030
00000001’
=30=3%x2x5;
. ‘000000000006
t}tlrd » » = ——TO—-O—OT’——
000000000006
000000000001’
= 6’
=3x2.

45. It may be noticed here that, as we found 2 to be
the germ or essence of any system of variable squares,
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so we find 6 to be the germ or essence of any system
of variable cubes, and their successive differences, for

1
"00003=6 x 150500’

9
*0012=0x — 10000’

ele.,=etc,
and, therefore, ‘00003, "0012, ete., are all of them fune-
tions of 6.

In the systems of squares, we found that the second
differences received no increment—.i.e., were constant ;
s0, in the systems of cubes, vwe find that the third
ditferences receive no increment—zi.e., ay» constant.

46. If we adopt, for the fourth powers of any variable,
a method similar to that :\h‘cm}_y used for the squares
and cubes, we shall arrive at analogous results; for
instance, if 7 be supposed to receive small inerements,
then

JSirst differential co-eflicient of 7T4=4x7

second » y =4x '3 %73

third v —4)(';»(”)\4,
and, regarding Hw fourth dxﬁ( qential eo-eflicient as the
yatio of the rate of variation of the third difference to
(the rate of variation of the variable)?,

Jourth differential co-cflicient as 74=4x3x 2

=24,

and 24 will he the essence or germ of any system of
fourth powers.

47. Now, we have found that

the germ of second power=2=2x1="2,
’ thurd » =0=3x2x1:=]3,
’ SJourth ,, =24=4x3x2x1=|4,

and so it will be found generally, that the germ of the
n'® power

=n.n- 1"'3'2'1':’,"_’
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and also that first differential co-efficient of £*, where
2 is the variable, is na”-1,

Note.—Referring to Art. 30, it follows that the ratio
of the rate of variation of 3 times the square to the rate
of variation of the variable=3x2xside : 1; and of =
times the square=nx 2 xside : 1 ; thercfore the differen-
tial co-efficient of ax?=2ax, and the differential co-efficient
of aum=naz™-1,

X. Method of Differences applied to the Motion of a
Fualling Body.

48. Let us epply this method of differences to the
motion of a falling body.

In 17 a body falls through 16 feet. Now let this
17 receive increments of ‘0001; the space fallen
through in

Time. Spaco. First Diff. Second Daff,
1:0001” = (16 x 1-00020001) ft.

=16"00320016 ft.

*00320048
1-0002" = 1600640064 ft. ‘00000032
*00320080
1-0003"=16-00960144 ft. ‘00000032
00320112

1'0004”=1601280256 ft.

From this we see that the ratio of the rate of varia-
tion of the function (the space fallen through) to the rate
*0032

rariation of the variable (the time)= "= =32, omit-
of variation of the variable (¢the time) 0001 2

ting the figures in the seventh and cighth decimal
places.

Now the first differences give the space fallen through
in each successive interval of ‘0001”, and the ratio will
be more nearly correct the smaller we make the incre-
ments,
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But these first differences are themselves receiving
increments as the time increases, and the second
differential co-efficient gives the ratio of their rate of
variation to (the rate of variation of the time)3, viz. :

200000032 _ 5,

00000001 ’
and this ratio has the same value, however small the
increments be made.

Therefore, we may say that, at any instant, the
space fallen through is increasing by some function of
32, and that that_ increase is, at that instant, al<o
itself i increasing b fy some function of 32—32 bemg the
germ or essence of the system of spaces fallen through,
and also of the differences.

XI. The Differential Co-eficients of an Inverse Function.

Reciprocal Function (Square First

of Variable. of Reciprocal). Diffcrence,
@ 1 _1 .
101 1-0201 980296
—°02 approx.
1 1
— —— ='9611
0 1-0404 961168
-02
1 1
P . =0425
103 1-0609 86
-02
A 1 _go4m55
104 1-0816
@ 1_ 1 949750187
2:001 4004001 7
— 000249439
1 1 249500748

2002 4008004
- ‘000249067
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Reciprocal Function (8quare First
of Variable. of Reciprocal). Difference.
1 1
1 219251681
2003 4012009
— 000248689
1 1
—_— 9
5001 Z0lgo16 - 219002992
@ 1 1 .
30001 900060001 1110370
~ 0000074
1 1
- — ______=11109629
30002 900120004
— 0000074
1 'L._ =+11108889
30003 900180009
~ 0000074
11 1108148

3':0004 9°00240016

49. Now take 1, and let it increase by small in-
crements of ‘01, then in the first column of (1) will
be found the reciprocals of the successive values of
the variable 1; in the second column, the squares of
these reciprocals ; in the third column, the equivalents
of these squares.

It will be seen from the first and third columns
that, as the variable 1 increases, the function (viz,
the square of the reciprocal) decreases, therefore the
differences (the fourth column), which are obtained
from the numbers immediately above and below in
the column to the left (the third), are negative,
and that these differences are approximately in each
case ‘02.

Therefore the ratio of the rate of variation of the
function to the rate of variation of the variable

—02_ 2
= —2= - =
01 13’
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or, the differential co-efficients of -11—2, where the 1 in

the denominator is the variable= —-%.

50. Now in (2) the number 2 receives successive
increments of ‘001. The first column, as before,
represents the reciprocals of the successive values of
the variable, the second colummn the squares of theso
reciprocals, etc.; and it will be seen that the first
ditference in each case is ‘00025 approximately ; and
the ratio of the rate of variation of the function to the
rate of variation of the variable

:::_‘0002:):: -2 == —,2,—_ —2 M
‘001 4 8 23’
or, the differential co-efticient of -2-13: —;,

s1. Similarly from (3) the ratio of the rate of varia-
tion of the function to the rate of variation of the
variable

—-0000074 _ . =__2=_g,
0001 074 27 3’
or, the differential co-efficient of %= —323.;
and, generally, it will be found that the differential
. 1 o 2
co-efficient of;& or z-%is ~zen or -
52. Again
YFunction. Differences.
=+4997501
20l — 0002497
=-4995004
002 — 0002493
— =-4992511
2003 ~ 10002492

2004
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From thiy it will be seen that the function is the
reciprocal of 2, as it receives successive increments of
‘001 and the difference in each case is ‘00025 approxi-
mately.

Therefore the ratio of the rate of variation of the
function to the rate of variation of the variable =

—00025_ .o _1__ 1, . .
—o01 = 25 = ‘ g2’ and similar results will
be found for other numbers, so that
differential co-efficient of %: - .212,
1.1
8 v 8T Ty
1.1
” » i - @
cte., =cte,

and, generally, this is in accordance with the general

form—
differential co-efficient of 2-? orl=_ —1 .
z 22
53. Further, let us take a function of the form—

;1_’, say 313, and let the 3 receive small increments of

‘001, then
Function. Equivalent. Dafference.
1 1
— — - ='03700002
3001 27-027009001 . -
1 1 e - 00003733
="03696269.

3002 27°054036008
» Therefore the ratio of the rate of variation of the
function to the rate of variation of the variable

== 0?::%%—7 (approximately)
= — 037,

D
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but 8311 =037 (approximately) ;

therefore required ratio= — 831
=3,
==
. . . 1 3
or, differential co-efficient of 3~ g ;
and this is in accordance with the general form—

differential co-efficient of 51_! or x3= —‘—E‘.

54. Tabulating these results, we hav-

. . - 1
differential co-efficient of z=1 or 1= — 1 )
z %
1 2
-2 =
» » FOT 5= T
- 1 3
” ” z=% or ;.3‘—' - =
and these come under the general form—
differential co-efficient of z-mor L=~ *
Y hiad xu+l

55. Let us now refer again to the function of the
form }a, and take ;ﬁ, as an example of the function of

that form, where 3 is the variable ; and let 3 receive
small increments, as before, of ‘0001. Then, if we take
the decimal out to a larger number of places, we shall
find that the successive values of the function and the

first and second differences become (see Art. 49)
*11110370407
— 00000740631
11109629776 00000000077
— 00000740554
‘11108889222
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the second difference being positive, inasmuch as
— 00000740554 is greater than — 00000740631.

Now the ratio of the rate of variation of the first
difference to (the rate of variation of the variable)? is
the second differential co-eflicient of the function; and
the rate of variation of the first differences is given by
the second difference.

Therefore, we have, when 3 is the variable,

second differential co-efficient of :-312 or 3-2

= OO(OS&?}O )(3(17 (approximately)="07.
6q 2 .
But 3 2 = ‘07 (approximately),
therefore second differential co-efficient of l,, =6_2x 3,
3 3 3

56. This result might have been obtained independ-
ently from the first differential co-efficient, for

differential co-efficient of — 3%= -2X ( —; =2;43.
This is of the general form—
second differential co-efficient of L = +‘1).
an xn-f)

XII. Newton’s Lemmas VI. and VII.

57. “If an arc 4 CB be subtended by the chord 4 B,
and have the tangent A 7D at A ; then if the point B
move up to 4, the angle B4D will diminish indefinitely
and ultimately vanish.”

Draw the tangent BT at B; then the angle B7'D
continually diminishes as B approaches 4, and ulti-
mately vanishes. Therefore, a fortiori, the angle BAT
which is less than B7'D, continually diminishes and
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ultimately vanishes—i.e., the ultimate direction of the
A T D

arc, chord, and tangent is the same, and is identical
with that of the tangent 4 7D.

58. Definition.—The subtense of an arc is a straight
line drawn from one extremity of the arc to meet, at
a finite angle, the tangent to the arc at its other ex-
tremity.

59. “If BD be a subtense of the arc 4B, and B
move up to A4, then will the ultimate ratio of the arc
ACDB, tllle chord AB, and the tangent 4D be a ratio of
equality.”

Let 4D be produced to some fixed point d, and, as
B moves up to 4, suppose db always drawn through d,

A D

parallel to DB, to meet AB preduced in 5. Also on
Ab suppose an arc Acb to be described, always similar
to ACL, and having therefore 4.Dd for its tangent.
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Then, by similar figures, we shall always have
AB: ACB : AD:: Ab: Acb: Ad ;
and since this is always true, it is true in the limit,
when B moves up to .1.

But, when B moves up to A, the angle b4 d vanishes,
and therefore the point b concides with the point d,
and the lines 4b, Ad, and therefore Acb, which lies
hetween them, are equal.

Hence also the arc AC, the chord 4B and the tan-
gent 4.D; which are always in the same proportion as
Adcb, Ab, and Ad, are ultimately equal.

Hence, in all reasonings, when the arc is very small
indeed, the arc, the chord, and the tangent may be
used indiﬁ'erent).v for one another.

XIIL. Diferential Co-efficient of the Trigonometrical
Functions (Geometrically).

60. Let O be the centre of a circle, whose radius is
1, and in the arc of the quadrant 48 take any point

. ﬂ%‘i\

A MM [¢]

P, and join OP; and from P draw PM perpendicular
to 40. Take any other point /' very near to 2, on
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the arc, and draw P'M’, PN perpendicular to 40 and
PN,

Then as P’ moves up to P and ultimately coincides
with it, the arc P/, the chord P/, and the tangent
at P coincide ; or, in the immediate neighbourhood of
P, may be used indiscriminately, the one for another.

Since the radius of the circle, viz. 0L, is 1, it follows
that

ry

sin POM =0p =PN;
and cos POM = f‘oig =¥o0.

Now, as the arc 4 P increases (7.e. a. the angle POA
increases) from 4 P to AP, it reccives a small incre-
ment PP’ and the sine of POM, viz. PM, receives a
small increment /N ; and the ratio of the rate of
variation of the sine (the function) to the rate of

U
variation of the arc (the variable) is 5 ’lix
true for any position of I, and is therefore true when
P’ moves up to I; and then PP’ becomes a tangent
and the angle OPP'=90"

Therefore, as the angle POM (ie. the arc 4P)
receives very small increments, the differential co-

. . ry
efficient of sin POM = 1’; 5
=gin PPN
=cos NPO
=cos POM.
And this is of the general form—
differential co-efficient of sin z=cos .
Again, the variation in the cosine of POM is re-
presented in magnitude by

OM—O0M', or MM';

; and this is
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i.c., as the angle becomes larger the cosine gradually
becomes smaller, since 4/ moves towards O.

Therefore, the ratio of the rate of variation of cos
POM to the rate of variation of the angle POM (i.e.,

PN
A = —a—
the arc 4P) PP
= —cos PPN
= —sin NP0, because OPP' =90°
ultimately,
= —sin POXN, :
or, the differential co-efficient of cos POM = —sin POM.
And thisis of the general form—
differensial co-efficient of cos £= —sin a.
61. Versin POM =1 —cos POM
=1-0M
=AM.

Therefore, using the same method of reasoning as
before, and remembering that the small increment or
variation in the versin is M M, we have
the ratio of the rate of variation of versin POM (i.e.,

the arc 4P) =-§J%M)-:
_PN

rr
=cos P'PN

=sin N PO (ultimately)
=sin POM,
or, the differential co-efficient of versin POM =sin POM.
And this is of the general form—
differential co-efficient of vers z=sin .
62. Again, tan POM =§1(1)—{;

now, when the angle POM has received a small in-
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crement and become P’OM’, the tangent receives a
small increment and g
=
tan POM =70
_PM+PN
S MO-MM
therefore the rate of variation of the tangent
_PU+I"NV PN
THO-MI MO
_MOPM+PN)-DPMMO-MY")
- MOMO=AA)
_MO.PPN+PMU. MY
B Moo
_P'N cos PO+ M sin POM
T cos POM Tcos POMT
since M'O=cos POM ultimately.
Therefore the ratio of the rate of variation of the
tanjgent to the rate of variation of the angle (l.e., the
are

_ PN cos POM+ MM sin POM . ,
= PP
cos? UM
ry M .
P cos POM + P - B PoM
- costPOM
_cos?POM +sin2POY
cos?POM
=_—.—1—__
cos’POM
=sgec?l0J.
Therefore the differential co-efficient of tan PPOM, as
the angle receives small increments, is sec?/°0.).

And this is of the general form—
differential co-efficient of tan & =seczr,
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MO
_63. Also cot POM= i
and cot POM=HO0 _HO- MY

TPN T PM+PNT
Therefore the rate of variation of the cotangent
_MO- MM MO
T PM+PN PN
_PUMO-MM)-HOPM+PN)
PA(PH+PN)
_PM MM+ MO.PN
TPMPAFPNY
_ MM sin POM+P'N cos POM
sin POM. sin 20M

since I’ M’ =sin PONM ultimately. (See Art. 64.)

Therefore the ratio of the rate of variation of the
cotangent to the rate of variation of the angle (i.e., the
arc)

_AY sin POM D'V cos PO 1[ .7
T sin2f ’() ’l[
AN sin PO+ 28 s PO
B sintPOM
_8in?2LOM + cos?POM
T sin2lOM
_ 1
sin?POM
= —cosec’POM ;
or the differential co-efficient of cot PO
= — cosec?l’OM.
And this is of the gencral form—
differential co-efficient of cot 2= — cosec?s.
64. With reference to the {)oiut in the two last pre-
ceding arguments (touching the tangent and cotangent),

)l)l
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where the word ultimately is used, it will be well to
consider the following :—
sin (4 +a)=sin 4 cos a+cos 4 sin q,
cos (4 +a)=cos.4 cosa—sin 4 sina;
now when a, becoming smaller and smaller, ultimately
vanishes,
8in a=0,
and cosa=1.
Therefore, ultimately,
sin (4 +a)=sin 4 +0=sin A,
cos(d+a)=cos 4 —-0=cos d.
Similarly,
sin P'OM’'=sin POM,"
and cos P'OM’ =cos POM,
when P’; moving nearer and nearer to P, ultimately
coincides with it.
65. Again,
_Po
sec POM = 10
=211—0, since PO=1;
ro

sec P'OM =0 MM’

=M0'—1MM” since I”0=1.
Therefore the rate of variation of the secant
_ 1 1
T MO=- MM MO
_ M0~ 30+ 1l
MOMO-MM")
M
cos?POM

ultimately.
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Therefore the ratio of the rate of variation of the
sccant to the rate of variation of the angle (i.e., the arc)

My,
=soerom TT
MM

_ PP

" costPOM
_sin POM
T costPOM
=sec POM tan PONM ;

or, the differential co-efficient of sec POXM is
o . Sec POM.tan POM.
And this is of the general form—
differential co-efficient of sec x=sec . tan .
66. Similarly,

cosec POM = Po 1

M P
ro
M+ PN
1
TP+ PN
Therefore the rate of variation of the cosecant
_ 1 1
“PM+PN PM
_PM-PM-PN
PH(PIH+PN)

= PN ultimately.

and cosec POM'=

Therefore the ratio of the rate of variation of the
cosecant to the rate of variation of the angle (z.e., the
arc)

Py
=—— PP
sin?l’OM 2
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ry
e
= Tsin2POM
_ _cos POM
Tsml0h
= ~cosec POM.cot PONM ;
or, the differential co-efticient of cosec PO
= —cosec I’0M .cot POM.
And this is of the general form—
differential co-efficient of cosec 2= - cosec x cot .

X1IV. The Differential Co-eflicients ofv'he Inverse
T igonometrical Functions.

67. In a similar manner the differential co-efficients
of the inverse trigonometrical functions may be ob-
tained.

Sin~lr means the angle whose sine is x; let this
angle be ’03. Then sin-'z is the function and sin .z
the independent variable ; and the ratio of the rate of
variation of the angle (i.e., the arc) to the rate of varia-
tion of the sine=PF" : P'N

10
04

=sec POM

R
cos POM

_————1—-_-—

T W 1=sin?POM

= 1
Ni=z?

or, the differential co-efficient of sin-l=z - ~

~/1—x".

ultimately,
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68. Now let the function be fan-1z. We found be-
fore that the ratio of the rate of variation of the tan-
gent to the rate of variation of the angle was sec? 0.

Therefore the ratio of the rate of variation of the
angle to the rate of variation of the tangent

1
sectPOM
1
1+tan?POM
1
1+a2
if POM be the angle whose tangent is z ;

or, the differéhtial co-efficient of tan"x=l—+ 2

69. Again, let the function be sec-lxz. We found
that the ratio of the rate of variation of the secant to
the rate of variation of the angle was sec POM.tan POM.

Therefore the ratio of the rate of variation of the
angle to the rate of variation of the secant

1

“sec POX. t'alui POY
- sec II’OM Ve POM ~1
TavaEo1

or, the differential co-efficient of sec-lr= NEIJ:_—I,

if POM be the angle whose secant is .
Similarly we may find the differential co-efficients
of the other inverse trigonometrical ratios.

XV. The Valus of x°

vo. It might appear to some that it would be suffi-
cient to say that a quantity which is continually
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diminishing may be made as small as we please, with-
out the proviso that it may be made smaller than any
assignable quantity. But on closer inspection it will
be found that, in some cases, quantities may be contin-
ually diminishing and yet never become smaller than
a certain quantity, which is then the ultimate value,
or limit, when the decrease has been carried out to an
indefinite extent. For instance, suppose we take the
number 100, and take its square root ; this will be 10.
Now take the square root of 10; this will be 3 fol-
lowed by a decimal. Take the square root of this, and
the result will be 1 followed by a smaller decimal, and
so on. However many times we take the square root
the 1 will always remain, though the de¢gmal part may
be made smaller than any assignable quantity. The
limit, then, of any number, when the square root has
been taken an infinite number of times, 1s 1.

Let x be any number ; then the square root of z is
written 2%, and the square root of this again is ¥, and
when we have taken the square root n times the result

1

will be 297 ; and when we have taken the square root
an infinite number of times, 7.e., when » has become o,

1
the result is z« or 2% and therefore #%=1.

XVI. The Differential Co efficients of the Trigonometri-
cal Functions (Arithmetically).

71. Consider the following :—
Arec, or Circular Difference. Natural

Angle. Measuro, Sine. Difference.
70° 1-221730 | 9396926
‘000002 ‘0000006
70°:0001 1-221732 9396932
‘000002 ‘0000006

70°0002  1-221734 9396938
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Here the first column gives the successive values of
an angle of 70° as it receives small increments of -0001
degrees.

%‘he second column gives the corresponding arcs or
circular measure of these angles.

The third column the differences of these arcs, or the
rate of variation of the arcs.

The fourth column gives the natural sines of the
angles, which may be found in any book of logarithmic
tables.

The fifth column gives the differences of these.

Here the sine is the function of the arc; and the
rate of variation of the function is given by the fifth
column.

Therefore thé ratio of the rate of variation of the
function to the rate of variation of the variable

_ 0000006

000002

6
2
3

I

==cosine of an angle whose circular
measure is 1'221730 (approximately)
=cos 70°,
or, the differential co-efficient of sin'70°=cos70°.
And this is of the general form—
differential co-efficient of sin z=cos .

The error committed in the above is considerable,
because the tables are only carried to 7 places of
decimals. Now, the smaller the increments are, the
more true is the result, and for very small increments
it would be necessary to have tables calculated to a
far greater number of decimal places. In the follow-
ing example the increment is comparatively large—

Angle. Arc. Difference. Sine. Difference.

30° 523599 5000000

001745 ‘0015114

30”1 525344 ‘50156114
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Therefore, the ratio of the rate of variation of the
function to the rate of variation of the variable
0015114
T 001745
=866 etc.
=cos 30° (approximately),

and, therefore, the differential co-efficient of sin 30°is
cos 30°, and this is of the general form—
differential co-eflicient of sin x=cos 2.

Similarly, the difterential co-eflicient of the cosine
may be shown to be of the general form, from the
actual numbers.

72. Now let us take the tangent, amd suppose the
angle to be 14° and let it receive small increments of
‘1. Then—

Angle. Arc. Difference, Tan. Differenco.
14°  -2443461 | 2493280
‘0017454 ‘0018546
14°1 2460915 2511826

Here the ratio of the rate of variation of the tangent
(function) to the rate of variation of the arc (variable)

- ‘0018546
‘0017454
=1'0624 etc.
But sec 14°=1'0306136
therefore sec?l4°=1'06216.11.

Therefore the required ratio=sec?14° (approximately),
the error occurring in the fourth decimal place.

Therefore, approximately,

differential co-efficient of tan 14°=sgec?14°,
and a similar result may be obtained for any other
angle. TFurther, it will be seen that this result is of
the general form—
ditferential co-efficient of tan x=sec?s.
73. Now take the secant as the function, and let the
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angle be 84°, and let it receive small increments of
‘001°.  Then

Angle. Arc. Difference. Secant. Difference.
8¢° 1'4660767 95667722

0000175 ‘0001593
84°°001 14660942 9:5669315

From this it will be seen that the ratio of the rate of
variation of the function to the rate of variation of the
variable
_"0001593
= 0000175
=91'028 ete.
But sec 84° x tag 84°=9'5667722 x 9-5143645
=910217475.
Therefore the required ratio
=sec 84° X tan 84° (approximately),
the error occurring in the third decimal place. And
this result is of the general form—
differential co-efticient of seec x=sec z tan x.
Similar results may be found for the cosine, co-
tangent, and cosecant of an angle.

XVIL The Differentiul Co-eflicient of a Logarithm.

74.% Assuming the exponential theorem we may
show that—

o ] == 1 % X 1
loo(l +7_ﬂ)_ M { o § AP oximately,
where A is the modulus and is found to be *43429.
For instance, take log (l +64")
log(1+,), )=log 10029
='0012576.

* See Appendix.
I
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Again, since M="-43429
. 1 _. -
ot B X g o ="0012576,

therefore log( 1+ 3_1?)) =M ( 315 )

Now the following will be found in any tables of
logarithms—
log 41713=4"6202714,
log 41714=4'6202818,
log 41715 =46202922.
If we take the differences of these, we obtain

10000104,
“0000104. o

Thus, if 41713 receive small increments of 1, the
function receives increments of °‘0000104; i.e., the
ratio of the rate of variation of the function to the
rate of variation of the variable=-0000104:1; or, the
differential co-efficient of log 41713 = 0000104,

Now the general form is—

differential co-efficient of log z=L
r

and the above result does not, at first sight, appear to
be of this form. We shall see, presently, that 1t is.
Converting the above into Naperian logarithms, we
have
Nap. log 41713= 4620271443429

=106386778.ecuverrereeenne. 1)
Nap. log 41714=4'6202818-"43429
=106387018......cc0virniinnnen. (2)

Taking the difference, as before, between (1) and (2),
we obtain

‘000024

_ 1

41713
Therefore, taking Naperian logarithms, we have, the
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ratio of the rate of variation of the function to the
rate of variation of the variable=000024 : 1

= 1

41713
- i ial co-effici - 1
or, differential co-efficient of Nap. log 41713 517

75. We may now show that the result obtained in
the previous article is of the same form. (Taking logs
to base 10),

log 41713 = 46202714,

thatis,  1040202714=41713;
again, 104°6gP2818 = 1()4°6202714+ 0000104

= 1(4°6202714 5 1(°0000104 ;
therefore 1046202714 x 1() 0000104 =47714

=41713+1;

therefore 100000104 = %;}0;} .

4171341

To41T13

1
41713

or 0000104 =log(1+ 1 3)
i

=N (If%s )

XVIIL Successive Differentiation.

=1+

_ %76. The following considerations are of the utmost
mx]portaqw, as they embody the whole principle, not
only of differentiation, but also of successive ditterentia-
tion.

It must be remembered that when a body is moving,
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not uniformly, but with accelerated motion, its rate
at any instant is not represented by the space it would
pass over in the next unit of time, but by the space it
would pass over if it moved wuniformly, with the
velocity it had at that instant, for the next unit of
time.

Let @4 be a cube, which has been growing to its
present size,
and let 04 =2=0B=0C,
z being the variable on which size of cube depends,
and let U4 receive, in the ordinary course of its in-
erease, an increment Aa, and let 86, Cc be the corre-
sponding increments in OB, OC.

/e /)

/f
7 7

Q
v

m

The edge of the cube () has, then, received a certain
increase—i.c., its rate of increase at the instant it has
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become z is represented by Aa or Bb or Ce, in the three
respective directions.

Our aim is to find the ratio of the rate of increase of
the cube, to this rate of increase of z—i.e., the differ-
ential co-efficient of 23; we have therefore to find the
corresponding rate of increase of the cube to the
increase of its edge ().

Now if the cube had been stopped suddenly on its
increasing course at the instant at which we found it
in the form of @A, its rate of increase in the directions
of da or Pd', Bbor Pd’, Cc or Pd’, corresponding to
this rate of increase of #, would be represented by the
figures Pa, Pb, and P, for the face of the cube would
have to remain of the same size as we found it at the
instant, in orde? that we may satisfy the condition of
uniformity, already alluded to, in calculating the rate.

Therefore the first rate of increase of cube

=DPa+ Pb+ Pc
= Pd’ x face of cube + Pd” x face of cube
+ ’d"" x face of cube
=face of cube x (/’d' + Pd" + Pd")
= face of cube X (da+ Bb+ Cc)
=face of cube x 34a
=face of cube x 3 (rate of increase of z).
Therefore
rate of Inerease of oube g, (g06 of cube),
rate of increase of
rate of increase of 2°_ 322
rate of increase of & ’
or differential co-efficient of 23=322;
and this is the first differential co-efficient of 23

ie.,

77. Now, a moment ago, we suddenly stopped the
cube in its growth. If we had not, it would have
increased in size, and, as a necessary and obvious con-
sequence, its three faces would have increased in area.
(A cube of course has six faces, but there are only now
three under consideration, since the cube is not sup-
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posed to increase in the directions 10, B0, ('0.) Take
the face Pec; ¢ would have grown in the direction
of Pd’ or R, and also in the direction of Pd” or Qm ;
and would, if not checked in its course, have remained
square, But we have stopped the motion, and now
inquire, “If the side P’ still keeps the same rate as
it has now, at the moment of stoppage, where will it
be when 04 has received an increment 4a?” and we
find that it will occupy the position (d’. Similarly,
QP will occupy the position md”. And the rate of
increase of the face PC will be represented by the two
rectangles 7, Pm.

o
C
"
Q L !’
m d’
o A 4
B .
S

But the face /°C’ of the cube is the base of the solid
Pc; and as the base increases the wsolid tends tn
increase also; and the rate of increase of the solid.
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while the face was increasingr by Pl and Pm, would
be represented by the solids d'l, d""'m.
But each of these solids
=z X (rate of increase of x)?,
therefore the rate of increase in the cube correspond-
ing to the increase of one of the three faces
=2z X (rate of increase of x)?;
and there are three faces which increase, therefore rate
of increase of cube
=6 x (rate of increase of x)?;
therefore
the rate of this second increase of cube
(rate of increase of x)?
or, secongl differential co-efficient of 2?=6..

78. Again, the solid d”'m would increase in the
direction of Pd’, and would receive an increment of d'''»,
which is the cube of Pd’ or Aa; and therefore d''n
represents the rate of increase of the solid d''m.

Therefore, remembering that, since the solid Pe
would have a rate of increase of two such solids as
d"'m, therefore the whole three solids, such as I’c,
would have a rate of increase of six such solids as
d’’m; and remembering that for each solid, as d”'m,
there is now a third rate of increase, represented by
d"'n, we may say that
the rate of the third increase of cube

=6xd"n
=6Xx (Pd')?
=6 x (rate of increase of #)3;
rate of third increa<e of cube _ .
therefore -~ -~ =7 = " =,
(rate of increase of )3
or, third differential co-efficient of 2%==6.

79. We have already found that
(1) the first differential co-efficient of 22=2g,

second ' ' 2 '=2;
(2) the first ’ “ Th=4x 73,
second » » Ti=14x3x7,

=6,
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third differential co-eflicient of 74=4 X3X2%7,
Jfourth ” ” =4x3x2x 1;
(3) the first ' » 5” 3x 53
second ’ 5=3x2xD5,
third ' » =3x2x1.

And we have also found that the differential co-efti-
cient of nr+c=n

From the above we gather that

(a)y If the function be the Jirst power of the varialle,
whether connected with a constant quantity or not,
then there is only a firs¢ differential co-eflicient ; the
second, third, etc., ditferential co-eflicients vanishing,
because the first is itself a constant quantity and there-
fore does not vary, and therefore canngt have a ditfer-
ential co-eflicient ;

(b) If the function be the second power of the vari-
able, there are both tirst and second differential co-effi-
cients, but no third—this being 0—for a similar reason
to that in (a);

(c) If the function be the third power, there may be
found a first, second, and third differential co- -eflicient,
but no fourt/l K

(d) If the function he the fowrth power, we may
find first, second, third, and fourth ditterential co-efti-
cients, but no fifeh ;

And so on.

We also notice that—

(«) The first differential co-efficient contains the
power of the variable, which was contained in the
function, decreased by 1 ;

(b) The second differential co-efficient contains the
power of the variable, which was contained in the
function, decreased hy 2 ;

(c) The third duuase(l by 3

(4) The fourth decreased by 4

And s0 on.

Finally, we observe that-—

(1) The co-eflicient of the variable, in the first
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differential co-efficient, is the power of the variable
in the function ;

(0) In the second differential co-efficient it is the
power of the variable multiplied by (that power de-
creased by 1) ;

(¢) In the third it consists of three factors—the first
being the power of the variable in the function, the
second that power decreased by 1, the third that
power decreased by 2;

And so on.

Thus, if we have an expression 57, which is a fune-
tion of 5, and the 5 be supposed to undergo small
variations,

Jirstdifferential go-efficient of 57= 7 x 5%

sceond ' =T7x6x5°

thud » » =7X6x5xbHi

Jourth » =T7x6x5x4xhH3,

Jifth ’ ” =7xX6x5X4x3x5%
s1rth ” ' =7x6Xx5x4x3x%x2x5,
seventh ” =7x6x5x4x3x2x1,
eighth ’ ' =0.

Again, suppose the function to be 322+ :

Jirst differential co-efficient=3 x 2x+1,
second . ’ =3x2,
third ” ' =0.

-
. J
Or again, suppose that we have ap.r"ibx’-‘:‘:éx.

JSirst differential co-efficient =i Xpx 342+ x 21:1'; ;

second » » =2 XpX3x2r+2b;
14

third ” " =:-;xpx3x2;

Jourth " » =0.

In order to save time and space let us call the
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Jirst differential co-efficient of any function
de, of that function,

the second ” w  de »
the tlurd 5 » dey »
the pth de,

Now let us take the exluessxon an, where # is the
variable—

de, =nrl,

dc2 =n(n—1)a"-3

deg  =n{n—1)(n—2)a""3,

de;, =np(n—1)n-2)(n-3)a" 4

etc. = ete.

degg=n(n—1)...... fn—(n—3) un-tn-2
=n(n—=1)...... 32,

de,.1=n(n-1)...... 3x n—(n—Z)ll" (n-1)
=n(n—1)...... 3><2:,

de, =n(n-1)..... 3x2x {n=(n-1)ja""
=n(n—1)...... 3x2x1;
and we notice that these are the co-eflicients of the
second, third, etc., terms and the last term in the
expansion of a binomial—(Binomial theorem).
8o. Now by actual multiplication
(e+h)t=a+20h+4%;
and this is a function of (x+4), since it i (4 1) raised
to the second power ; let us denote this by “function”
of (»+ k).
Now suppose k=
P L (wh)2=al
When we have made this condition th 1t h=0, let us
denote the function under these circumstances by
plaunrr it within brackets; thus
function (r+/h)= (r+/c)2

(function)=.*....cooiiiiiininininnnn 1)
Similarly dey(x+h)=20+ 2/
and (de) =2 i, (2)
and (dey)=2,

) e @)

.o
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Now (1) is the first term,
(2) is the co-efficient of % in second term,
3) » 5, 44 1n third term of the
expansion—
(e+h) =22+ 20k +12... v (4)
Therefore, substituting these values in (4), we have

function = (function) + (de,) x &+ (d;")/e 2

81. Similarly, if we have the “function”
(e+hP =2 4322432+ At )]
and suppose =0, we obtain
(x+24)}=ua3,

or (function) =3
. (dcl) 32
(dey)=3x2r
(dey)=3.2.1
or (function) =.?
(dey) =327
(;7[ cz) =3r
(d cy) _ [
c) 3

and these are the ﬁnt term and the co-efficients of 7,
A4 and /3 in (1); therefore, substituting in (1), we have

function = (function) + (dey)k + (dcz) A+ 1< deg) 13

Similarly, if the function were (a;+/z)4 we should
obtain
function

o e

= (Funetion) + (e )k + " ’)/ + 1(‘;1;/*+ ] (;’ﬁ;) e
where the co-efficients of /1, %2 k3, and 2* may be found
by differentiating successively and putting A=0.

82. Now suppose we have the function (v+4)";
when &=

(+hr=a"
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or (function) = 2",
(de,) =nam-1,
(deg) =n(n—1)a"-2
etc. =etc. (See Art. 79.)

*. function = (function) + (de;)k + (—d(")/i-’
(d(‘-'* /3+etc +(d( ")/L" .............. )

Substituting the values for (dey), (dc 2), ete., we have

(x+lz)"—.r"+n.z" ]]1.+”(n2 l) 22

n(n—1)(—
B

which is the Binomial theorem.

The relation (1) is found to hold good whatever be
the function, and is called Maclaurin’s theorem.

(See appendix 1L.)

83. Required the development of /1 +z.

function=(1 +z)§,
.- (function)=1,

e =4 (1+r)‘l
de, = -3.31+2)" 3,

+ = )L" 343+ ete. + 47,

(142)2

a
dt‘3 = % : iy

(1+x)?

etec. =ete.
Hence (dey) =4,

(dey)= — ,é,

(de)=3.3.%

ete. =cte.
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But, by Maclaurin’s theorem, since & may be any
quantity,

function = (function) + (de,)z + gg).rz + (—Og—‘jz"’ +ete.

Therefore substituting the values we have just found,
Nitr=1+3r—}.3. 32243 .4. 5. 184 ete.

=1 r_2t

+ 2 8 + 16

By this series we may approximate to the square

root to any degree of correctness we please,
84. Expand sin z to terms of .

—ete.

Here sunction =sin z,
dry=cos x,
dey= —sinx,
deg= —cos x,
de,=sin a,

ete. =etc. ;

o (function) =0,
(dey)=1,
(dey)=0,
(deg)=~1,
(dey) =0,
ete.=ete.

Substituting these values in Maclaurin’s theoremn,
we have
LA
— —ete.
LN
85. For small arcs this series will give the sine quite

accurately.

In order to apply this, we take the arc of a quadrant
—viz, 7, the radius being 1. If we divide this (;)
by (90 x 60), we obtain the length of one minute of are,
from which any number of minutes or degrees may be
caleulated, Substituting the value of the arc thus

function=sin r=2—
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found in the formula, we obtain the length of the
natural sine.

86. Again, (a+h)=a%+2ulh+ A2
Now if 4 be very small, we may neglect the A% or
second power of 4, and say—
(a+2%)2=a?+2ak approximately.
This will be more readily seen if we take a numerical
illustration :
(I1+1)2=12142x11+1
=12142241
=123+1.
If, therefore, we neglect the 1, which corresponds with
2%, we have 4
(11 +1)>=123 approximately,
and this is wide of the mark Ly 1,
since 122=144.

Now let the term which represents 4 in the binomial
expression on the left-hand side be smaller, say -1, then
(119 + 1)2=141"61 + 238 + 01

=143:99 + 01 ;
neglecting ‘01, which corresponds with /42, ywe have
(1194 °1)*=143'99 approximately,
and this only differs from 144 by 01.
Again, let h="01,
and we have
(11'99 4 °'01)*=143'9999 approximately.
Therefore we may safely say that, when 4 is very
small,
(a+A)*=a*+ 2ak approximately.
Similarly, if we take
(a+hpP=a+3ah+ 3al®+ A3,
we may neglect the terms involving the second and
third powers of hA—viz., 3u/* and 2% when 7 is very
small, and then we have
(a+ )= a*+ 3a®h approximately.
Let us take an illustration of this also. Tet a be
represented by 3, and & by 1, then
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(3+1)P=3+3x3"x1+3x3x12+13

=27+27+9+1
[ )
= 54 + 10.
Therefore, in this case where % is comparatively large,
(3+1)*=54,
and this is wide of the mark by 10 since
43=64.
But let £ be smaller, say 01,
then a=2399, so that

a+h=4, as before.
Then -
(3'99+01)3=(399)*+3 x (399)* x '01 +3 x 399
° X ((O1)2+(-01)®
=(3'99)° + 3 x (3:99)¥ x ‘01
approximately, omitting the terms involving A2and 23
=63621199 4477603
=(3'998802.
Therefore the error in this case is only ‘001198...,
and the smaller 2 becomes the more true is the
approximation.

87. Now, let us analyse the two cases we have been
cousxdenng—name]y that when % is very small,
(a+4)*=u?+2ak approximately............ (1)
(a+hP=a®+3uh .. (2)
In each case we see that the left-hand member is a
function of «; in (1) the right-hand member consists
of two terms: the first of these is &, which we
notice is of the same form as the function—z.e., it is
the square of a qu.mtltv and further we notice that it
is really (function), for if /=

(a+/z)~=a~
Further, the second term of the right-hand member
is & x 2a, and (de,) =2a.

Therefore if (a+%)* be a certain function, we may
ywrite (1) as follows :
function = (function) + (de,) 5
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and, similarly, if (a+%)® be a certain function, we may
write (2) thus

function = (function) + (de,)A,
and these two results are precisely the same, and it is
found that whatever the function {)e, the result is the
same.

88 There appears to be a slight difficulty here which
we will not pass over. We have said let 2=0,
and then (dc,) =2a,
and immediately afterwards we multiply (de)) by 2,
and one might be led to suppose that this product,
viz., (de)h, would naturally be 0 also. Not so, how-
ever. We only say, what would be the value of de, of
the function, supposing £ were 0, and we obtain a cer-
tain result—a certain quantity. Then, quite apart
from that operation, we multiply another quantity (%)
by this quantity.

89. We have said that it iy found that of whatever
form the function be, we always have, as an approxi-
mation, when 4 is small|

function = (function) + (de,)% ;
we will give a simple example in support of this.
Let the function be
3a+h)r+4(a+h)+1
=3a’+6ah + 34+ 4a+4k + 1
=3a2+4a+1+6ak+ 4+ 3k%

Therefore, omitting the term involving 4% we have

function = (3a*+4a+1)+ /(6u+4).

But since function=3(a+2)*+4(a+/)+1

(function)=3u>+4a+1
and (dey))=2x3a+4
=6a+4.
Therefore we have again
function = (function) + (de; ).

(This form is a deduction from Taylor’s theorem.)

90. We will now show how this result may be prac-
tically utilized in approximating to the roots of an
equation,
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Let the equation be
22 -3x+1=0,
i.e., function =0,
where 23— 3x+1 is the function of 2.
Therefore, since
function = (function) + (dc, )%,
and function=0,
it follows that
(function) + (dc, )k =0.
he (function)
o= — 2
(dey)
Now, by trial, 1'5 is found to be near one of the
roots. Let %2 be the difference between 1-5 and the
root ; that is, %t x=15+/4, which is of the form

(a+1).
Therefore,

(function)=a3—3u+1
=(15p3-3x15+1
=—-125,

and (de)=3-3
=3x(15)°-3
=675-3,
=375,
125
therefore, =375
= '033,
therefore, x=1'533.

We can now take this as an approximation, as we
did 1'5, and so may get a result, by proceeding in this
manner, as near to one of the roots as we please.

91. If we wish to find the limit of a fraction, as the
variable gradually approaches a certain limit, in the

@?

we may employ the process of differentiation, and by

_this means get rid of all artifice in arriving at the cor-
rect result,

case where the fraction becomes of the form 3, or ®

i
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The method of Bernouilli is to differentiate the
numerator and denominator separately, until they do
not both vanish, for the value of the limit of the
variable.

In No. 2 of “Examples worked out” we found the
value of the fmctiongj;_*' 2, when 2 was infinite, by an
artifice. 'We shall get the same result by the method
of differentiating.

For de of 20 +5=2
and de of 4r+6=4,

. 2 1
val f fraction===".
ajue or rraction i 9

92. Again, find the real value of the fraction
axr?—2acxr+ ac?
ba* — 2bex + be?

Here dc, of numerator =2ax — 2ac

=0, if r=e¢,
de, of denominator=2bx — 2bc
=0, if r=c.

Now let us proceed to the second differential co-

cfficients—

when z=c.

dcy of numerator=2a,
dey of denominator=2b.

Therefore real value of fraction= 2a_a

20 b

XIX. Maxima and Minima.

93. The value of a function is said to be a mazimum
or a minimum according as the particular value is
greater or less than the values whicl\ both immediately
precede and immediately succeed it.

04. If, then, a function continually increases or con-
tinually decreases, it cannot have a maximum or a
minimum.
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05. If a function increase at a diminishing rate, like
a stone thrown straight up in the air, until at a certain
point it ceases to increase and begins to diminish (Z.e.,
in the case of the stone, to diminish its height from
the ground), then, at the turning point, it has its great-
est value, and the values which immediately precede
and immediately succeed this value are less than this
value, and therefore it is a maximum.

96. Again, if the function decrease until, at a certain
point, it ceases to diminish and begins to increase, then
the values on either side of it are greater than it, and
consequently it is a minimum. Such, for instance,
wonld be the case, if a cork were forced into a vessel
tilled with water, # would attain its minimum distance
from the bLottom of the vessel at the twrning point,
when it began to rise. Take the stone thrown straight
up into the air as another instance: it decreases in
velocity until at the turuing point it is a minimum,
and then begins to increase.

N A% T M

)

/ -p\
R Q

97. Let ALB be a circle, and A B its diameter, and
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let a straight line move from 4 so as to be always
perpendicular to 43 and have its other extremity in
the circumference of the circle; it will increase until
it reaches the position €/’ and then diminish until it
reaches /7; and in the position C£ 1t will have its
maximum value.

Again, a straight line drawn so as to have one
extremity in A/.V, and its other extremity on the cir-
cumference, will first have such a position as /4, and
will gradually diminish until it reaches the opsition
77, and then it will increase until it reaches the
position V73

Therefore, at the turning point, in the position 77
it has its minimum value. .

98. A function may have more than one maximum
or minimum ; in fact may have an endless number of
both, for a function may increase until it has reached
a maximum, and then diminish until it reaches a mini-
mum, and then increase again to a maximum, and so
on. From the nature of the case the maximum and
minimum values must alternate—that is, there cannot
be two maximum values succeeding each other with-
out a minimum value intervening, and vice versa. The
troughs and crests of the waves of the sea give minima
and maxima with regard to a horizontal line. The
tide furnishes another example of maxima and
minima.

99. The sine of an angle—i.e., the semi-chord—asthe |
angle varies from 0 to 360° is a minimum at 0 and
180°, and a maximum at 90° and 270°; the values of
the sine at any angles on either side of a maximum
being smaller, and on either side of a minimum being
larger than the maximum and minimum values—viz.
(in a circle of radius 1), 1 and 0.

100. Now if, as the variable increases, the function
increases, its rate of variation must be positive; but if,
as the variable increases, the function diminishes, 1ts
rate of variation must be negative—that is to say, in
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the first case the de (remembering the definition) is
positive, and in the second case negative.

101. Again, in order that a function may have a
maximum or minimum, it is obvious, from what has
been said, that the function must first increase and
then dim‘nish, or first diminish and then increase; and
therefore in either case the dc must change its sign.

102. In order that any quantity, which is varying
continuous’y may change its sign, it is evident that it

~must pass through the value 0, from positive to nega-
tive, or from negative to positive; and, therefore, in
order that there may be a maximum or minimum the
de must be equal to 0. In other words, when a func-
tion reaches one of jjts greatest or least values it
neither increases nor diminishes, at that instant, and
therefore its rate of variation is 0, and therefore

__rate of variation of function
rate of variation of variable
0
= s - =0.
rate of variation of variable

We have, then, a relation from which we may find
the value of the variable which produces this maxi-
mum or minimun.

103. Suppose we have an expression or function

84 6. — .03
and we wish to find for what value of the variable x
it will be a maximum or a minimum. We know that
dey must be 0, in order that there may be a maximum
or minimum.

c

But de,=6- 2z,
6 —2r=0,
2r=6,
r=3;
and for this value of x the function
8+6xr—a2=8+6x3-3*
=8+18-9
=17;
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and this is, therefore, a maximum or a minimum : we
have to determine which. Now, if we substitute in
the function values a little larger and a little smaller
than 3, we shall see whether the values immediately
on either side are both greater or both less than 17.
If x=1, function=13;
r=2, function=16 ;
r=3, function=17;
a=4, function=16 ;
z=>5, funclion=13.

Trom this we see that for the value 3, the function
has a value, which is greater than those immediately
on cither side of it, and therefore this value of the
function, namely 17, is a maximum.

104. We might have arrived at this conclusion
equally well by substituting these values, 1, 2, 3, ete.,
in the de,; for since the value of the de must change
sign—t.¢., pass through the value 0—we may see, by
substituting these values, whether it is pagsing from
bositive to negative, in which case the function must
}>e a maximum ; or from negative to positive, in which
case the function must have attained a minimum
value.

We found de=6—2.r,
if =1, de=+411;
r=2, de=+2;

r=3, de=0;
r=4 de=-2;
=5, pc= —4.
From this we see that the dc has passed from posi-
tive to negative, and therefore the value of the func-
tion given by the value 3 of the variable is a maximum,

105. Let us take another example.
Suppose the function to be
22—+ 240 -7
we wish to find what value of the variable makes this
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a maximum or a minimum, and what is the value of
that maximum or minimum.
de=3x"—18z+ 24,
and this must be equal to 0 ;
o 32— 182+ 24=0,

or ' 4% —6xr+8=0,
22— 6r=—8,
and 22— 6x+3'=—-8+9
=1,

. r—8=1+1,
therefore, =4 and 2=2 are the two solutions.

Now let us substitute, as before, in the function,
numbers immediately larger and immediately smaller
than these, and alsg 1 the de.

If ¥=1, function= 9, and de= +3;
d=2, function=13, and dc=0;
2=3, function=11, and de= —1;
x=4, function= 9, and de=0;
x=>5, function=13, and de= +3;
r=6, function=29, and dc= + 24.

From this we see that when =2 the function is a
maximum ; since, firstly, the dc passes from positive
to negative ; and, secondly, from the values of the
function which immediately precede and immediately
succeed the value of the function when x=2.

Similarly we see that when x=4, the function is a
minimum.

106. Now dc, is the dc of de, (see Art. 37), that is,
it gives the rate of variation of dey ; and, when the
function is a maximum, it has been increasing and is
about to decrease, and the rate of its variation, which
is given by de;, has been decreasing until the function
arrives at the maximum, and then de,=0. Therefore
the de, must itself have been receiving negative incre-
ments, and therefore dry, which gives its rate of varia-
tion, must be negative.

Similarly for a minimum, de, must be a positive.

So that we have a third method of testing whether
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the function be a maximum or minimum, for the par-
ticular value of the variable, provided it has a dec;
which does not vanish.
In the first case which we considered
functivi=8+ 6z - 2%,

deg=—2;

In the second case which we considered
function =23 — 922+ 24r -7,
de,=32%— 180+ 24,
de,=6x— 18.
Substituting in dr, the value r=2, we have
dc,=12-18=—6G; ¢
and therefore, as before, for the value 2 of the variable
the function has a maximum value.
Again, substituting the value r=4, we hawve
de,=24—18= +6;
and therefore, as before, for the value 4 of the vari-
able the function is a minimum.
107. We will conclude this part of the subject with
one more example.

“Divide a straight line into two parts, so that the
rectangle contained by the parts may be a maximum.”
Let a be the straight line, and # one of the parts,

" a—xz=other part,

and the rectangle = (a — .)*
=qr—a?
or function = ar — 22,
dey=a—2r,
dey=~-2.

From the sign of dec, we see that there is a maxi-
mum.
Putting de;=0, we have
a—2r=0,
or x =g,
i.e., the line must be bisected.
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XX. The Tangent to a Curve.

108. Let OFQ be any curve, and P a point on it.

Then the ratio of [’4f : UM will give the position of
the point P, and likewise the tangent of the angle
which the chord OP makes with O.Y.

Suppose a point to be taken in the curve near to P,
viz.,, £’; then,if /’M' be drawn parallel to P M (which
is perpendicular to 0.X), and £} be drawn parallel to
04, the ratio of P'M':0OM' gives the position of £';
and if 0/’Q, instead of being a curve, were a straight
line, the ratio £’M’ : OM' would be equal to A : OM,
i.e, the straight line P/’ would pass through O, if
produced. ¢

o ™M M x

Now if we know the position of £, the position of
P’ and the direction of the chord £F' are determined
by the ratio of £’V : PN, which is also the tangent of
the angle which the chord £/’ makes with /¥ or 0X.

Let £’ move up gradually towa-ds £, and eventually
coincide with it, then the angie £'P7 ultimately
vanishey (see Art. 57) and the directions of the are,
chord, and tangent are the same, and are identical
with that of the tangent; and the tangent of the
angle which the tangent at P makes with £V or 0X
is represented by the ratio of the very small
increase in PM to the very small increase in OXM,
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ie., by %'_}f, when P’V and PN are indefinitely

diminished, or by %{, if OM be called # and PH be

called g, and % the ratio of the rate of variation of

P to the rate of variation of O}, when PM and OM
receive infinitesimally small increments. This is what
is meant by saying that a point which moves in a
curve has, at every instant, the direction of motion
which is represented by the tangent of that curve.
It must be remembered that it is not asserted in what
direction the point is actually moving at any instant
of its motion, but what fictitious line of #niform direc-
tion (i.e., what straight line) best represents, at that
instant, the line of variable motion (z.e., the curve) on
which it is moving ; and it has been shown that the

direction of this line is given by Z‘—:, which represents

the tangent of the angle, which, at any point, the
tangent at that point makes with a certain fixed
straight line.
108. Let us look at this from another point of view.
(9]

"

P

A M [ M’ B

Suppose a point to move along the straight line AC;
then, for any point on this straight line, if 1M, M,
17 M", ete., be all perpe 1dicular to 4 B, we have
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PM_DP'M _I"N"

A~ aar = i =
and conversely, if
PM_PM PN
= =etc.,

AM AN AM"
then the path of the point is a straight line.
But if, as .1 increases uniformly, PHM have a
varying rate of change, then the path of the point
will be a curve.

If, at any instant, the varying rate of change of
P were to become uniform, the path of the point
PM

anw ™

would be det‘ermiued by the constant ratio of

before, and therefore would be a straight line.

Let us bear in mind that the position of the point
at any instant, whether on the curve or a straight line,
is determined by the relative values of PM and 4./,
PM
aM°

Now let uy adopt a similar method to that employed
in Art. 76 ; and supposing the point to be moving in
a curve, such that 4 M has uniform increases, but LM
a varying rate of change, let us suddenly check the

»oint in its path and inquire what its motion would
Lave been, if it had continued in the duwection which it
had at that instant for a unit of time ; not the direction
it would have taken in ¢ts pas/ in the next unit of time,
but the direction it would take if the increments in
PM and AN continued uniformly at the rate they had
at the instant of stoppage. Since PM and 4 M increase
uniformly, the path 1s a straight line and its direction

that is by the ratio of

- s o D
is given by the ratio of T

angle which the straight line makes with 44/,
A good example of the idea of a tangent is found in
the stone leaving the sling, which has been swung

which is the tangent of the
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ind in a curve. The instant the stone leaves the
1@ it proceeds (for a short time) in the direction
ich it had at that instant.

A pellet of mud leaving a carriage wheel gives
sther familiar example.
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APPENDIX 1.

Assuming the exponential theorem,

2
_1+4x+‘*.§_+__l— 4ttt ),
where  A=(a—1)-3}(a—-1)*+§(a—1)"-etc.
In (1), put =1, then
a= 1+A+" +“ FetCurrenienienne @)

e B

Again, in (2), put; A =1, then the series becomes

141 +L+ L 4 ete.=271828............... (3),
and this is called e, and is the base of the Naperian
system of logarithms.

Again, in (1), put A=1, and then e represents the
value of @, and

2
e=1+r+" +1—f+etc. H
2 3
and in this make  equal to 4 ;
therefore

ed=1 +A+A—2+ A—a+etc. H
2 B
and this is identical with (2),
therefore A= it ..(4)

when, as bLefore,
Ad=(@-1)-}a—-1)+}(a—~1)®—ete.
But, Nap. log a= A, from (4),
therefore
Nap. log a=(a—1)-(a—1)2+3(a—-1)%—ete. ;
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or, reducing this to logs with base 10,

loga=loge{(a—1)—}(a—1)2+}(a—1)*—etc.};
or loga=M{(a—1)-}(a—1)2+}a—1)*—etc.};
in this put a=1+mn, and therefore a —1=n,

2,8
" +%—etc.};

then log{1+n}=M{n— 9

Again, let n=1 , then
Ne

log (1 + :—z)=M (;—2 ), approximately,

and M is found to be 1312940,
®

APPENDIX IIL

MacravriN’s THEOREM.

Assuming the ordinary working of Indeterminate

Co-efficients.

Let there be any function of x, and suppose that
this function may be expanded in ascending powers of
x and constants which do not contain z, but which
have to be determined; and let these constants be

A, B, C, etc., then the

function =.1 + Bz + Ca?+ Dad +ete.,......... 1

oo dey=B420x+3Da tete.,............. (2)

de,=2C+3%x2Dx+ete.,..ccuunuu...... (3)
deg=3X2D+etc,........ocvenvunnnnnnn.

ete. =etc,
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Now let z, being the variable, continuously diminish
and ultimately become 0, then
(function)= 4,

(dey)=1D,
(deg) =20,
(deg)=3x2D;
and therefore A =(function),
B=(de),
C= %(?02%
D I 3(d03),
etc.=etc.

Substituting these values in (1) we have
funcgion = (function) + (dcy)z + $(dec, 22

1 .
+Q—x'3 (dl,‘a)xs'*' etc.,

which is Maclaurin’s theorem.

EXAMPLES WORKED OUT.

1. If the side of a square increases uniformly at the
rate of 5 feet per second, at what rate is the area
increasing when the side becomes 10 feet.

the side of square=a,
then area of square=z?
and differential co-efficient of #2=2z.

Now when the side becomes 5 feet—

differential co-efficient of 22=2x 5 feet,
=10 feet,
rate of variation of area 10 feet,

or — =
" ' side
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Therefore, when the side becomes 10 feet—
rate of variation of area=10 x 10 square feet,
=100 square feet.

2r+5

2. What is the value of the fraction -, when 2z
4r+6

becomes infinite ?
Divide both numerator and denominator by z, and
the fraction becomes
249
z

448

z

Now, when 2 becomes infinite, each of the fractiona

5 and & becomes nothing.
z x

2245

he limit of
t61m104x+(5

, when 2 becomes infinite

0o
tghens

3. Find that angle which increases twice as fast as
its sine.
Let 2 be the angle
then sin z=the function
de=cos x.

But rate of variation of function

rate of variation of angle =4 (by question)

—
cos 7= 3,
angle=60°.

4. Divide a straight line into two parts, so that the
rectangle contained by the parts may be the greatest
possible.

Let a=the line,

z=one of the parts,
N a — = other part,
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then rectangle=(2—2'z
=ar -2
o dey=a -2z,
de,= -2,

therefore there is a maximum, since the de, is negative,
and this maximum is given by equating de, to 0.

a-—-2r=10,

Or, r= a
bl -
2

that is to say, the line must be bisected.

5. Let AL be the diameter of a given circle, it iy
required to find a point €' in the diameter, so that the
rectangle formed by the chord D4, which is per-
pendicular to Ay and the part 4C may be the greatest
possible,

G D
A B
.
//
F E/
Let AB=a,
AC=u,
Cl=a-ux,
then CL*=(a-a)r,
CD=n(a—2)z,
DE=2Vaz 2%

and rect*mgle EG=x x 2 Naw =22,
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and this is to be a maximum ; if it is, its square will
also be, viz.,

4r¥*(axr — 2?),
or 4ax® - 40t
. dey=12aa%~ 1623,
and dey=24ax — 4827,
but de,=0;
1222~ 1625=0,
or 163 =12aa%,
ie., 16x=12a,
12a
=16
3
>

Substitute this value in de, and we have
3 o
24axZa—48x 2
Y 16"
=18a? - 27a?
= —9d2

Therefore there is a maximum, and it is given by the
value §a—t.e., we must take  of e to find C.

6. To approximate to the roots of an equation.
Let the equation be

23— 3r+1=0,
13— 3xr+1 being a function of z.

But function = (function) + (de;) x &,
and function=0,

since the function is the left-hand side of the equation.
(function) + (de;) x A=0,
he — (fl}x::?:tior_l).
(dry)

Now, by trial, 1'5 is found to be near one of the
roots. Let % be the difference between 15 and the
root, so that x=1'5+/%, which is of the form (¢ + 7).

(function)=a®—3a+1
=(15p3-3x15+1

= —125,
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and (de))=3a2-3
=3%x(1H52-3
=6G7TH-3
=375,

‘125

375
2 =104°003

=1533.

I

EXERCISES.

The Roman numbers refcr to the sectivns in the body of the

book.
IL
1. What is the value of , when r=a?
a-—ux
2. What does the fraction —*_ become, when 2=a?
b a—>b

i in ascending order of

3. Place (’—‘&1, a—0b, and

magnitude, and state the value of each when b=a.

4. Develop into a series, by actual division, the

fraction 1
1

,» and show, by this means, that its value

is infinite when x=1.
II11.

5. In the series which is equivalent to (1), if we take

'
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10 terms, by how much does their sum differ from S])?

6. How many terms of the series must be taken in
order that their sum may differ from (1) by less than

1 ?
10000000
7. How many terms must be taken tlmt their sum
moy differ fnom = bv less than —— 43
18562
1V. ‘

8. Find the value of ({3:21, when b=a.

9. Show that --Z%=3a when b=a,
10. Find the value of the fraction 'T:-]i, whenr =1.
-

.n+

11. What is the value of the fraction
15.0 4+

= when

2 hecomes infinite ?

12. Find the value of the fraction in (8) by substitut-
ing «—/% for b.

13. Show how in (8) the value of the fraction becomes
more and more nearly the value of the limit, as o
approaches ¢, by means of numerical illustrations.

- B
14. Find the value of 6‘7‘-‘:',—;, when & becomes infinite,

ah +/z
)/
16. What is the limit to which the ratio of
R T AR BT AR A
approaches, as & diminishes and ultimately vanishes ?

15. What is the limit of the ratio == "= when A=
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V.

17. Define Differential Co-efficient.

18. State what you mean by a function; and give
5 examples of a function of x, 5 of a function of y, and
5 of a function of 2.

19. If  be a variable quantity and receive small
increments of -1, show that the corresponding values
of ‘01 x y increase uniformly.

20. If pa—C be a function of x, show that it in-
creases uniformly as the variable receives successive
increments of a+b.

21. Find the differential co-cflicient of 5u.

22. Give the difterential co-eflicients of

1) ax, . (7) m+ne,
(2) 3ba, (8) (¢? =% — (a2=10%),
(3) (a=0b)r, ) pr .

(4) (a*=0%)a,
(5) ux+b,
(6) 2u+ 5.,

e BB
10) 2P _ ¢
(10) 3q¢

m
VI

23. If the side of a square increase uniformly at
the rate of 3 feet per second, at what rate is the
arca of the square increasing when the side becomes
10 feet ¢

24. If & increase uniformly at the rate of 2 per
unit of time, at what rate does ax? increase when a =4,
and =10/

25. If x increase uniformly at the rate of 1 per
unit of time, at what rate does the value of the
function a+ 222 increase when a=4, and x=6.

26. If « increase uniformly at the rate of ‘1 per

)
22
second, at what rate does © increase when & becomes
a

4, the constant e being equal to 10?
27. The radius of a circular plate of metal is 12
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inches ; find the increase in the area, when the radius
is increased by 001 inch.
[Area of circle of radius 7=m?
and 7=31416.]

VIIL
28. Show, by constructing a table of sp'xces fallen
through in hundredths of seconds ('1, 09, ‘08 . ‘01

sec.) and then taking differences, that the s}mce fallen
through in the interval between any two consecutive
hundredths of a second is ‘0032 ft.

29. If the interval were between two consecutive

1

100000000
through be?

30. If the intervals were seconds what would the
spaces be !

thy of seconds, what would the space fallen
+

VIIIL

31. Show, by forming a table, that if 2 be a variable
and receive small successive increments of ‘001, the
differential co-efticient of 22=2x 2.

5 be a variable and receive small increments
of -0001, show, by forming a table, that the differential
co-efficient of 5¢=2x 5.

33. Find, by constructing a table, the second differ-
ential co-efficient of 3% supposing 3 to receive small
increments of ‘001.

34. Supposing 25 to be a variable and to receive
small increments of ‘0000001, what is the first differ-
ential co-eflicient of 25?7 What is the second differ-
ential co-eflicient ?

35. If the numbers, whose squares are the func-
tions, be supposed to vary, give the first and second
differential coetficients of 192 37‘ 10014

IX.
36. If 2 he supposed to vary, and to receive small
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increments of ‘0001, find, by constructing a table, the
first, second, and third differential co-efficients of 23.

37. If 2 be supposed to vary and to receive small
increments of ‘0001, find, by forming a table, the first,
second, third, and fourth differential co-efficients of 2°.

38. What is the germ or essence of the 7th power?

39. What is the germ or essence of the (n—1)th
power ?

40. What is the germ or essence of the (p—g¢)th
power? Prove the truth of your answer by sub-
stituting 225 for p and 220 for ¢.

41. Give the first differential co-efficients of

(l) xz) (4) Jv'”,
(2) 28, (5) a*,
(3) o, ® 6) 100,

42. Find the second, third, fourth, fifth, ninth, and
twentieth differential coeflicients of 2.

43. Give the differential coefficients of (see Arts.
27 and 46)

(1) w+at, (6) is
(2) art+c, (8) 24/,
(3) 4223+ 0, (9) (@+b)xr+e 4k,
) e —-gi’r", (10) azm+1.
3%~ a?
(3) )
b

44. A cube of metal, whose edge is 12 inches, has
this edge increased by -001 inch. Find the cubical
expansion.

XI.
45. Show, by forming a table, that, if 3 be a variable

and receive small increments of "00u1, the differential
1

~ g

46. Find, by forming a table, the differential co-

efticient of - as 5 varies and receives small increments
5

of ‘0ul.

co-efficient of :13=
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47. Find the differential co-efficient of ‘.13, 4 being

a variable and receiving small increments of ‘00001,
48. Find the differential co-efficients of

m L
(2) .‘5»
@ 240,
al—b?

4 — .

)

49. By constructing a table, find tlje second differ-
ential co-eflicient of ;3 when 2 is the variable, and

receives small increments of ‘001,
50. What is the second differential co-efficient of

1 . .
—» When 3 receives small increments ?

51. Find the second differential co-efficients of
1
® L

@ 2

@ - S0 +¢,

XIIIL
52. Find the differential co-efficient of the sine of an
angle, which lies between 180° and 270° (geometrically).
53. Find the differential co-eflicient of the cosine of
an angle, which lies between 90° and 180° (geowmet-

rically).
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54. Find the differential co-eflicient of the tangent
of an angle, which lies between 270° and 360° (geomet-
rically).

55. Find the differential co-eflicient of the cotangent
of an angle, which lies between 90° and 180° (geomet-
trically).

56. Find the differential co-efficient of the secant
of an angle, which lies between 180° and 270° (geomet-
rically). \

57. Find the differential co-efficient of the cosecant
of an angle, which lies between 270° and 360° (geomet-
rically).

. 58. Find that angle which increases twice as fast as
its cosine.
¢ XIV.

59. Find the differential co-efficient of cos-la.
60. Find the differential co-efficient of cot ~1z.
61. Find the differential co-eflicient of cosec ~1w.
XV.
62. Establish, by taking successive cube roots of
1000, the principle laid down in Section XV.
63. What is t{w value of 95a*~* when =n1
64. What is the value of 1000°—1° ¢
XVIL
65. Having given—
ooo_angle o, .
are T80° x3'1416;
natural cosine of 30°= 8660254, and difference
for I'=1454;
and natural sine of 30°="5000000 ;
let 30° receive small increments of “001 and show, by
constructing a table, that the ditferential co-efticient of
cos »= —sinz approximately.
66. Having given—

o angle, o, .
arc 180° x 31416 ;
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natural cot 14°=4-0107809, difference for
1= —49644 ;
and natural cosec 14°=4'1335655 ;

let 14° receive small increments of ‘1 and show, by
constructing a table, that the differential co-efficient
of cot 14°= — cosec?14".

67. Find the angle which increases at the rate of
A/ 2 times the rate of its sine.

XVIL
68. Given
Common log 62300 = 47941880,
, log 62301=4"7945578,
. log 62302 =4"794(276.
Convert these into Naperian logarithms, and show that
differential co-efficient of Nap. log 62300 =
69. Given
Common log 33'863=1'5297254,
,  log 33:864=15297383,
y log 33'865=15297512.
Convert these into Naperian logarithms, and show that

. . . apa_ 1
differential co-efficient of Nap. log 33 863—33, 863"

1
62300

XVIIL

70. Show by successive differentiating that the
fourth differential co-efficient of '+ 3+ 22+ x4+ 1=2 %
3 x4,

71. Find the fourth differential co-efficient of ‘1

72. Find the eighth differential co-efficient of z».
73. Find the third differential co-eficient of

B +art+br+ec.
74. Find the second differential co-efficient of

et + %440,
o
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75. Find the fifth differential co-efficient of «* —xz-4,

76. Required the seventh and eighth differential co-
ctlicients of cosz.

77. Expand cosx, by Maclaurin’s theorem, in terms
of .

78. Differentiate the series in (77), and show that
the result is the expression for sinz.

79. Approximate to the roots of the equation

23— 122—28=0.
80. Approximate to the roots of the equation
otz -3=0.
XIX.

81. Find wlhgn 16¢-2? will be a maximum or a
minimum.

82. Find when the function

2%% — 9ax? +12a%x - 4a®
will be a maximum or minimum, and give the value of
the function which is a maximum or minimum.

83. When is the function

o — 3ax? + 4a
a maximum, and when a minimum ?
84. Find when
6a2 — 302424
is a maximum and a minimum.
85. (iive the maximum and minimum values of the
function
4a8 -2 - 22+ 1.
86. Give the maximum and minimum values of
a? — Ta?+ 8r+32.

87. Find the fraction which exceeds its second
power by the greatest possible quantity.

88. Divide the quantity a into two such parts that
their product shall be the greatest possible.

89. Divide a given line 4B into two parts so that
the sum of the areas of the squares described on the
parts shall be the least possible.

90. A gentleman has a plot of ground in the form of®
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a triangle, the base of which is 400 feet and the per-
pendicular 300 feet, in which he wishes to make the
greatest rectangular garden possible, one of the sides
of which is in the base. It is required to tind how
many feet from the vertex the other side must Dbe
drawn,

MISCELLANEOUS EXERCISES.

o1. Upon .1 B describe a semi-circle, draw a chord
AP draw PN perpendicular to .18, then prove that
AP=PLN ultimately—i.e., at the moment when the
arc .1 /L” vanishes.

Note.—If AV=u, ‘
ADB=2u,
AP = J2ax and PN = J2uz - u’,

92. Develop into a series, by Maclaurin's theorem,

a+.r.

03 In (92) put a=1, then Ja+z= /I+x Now,
by putting =1, find the value of 4/2, correct to three
decimal places.

04. Expand into a series, by Maclaurin’s theorem,
J1+z; and, by substituting 8 for z, give the series
for the calculation of 2/9.

95. Find the ditferential co-cfficient of

(1+2.0%)(1 + 429).
96. Find the real value of the fraction
3 2 .
T +i::—1" ;2, when a=1.
97. Find the value, when =2, of the {raction
‘L.i — _;,»2 —- 8.7‘-}- |2
2t~ Yot 4r+12

98. If x increase uniformly at the rate of 1 per

second, at what rate is the expression = ’Bt(_‘ increasing

‘when @ becumes 10, ¢ being equal to 4 and b to 61
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99. Find the #™ dc of )
100. Divide a numbcr into two such parts, that

their product multiplied by the difference of their
squares shall be a maximun,

ANSWERS TO THE EXERCISES.

TI.
1. ©.
2. .
a-b a-b,
3 u—b, '01'.’ TR ; O,
111.
1 6.
9000V000VOY’ 7-
IVv.
8. 3a2 14. 3.
10. 2. 15. a1,
I 3. 16. 1: 3.2
V.
21. 5. (22. 7) n.
z2. (1) a (8) a*-12
(2) 3. . P
(3) a- b, @) -

q
4) a2— 12 2
55% o (10) 4;’

(6) 5

5.

te o

VL
23. 60 square feet per second.
24. 160.
25. At the rate of 24.
26. At the rate of ‘08 per second.
27. "0753984 square inches,
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VIIL
29. "0000000000000032.
30. 32 ft.

VIIL
33 2.
34. 50; 2

35. First differential co-efficients are 38, 74 and 2002;
the second ditferential co-efficients are 2, 2, 2.

1X.

36. 12; 12; 6; or3x22; 3x2x2; 3x2x1
37. 4%x23; 4x3x2%; 4x3%x2x2; 4x3x2x1.
38 Tx6xb6x4x3x2x1=|7.
39. jn—1. - ;
40. p—gq.
41. (1) 2.

(2) 3a

(3) 4a3,

(4) 17216

(5) 45a*4,

(6) 1000,
42. (1) 20 x 1927,

(2) 20x 19 x 1817,

(3) 20x19%x 18 x 1728,

(4) 20x19x18x 17 x 1615

(5) 20x19%x18x ... x 12"

(©) (20.
43 (1) 1422

(2) 2ux.

(3) 12ax2

(4) - 6%

022
(5) ;j.
(6) 321

(7) z-dor

1
e



46.
47.
48.

58.
63.

DIFFERENTIAL CALCULUS.

(8) (a+b)(p+gar+a-l
9) a(n+1z™

432 cubic inches.
XI.
2 3x4
=t 49- 75
3 4x5
- 50. " o5 -
2 99 x 100
(1) - s1. (1) — i
3 30a
(2) o (2) pe
\ 12 110(a? - b?)
3 - = @ -2
PNt i 462
(4) a2 (4) s
XII1.
210°,
XYV.
95. | 64. 0.
XVI
45°,
XVIII
2.3.4
%
. n(n-1)(n—2)n - 3)(n 4)(n—5)(n—6) x
(n~ DS,
. 1x2x3.
14‘).2'+ 2ax -3,
. 4xH5X6X7x8zx-9,

. sinx and cos z.
. 4302,
. 1,165,

111
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XIX.
81. Maximum when x=38.
82. Maximum when x=u«, function=a3
Minimum when 2 =2a, function=0.
83. x=0 gives a maximum.
x=2u gives a minimum.
84. =1 gives a maximum.
r=4 gives a minimum.
38, 3
86. 3414 when x=4. 16 when =2,
27 3

3.
88. The parts must be equal.
89. The line must be hisected.
go. The perpendicular must be bisected.

MISCELLANEOUS EXLRLISES

1
92. at + j
93. 1414
o4 1+3x8—- x82+83x84—etc.
5

4o+ 1222+ 4008,
2.

. At rate of 200 per second.
1,23.

xn-&l
even or odd.
100. If 2a=the number,
a+x=one part,
a — z=the other,

. N - . .
’, being + or — according as n is

then .7c=-5-é .

@1 ASGOW : ROBERT MACLEMOSK, FRINTER TO THE UNIVERSITY
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CLASSICS.

ELEMENTARY CLASSICS.

18mo, Eighteenpence each.

THis SERIES FALI§ INTO TWO CLASSES—

(1) First Reading Books for Beginners, provided not
only with Introductions and Notes, but with
Vocabularies, and in some cases with Exercises
bosed upon the Text.

(2) Stepping-stones to the study of particular authors,
intended for more advanced students who are beginning
to read such authors as Terence, Plato, the Attic Dramatists,
and the harder parts of Cicero, Horace, Virgil, and
Thucydides.

These are provided with Introductions and Notes, but
no Vocabulary. The Publishers have been led to pro-
vide the more strictly Elementary Books with Vocabularies
by the representations of many teachers, who hold that be-
ginners do not understand the use of a Dictionary, and of
others who, in the case of middle-class schools where the
cost of books is a serious consideration, advocate the
Vocdbulary system on grounds of economy. It is hoped
that the two parts of the Series, fitting into one another,
may together fulfil all the requirements of Elementary and
Preparatory Schools, and the Lower Fdrms of Public
Schools.



4 MACMILLAN’S EDUCATIONAL CATALOGUE.

The following Elementary Books, with Introductions,
Notes, and Vocabularies, and in some cases with
Exercises, are either ready or in preparation:—

Casar.—THE GALLIC WAR. BOOK 1. Edited by A. S.
WALPOLE, M. A. [Ready.

THE INVASION OF BRITAIN. Being Selections from Books
IV, and V. of the “ De Bello Gallico.” Adapted for the use of
Beginners. With Notes, Vocabulary, and Exercises, by W,
WELCH, M.A,, and C. G. DUFFIELD, M. A. [Ready.

THE GALLIC WAR. BOOKS I1I. anp III. Edited by the
Rev. W, G. RUTHERFORD, M. A.,, LL.D., Head-Master of West-
mipster School. [Ready.

THE GALLIC WAR. SCENES FROM.BOOKS V. anp VI,

Edited by C. CoLBECK, M.A., Assistant-Master at Harrow ;
formerly Fellow of Trinity College, Cambridge. [Ready.

Cicero.—DE SENECTUTE. Kdited by E. S. SHUCKBURGH,
M.A., late Fellow of Emmanuel College, Cambridge.

[/n preparation.

DE AMICITIA. By the same Editor. [In the press.

STORIES OF ROMAN HISTORY. Adapted for the Use of
Beginners. With Notes, Vocabulary, and Exercises, by the Rev.
G. E. Jeans, M.A., Fellow of Hertford College, Oxford, and
A. V. JoNEs, M.A., Assistant-Masters at Haileybury College.

[Ready.

Eutroplus.——Adapted for the” Use of Beginners. With Notes,
Vocabulary, and Exercises, by WiLLIAM WELCH, M.A,, and C.
G. DurrieLp, M.A., Assistant-Masters at Surrey County School,
Cranleigh. [Ready.

Greek Testament.—SELECTIONS FROM THE GOSPELS,
Edited by Rev. A. CALVERT, M.A,, late Fellow of St. John'’s

College, Cambridge. [7n preparation.
Homer.—ILIAD. BOOK 1. Edited by Rev. Joun Bonp, M.A.,
and A. S. WALPOLE, M. A, [Ready.

ILIAD, BOOK XVIII. THE ARMS OF ACHILLES, Edited
by S. R. JAMEs, M.A., Assistant-Master at Eton College. [ Ready.

ODYSSEY. BOOK 1. Edited by Rev. JouNn BonNp, M.A. and
A. S. WaLroLE, M. A, [Ready.
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Horace.—ODES. BOOKS L.—IV, Edited by T, E. Pace, M.A,,
late Fellow of St. John’s College, Cambridge ; Assistant-Master

at the Charterhouse, Each Is. 64. [Ready.
Livy.—BOOK 1. Edited by H. M. STEPHENSON, M.A., Hcad
Master of St. Peter’s School, York. [Ready.

THE HANNIBALIAN \WAR. Being part of the XXI. AND
XXII. BOOKS OF LIVY, adapted for the use of heginners,
by G. C. MacAuLAY, M.A., Assistant-Master at Rugby ; formerly
Fellow of Trinity College, Cambridge. [Ready.

THE SIEGE OF SYRACUSE. Adapted for the Use of Beginners,
With Notes, Vocabulary, and Exercices, by GEORGE RICHARDs,
M.A., and A. S. WaLroLE, M.A. [/n the press,

Ovid.—SELECTIONS. Edited by E. S. SHUCKBURGH, M.A.,
late Fellow and Assistant-Tutor of Emmanuel College, Cambridge,
[Ready.
Pheedrus.— ELECT FABLES. Adapted for the Use of Be-
ginners. With Notes, Exercises, and Vocabularies, by A. S.
WaLpoLE, M. A. [Ready.
Thucydides.—THE RISE OF THE ATHENIAN EMPIRE.
BOOK I cc. LXXXIX. — CXVIL. AND CXXVIIL —
CXXXVIII. Edited with Notes, Vocabulary and Exercises, by
F. H. CoLsoN, M.A., Senior Classical Master at Bradford
Grammar School ; Fellow of St. John’s College, Cambridge

[Ready,

Virgil.—ZNEID. BOOK 1. Edited by A. S. WALPOLE, M.A.

[Read); .

ZNEID, BOOK V. Edited by Rev. A. CALVERT, M.A,, late

Fellow of St. John’s College, Cambridge. [Ready.
SELECTIONS. Edited by E. S. SHUCKBURGH, M. A,

[Ready.

Xenophon.—ANABASIS. BOOK I Edited by A. S.

WALPOLE, MA. [Ready.

The following more advanced Books, with Introductions
and Notes, but no Vocabulary, are either ready, or in

preparation:—
Aeschylus.—PROMETEHUS VINCTUS. Edited by Rev. H,
M. STEPHENSON. [/n preparation,

Qicero.—SELECT LETTERS. Edited by Rev. G. E. JEANs,
M.A., Fellow of Hertford Collece, Oxford, and Assistant-Master
at Haileybury College. [Ready.

Euripides.—HECUBA. Edited by Rev. JoHN Boxp, M.A.
and A. S. WALPOLE, M. A. L Ready.
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ierodotus.—SELECTIONS FROM BOOKS VII. anp VIIL
THE EXPEDITION OF XERXES. Edited by A. H. CoOKE,
M.A,, Fellow and Lecturer of King's College, Cambridge.

[Ready.

{orace. — SELECTIONS FROM THE SATIRES AND
EPISTLES. Edited by Rev. W. J. V. BAKER, M.A., Fellaw of
St. John’s College, Cambridge ; Assistant-Master in Marlborough
College. [Ready.

SELECT EPODES AND ARS POETICA. Edited by H. A.
DALToN, M. A, formerly Senior Student of Christchurch ; A<sistant-

. Master in Winchester College. [Ready.
ley.—THE LAST TWO KINGS OF MACEDON. SCENES
¥ROM THE LAST DECADE OF LIVY, Selected and Edited

by F. H. RawLINs, M. A, Fellow of King's College, Cambridge;
-and Assistant-Master at Eton Collere. [/n preparation.
Plato.—EUTHYPHRO AND MENEXEKUS. Edited by C. E.
GRAvVes, M.A,, Classical Lecturer and late Fellow of St. John’s

College, Cambridge. [Ready.
Terence.—SCENES FROM THE ANDRIA. Edited by F. W.
CORNISH, M.A., Assistant-Master at Eton College. [Ready.

The Greek Elegiac Poets.— FROM CALLINUS TO
CALLIMACHUS. Selected and Edited by Rev. HERBERT
KvyNAsTON, D.D,, Principal of Cheltenham College, and formerly
Fellow of St. John’s College, Cambridge. [Ready.

Thucydides.—BOOK IV. Cus. L.—XLI. THE CAPTURE
OF SPHACTERIA. Edited by C. E. GRAVEs, M.A. [Ready.

Virgil.—GEORGICS. BOOK II. Edited by Rev. J. H. SKRINE,
M.A., late Fellow of Merton College, Oxloid ; Assistant-Master

at Uppingham. [Ready.
*4* Other Volumes to follow.

CLASSICAL SERIES
FOR COLLEGES AND SCHOOLS.
Feap. 8vo.
Being select portions of Greek and Latin authors, edited
with Introductions and Notes, for the use of Middle and
Upper forms of Schools, or of candidates for Public
Examinations at the Universities and elsewhere.

Aschines.— IN CTESIPHONTEM. Edited by Rev. T.
GWATKIN, M. A., late Fellow of St. John's College, Cambridge.
[7n the prese,
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Zschylus, —PERSA. Edited by A. O. PRICKARD, M.A.,
Fellow and Tutor of New College, Oxford. With Map. 3s. 64,

Catullus.—SELECT POEMS. Edited by F. P. Simpson, B.A.,
late Scholar of Balliol College, Oxford. New and Revised
Tidition. 5s. The Text of this Edition is carefully adapted to
Sch ol use.

Cicero.—THE CATILINE ORATIONS. From the German
of KArRL HALM. FEdited, with Additions, by A. S. WILKINs,
M.A., Professor of Iatin at the Owens College, Manchester.
New Edition, 3s. 64.

PRO LEGE MANILIA. Edited after HALM by Professor A. S.
WiLKINS, M.A. 35, 6d.

THE SECOND R{ILIPPIC ORATION. From the German
of KARL HALM. Edited, with Corrections and Additions,
by Joun E. B. MAYOR, Professor of Latin in the University of
Cambridge, and Fellow of St. John's College. New Edition,
revised. 5s.

PRO ROSCIO AMERINO. Edited, after HaLM, by E. 11, DoN
KIN, M.A., late Scholar of Lincoln College, Oxford ; Assistant
Master at Sherborng School.  4s. 64,

PRO P. SESTIO. Edited by Rev. H. A. HHoLpEN, M.A,, LL.D,,
late Fellow of Trinity College, Cambridge; and late Classica!
Examiner to the University of London. §s.

Demosthenes.—DE CORANA. Edited by B. DRAKE, M.A.,
late Fellow of King's College, Cambridge. Necw and revised
Edition, 4. 6d.

ADVERSUS LEPTINEM. Edited by Rev. J R. King, M.A,,
Fellow apd Tutor of Oriel Caliege, Oxford. 4s. 64.

THE FIRST PHILIPPIC. Edited, after C. REHDANTZ, by Rev.
T. GWATKIN, M. A., late Fellow of St. John’s College, Cambridgc.
25. 6d.

Euripides.——BACCHAE. Edited by E. S. SHUCKBURGH, M.A.
L late Fellow of Emmanuel College, Cambridge.  [/n pgreparation

HIPPOLYTUS. Ediﬁd by J. P. MauAFFY, M.A., Fellbw and
Professor of Ancient History in Trinity College, Dublin, and J. B.
Bury, Scholar of Trinity College, Dublin. 3. 64.
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furipides.— MEDEA. Edited by A. W. VERRALL, M.A,,
Fellow and Lecturer of Trinity College, Cambridge. 3s. 64.

IPHIGENIA IN TAURIS. Edited by E. B. ENGLAND, M.A.,
Lecturer at the Owens College, Manchester. 4s. 62.

1erodotus.—BOOXS V. anp VI FEdited by Rev. A. H.
CooKkE, M.A., Fellow of King’s College, Cambridge.

[ 492 preparation;

BOOKS VII. anp VIII. THE INVASION OF GREECE BY

XERXES. Edited by THoMAs CAsE, M.A., formerly Fellow

of Brasenose College, Oxford. [Zn pregaration.

domer.—ILIAD. BOOKS I, IX., XI., XVL.—XXIV. THE
STORY OF ACHILLES. Edited by the late J. H. PrATT,
M.A., and WALTER LEaF, M.A., Fellows of Trinity College,
Cambridge. 6s.

ODYSSEY. BOOK IX. Edited by Prof Joun E. B. MAYOR.
25. 64.

ODYSSEY. BOOKS XXI.—XXIV. THE TRIUMPH OF
ODYSSEUS. Edited by 8. G. HamiLToN, B.A., Fellow of
Hertford College, Oxford. 3s. 6d.

Horace.—THE ODES. Edited by T. E. PAGE, M.A., formerly
Fellow of St. John’s College, Cambridge ; Assistant-Master at
Charterhouse 6s. (BOOKS I, II., IIL, and IV. separately,
2s. each.)

THE SATIRES. Edited by ARTHUR PALMER, M.A,, Fellow of
Trinity College, Dublin; Professor of Latin in the University of
Dublin. 6s.

THE EPISTLES anp ARS POETICA, Edited by Professor
A, S. WILKINS, M.A. [/ the press.

Juvenal. THIRTEEN SATIRES. Edited, for the Use of
Schools, by E. G. IIarRDY, M.A., Head-Master of Grantham
Grammar School ; late Fellow of Jecus College, Oxford. ss.

The Text of this Edition is carefully adapted to School use.
SELECT SATIRES. Edited by Professor JoHN E. B. MAYOR.
X. AND XI. 3s. 64. XIL—XVI. 4 64.

Livy.—BOOKS II. aAnD 111. Edited by Rev. H. M. STEPHENSON,
M.A., Head-Master of St. Peter’s School, York. 5.

BOOKS XXI. aNp XXII. Edited by the Rev. W. W, Capgs,
M.A., Reader in Ancient History at Oxford. With Maps, §s.

BOOKS XXIII ANp XXIV, Edited by G. C. MACAULAY, M.A.,
Assistant-Master at Rugby. [Zu preparation.
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Lucretius. BOOKS IL—III. Edited by J. H. WARBURTON
Leg, M.A,, late Scholar of Corpm Christi College, Oxford, and
Assistant-Master at Rossall. 4. 6d.

Lysias.—SELECT ORATIONS. Edited by E. S. SHUCKBURGH,
M.A., Assistant-Master at Eton College. 6s.

Martial. — SELECT EPIGRAMS. Edited by Rev. H. M.
STEPHENSON, M.A. 6s. :

Ovid.—FASTI. Edited by G. H. HaLLAM, M.A., Fellow of St.
{N l;l sMCollege, Cambridge, and Assistant-Master at Harrow.

it aps 5.
H%JRRIDUMJPISTULIE XIII. Edited by E. S. SHUCKBURGH,
METAMOI.{PHOSES BOOKS XIII. anp XIV. Edited by

C. SiMmoNs, M. A, [ the press.
Plato.—MENO. Edited by E. S. THoMPsoN, M.A., Fellow of
Christ’s College, Cambridge. [/n preparation.

APOLOGY AND CRITO. Edited by F. J. H. JENKINSON,
M.A., Fellow of Trinity College, Cambridge.  [/n preparation.
THE REPUBLIC. BOOKS I.—V. Edited by T. Fl. WARREN,
M.A., Fellow of Magdalen College, Oxford. [7n the press.

Plautus.—MILES GLORIOSUS. Edited by R. Y. TYRRELL,
M.A., Fellow and Professor of Greek in Trinity College, Dublin.
55

Pliny.—LETTERS. BOOK III. Edited by Professor Joun E. B
Mavor. With Life of Pliny by G, H. RENDALL, M.A. 55

Plutarch.—LIFE OF THEMISTOKLES. Edited by Rev.
H. A. HoLpeN, M.A., LLD. ss.

Polybius.—HISTORY OF THE ACHEAN LEAGUE. Being
Parts of Books IL, IIL, and IV, Edited by W. W. CaPEs,
M.A. [/n preparation.

Propertius.—SELECT POEMS. Edited by Professor J. P.
POSTGATE, M.A., Fellow of Trinity College, Cambridge. 6s.

. Sallust.—CATILINA axp JUGURTHA. Edited by C. MErI-
’ VALE, D.D., Dean of Ely. New Edition, carefully revised and
enlarged, 4s. 64. Or separately, 2s. 64. each.
BELLUM CATULINAE. Edited by A. M, Cook, M.A,, Assist.
ant Master at St. Paul’s School. 4s. 64.
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ophocles.—ANTIGONE. Edited by Rev. JoHN BoNp, M.A.,
and A, S. WALPOLE, M.A. [1n )mparamn

'‘acitus.—AGRICOLA anp GERMANIA. Edited by A. J.
CHURCH, M.A., and W. ]J. BroDrieB, M.A., Translators of
Tacitus. New Edition, 3s. 64. Or separately, 2s. each.

TIIE ANNALS, BOOK VI. By the same Editors. 2s. 64.

THE HISTORY. BOOKS I. AND 1I. Edited by A. D. GoDLEY,
M.A. [Zn preparation.

TIIE ANNALS. BOOKS I anp JI. Edited by J. S. REID,
M.A. [/n preparation.

‘erence,—HAUTON TIMORUMENOS. Edited by E. S.
SHUCKBURGH, M.A. 3s. With Translation, 4. 62.

PHORMIO. Edited by Rev. JoHN Bony, M.A. and A. S.
WALPOLE, B.A. ¢4s. 64d.

‘hucydides. BOOK 1V. Edited by C. E. Graves, M.A.,
Classical Lecturer, and late Fellow of St. John’s College,
Cambridge. §s.

BOOKS 1. II. IIL. AND V. DBy the same Editor. Ta be published
- separately. [7n preparation.
BOOKS VI. anp VII, THE SICILIAN EXPEDITION. Edited

Ly the Rev. PERCIVAL FRrosT, M.A,, late Fellow of St. John’.

College, Cambridge. New Edition, revised and enlarged, with
Map. §s.

Tirgil— ZNEID. BOOKS IL anp III. THE NARRATIVE
OF ZANEAS. Edited by E. W. Howson, M. A., Fellpw of King's
College, Cambridge, and Assmtant-Master at HMTOW 3s.

l{enophon.—HELLENJCA, BOOKS I. anp II. Edited by
H. HaiLstoNEg, B.A., late Scholar of Peterhouse, Cambridge.
With Map. 4. 64.

CYROPZAEDIA. BOOKS VI1I. anD VIII. Edited by ALFRED
GoopwiN, M.A., Professor of Greek in University College,
London. 5.

MEMORABILIA SOCRATIS. EKdited by A. R. CLUER, B.A.
Balliol College, Oxford. 6s.

THE ANABASIS. BOOKS I.—IV. Edited by Professors W. W,
GooDWIN and g W. WHITE. Adapted to Goodwin’s Greek
Grammar, With a Map. §s.
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Xenophon.—HIERO. Edited by Rev. H. A, HoLDEN, M.A.,
LL.D. 3s 6d.
OECONOMICUS. By the same Editor, With Introduction,
Explanatory Notes, Critical Appendix, and Lexicon, 6s.

** Other Volumes will follow.

CLASSICAL LIBRARY.

(1) Texts, Edited with Introductions and Notes,
for the use of Advanced Students. (2) Commentaries
and Translations.

_ —THE EUMENIDES. The Greek Text, with
Introduction, English Notes, and Verse Translation, By BERNARD
DRAKE, M.A., late Fellow of King’s College, Cambridze.
8vo. 5.

AGAMEMNON, CHOEPHORE, AND EUMENIDES. Edited,
with Introduction and Notes, by A. O. PRICKARD, M A., Fellow
and Tutor of New College, Oxford. 8vo. [/n preparation.

AGAMEMNO. Emendavit DAVID S. MARGOLIOUTH, Coll. Nov.
Oxon. So: Demy 8vo. 2s. 6d.

Antoninus, Marcus Aurelius.—BOOK 1V. OF THE
MEDITATIONS. The Text Revised, with Translation and

Notes, by HAasTINGs CROSSLEY, M.A., Professor of Greek in
Queen’s College, Belfast. 8vo. 6s.

Aristotle.—THE METAPHYSICS. BOOK 1. Translated by
a Cambridge Graduate. 8vo. §s. [Book 11. in preparation.
THE POLITICS. Edited, after SusgMIHL, by R. D. Hicks,
M.A., Fellow of Trinity College, Cambridge. 8vo. [/# tke press.
"THE POLITICS. Translated by Rev. J. E C. WELLDON, M.A.,
Felhw of King's College, Cambridge, and Master of Dulwich
College. Crown 8vo. Ics, 6d.
THE RHETORIC. By the same Translator. [/n the press,
& AN INTRODUCTION TO ARISTOTLE’S RHETORIC.
With Analysis, Notes, and Appendices. By E. M. CoPE, Fellow
and Tutor of Trinity College, Cambridge. 8vo. J4s.
THE SOPHISTICI ELENCHI. With Translation and Notes
by E. Posre, M.A,, Fellow of Oriel College, Oxford. 8vo. 8s. 64.



12 MACMILLAN'S EDUCATIONAL CATALOGUE.

Aristophanes.—THE BIRDS. Translated into English Verse,
with Introduction, Notes, and Appendices, by B. H. KENNEDY,
D.D., Regius Professor of Greek in the University of Cambridge.
Crown 8vo, 6s. Help Notes to the same, for the use of
Students, 1s. 6d.

Attic Orators.—FROM ANTIPHON TO ISAEOS. By
R. C. Jems, M.A., L1..D,, Professor of Greek in the University
of Glasgow. 2 vols. 8vo. 25s,

SELECTIONS FROM ANTIPHON, ANDOKIDES, LYSIAS,
ISOKRATES, AND ISAOS. Edited, with Notes, by Pro-
fecsor JEBB. Being a companion volume to the preceding work.
8vo. 125 6d. .

Babrius. Edited, with Introductory Dissertations, Critical Notes,
Commentary and Lexicon. By Rev. W. GWNION RUTHERFORD,
M.A., LL.D., Head-Master of Westminster School. 8vo. 12s. 6d,

Cicero.—THE ACADEMICA. The Text revised and explained
by J. S. REp, M.L., Fellow of Caius College, Cambridge.
New Edition. With Translation. 8vo. [7n the press.

THE ACADEMICS. Translated byJ. S. REID, M.L. 8vo. 55, 64.

SELECT LETTERS. After the Edition of ALBERT WATSON,
M.A. Translated by G. E. JEANS, M.A., Fellow of Hertford
College, Oxford, and Assistant-Master at Haileybury, 8vo,
10s. 6d.

(See also Classical Sertes.)

Euripides.—MEDEA. Edited, with Introduction and Notes, by
A. W. VERRALL, M.A., Fellow and Lecturer of Trinity College,
Cambridge. 8vo. 7s. 6d.

INTRODUCTION .-TO THE STUDY OF EURIPIDES. By
Professor J. P. MAHAFFY. Fcap. 8vo, 1s. 6d. (Classical Writers
Series.)

(See also Classical Series.)

Herodotus.—BOOKS I.—III. THE ANCIENT EMPIRES
OF THE EAST. Edited, with Notes, Introductions, and Ap-
ndices, by A. H. Savce, Deputy-Professor of Comparative
ﬁlilology, Oxford ; Honorary LL.D., Dublin, Demy 8vo. 16s.

BOOKS IV,.—IX. Edited by REGINALD , W. MACAN, M.A,,
Lecturer in Ancient History at Brasenose College, Oxford. 8vo.
[/ preparation.
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Homer.—THE ILIAD. -Edited, with Introduction and Notess
by WALTER LEAF, M.A., Fellow of Trinity College, Cambridge,
and the late J. H. PrRATT, M. A. 8vo. [Zn preparation-

THE ILIAD. Translated into English Prose. By ANDREW
LANG, M.A., WALTER LEAF, M. A., and ERNEST MYERs, M.A.
Crown 8vo. 125, 6d.

THE ODYSSEY. Done into Englich by S. H. BUTCHER, M A.,
Professor of Greek in the University of Edinburgh, and ANDREW
Laxg, M.A., late Fellow of Merton College, Oxford. Fourth
Edition, revised and corrected. Crown 8vo. 10s. 64.

INTRODUCTION TO THE STUDY OF HOMER. By the
Right Hon. W. E. GLADSTONE, M.P. 18mo. 1s. (Literature
Primers.)

HOMERIC DICTIONARY. For Use in Schools and Colleges.
Translated from the German of Dr. G. AUTENRIETH, with Addi-
tions and Correc#ions, by R. P. Krep, Ph.D. With numerous
Illustrations. Crown 8vo. 6s. (See also Classical Series.,)

Horace.—THE WORKS OF HORACE RENDERED INTO
ENGLISH PROSE. With Introductions, Running Analysis,
Notes, &c. By J. LONSDALE, M.A., and S. LEE, M.A. (Globe
Edition.) 3s. 6d.

STUDIES, LITERARY AND HISTORICAL, IN THE ODES
OF HORACE. By A. W. VERRALL. Fellow of Trinity College,
Cambridge. Demy 8vo. 8s. 64.

(See also Classical Series.)

Juvenal. —THIRTEEN SATIRES OF JUVENAL. With a
Commentary. By JoHN E. B. MAYOR, M. A,, Professor of Latin
in the University of Cambridge. Second Edition, enlarged.
Crown 8vo. Vol. 1. 7s. 64. Vol. II. 10s. 64.

THIRTEEN SATIRES. Translated into English after the Text
of J. E. B, Mavor by HERBERT STRONG, M.A., Professor of
Latin, and ALEXANDER LEEPER, M.A., Warden of Trinity
College, in the University of Melbourne. Crown 8vo. 3s. 6d.

(Sce also Classical Series.)

Livy. BOOKS XXL—XXV, Translated by ALFRED JOHN
CHURCH, M.A., of Lincoln Colleze, Oxford, Professor of Latin,
University College, London, and WILLIAM JACKSON BRODRIBB,
M.A., late Fellow of St. John’s College, Cambridge. Cr. 8vo.
9s. 6d.

¢ .

INTRODUCTION TO THE STUDY OF LIVY. By Rev.
W. W, CaPEs, Reader in Ancient History at Oxford. Fcap. 8vo.
15, 6d. (Classical Writers Servies.)

(See also Classkal Series.)
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Martial.—BOOKS I awp II. OF THE EPIGRAMS. Edited,
with Introduction and Notes, by Professor J. E. B. MAYUR, M. A,
8vo. [4n the press.

(See also Classical Series.)

Pausanias.—DESCRIPTION OF GREECE. Translated by
J. G. Frazer, M. A,, Fellow of Trinity College, Cambridge.

. [4n preparation,

Phrynichus.—THE NEW PHRYNICHUS; being a Revised
Text of the Ecloga of the Grammarian Phrynichus. With Intro-
duction and Commentary by Rev. W. GUNION RUTHERFORD,

. M.A., LL.D., Head Master of Westminster School. 8vo. 18s.

Pindar.—THE EXTANT ODES OF PINDAR. Translated
into English, with an Introduction and short Notes, by ERNEsT
MvERrs, M. A, late Fellow of Wadham College, Oxford. Second
Edition. Crown 8vo. 3§s.

Plato.—PHADO. Edited, with Introducti*n, Notes, and Appen-
dices, by R. D. ARCHER-HIND, M. A,, Fellow of Trinity College.
Cambridge. 8vo. 8s. 64.

PHILEBUS. Edited, with Introduction and Notes, by HENRY
JacksoN, M.A., Fellow of Trinity College, Cambridge. 8vo.
[/n preparation.
THE REPUBLIC.—Edited, with Introduction and Notes, by H. C.
GOODHART, M.A., Fellow of Trinity College, Cambridge. 8vo
[/n preparation.
THE REPUBLIC OF PLATO. Translated into English, with
an Analysis and Notes, by J. LL. DAvies, M.A,, and D. J.
VAUGHAN, M.A. 18mo. 4s. 64.
EUTHYPHRO, APOLOGY, CRITO, AND PHAIDO. Trans-
lated by F. J. CHURCH. Crown 8vo. 4s. 64,
(See also Classical Series.)

Plautus.—THE MOSTELLARIA OF PLAUTUS. With Notes,
Prolegomena, and Excursus. By WiLLiam Ramsay, M.A,,
formerly Professor of Humanity in the Universitty of Glasgow,
Edited by Professor GEORGE G. RaMsaY, M. A., of the University
of Glasgow. 8vo. 14s.

(See also Classical Series.)

Sdllust.—CATILINE anp JUGURTHA. Translated, with
Introductory Essays, by A. W. PoLLARD, B.A. Crown §vo. 6s.
(See also Classical Series.)

Studia Scenica.—Part 1., Section I, Introductory Study on
the Text of the Greek Dramas. The Text of SOPHOCLES’
TRACHINIAE, 1-300. By DAvIDp S. MarGoLIOUTH, Fellow
of New College, Oxford. Demy 8vo. 2s. 64.
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Tacitus.—THE ANNALS. Edited, with Introductions ard
Notes, by G. O. HOLBROOKE, M.A., Professor of Latin in Trinity
College, Hartford, U.8.A. With Maps. 8vo. 16s.

THE ANNALS. Translated by A. J. CHURCH, M. A., Profe<sor
of Latin in the University of London, and W. J. BRoDRIBB, M. A.
With Notes and Maps. New Edition. Crown 8vo. 7s. 64.

THE HISTORY. Edited, with Introduction and Notes, by
Rev. WALTER SHORT, M.A., and Rev. W. A, SPOONER, M.A.
Fellows of New College, Oxford. 8vo. [7n preparation.

THE HISTORY. Translated by A. J. CHURCH, M. A., Professor
of Latin in the University of London, and W. ]. BRODRIBB, M. A.
With Notes and a Map. New Edition. Crown 8vo. 6s.

THE AGRICOLA AND GERMANY, WITH THE DIALOGUE
ON ORATORY. Translated by A. J. CHurcH, M.A., and
W. J. BroDRIBB, M.A. With Notes and Maps. New and
Revised Edition. ®Crown 8vo. 4s. 6d.

INTRODUCTION TO THE STUDY OF TACITUS. B
A. J. CHURCH, M.A. and W. J. BroDrIBB, M.A. Fcap. 8vo
18mo. 1s. 6d. (Classical Writers Series.)

Theocritus, Bion, and Moschus. Rendered into Eng-

lish Prose with Introductory Essay by ANDREW LANG, M.A.
Crown 8vo.

Virgil.—THE WORKS OF VIRGIL RENDERED INTO

ENGLISH PROSE, with Notes, Introductions, Running Analysis,

and an Index, by JAMES [.ONSDALE, M.A., and SAMUEL L&k,
M.A. New Edition. Globe 8vo. 3s. 6d.

THE AZNEID. Translated by J. W. MACKAIL, M.A., Fellow of

Balliol College, Oxford. Crown 8vo. [1n the press.

GRAMMAR, COMPOSITION, & PHILOLOGY.

Belcher.——SHORT EXERCISES IN LATIN PROSE COM-
POSITION AND EXAMINATION PAPERS IN LATIN
GRAMMAR, to which is prefixed a Chapter on Analysis of
Sentences. By the Rev. H. BELCHER, M.A., Assistant-Master in
King’s College School, London. New Edition. 18mo. 1. 64.

KEY TO THE ABOVE (for Teachers only). 2s. 6d.

& SHORT EXERCISES IN LATIN PROSE COMPOSITION
Part II., On the Syntdx of Sentences, with an Appendix, includ-
ing EXERCISES IN LATIN IDIOMS, &c. 18mo. 3s

KEY TO THE ABOVE (for Teachers only). 3s.
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Blackie.—GREEK AND ENGLISH DIALOGUES FOR USE
IN SCHOOLS AND COLLEGES. By JOHN STUART BLACKIE,
Emeritus Professor of Greek in the University of Edinburgh.
New Edition. Fcap. 8vo. 2s. 64.

Bryans.—LATIN PROSE EXERCISES BASED UPON
CAESAR’S GALLIC WAR. With a Classification of Caesar’s
Chief Phrases and Grammatical Notes in Cmsar’s Usages. By
CLEMENT BRYANs, M.A,, Assistant-Master in Dulwich College,
late Scholar in King’s College, Cambridge, and Bell University
Scholar. Extra fcap. 8vo, 2s. 6d.

GREEK PROSE EXERCISES based upon Thucydides. By the
same Author. Extra fcap. 8vo. In preparation.

Colson.—A FIRST GREEK READER. By F. H. CoLsoN,
M.A., Fellow of St. John’s College, Cambridge, and Senior
Classical Master at Bradford Grammar Schepl. Globe 8vo.

[/ preparation.

Eicke.—FIRST LESSONS IN LATIN. By K. M, EIcKE, B.A.,
Assistant-Master in Qundle School. Globe 8vo. 2s.

Ellis.—PRACTICAL HINTS ON THE QUANTITATIVE
PRONUNCIA? (ON OF LATIN, for the use of Classical
Teachers and Lingwsts. By A. J. Ervis, B.A., F.R.S. Extra
feap. 8vo. 4s. 64.

England.—EXERCISES ON LATIN SYNTAX AND IDIOM,
ARRANGED WITH REFERENCE TO ROBY’S SCHOOL
LATIN GRAMMAR. By E. B. ENGLAND, M.A., Assistant
Lecturer at the Owens College, Manchester. Crown 8vo. 2s. 6d.
Key for Teachers only, 2s. 64.

Goodwin.—Works by W. W. Goopwin, LL.D., Professor ot
Greek in Harvard University, U.S.A.
SYNTAX OF THE MOODS AND TENSES OF THE GREEK
VERB., New Edition, revised. Crown 8vo. 6s. 6d.
A GREEK GRAMMAR. New Edition, revised. Crown 8vo. 6s.
“It is the best Greek Grammar of its size in the Englsh language.”’—
ATHENEUM.

A GREEK GRAMMAR FOR SCHOOLS. Crown Bvo. 3s. 64.

Greenwood.—THE ELEMENTS OF GREEK GRAMMAR,
including Accidence, Irregular Verbs, and Principles of Deriva-
tion and Composition ; adapted to the System of Crude Forms.
By J. G. GREENWOOD, Principal of Owens College, Manchester,
New Ldition. Crown8vo. §s. 6d.
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Hadley and Allen —A GREEK GRAMMAR FOR
SCHOOLS AND COLLEGES. By JaMes HapLey, late
Professor in Yale College. Revised and in part Rewritten by
FREDERIC DE FOREST ALLEN, Professor in Harvard College.
Crown 8vo. 6s.

Hodgson.—MYTHOLOGY FOR 1LATIN VERSIFICATION.
A brief Sketch of the Fables of the Ancients, prepared to be
rendered into Latin Verse for Schools. By F. Hobgson, B.D.,
late Provost of Eton. New Edition, revised by F. C. HobGsON,
M.A. 18mo. 3¢

Jackson,—FIRST STEPS TO GRELK PROSE COMPOSI-
TION. By BLOMFIELD JACKSON, M.A., Assistant-Master 1n
King's College School, f{.ondon. New Edition, revised and
enlarged. 18mo. 1s. 64.

KEY TO FIRST STEPS (for Teachers only). 18mo. 3s. 64.

SECOND STEPS®TO GREEK PROSE COMPOSITION, with
Mi:cellaneous Idioms, Aids to Accentuation, and KExamination
Papers in Greek Scholarship. 18mo. 2s. 64.

KEY TO SECOND STEPS (for Teachers only). 18mo. 3s. 6d.

Kynaston.—EXERCISES IN THE COMPOSITION OF
GREEK IAMBIC VERSE by Translations from English Dra-
matists, By Rev, H. KyNasToN, D.D., Principal of Cheltenham
College. With Introduction, Vocabulary, &c. Eatra fcap. 8vo.
4s. 6d,

KEY 6TO THE SAME (for Teachers only). Extra fcap. 8vo.

4s. 6d.

Lupton.—ELEMENTARY EXERCISES IN LATIN VERSE
COMPOSITION. By Rev. J. H. LuproN, M.A,, Sur-Master
in St. Paul’s School. Globe 8vo. [ £ preparation.

Macmillan.—FIRST LATIN GRAMMAR. By M. C. Mac-
MILLAN, M.A,, late Scholar of Christ’s College, Cambridge;
sometime Assistant-Master in St. Paul’s School. New Edition,
enlarged. 18mo. Is. 64. A SHORT SYNTAX is in preparation
to follow the ACCIDENCE.

Macmillan’s Progressive Latin Course. By A, M.
CooK, M. A., Assist. Master at St. Paul’s School. [/ prepar ation.

Marshall—A TABLE OF IRREGULAR GREEK VERBS,
classified according to the arrangement of Curtius’s Greek Grammai.
By J. M. MaRsHALL, M.A., Head Master of the Cathedrai
School, Durham. 8vo, cloth. New Edition. 1s.
¢
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Mayor (John E. B.)—FIRST GREEX READER. Edited
after KARL HALM, with Corrections and large Additions by Pro-
fessor JouN E. B. MAYOR, M. A., Fellow of St. John’s College,
Cambridge. New Edition, revised. Fcap. 8vo. 4s. 64.

Mayor (Joseph B.)—GREEK FOR BEGINNERS. By the
Rev. J. B. Mavor, M.A., Professor of Classical Literature in
King’s College, London. Part L, with Vocabulary, 1s. 6d.
Parts 11. and 1II., with Vocabulary and Index, 35. 64. Complete

. in one Vol. feap. 8vo, 4s. 64.

Nixon.—PARALLEL EXTRACTS arranged for translation into
English and Latin, with Notes on Idioms. By J. E. Nixon,
M.A., Fellow and Classical Lecturer, King’s College, Cambridge.
Part I.—Historical and Epistolary. New Edition, revised and
enlarged. Crown 8vo. 3s. 64.

Peile.—A PRIMER OF PHILOLOGY. By J. PEiLE, M.A,,
Fellow and Tutor of Christ’s College, Camboidge. 18mo. 1s.

Postgate and Vince.—A DICTIONARY OF LATIN
ETYMOLOGY. By J. P. PosTGATE, M.A., and C. A, VINCE,
M.A. [Zn preparation.

Potts (A. W.)—Works by Arexaxper W. Porrs, M.A.
LL.D., late Fellow of St. John’s College, Cambridge; Heac
Master of the Fettes College, Edinburgh.

HINTS TOWARDS LATIN PROSE COMPOSITION. New
Edition. Extra fcap. 8vo. 3s.

PASSAGES FOR TRANSLATION INTO LATIN PROSE
Edited with Notes and References to the above. New Edition.
Extra feap. 8vo. 25 64.

LATIN VERSIONS OF PASSAGES FOR TRANSLATION
INTO LATIN PROSE (for Teachers only). 2s. 64.

Reid.—A GRAMMAR OF TACITUS. By]J.S. Rzip, M.L.,

Fellow of Caius College, Cambridge. [{n preparation.
A GRAMMAR OF VERGIL. By the same Author.
[/n prepasation.

** Similar Grammars to other Classical Authors will probably follow.

Roby.—A GRAMMAR OF THE LATIN LANGUAGE, from
Plautus to Suetonius, By H. J. Rosy, M.A., late Fellow of St.
ohn’s College, Cambridge. In Two Parts, Third Edition.
art I containing:—Book I. Sounds. Book II. Inflexions.
Book III, Word-formation. Appendices. Crown 8vo, 8s, 64.
Part II. Syntax, Prepositions, &c. Crown 8vo. 10s. 64,
“ Marked by the clear and practised insight of a master in his art. A book that
would do honour to any ouptry.”"—ATHENZUM.
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Roby (continsued)—

S%HOOL LATIN GRAMMAR. By the same Author. Crown
vo, §s.

Rush.—SYNTHETIC LATIN DELECTUS. A First Latin
Construing Book arranged on the Principles of Grammatical
Analysis.  With Notes and Vocabulary. By E. Rusi, B.A.
With Preface by the Rev. W. F. MouLToN, M.A,, D.D, New
and Enlarged Edition, Extra feap, 8vo, 2. 64.

Rust.—FIRST STEPS TO LATIN PROSE COMPOSITION,
By the Rev. G. Rust, M.A., of Pembroke College; Oxford.
Master of the Lower School, King’s College, London. New
Edition. 18mo., 1Is.

Rutherford.—wWorks by the Rev. W. GUNION RUTHERFORD,
M.A., LL.D., H@ad-Master of Westminster School.

A FIRST GREEK GRAMMAR. New Edition, enlarged. Extra
fcap. 8vo. 1s. 6d.

THE NEW PHRYNICHUS; being a Revised Text of the
Ecloga of the Grammarian Phrynichus. With Introduction and
Commentary. 8vo. 18s.

Simpson.—LATIN PROSE AFTER THE BEST AUTHORS
By ¥. P. SimpsoN, B.A., late Scholar of Balliol College, Oxford
I. CAISAR. Extra feap. 8vo. [Zn the press’

Thring.—Works by the Rev. E. THRING, M.A., Head-Master of
Uppingham School.

A LATIN GRADUAL. A First Latin Construing Book for
Beginners. New Edition, enlarged, with Coloured Sentence
Maps. Fcap. 8vo. 2s. 6d.

A M:ngUAL OF MOOD CONSTRUCTIONS. Fcap. 8vo.
1s. 6d.

White.—FIRST LESSONS IN GREEK. Adapted to GOOD-
WIN’S GREEK GRAMMAR, and designed as an introdudction
to the ANABASIS OF XENOPHON. By JoHN WILLIAMS
WHITE, Ph.D., Asoistant-Professor of Greek in Harvard Univer-
sity. Crown 8vo. 4s. 6d.

Wright—Works by J. WRIGHT, M.A., late Head Master of
Sutton Coldfield School, N

A HELP TO LATIN GRAMMAR; or, The Form and Use
of Words in Latin, with Progressive Exercises. Crowa &vo.

44 64d.
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Wright (continued)—

THE SEVEN KINGS OF ROME. An Easy Narrative, abridged
from the First Book of Livy by the omission of Difficult Passages ;
being a First Latin Reading Book, with Grammatical Notes and
Vocabulary. New and revised Edition. Fcap. 8vo. 3s. 6.

FIRST LATIN STEPS; OR, AN INTRODUCTION BY A
SERIES OF EXAMPLES TO THE STUDY OF THE
LATIN LANGUAGE. Crown8vo. 3s.

ATTIC PRIMER. Arranged for the Use of Beginners. Extra
feap. 8vo. 2s. 6d.

A COMPLETE LATIN COURSE, comprising Rules with
Examples, Excrcises, both Latin and English, on each Rule, and
Vocabularies. Crown 8vo. 2s. 64.

Wright (H. C.)—EXERCISES ON THE LATIN SYNTAX-
By H. C. WRIGHT, B.A., Assistant-Master at Haileybury
College. 18mo. a [7n preparation.

ANTIQUITIES, ANCIENT HISTORY, AND
PHILOSOPHY.

Arnold.—Works by W. T. ARNOLD, B.A.
A HANDBOOK OF LATIN EPIGRAPHY. [/n preparation.
THE ROMAN SYSTEM OF PROVINCIAL ADMINISTRA-
TION TO THE ACCESSION OF CONSTANTINE THE
GREAT. Crown 8vo. 6s.
Beesly. —STORIES FROM THE HISTORY OF ROME.
By Mrs. BEEsLY. Fcap. 8vo. 2s. 6d.
Classical Writers.—Edited by JouN RICHARD GREEN, M.A.
LL.D. Fcap. 8vo. Is. 6d. each.
EURIPIDES. By Professor MAHAFFY.
MILTON. By the Rev. STOPFORD A. BROOKE, M. A,
LIVY. By the Rev. W. W. CarEs, M. A,
VIRGIL. By Professor NETTLESHIP, M.A.
SOPHOCLES. By Professor L. CAMPBELL, M. A.
DEMOSTHENES. By Professor S. H. BUTCHER, M. A.
TACITUS. By Professor A. J. CHURCH, M.A., and W. J.
BRODRIBB, M. A.
Freeman.—HISTORY OF ROME. By EDWARD A. FREE:
MAN, D.C.L., LL.D., Hon. Fellow of Trinity College, Oxford,
Regius Professor of Modern History in the University of Oxford.

(Historical Course for Schools.) 18mo. [Zn preparation.
A SCHOOL HISTORY OF ROME. By the same Author
Crown 8vo. [Zn preparation.

HISTORICAL ESSAYS. Second Series. [Greek and Roman
History.] By the same Author. 8vo. 10, 6d.
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Fyffe.—A SCHOOL HISTORY OF GREECE. By C. A
Fyrrg, M. A, late Fellow of University College, Oxford. Crown
8vo. [In preparation.

Geddes. — THE PROBLEM OF THE HOMERIC POEMS.

By W. D. GebpEs, Profe-sor of Greek in the University of
Aberdeen. 8vo. 14s.

Gladstone.—Works by the Rt. IJon. W, E. GLADSTONE, M.P,
THE TIME AND PLACE OF HOMER. Crown 8vo. 6s. 6d.
A PRIMER OF HOMER. 18mo. 1s.

Jackson.—A MANUAL OF GREEK PHILOSOPHY. By
HEeNRY JACKsoN, M.A., Fellow and Pralector in Ancient
Philosophy, Trinity College, Cambridge. [Zn preparation.

Jebb.—Works by R. C. [eBB, M.A., Professor of Greek in the
University of Glagow.

THE ATTIC ORATORS FROM ANTIPHON TO ISAEOS.
2 vols. 8vo. 25

SELECTIONS FROM THE ATTIC ORATORS, ANTIPHON,
ANDOKIDES, LYSIAS, ISOKRATES, AND I1SAZEO0S.
Edited, with Notes. Being a companion volume to the preceding
work. 8vo. 125 6d.

A PRIMER OF GREEK LITERATURE. 18mo. 1Is.

Kiepert.—MANUAL OF ANCIENT GEOGRAPHY, Tians-
lated from the German of Dr. HEINRICH Kiercrr., Crown
8vo. 55

Mahaffy.—Works by J. P. MAHAFFY, M.A., Professor of Ancient
Hictory in Trinity College, Dublin, and Hon. Fellow of Queen’s
College, Oxford. :

SOCIAL LIFE IN GREECE; from Homer to Menander.
Fourth Edition, revised and enlarged. Crown 8vo. 9s.

RAMBLES AND STUDIES IN GREECE. With Illustrations.
Second Edition. With Map. Crown 8vo. 10s. 64.

A PRIMER OF GREEK ANTIQUITIES. With Illustrations.
18mo. 1. .

CEURIPIDES. 18mo. 1Is. 6d. (Classical Wrilers Series.)

Mayor (J. E. B.)—BIBLIOGRAPHICAL CLUE TO LATIN
LITERATURE. Edited after HUBNER, with large Additions
by Professor JoHN E. B. MAVOR. Crown 8vo. 105, 64.
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Newton.—ESSAYS IN ART AND ARCHZAOLOGY. By
C. T. NewrtoN, C.B., D.C.L., Professor of Archaology in
University College, London, and Keeper of Greek and Roman
Antiquities at the British Museum. 8vo. 125, 64.

Ramsay.—A SCHOOL HISTORY OF ROME. By G. G
Ramsay, M.A., Professor of Humanity in the University of
Glasgow. With Maps. Crown 8vo. [In preparation.

Sayce.—THE ANCIENT EMPIRES OF THE EAST. By
A. H. SAYCE, Deputy-Professor of Comparative Philosophy,
Oxford, Hon. LL.D. Dublin. Crown 8vo. 6s.

Schwegler.—A TEXT-BOOK OF GREEK PHILOSOPHY.
Translated from the German by HENRY NORMAN. 8vo.

. [7n preparation,

Wilkins.—A PRIMER OF ROMAN ANTIQUITIES, By
Professor WILKINS. Illustrated, 18mo. oIs.

MATHEMATICS.
(1) Arithmetic, (2) Algebra, (3) Euclid and Ele-
mentary Geometry, (4) Mensuration, (5) Higher

Mathematics.
ARITHMETIC.

Aldis.—THE GIANT ARITHMOS. A most Elementary Arith-
metic for Children. By MArRY STEADMAN AvLpis. With
Tllustrations.  Globe 8vo. 2s. 64.

Brook-Smith (J.).—ARITHMETIC IN THEORY AND
PRACTICE. By J. Brook-SMITH, M.A., LL.B.,, St. John's
College, Cambridge; Barrister-at-Law ; one of the Masters o
Cheltenbam Callege. New Edition, revised. Crown 8vo. 4s. 64.

Candler.—HELP TO ARITHMETIC. Designed for the use of
Schools, By H. CANDLER, M.A., Mathematical Master of
Uppingham School. Extra fcap. 8vo. 2s. 64.

Dalton.—RULES AND EXAMPLES IN ARITHMETIC. By
the Rev. T. DALTON, M.A., Assistant-Master of Eton College.
New Edition. 18mo. 2s. 64.

[Answers to the Examples are appended.

Pedley.—EXERCISES IN ARITHMETIC for the Use of
Schools, Containing more than §,000 original Examples, By
S. PepLRY, late of Tamworth Grammar School. Crown 8vo. §s.
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Smith.—Works by the Rev. BARNARD SMITH, M.A., late Rector
of Glaston, Rutland, and Fellow and Seninr Bursar of S. Peter’s
Colleve, Cambridge.

ARITHMETIC AND ALGEBRA, in their Principles and Appli-
cation ; with numerous systematically arranged Examples taken
from the Cambridge Examination Papers, with especial 1eference
to the Ordinary Examination for the B.A. Degree. New Edition,
carefully Revised. Crown 8vo. 10s. 6d.

ARIT;}METIC FOR SCHOOLS. New Edition. Crown 8vo.

4. 64,

A KEY TO THE ARITHMETIC FOR SCHOOLS. New
Edition. Crown 8vo. 8s. 6d.

EXERCISES IN ARITHMETIC. Crown 8vo, limp cloth, 2s.
With Answers, 2s. 6d.

Answers separately‘ 6d.

SCHOOL CLASS-BOOK OF ARITHMETIC. 18mo, cloth. 3.
Or sold separately, in Three Parts, 1. each,

KEYS TO SCHOOL CLASS-BOOK OF.ARITHMETIC
Parts 1., I1., and I11., 25, 6d. each.

SHILLING BOOK OF ARITHMETIC FOR NATIONAL
AND ELEMENTARY SCHOOLS. 18mo, cloth. Or sepa-
rately, Part I. 2, ; Part 11, 34. ; Part III, 74, Answers, 6d.

THE SAME, with Answers complete. 18mo, cloth. 1Is. 64.

KEY TO SHILLING BOOK OF ARITHMETIC. 18mo 4s. 6d.

EXAMINATION PAPERS IN ARITHMETIC, 18mo. 1s 64.
The same, with Answers, 18mo, 25s. Answers, 6d.

KEY TO EXAMINATION PAPERS IN ARITHMETIC.
18mo. 4. 6d.

TIIE METRIC SYSTEM OF ARITHMETIC, ITS PRIN-
CIPLES AND APPLICATIONS, with numerous Examples,
written expressly for Standard V, in National Schools, New
Edition. 18mo, cloth, sewed. 3d.

A CHART OF THE METRIC SYSTEM, on a Sheet, size 42 in.
by 34in. on Roller, mounted and varnished. New Edition.
Price 3. 6d.

¢ Also 2 Small Chart on a Card, price 1d.

EASY LESSONS ISN ARITH;VI%TIC, com;inin fExegcise; a:g
Reading, Writi ing, and Dictation. Part I. for Stan
e AN I e Rt od.
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Smith.—Works by the Rev. BARNARD SMITH, M. A. (continued)—
EXAMINATION CARDS IN ARITHMETIC. (Dedicated to
Lord Sandon.) With Answers and Hints
Standards I. and II in box, Is. Standards IIl., IV., and V., in
boxes, 1s. each, Standard VI. in Two Parts, in boxes, 1s. each.
A and B papers, of nearly the same difficulty, are given so as to
prevent copying, and the colours of the A and B papers differ in each
Standard, aud from those of every other Standard, so that a master
or mistress can see at a glance whether the children have the proper

papers.
ALGEBRA.

Dalton.—RULES AND EXAMPLES IN ALGEBRA. By the
Rev. T. DaLTON, M.A,, Assistant-Master of Eton College.
Part I. New Edition. 18mo. 2s. Part II. 18mo. 2. 6d.

Jones and Cheyne.—ALGEBRAICAL EXERCISES. Pro-
gressively Arranged. By the Rev. C. A. JoNEs, M.A,, and C.
II. CHEYNE, M.A., F.R.A.S., Mathematical Masters of W est-
minster School. New Edition. 18mo. 2s. 6d.

Smith.—ARITHMETIC AND ALGEBRA, in their Principles
and Application ; with numerous systematically arranged Examples
taken from the Cambridge Examination Papers, with especial
reference to the Ordinary Examination for the B.A. Degree. By
the Rev. BARNARD SMITH, M. A., late Rector of Glaston, Rutland,
and Fellow and Senior Bursar of St. Peter’s College, Cambridge.
New Edition, carefully Revised. Crown 8vo. 105, 6d.

Todhunter.—\Woiks by I. TopHUNTER, M.A., F.R.S., D.Sc.,
late of St. John’s College, Cambridge.

“Mr. Todhunter s chiefly known to Students of Mathematics as the author of a
series ot admirable mathematical text-books, which possess the rare qualities of being

clear in style and absolutely free from mistakes, typographical or other.”” —SATURDAY
RevIEW.

ALGEBRA FOR BEGINNERS. With numerous Example:,
New Edition. 18mo. 2s. 6d.

KEY TO ALGEBRA FOR BEGINNERS. Crown 8vo. 6s. 6d.

ALGEBRA. For the Use of Colleges and Schools. New Edition.
Crown 8vo. 7s. 6d.

KEY TO ALGEBRA FOR THE USE OF COLLEGES AND
SCHOOLS. Crown 8vo. 10s. 6d.

EUCLID & ELEMENTARY GEOMETRY.
Constable.—GEOMETRICAL EXERCISES FOR BE-
. GINNERS. By SAMUEL CONSTABLE. Crown 8vo. 3s. 64.
Cuthbertson.—EUCLIDIAN GEOMETRY. By FraNcis

CUTHBERTSON, M.A., LL.D., Head Mathematical Master of the
City of London School, Extra fcap, 8vo. 4s. 6d.
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Jodgson.—EUCLID. BOOKS I. AND 1I. Edited by CHARLES
L. DopgsoN, M.A., Student and late Mathematical Lecturer of
Christ Church, Oxford. Second Edition, with wcrds substituted
for the Algebraical Symbols used in the First Edition. Crown

8vo. 2s.
e The‘text of this Edition has been ascertained, by counting the words, to be
$5 tham f of that d in the ordinary editions.

f{itchener.—A GEOMETRICAL NOTE-BOOK, containing
Easy Problems in Geometrical Drawing preparatory to the Study
of Geometry. Fcr the Use of Schools. By F. E. KITCHENER,
M.A., Mathematical Master at Rughy., New Edition. 4to. 25,

Mault.—NATURAL GEOMETRY: an Introduction to the
Logical Study of Mathematics. For Schools and Technical
Clases,  With Explanatory Models, bated upon the Tachy-
metrical works of Jid. Lagout. By A. MAuLr. 18mo. Is

Models to 1llustrate the above, in Dox, 12s. 64.

Smith. — AN ELEMENTARY TREATISE ON SOLID
GEOMETRY. By CHARLES SMITH, M A,, Fellow and Tutor
of Sidney Sussex College, Cambridge. Crown 8vo. 9s. 64.

S5yllabus of Plane Geometry (corresponding to Euclid,
Books I.—VL.). Prepared by the Acsociation for the Improve-
ment of Geometrical Teaching. New Edition. Crown 8vo. 1Is.

Codhunter.—THE ELEMENTS OF EUCLID. For the Use
of Colleges and Schools. By I, TopHUNTER, M.A,, F.R.S,, D,Sc.,
of St. John’s C(llege, Cambridge. New Edition. 18mo. 3s. 6./

KEY TO EXERCISES IN EUCLID. Crown 8vo. 6s. 67.

Wilson (J. M.).—ELEMENTARY GEOMETRY. BOOKS
1.—V. Containing the Subjects of Euclid’s first Six Books. Fkol-
lowing the Syllabus of the Geometrical Association. By the Rev.
J. M. WiLsoN, M.A., Head Master of Clifton College. New
Edition. Extra fecap. 8vo. 4. 6d.

MENSURATION.

f'odhunter.-—MENSURA’rION FOR BEGINNERS. By L
TODHUNTER, M.A,, F.R.S,, D.Sc., late of 5t. John’s College,
Cambridge. With Examples, New Edition. 18mo. 2s, 64,

% A Ry to this work is now in the press.
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HIGHER MATHEMATICS.

Ail'y.——lWorks by Sir G. B. Ary, K.C.B., formerly Astronomer-
Royal :— .

ELEMENTARY TREATISE ON PARTIAL DIFFERENTIAL
EQUATIONS. Designed for the Use of Students in the Univer-
sities. With Diagrams. Second Edition. Crown 8vo. §s. 6d.

ON THE ALGEBRAICAL AND NUMERICAL THEORY
OF ERRORS OF OBSERVATIONS AND THE COMBI-
NATION OF OBSERVATIONS. Second Edition, revised.
Crown 8vo. 6s. 64.

Alexander (T.).—ELEMENTARY APPLIED MECHANICS.
Being the simpler and more practical Cases of Stress and Strain
wrought out individually from first principles by means of Elemen-
tary Mathematics. By T. ALEXANDER, C,E., Professor of Civil
Engineering in the Imperial College ofY Engineering, Tokei,
Japan. Crown 8vo. PartI. 4. 6d.

Alexander and Thomson.——ELEMENTARY APPLIED
MECHANICS. By THoMAS ALEXANDER, C.E., Professor of
Engineering in the Imperial College of Engineering, Tokei, Japan ;
and ARTHUR WATSON THomsoN, C.E., B,Sc., Professor of
Engineering at the Royal College, Cirencester, Part II. TRANs-
VERSE STRESS. Crown 8vo. 10s. 64.

Bayma.—THE ELEMENTS OF MOLECUT.AR MECITANICS.
By JoskrH Bayma, S.J., Professor of Philosophy, Stonyhurst
College, Demy 8vo. 10s. 6d.

Beasley.-—AN ELEMENTARY TREATISE ON PLANE

TRIGONOMETRY. With Examples. By R. D. BEASLEY,
M.A. Eighth Edition, revised and ehlarged. Crown 8vo, 3s,67.

Blackburn (Hugh).—ELEMENTS OF PLANE TRIGO-
NOMETRY, for the use of the Junior Class in Mathematics in
the University of Glasgow. By HUGH BLACKBURN, M.A,, late
Professor of Mathematics in the University of Glasgow. Globe
8vo. 1s. 6d.

Boole.—Works by G. BooLg, D.C.L., F.R.S,, late Professor of
Mathematics in the Queen's University, Ireland.

A TREATISE ON DIFFERENTIAL EQUATIONS. Sup-
lementary Volume, Edited by I. ToDHUNTER. Crown &vo.

THE CALCULUS OF- FINITE DIFFERENCES. Third .
Edition, revised by J. F. MourToN. Crown 8vo. 105, 64.
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-ambridge Senate-House Problems and Riders,
with Solutions:—

1875—PROBLEMS AND RIDERS. By A. G. GREENHILL,
M.A. Crown 8vo. 8. 6d.

1878—SOLUTIONS OF SENATE-HOUSE PROBLEMS. , By
the Mathematical Moderators and Examiners. Edited by J. W. L.
GLAISHER, M. A, Fellow of Trinity College, Cambridge. 125,

heyne.—AN ELEMENTARY TREATISE ON THE PLAN-
ETARY THEORY. By C. H. H. CHEYNE, M.A,, F.R.A.S.
With a Collection of Problems. Third Edition. Ldited by Rev.
A. FREemMAN, M.A,, F.R.A.S. Crown 8vo. s 6d.

Christie.—A COLLECTION OF ELEMENTARY TEST-
QUESTIONS IN PURE AND MIXED MATHEMATICS;
with Answers and Appendices on Synthetic Division, and on the
Solution of Numegical Equations by Horner’s Method. By JAMES
R. CurisTig, F.R.S., Royal Military Academy, Woolwich.
Crown 8vo. 8s. 64.

Clausius.-—MECHANICAL THEORY OF HEAT. By R.
Cravusius. Translated by WALTER R. BrROWNE, M.A,, late
Fellow of Trinity College, Cambridge. Crown 8vo. 10s. 6d.

Clifford.—THE ELEMENTS OF DYNAMIC. An Introduction
to the Study of Motion and Rest in Solid and Fluid Bodies. By W.
K. CLIFFORD, F.R.S., late Professor of Applied Mathematics and
Mechanics at University College, London. PartI.—-KINEMATIC.
Crown 8vo. 7s. 6d.

Cotterill—APPLIED MECHANICS: an Elemcntary General
Introduction to the Theory of Structures and Machines. By
James H. CoTTERILL, F.R.S,, Associate Memher of the Council
of the Institution of Naval Architects, Associate Member of the
Institution of Civil Engineers, Professor of Applied Mechanies in
the Royal Naval College, Greenwich. Medium 8vo. 18s.

Day (R. E.) ~ELECTRIC LIGHT ARITHMETIC. ByR.E.
DAY, M.A., Evening Lecturer in Experimental Physics at King's
College, London. Pott 8vo. 2s.

[irew.—GEOMETRICAL TREATISE ON CONIC SECTIONS,

By W. H. DREW, M.A,, St. John’s College, Cambridge. New
idition, enlarged. Crown 8vo. §s.

SOLUTIONS TO THE PROBLEMS IN DREW'S CONIC

SECTIONS. Crown 8vo. 4. 6d.
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Dye.!'.—EXERCISES IN ANALYTICAL GEOMETRY. Com-
piled and arranged by J. M. DYER, M.A., Senior Mathematical

Master in the Classical Department of Cheltenham College. With
Illustrations. Crown 8vo, 4. 6d.

Eagles(T.H.).—A CONSTRUCTIVE.TREATISE ON PLANE
CURVES. By T. H. EAGLES, of the Royal Indian Engineering
College, Cooper’s Hill. With Illustrations. Crown 8vo.

[ the press.

Edgar (J. H.) and Pritchard (G. S.).—NOTE-BOOK ON
PRACTICAL SOLID OR DESCRIPTIVE GEOMETRY.
Containing Problems with help for Solutions. By J. H. EDGAR,
M.A., Lecturer on Mechanical Drawing at the Royal School of
Mines, and G. S. PRriTCHARD, Fourth Edition, revised by
ARTHUR MEEZE. Globe 8vo. 4s. 64,

Ferrers.—Works by the Rev. N. M. FErRLRS, M.A., Fellow and

Master of Gonville and Caius College, Cambridge.

AN ELEMENTARY TREATISE ON TRILINEAR CO-
ORDINATES, the Method of Reciprocal Polars, and the Theory
of Projectors. New Edition, reviced. Crown 8vo. 6s. 64.

AN ELEMENTARY TREATISE ON SPHERICAL HAR-
MONICS, AND SUBJECTS CONNECTED WITH THEM.
Crown 8vo. 7s. 64,

Forsyth.—A TREATISE ON DIFFERENTIAL EQUA-
TIONS. By A. R. ForsyTH, M.A., Fellow of Trinity College,
Cambridge. [£n preparation.

Frost.—Works by PErcivaL Frost, M.A., D.Sc., formerly Fellow
of St. John's College, Cambridge ; Mathematical Lecturer at
King’s College.

AN ELEMENTARY TREATISE ON CURVE TRACING. By
PerCIVAL FROsT, M.A. 8vo. 12

SOLID GEOMETRY. A New Edition, revised and enlarged, of
the Treatise by FROST and WOLSTENHOLME. In 2 Vols. Vol. L.
8vo. 165

Hemming.—AN ELEMENTARY TREATISE ON THE
DIFFERENTIAL AND INTEGRAL CALCULUS, for the
Use of Colleges and Schools. By G. W. HEmMING, M.A,,
Fellow of St. John’s College, Cambridge. Second Edition, with
Corrections and Additions. 8vo, ¢s.

Ibbetson.—A TREATISE ON ELASTICITY. By W. I..
IBBETSON, M.A. Crown 8vo. [In preparation,
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:llet (John H.).—A TREATISE ON THE THEORY OF
FRICTION. By JounN H. JeLLET, B.D., Provost of Trinity
gollgfe, Dublin ; President of the Royal Irish Academy. 8vo.
s, 6d.

>hnson.—INTEGRAL CALCULUS, an Elementary Treatise
on the; Founded on the Method of Rates or I'luxi ms. By
WiLLIAM WOOLSEY JOHNSON, Piof:ssor of Mathematics at the
United8 States Naval Academy, Annopolis, Maryland. Demy
8vo. 8s.

lelland and Tait.—INTRODUCTION TO QUATER-
NIONS, with numerous examples. By P, Kerrano, M.A,,
F.R.S., and P. G. Tart, M.A,, Profe-sors in the Department of
Mathematics in the University of Edinbwigh. Second Edition.
Crown 8vo. 7s. 63’ .

{empe.—HOW TO DRAW A STRAIGHT LINE: a Lecture
on Linkages. By A. B. KEMPE. With Illustrations. Crown 8vo.
15. 6d. (Nature Sertes.)

{nOX—DIFFERENTIAL CALCULUS FOR BEGINNERS.
By ALEXANDER KNox. Fcap. 8vo. [/n the press.

+0Ck.—ELEMENTARY TRIGONOMETRY. By Rev. J. B.
T.ock, M.A., Senior Fellow, Assistant Tutor and Lecturer in
Mathematics, of Gonville and Caius College, Cambridge ; late
Assistant-Master at Eton, Globe 8vo. 4s. 6d.

HIGHER TRIGONOMETRY. By the same Author. Globe 8vo,
s, 6d.

Both Parts complete in One Volume. Globe 8vo, 7s. 62.

~upton.—ELEMENTARY CHEMICAL ARITHMETIC. With
1,100 Problems. By SYDNEY LupTON, M.A., Assistant-Master
in Harrow School. Globe 8vo. 5s.

Macfarlane.—PHYSICAL ARITHMETIC. By ALEXANDER
MACFARLANE, D.Sc., Examiner in Mathematics in the University
of Edinburgh. Crown 8vo. [Zn the press.

Vfbrriman.—ELEMENTs OF THE METHOD OF LEAST
SQUARE. By MANSFIELD MERRIMAN, Ph.D., Professer of
<Civil and Mechanical En%i‘t;eering, Lehigh University, Bethlshem,
Penn. Crown 8vo. 7s. 0d.
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Millar.—£LEMENTS OF DESCRIPTIVE GEOMETRY. By
]. B. MILLAR, C.E,, Assistant Lecturer in Engineering in Owens
College, Manchester. Crown 8vo. 6s.

Milne.—~WEEKI1.Y PROBLEM PAPERS. By the Rev. JonN |-
MirLNg, M.A., Second Master of Heversham Grammar School,
Member of the London Mathematical Society, Member of the
Association for the Improvement of Geometrical Teaching, late
Scholar of St. John’s College, Cambridge. Pott 8vo.

[ the press.

Morgan.—A COLLECTION OF PROBLEMS AND EX-
AMPLES IN MATHEMATICS, With Answers. By H. A.
MORGAN, M.A., Sadlerian and Mathematical Lecturer of Jesus
College, Cambridge. Crown 8vo. 6s. 6d.

Muir.—A TREATISE ON THE THEORY OF DETERMI-
NANTS. With graduated sets of Examples. For u-e in
Colleges and Schools, By THos. MUIR, M.A,, F.R.S.E,
Mathematical Master in the High School of Glasgow. Crown
8vu. 7s. 6d.

Parkinson.—AN ELEMENTARY TREATISE ON ME.
CHANICS. Tor the Use of the Junior Classes at the University
and the Higher Classes in Schools. By S. PARKINsoN, D.D.,
F.R.S., Tutor and Pralector of St. John’s College, Cambridge.
With a Collection of Examples, Sixth Edition, revised. Crown
8vo. 9s. 6d.

Phear..—ELEMENTARY HYDROSTATICS. With Numerous
Examples. By ]. B, PHEAR, M.A., Fellow and late Assistant
Tutor of Clare College, Cambridge. New Edition. Crown 8vo.

55, 64.

Pirie.—LESSONS ON RIGID DYNAMICS. By the Rev. G.
Pirie, M.A., late Fellow and Tutor of Queen’s College, Cam-
bridge ; Professor of Mathematics in the University of Aberdeen.
Crown 8vo. 6s.

Puckle.—AN ELEMENTARY TREATISE ON CONIC SEC-
TIONS AND ALGEBRAIC GEOMETRY. With Numerous
Examples and Hints for their Solution ; especially designed for the
Use of Beginners. By G. H. Puckig, M.A. Fifth Editiou,
revised and enlarged. Crown 8vo. 7s. 64.

Rawlinson.—ELEMENTARY STATICS. By the Rev. GEORGE
RAWLINSON, M.A. Edited by the Rev. EbwaRrD Sturaes, M.A,

Crown 8vo. 4. 6.
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leynolds.—MODERN METHODS IN ELEMENTARY
GEOMETRY. By E. M. REvNoLDs, M.A., Mathematical
Master in Chfton College. Crown 8vo. 3s. 64.

leuleaux.—THE KINEMATICS OF MACHINERY. Out-
lines of a Theory of Machines. By Professor T, REULEAUX.
Translated and Edied by Profe or A. B. W. KeNNEDY, C.E.
With 450 Illustrations. Mediam 8vo. 21s.

lice and Johnson.—DIFFERENTIAL CALCULUS, an
Elementary Treatisc on the ; Founded on the Method of Rates or
Fluxions. By JoHN MiNor Rice, Professor of Mathematics 1n
the United States Navy, and WILLIAM WOOLSEY JOHNSON, Pro-
fes-or of Mathematics at the United States Naval Academy.
Third Edition, Revi.ed and Corrected. Demy 8vo. 16s.
Abi1dged Edition, 8s.

‘obinson.—TREATISE ON MARINE SURVEYING. Pre-
pared for the use of younger Naval Officers. With Questions for
Examinations and Exercises principally from the Papers of the
Royal Naval College. With the results. By Rev. JoHN L.
RoBINSON, Chaplain and Instructor in the Royal Naval College,
Greenwich. With Illustrations. Crown 8vo. 7s. 64.

Con1ENrs —Symbols used in Charts and Surveymg—The Constructionand Use

Scales—Laying off Angles—Fixing Posit.ons 1y Angles — Charts and Chart-

rawing—Instruments and Observing — Base Lines— I rien zulation—Levell. ng—

des and Tidal Observations—Soundings—Chron .meters—NMeridian  Distances

Method of Plotting a Survey—Miscellancous Exercises—Index

‘outh.—Works by EpwarRD JouN RoutH, D.Sc., LL.D.,
F.R.S., Fellow of the Univeisity of London, Hon. Fellow of St.
Peter’s College, Cainbridge.

A TREATISE ON THE DYNAMICS OF THE SYSTEM OF
RIGID BODIES. With numerous Examples. Fourth and
enlarged Edition. Two Vols. 8vo. Vol. I.—Elementary Parts.
145. Vol. II.—The Advance Parts. 14s.

STABILITY OF A GIVEN STATE OF MOTION, PAR-
TICULARLY STEADY MOTION. Adams’ Prize Essay for
1877. 8vo. 8s. 6d.

mith (C.)—Worls by CuarLEs SMiTH, M.A,, Fellow and
Tutor of Sidney Sussex College, Cambridge.

CONIC SECTIONS. .Second Ldition. Ciown 8vo, 7s. 6

AN ELEMENTARY TREATISE ON SOLID G]"OMETRY

nowball —THE ELEMENTS OF PLANE AND SPHERI-
GAL TRIGONOMETRY ; with the Construction and Use of
Tables of Logarithms. By J. C. SNowBALL, M. A, New Edition.
Crown 8vo, 7s. 64,
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Tait and Steele.—A TREATISE ON DYNAMICS OF A
PARTICLE., With numerous Examples, By Professor TAIT
and Mr. STEELE. Fourth Edition, revised. Crown 8vo. 12s.

Thomson.—A TREATISE ON THE MOTION OF VORTEX
RINGS. An Essay to which the Adams Prize was adjudged in
1882 in the Univensity of Cambridge. By J. J. THoMsoN, Fellow
and Assistant Lecturer of Trinity College, Cambridge. With
Diagrams. 8vo. 6s.

Todhunter.—Works by I. TopHUNTER, M.A., F.R.S., D.Sc.,
late of St. John's College, Cambridge.

‘“Mr. Todhunter is chiefly known to students of Mathematics as the author of a
series of admirable mathematical text-books, which possess the rare qualities of being
lear in style and absolutely free from mistakes, typographical and other.”—
“ATURDAY REVIEW,

TRIGONOMETRY FOR BEGINNERS. With numerous
Examples. New Edition. 18mo. 2s. 64.

KEY TO TRIGONOMETRY FOR BEGINNERS. Crown 8vo,
85, 6d.

MECHANICS FOR BEGINNERS. With numerous Examples,
New Edition. 18mo. 4s. 6d.

KEY TO MECHANICS FOR BEGINNERS. Crown 8vo.
6s. 6d.

AN ELEMENTARY TREATISE ON THE THEORY OF
EQUATIONS. New Edition, revised. Crown 8vo. 75, 6d.
PLANE TRIGONOMETRY. For Schools and Colleges, New

Edition. Crown 8vo. §s.

KEY TO PLANE TRIGONOMETRY. Crown 8vo. 10s, 6d.

A TREATISE ON SPHERICAL TRIGONOMETRY. New
Edition, enlarged. Crown 8vo. 4s. 64.

PLANE CO-ORDINATE GEOMETRY, as applied to the Straight
Line and the Conic Sections. With numerous Fxamples. New
Edition, revised and enlarged. Crown 8vo. 7s. 6d.

A TREATISE ON THE DIFFERENTIAL CALCULUS. With
numerous Examples. New Edition. Crown 8vo. 10s. 64.

A TREATISE ON THE INTEGRAL CALCULUS AND ITS
APPLICATIONS. With numerous Examples. New FKdition,
revised and enlarged. Crown 8vo. 105 64.

EXAMPLES OF ANALYTICAL GEOMETRY OF THREE
DIMENSIONS. New Edition, revised. Crown 8vo. 4s.

A TREATISE ON ANALYTICAL STATICS. With numerous

Examples. New Edition, revised and enlarged. Crown’8vo.
105, 67,
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odhunter.—Works by I. TODHUNTER, M.A., &c. (continued )—

A HISTORY OF THE MATHEMATICAL THEORY OF
gROBAslSILITY, from the time of Pascal to that of Laplace.

vo, 18s.

RESEARCHES IN THE CALCULUS OF VARIATIONS,
principally on the Theory of Discontinuous Solutions: an Essay to
which the Adams’ Prize was awarded in the University of Cam-
bridge in 1871. 8vo. 6s.

A HISTORY OF THE MATHEMATICAL THEORIES OF
ATTRACTION, AND THE FIGURE OF THE EARTH,
from the time of Newton to that of Laplace. 2 vols. 8vo. 24s.

AN ELEMENTARY TREATISE ON LAPLACE’S, LAME'S,
AND BESSEL’S FUNCTIONS. Crown 8vo. I0s. 6d.

7ilson (J. M.).—SOLID GEOMETRY AND CONIC SEC-
TIONS. With Appendices on Transversals and Harmonic Division.
For the Use of gchools. By Rev. J. M. WiLsoN, M.A. Head
Master of Clifton College. New Edition. Extra fcap. 8vo. 3s. 64.

/ilson.—GRADUATED EXERCISES IN PLANE TRI-
GONOMETRY. Compiled and arranged by J. WiLsoN, M.A.,
and S. R, WiLsoN, B.A. Crown 8vo. 4s. 64.

‘The exercises seem beautifully graduated and adapted to lead a student on most
1tly and pleasantly.”—E. J. RoutH, F.R.S, St. Peter’s College, Cambridge.

(See also Elementary Geometry.)

/ilson (W. P.).—A TREATISE ON DYNAMICS. By W.
P, WiLsoN, M.A., Fellow of St. John’s College, Cambridge, and
Prog;sor of Mathematics in Queen’s College, Belfast. 8vo,
9s. 6d.

7Toolwich Mathematical Papers, for Admission into
the Royal Military Academy, Woolwich, 1880—1883 inclusive.
Crown 8vo, 3s. 6d.

/olstenholme.—MATHEMATICAL PROBLEMS, on Sub
jects included in the First and Second Divisions of the Schedule of
subjects for the Cambridge Mathematical Tripos Examination.
Devised and arranged by JosePH WOLSTENHOLME, D.Sc., late
Fellow of Christ’s College, sometime Fellow of St. John's College,
and Professor of Mathematics in the Royal Indian Engineering
College, New Edition, greatly enlarged. 8vo. 18s.

EXAMPLES FOR PRACTICE IN THE USE OF SEVEN
FIGURE LOGARITHMS, By thesame Author, [/n preparation.
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SCIENCE.

(r) Natural Philosophy, (2) Astronomy, (3)
Chemistry, (4) Biology, (5) Medicine, (6) Anthro-
pology, (7) Physical Geography and Geology, (8)
Agriculture, (9) Political Economy, (10) Mental

and Moral Philosophy.

NATURAL PHILOSOPHY.
Airy.—Works by Sir G. B. Ay, K.C.B., formerly Astronomer-

Royal :—

UNDYGLATORY THEORY OF OPTICS. Designed for the Use
of Students in the University. New Edition. Crown 8vo. 6s. 64.

ON SOUND AND ATMOSPHERIC VIBRATIONS. With
the Mathematical Elements of Music. Wesigned for the Use of
Students in the University, Second Edition, revised and enlarged.
Crown 8vo. 9s,

A TREATISE ON MAGNETISM. Designed for the Use of
Students in the University. Crown 8vo. 9s. 6d.

GRAVITATION: an Elementary Explanation of the Principa
Perturbations in the Solar System. New Edition. Crown 8vo.

. [Fust ready

Airy (Osmond)— A TREATISE ON GEOMETRICAI
OPTICS. Adapted for the Use of the Higher Classes in Schools
By OsmUND AIRY, B.A,, one of the Mathematical Masters i1
Wellington College. Extra fcap. 8vo. 3s. 6d.

Alexander (T.).—ELEMENTARY APPLIED MECHANICS
Being the simpler and more practical Cases of Stress and Strai
wrought out individually from first principles by means of Ele
mentary Mathematics. By T. ALEXANDER, C.E., Professor ¢
Civil Engineering in the Imperial College of Engineering, Toke
Japan. Crown 8vo, Part I. 4s, 64.

Alexander — Thomson. — ELEMENTARY APPLIE
MECHANICS. By THOMAS ALEXANDER, C.E., Professor «
Engineering in the Imperial College of Engineering, Tokei, Japar
and ARTHUR WarsoN THomsoN, C.E., B.Sc., Professor :
Engineering at the Royal College, Cirencester. Part I1. TRAN
VERSE STRESS; upwards of 150 Diagrams, and 200 Exampl
carefully worked out ; new and complete method for finding,
every point of 8 beam, the amount of the greatest bendir
moment and shearing force during the transit of any set of loa
fixed relatively to one another—e.g., the wheels of a locomotiv:
continuous beams, &c., &c. Crown Svo. 105, Ga.
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Awdry.—EASY LESSONS ON LIGHT. By Mrs. W. AWDRY.
Illustrated. Extra fcap, 8vo. 2. 64.

Ball (R. S.).—EXPERIMENTAL MECHANICS. A Course of
Lectures delivered at the Royal College of Science for Ireland.
By R. S. BaLL, M.A,, Professor of Applied Mathematics and
Mechanics in the Royal College of Science for Ireland. Cheaper
Issue. Royal 8vo. 10s. 64, .

Chisholm. —THE SCIENCE OF WEIGHING AND
MEASURING, AND THE STANDARDS OF MEASURE
AND WEIGHT. By H.W. CHisHOLM, Warden of the Standards.
With numerous Illustrations. Crown 8vo. 4s. 64. (Nature Series.

Clausius.—MECHANICAL THEORY OF HEAT. By R.
CrAusius. Translated by WALTER R. BROWNE, M.A., late
Fellow of TrinityCollege, Cambridge. Crown 8vo. 10s. 64.

Cotterill —APPLIED MECHANICS : an Elementary General
Introduction to the Theory of Structures and Machines, B:
James H. CorrERILL, I.R.S., Associate Member of the Council
of the Institution of Naval Architects, Associate Member of the
Institution of Civil Engineers, Professor of Applied Mechanics in
the Royal Naval College, Greenwich. Medium 8vo. 18s.

Cumming.—AN INTRODUCTION TO THE THEORY OF
ELECTRICITY. By LiNN&us CUMMING, M.A., one of the
Masters of Rugby School. With Illustrations. Crown 8vo.
8s. 64.

Daniell.—A TEXT-BOOK OF THE PRINCIPLES OF
PIIYSICS. By ALFRED Daniern, M.A., D.Sc., Lecturer on
Phynics in the Schuol of Medicine, Edinburgh, With Illustrations.
Medium 8vo. 2is.

Day.—ELECTRIC LIGHT ARITHMETIC. By R. E. Day,
M.A., Evening Lecturer i Experimental Physics at King’s
College, London. Pott 8vo. 2.

Everett.—UNITS AND PHYSICAL CONSTANTS. By J. D.
EvererT, F.R.S., Professor of Natural Philosophy, Quecn’s
College, Belfast. Extra fcap. 8vo. 4s. 6d.

3ray.—ABSOLUTE MEASUREMENTS IN ELECTRICITY
oAND MAGNETISM. By ANDREW GraY, M.A,, F.R.S.E,,
Professor of Physics in the University College of North Wales.
Pott 8vo. 3+ 64, Ja
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Grove.—A DICTIONARY OF MUSIC AND MUSICIANS.
By Eminent Writers, English and Foreign. Edited by Sir GEORGE
GROVE, D.C.L., Director of the Royal College of Music, &c.
Demy 8vo.

Vols. 1., I1., and I1I. Price 21s. each.

Vol. I. A to IMPROMPTU. Vol. II. IMPROPERIA to
PLAIN SONG. Vol. III. PLANCHE TO SUMER IS
ICUMEN IN. Demy 8vo. cloth, with Illustrations in Music
Type and Woodcut. Also published in Parts. Parts I, to XIV.,,
and Part XIX., price 3s. 6d. each. Parts XV., XVI., price 7s,
Parts XVII., XVIII., price 7s.

“Dr Grove’s Dictionary will be 2 boon to every intelligent lover of music.”’—

Saturday Review.

Huxley.—INTRODUCTORY PRIMER OF SCIENCE. By T.
H. HuxLEY, P.R.S., Professor of Natural History in the Royal
School of Mines, &c. 18mo. Is. o

Kempe.—HOW TO DRAW A STRAIGHT LINE; a Lecture
on Linkages. By A. B. KEMPE. With Illustrations. Crown
8vo. 1Is. 6d. (Nature Series.)

Kennedy.—MECHANICS OF MACHINERY. By A. B. W.
KENNEDY, M.Inst.C.E., Professor of Engineering and Mechani-
cal Technology in University College, London. With Illus-
trations. Crown 8vo. [In the press.

Lang.—EXPERIMENTAL PHYSICS. By P. R. ScoTT LANG.
M.A., Professor of Mathematics in the University of St. Andrews,
Crown 8vo. [7n preparation.

Lupton.—NUMERICAL TABLES AND CONSTANTS IN
ELEMENTARY SCIENCE. By SypNey LuproN, M.A.,
F.C.S., F.I.C., Assistant Master at Harrow School, Extra fcap.
8vo. 2s. 64.

Macfarlane,—PHYSICAL ARITHMETIC. By ALEXANDER
MACFARLANE, D.Sc., Examiner in Mathematics in the University
of Edinburgh, [7n the press.

Martineau (Miss C. A.).—EASY LESSONS ON HEAT.
By Miss C. A, MARTINEAU. Illustrated. Extra fcap. 8vo. 2s. 6d.

IMayer.—SOUND: a Series of Simple, Entertaining, and Inex-
pensive Experiments in the Phenomena of Sound, for the Use of
Students of every age. By A. M. MAYER, Professor of Physics
in the Stevens Institute of Technology, &c. With numérous
Illustrations. Crown 8vo. 2s. 64, (Natwre Series.)
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Mayer and Barnard.—LIGHT: a Series of Simple, Enter-
taining, and Inexpensive Experiments in the Phenomena of Light,
for the Use of Students of every age. By A. M. MAYER and C.
BARNARD. With numerous Illustrations, Crown 8vo. 2s. 6d.
(Nature Series.)

Newton.—PRINCIPIA. Edited by Professor Sir W, THOMSON
and Professor BLACKBURNE. 4to, cloth. 31s. 64.

THE FIRST THREE SECTIONS OF NEWTON’S PRIN-
CIPIA. With Notes and Illustrations. Also a Collection of
Problems, principally intended as Example: of Newton’s Methods.
By PErRCIVAL FrosT, M.A. Third Edition. 8vo. 12s.

Parkinson.—A TREATISE ON OPTICS. By S. PARKINSON,

D.D., F.R.S., Tutor and Prazlector of St. John’s College, Cam-
bridge. Fourth Edition, revised and enlarged. Crown 8vo. 10s. 64.

Perry. —STEAM.® AN ELEMENTARY TREATISE. By
JoHN PERRY, C.E., Whitworth Scholar, Fellow of the Chemical
Society, Lecturer in Physics at Clifton College. 'With numerous
Woodcuts and Numerical Examples and Exercises. 18mo. 4s. 64.

Ramsay.— EXPERIMENTAL PROOFS OF CHEMICAL
THEORY FOR BEGINNERS. By WiLLIAM RaMsAy, Ph.D,,
Professor of Chemistry in University College, Bristol. Pott 8vo.
25, 6d.

Rayleigh.—THE THEORY OF SOUND. ByLoRD RAYLEIGH,
M.A., F.R.S., formerly Fellow of Trinity College, Cambridge,
8vo. Vol. I. 125. 64. Vol. IL. 125. 6<. [Vol. 111, in the press.

Reuleaux.—THE KINEMATICS OF MACHINERY. Out-
lines of a Theory of Machines. By Professor . REULEAUX.
Translated and Edited by Professor A. B. W. KENNEDY, C.E.
With 450 1llustrations, Medium 8vo. 21s.

Shann.—AN ELEMENTARY TREATISE ON HEAT, IN

RELATION TO STEAM AND THE STEAM-ENGINE.
By G. SHANN, M.A. With Illustrations. Crown 8vo.4s. 64.

Spottiswoode.—POLARISATION OF LIGHT. By the late
W. SporTiswooDE, P.R.S. With many Illustrations. New
Edition. Crown 8vo. 3s. 6d. (Nature Sevies.)

Stewart (Balfour).—Works by BALFOUR STEWART, F.R.S.,
Professor of Natural Philosophy in the Victoria University the
®wens College, Manchester.

PRIMER OF PHYSICS. With numerous Illustrations, New
Edition, with Questions. 18mo. X5 (Science Primers.)
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Stewart (Balfour).—Works by (continued)—

LESSONS IN ELEMENTARY PHYSICS. With numerous
Illustrations and Chromolitho of the Spectra of the Sun, Stars,
and Nebule. New Edition. Feap. 8vo. 4s. 6d.

QUESTIONS ON BALFOUR STEWART'S ELEMENTARY
LESSONS IN PHYSICS. By Prof. THOMAS H. CoRE, Owens
College, Manchester. Fcap. 8vo. 2s,

Stewart—Gee.—PRACTICAL PHYSICS, ELEMENTARY
LESSONS IN. By Professor BALFOUR STEWART, F.R.S., and
W. HALDANE GEE. Feap. 8vo.

Part I. General Physics. [Nearly ready.
Part IT. Optics, Heat, and Sound. [Zn preparation,
Part III. Electricity and Magnetism. [/n preparation,

Stokes.—ON LIGHT. Burnett Lectures. First Course. ON THE
NATURE OF LIGHT. Delivered in Aberdeen in November 1883,
By GEORGE GABRIEL STOKES, M.A., F.K.S., &c., Fellow of
Pembroke College, and Lucasian Professor of Mathematics in the
University of Cambridge. Crown 8vo. 2r, 6.

Stone.—AN ELEMENTARY TREATISE ON SOUND, By
W. H. SToNE, M.B. With Illustrations. 18mo. 3s. 6d.

Tait.—HEAT. By P. G. TArt, M.A., Sec. R.S.E., Formerly
Fellow of St. Peter's College, Cambridge, Professor of Natural
Philosophy in the University of Edinburgh. Crown 8vo. 6s.

Thompson.—ELEMENTARY LESSONS IN ELECTRICITY
AND MAGNETISM. By SiLvaNus P, THoMPsON., Pro-
fessor of Experimental Physics in University College, Bristol.
With Illustrations, Fcap, 8vo. 4s. 6d.

Thomson.—ELECTROSTATICS AND MAGNETISM, RE.
PRINTS OF PAPERS ON, By Sir WiLLiAM THOMSON,
D.C.L., LL.D, F.R.S,, F.R.S.E,, Fellow of St, Peter’s College,
Cambridge, and Professor of Natural Philosophy in the University
of Glasgow. Second Edition. Medium 8vo. 18s.

Thomson.—THE MOTION OF VORTEX RINGS, A
TREATISE ON. An Essay to which the Adams Prize was
adjudged in 1882 in the University of Cambridge. Bé ..
THoMSON, Fellow and Assistant-Lecturer of Trinity College,
Cambridge. With Diagrams. 8vo. 6s.

Todhunter.—NATURALPHILOSOPHY FOR BEGINNERS.
By 1. TODHUNTER, M.A., F.R.S,, D.Sc.

Part I. The Properties of Solid and Fluid Bodies. 18mo. 3s. 64.
Part II, Sound, Light, and Heat. 18mo. 3s. 6. N
Turner.—EXAMPLES IN ELECTRICITY. ByH. H, TURNER,

Rallnw of Trinitv College. Cambridee. Globe 8vo. [/m the press.
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Vright (Lewis). — LIGHT; A COURSE OF EXPFRIL
MENTAL OPTICS, CHIEFLY WITH THE LANTERN.
Br Lewis WRIGHT. With nearly 200 Engravings and Coloured
Plates. Crown 8vo. 7s. 64.

. ASTRONOMY.

iIry.—POPULAR ASTRONOMY. With Illustrations by Sir
G. B. Airy, K.C.B., formerly Astronomer-Royal. New Edition.
18mo. 4. 6d.

orbes.—TRANSIT OF VENUS. By G. Forses, M.A.,
Professor of Natural Philosophy in the Andersonian University,
Glasgow. Illustrated. Crown 8vo. 3s. 6d. (Nature Series.)

odfray.—Works by HucH GODFRAY, M.A., Mathematical
Lecturer at Pembroke College, Cambridge. .

A TREATISE ON WSTRONOMY, for the Use of Colleges and
Schools. New Edition. 8vo. 125 64,

AN ELEMENTARY TREATISE ON THE LUNAR THEORY,
with a Brief Sketch of the Problem up to the time of Newton.
Second Edition, revised. Crown 8vo. §s. 64.

ockyer.—Works by J. NorMAN LOCKYER, F.R.S.

PRIMER OF ASTRONOMY. With numerous Illustrations.
New Edition. 18mo. 1s. (Science Frimers.)

ELEMENTARY LESSONS IN ASTRONOMY. With Coloured
Diagram of the Spectra of the Sun, Stars, and Nebule, and
numerous Illustrations. New Edition. Fcap. 8vo. §s. 64.

QUESTIONS ON LOCKYER’'S ELEMENTARY LESSONS IN
ASTRONOMY. For the Use of Schools. By JoHN FoRrBES-
ROBERTSON. 18mo, cloth limp. 1Is. 6d.

THE SPECTROSCOPE AND ITS APPLICATIONS. With
Coloured Plate and numerous Illustrations. New Edition. Crown
8vo. 3s. 6d. ‘

lewcomb.—POPULAR ASTRONOMY. By S. NEwcoms,
LL.D., Professor U.S. Naval Observatory. With 112 Illustrations
and § Maps of the Stars. Second Edition, reviced. 8vo. 18s.

“It is unlike anything else of its kind, and will be of more use in circulutin%‘n
owledge of Astronomy than nine-tenths of the books which have appeared on the
ject of late years.”” —SATURDAY Review,

* CHEMISTRY.

‘leischer.—A SYSTEM OF VOLUMETRIC ANALYSIS.
"Pranslated, with Notes and Additions, from the Second German
Fdition, by M. M. PATTISON MUIR, F.R.5,E. With Illustrations
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Jones.—Works by Francis Jongs, F.R.S.E., F.C.S., Chemical
Master in the Grammar School, Manchester.

THE OWENS COLLEGE JUNIOR COURSE OF PRAC-
TICAL CHEMISTRY. With Preface by Sir HENRY ROSCOE,
and Illustrations. New Edition. 18mo. 2s. 64.

QUESTIONS ON CHEMISTRY. A Series of Problems and
Exercises in Inorganic and Organic Chemistry. Fcap. 8vo. 3s.

Landauer.—BLOWPIPE ANALYSIS. By J. LANDAUER.
Authorised English Edition by J. TAvLor and W. E. Kay, of
Owens College, Manchester. Extra fcap. 8vo. 4r. 6d.

Lupton.—~ELEMENTAR\' CHEMICAL ARITHMETIC. With
1,100 Problems. By SyDpNev LupTON, M.A., Assistant-Master
at Harrow.  Extra fcap. 8vo. §s.

Muir.—PRACTICAL CHEMISTRY FOR MEDICAL STU-
DENTS. Specially arranged for the first M.B. Course. By
M. M. PATTISON MUIR, F.R.S.E. Fecapt8vo. 1s. 64.

Naumann.—TEXT-BOOK OF THERMO-CHEMISTRY.
An English Translation. Edited by M. M. PATTISON MUIR.

[/n preparation.

Roscoe.—Works by Sir Henry E. Roscog, F.R.S., Professor of
Chemistry in the Victoria University the Owens College, Manchester.

PRIMER OF CHEMISTRY. With numerous Illustrations. New
Edition. With Questions. 18mo. 1Is. (Sciesice Primers).

LESSONS IN ELEMENTARY CHEMISTRY, INORGANIC
AND ORGANIC. With numerous Illustrations and Chromolitho
of the Solar Spectrum, and of the Alkalies and Alkaline Earths.
New Edition. Fcap. 8vo. 4s. 6d.

A SERIES OF CHEMICAL PROBLEMS, prepared with Special
Reference to the foregoing, by T. E. THorPE, Ph.D,, Professor
of Chemistry in the Yorkshire College of Science, Leeds, Adapted
for the Preparation of Students for the Government, Science, and
Society of Arts Examinations. With a Preface by Sir Henry E.
Roscog, F.R.S. New Edition, with Key. 18mo. 2s.

Roscoe and Schorlemmer.—INORGANIC AND OR-
GANIC CHEMISTRY. A Complete Treatise on Inorganic and
Organic Chemistry. By Sir Henry E. Roscog, F.R.S., and
Professor C. SCHORLEMMER, F.R.S. With numerous Illustrations.
Medium 8vo.

Vols, I. and IL—INORGANIC CHEMISTRY.

Vol. I.—The Non-Metallic Elements. 21s. Vol. 1I, Part I.—
Metals, 18s. Vol. II. Part II.—Metals, 18s.

Vol. III.—~ORGANIC CHEMISTRY. Two Parts.

THE CHEMISTRY OF THE HYDROCARBONS and ‘their
Derivatives, or ORGANIC CHEMISTRY. With numerous
Ilustrations, Medium 8vo. 21s. each,
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Schorlemmer.—a MANUAL OF THE CHEMISTKY OF
THE CARBON COMPOUNDS, OR ORGANIC CHE-
MISTRY. By C. SCHORLEMMER, F.R.S., ‘Professor of Che-
mistry in the Victoria University the Owens College, Manchester.
With Illustrations. 8vo. 14s.

Thorpe.—A SERIES OF CHEMICAL PROBLEMS, prepared
with Special Reference to Sir H. Roscoe’s Lessons in Elemen-
tary Chemistry, by T. E. THORPE, Ph.D., Professor of Chemistry
in the Yorkshire College of Science, Leeds, adapted for the Pre-
paration of Students for the Government, Science, and Society of
Arts Examinations. With a Preface by Sir HENRY E. ROSCOE.
New Edition, with Key. 18mo. 2s.

Thorpe and Riicker.—A TREATISE ON CHEMICAL
PHYSICS. By Professor THorPE, F.R.S., and Professor
RUCKER, of thg Yorkshire College of Science. Illustrated.
8vo. [n preparation.

Wright.—METALS AND THEIR CHIEF INDUSTRIAL
APPLICATIONS. By C. ALpER WRrigHT, D.Sec., &c.,
Lecturer on Chemistry in St. Mary’s Hospital Medical School.
Extra fcap. 8vo. 3. 6.

BIOLOGY.

Allen.—ON THE COLOUR OF FLOWERS, as Illustrated in
the British Flora. By GRANT ALLEN. With Illustrations.
Crown 8vo. 3s.6d. (Nature Series.)

Balfour.— A TREATISE ON COMPARATIVE EMBRY-
OLOGY. By F. M. BaLfour, M.A.,, F.R.S., Fellow and
Lecturer of Trinity College, Cambridge. With Illustrations. In
2vols, 8vo. Vol. I.18s. Vol II 21s.

Bettany.—FIRST LESSONS IN PRACTICAL BOTANY.
By G. T. BETTANY, M.A,, F.L.S,, Lecturer in Botany at Guy’s
Hospital Medical School. 18mo. 1s.

Bower—Vines.—A COURSE OF PRACTICAL INSTRUC-
TION IN BOTANY. By F. O. Bowrr, M.A., F.R.S,
Lecturer in the Botany Normal School of Science, South Ken-

® Sington, and SypNEY H. VINES, M.A., D.Sc., F.L.S., Fellow
:1:§ Lecturer, Christ’s College, Cambridge. With a Preface by
®W. T. TmseLtoN Dyer, M.A., C.M.G., F.R.S,, F.L.S,,

Assistant Director of the Royal Gardens, Kew. Crown 8vo.
[Nearly ready



MACMILLAN’S EDUCATIONAL CATALOGUE.

Darwin (Charles).-—MEMORIAL NOTICES OF CHARLES
DARWIN, F.R.S., &c. By Professor HuxLey, .R.S., G. J.
Romangs, F.R.S., ArcHIBALD Grikig, F.R.S.,, and W. T.
THiSELTON DyER, F.R.S. Reprinted from MNature. With a
Portrait, engraved by C. H. JeENs. Crown 8vo, 2. 6d,
(Nature Series.)

Flower (W. H.)—AN INTRODUCTION TO THE OSTE-
OLOGY OF THE MAMMALIA. Being the substance of the
Course of Lectures delivered at the Royal College of Surgeons
of England in 1870. By Professor W,” H. FLOWER, F.R.S.,
F.R.C.S. With numerous Illustrations. New Edition, enlarged.
Crown 8vo. 10s. 64.

Foster.—Works by MicHAEL FosTER, M.D., Sec. R.S., Professor
of Physiology in the University of Cambridge.
PRIMER OF PHYSIOLOGY. With nugerous Illustrations.
New Edition. 18mo. 1s.

A TEXT-BOOK OF PHYSIOLOGY. With Illustrations. Fourth
Edition, revised. 8vo. 2Is.

Foster and Balfour.—THE ELEMENTS OF EMBRY-
OLOGY. By MicHAEL FosTER, M.A., M.D,, LL.D., Sec. R.S.,
Professor of Physiology in the University of Cambridge, Fellow
of Trinity College, Cambridge, and the late FRANCIS M. BALFOUR,
M.A., LL.D., F.R.S., Fellow of Trinity College, Cambridge,
and Professor of Animal Morphology in the University. Second
Edition, reviced. Edited hy ADpAM SEDGWICK, M.A., Fellow
and Assistant Lecturer of Trinity College, Cambridge, and WALTER
HEeAPE, Demonstrator in the Morphological Laboratory of the
University of Cambridge. With Illustrations. Crown 8vo. I0s. 64,

Foster and Langley.—A COURSE OF ELEMENTARY
PRACTICAL PHYSIOLOGY. By Prof. MICHAEL FOSTER,
M.D., Sec. R.S., &c., and J. N. LANGLEY, M.A,, F.R.S., Fellow
of Trinity College, Cambridge. Fifth Edition. Crown 8vo. 7s. 6d.

Gamgee.—A TEXT-BOOK OF THE PHYSIOLOGICAL
CHEMISTRY OF THE ANIMAL BODY. Including an
Account of the Chemical Changes occurring in Disease. By A.
GAMGEE, M.D., F.R.S., Professor of Physiology in the Victoria
University the Owens College, Manchester. 2 Vols. 8vo.
‘With Illustrations. Vol. I. 18s. [Veol. I1. in the press.

Gegenbaur.—ELEMENTS OF COMPARATIVE ANATOMY.
By Professor CARL GEGENBAUR. A Translation by F. JEFFREVY
BELL, B.A. [Revised with Preface by Professor E. RAY LAN-
KESTER, F.R.S. With numerous Illustrations. 8vo. 2Is.
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ray.—STRUCTURAL BOTANY, OR ORGANOGRAPHY
ON THE BASIS OF MORPHOLOGY. To which are added
the principles of Taxonomy and Phytography, and a Glossary of

I B]c;tanwal Terms. By Professor AsA GrRAY, LL.D. 8vo. 105 64.

OOker.—Works by Sir J. D. HookEr, K.C.S.I,, C.B.,, M.D.
F.R.S, D.CL. I ¢S, C.B, M.D,

PRIMER OF BOTANY. With numerous Illustrations. New
Edition. 18mo. 1s. (Science Drimers.

THE STUDENT’S FLORA OF THE BRITISH ISLANDS-
Third Edition, revised. Globe 8vo. 10s. 64.

Iowes.—AN ATLAS OF BIOLOGY. By E. B. Howes,
Demonstrator in the Science and Art Department, South Ken-
sington.  4to. [4n the press.

Iuxley.—Works by Professor HuxLEy, P.R.S.

INTRODUCTORY PRIMER OF SCIENCE. 18mo. Is.
(Science Primers.) @

LESSONS IN ELEMENTARY PHYSIOLOGY. With numerous
Illustrations. New Edition. Fcap. 8vo. 4s. 64.

QUESTIONS ON HUXLEY’S PHYSIOLOGY FOR SCHOOLS.
By T. ALcock, M.D. 18mo. 1s. 64.

PRIMER OF ZOOLOGY. 18mo. (Science Primers.)

. [2n preparation,

{uxley and Martin.—A COURSE OF PRACTICAL IN
STRUCTION IN ELEMENTARY BIOLOGY. By Professor
HuxLEY, P.R.S., assisted by H. N. MARTIN, M.B., D.Sc. New
Edition, revised. Crown 8vo. 6s.

.ankester.—Works by Professor E. RAY LANKESTER, F.R.S.

A TEXT BOOK OF ZOOLOGY. Crown 8vo. [/n preparation.

DEGENERATION : A CHAPTER IN DARWINISM. Illus-
trated. Crown 8vo. 2s5. 6d. (Nature Sertes.)

+ubbock.—Works by S1r Jou~ LusBock, M.P., F.R.S.,D.C.L.

THE ORIGIN AND METAMORPHOSES OF INSECTS.
With numerous Illustrations. New Edition. Crown 8vo. 3s. 6d.
(Nature Series.)

ON BRITISH WILD FLOWERS CONSIDERED IN RE.
LATION TO INSECTS. With numerous Illustrations. New
Edition. Crown 8vo. 4s. 6d. (Nature Series).

M’Kendrick.—OUTLINES OF PHYSIOLOGY IN ITS RE-
LATIONS TO MAN. By J. G. M’KENDRICK, M.D., F.R.8.E.

¢ With Illustrations. Crown 8vo. 12s. 6d.

vlartin and Moale.—ON THE DISSECTION OF VERTE
SRATE ANIMALS. By Professor H. N. MARTIN and W. A
MoALE. Crown 8vo. [In preparation

(See also page 41.)
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Miall. —STUDIES IN COMPARATIVE ANATOMY.

No. I.—The Skull of the Crocodile: a Manual for Students. By
L. C. MIALL, Professor of Biology in the Yorkshire College and
Curator of the Leeds Museum. 8vo. 2s. 6d.

No. I1.—Anatomy of the Indian -Elephant. By L. C. MIALL and
F. GREENwoOD. With Illustrations, 8vo. §s.

Mivart.—Works by ST. GEORGE Mivart, F.R.S. Lecturer in
Comparative Anatomy at St. Mary’s Hospital. *
LESSONS IN ELEMENTARY ANATOMY. With upwards or
400 Illustrations. Fcap. 8vo. 6s. 64,
THE COMMON FROG. With numerous Illustrations. Crown
8vo, 3s. 6d. (Nature Series.)

Muller.—THE FERTILISATION OF FLOWERS. By Pro-
fessor HERMANN MULLER. Translated and Edited by D’Arcy
W. THoMmPsON, B.A., Scholar of Trinity.College, Cambridge.
With a Preface by CHARLES DarwiIN, F yﬁ With numerous
Ilustrations. Medium 8vo. 21s.

Oliver.—Works by DawnizL OLIVER, F.R.S., &c., Professor of
Botany in University College, London, &c.
FIRST BOOK OF INDIAN BOTANY. With numerous Illus-
trations. Extra fcap. 8vo. 6s. 64,
LESSONS IN ELEMENTARY BOTANY. With nearly 200
Illustrations. New Edition. Fcap. 8vo. 4. 6d.

Parker.—A COURSE OF INSTRUCTION IN ZOOTOMY
(VERTEBRATA). By T. JEFFREY PARKER, B.Sc. London,
Professor of Biology in the University of Otago, New Zealand,
With Illustrations, Crown 8vo. 8s. 64.

Parker and Bettany.

SKULL. By Professor PARKER and G. T, Berrany. Illus-
trated, Crown 8vo. 1I0s. 64.

Romanes.—THE SCIENTIFIC EVIDENCES OF ORGANIC
EVOLUTION. By G. ]J. Romanes, M.A,, LL.D,, F.R.S,,
Zoological Secretary to the Linnean Society. Crown 8vo. 2s. 6d.
(Nature Series.)

Smith.—Works by Joun Smith, A.L.S., &,

A DICTIONARY OF ECONOMIC PLANTS. Their History,
Products, and Uses. 8vo. 14s.

DOMESTIC BOTANY : An Exposition of the Structure and
Classification of Plants, and their Uses for Food, Cloti.ng,
Medicine, and Manufacturing Purposes. With Illusmnons. New
Issue. Crown 8vo. 125 64.




SCIENCE. 45

Smith (W. G.)—DISEASES OF FIELD AND GARDEN
CROPS, CHIEFLY SUCH AS ARE CAUSED BY FUNGI.
By WorTHING G. SmiTH, F.L.S., M.A.I, Member of the
Scientific Committee R.H.S. With 143 New Illustrations drawn
and engraved from Nature by the Author. Fcap. 8vo. 4s. 64.

Wiedersheim (Prof).—MANUAL OF COMPARATIVE
ANATOMY. Translated and Edited by Prof. W. N. PARKER.
With Illustrations. Crown 8vo, {7n preparation,

MEDICINE.

Brunton.—Works by T. Lauper BrunTON, M.D., Sc.D.,
F.R.C.P,, F.R.S., Examiner in Materia Medica in the Univer-ity
of London, late Examiner in Materia Medica in the University of
Edinburgh, and the Royal College of Physicians, London.

A TREATISE ON MATERIA MEDICA. 8vo. [Nearly ready.

TABLES OF MATERIA MEDICA: A Companion to the
Materia Medica Museum. With Illustrations. New Edition
Enlarged. 8vo. 10s. 6d,

Hamilton.—A TEXT-BOOK OF PATHOLOGY. By D. J.
HAMILTON, Professor of Pathological Anatomy (Sir Erasmus
Wilson Chair), University of Aberdeen. 8vo. (40 preparation.

Klein.—MICRO-ORGANISMS AND DISEASE. An Intro-
duction into the Study of Specific Micro-Organisms. By E.
KvLEIN, M.D., F.