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PREFACE

THE establishment of Crystallography as a science at
the hands of Haiiy dates back a hundred years from the
present time; and midway in that period (in 1839) Pro-
fessor W. H. Miller published his now classical Treatise.

The notation by index-symbols, the representation of
the relative positions of crystal faces by the distribution
of their ‘ poles’ on a sphere, the stereographic projection
of the sphere and of the poles lying upon it, and some
of the methods that Miller employed in dealing with the
symbols of crystal faces, may indeed be shown to have
been introduced in various memoirs by earlier geometers.
Thus Bernhardi (1809), Neumann (1823), Frankenheim
(1826), and Grassmann (1829) had all represented crystal
faces by their normals; the three latter had projected
the poles of faces and of zones on the great circles
of a sphere: Neumann further represented a face by
a symbol that was a first approximation to the simple
form suggested by Whewell (1824-5) and afterwards by
Justus' G. Grassmann (1829) before it became in the
hands of Miller an effective implement by which to rear
the structure of modern Crystallography. Dr. Whewell,
Miller’s immediate predecessor in the Cambridge Chair,
had indicated the method of deriving the symbol of a face
from those of two other faces truncated by it.

But, after the labours of previous crystallographic writers
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have been thus recognised, the methods and systematic
treatment of Crystallography in Miller's Treatise remain
indisputably his own. The rationality of the anharmonic
ratio of any four tautozonal planes was his, independently
of a similar result afterwards published in the memoirs of
Gauss; and to him belongs the merit of combining the
methods of his predecessors with the stereographic pro-
jection into a complete and elegant system, in which the
power of the indicial symbols in grouping the faces of
the forms of crystals, and in colligating tautozonal faces
as well as tautohedral zones, was manifested, and the
foundation laid on which the laws of crystal symmetry
have been well established.

The system thus identified with the name of Miller
has met at length with an almost universal acceptance.
Adopted forty years ago in Vienna by the school of
crystallographic physicists in which Grailich and V. von
Lang were pioneers, it has in recent times formed the
crystallographic language employed in such complete trea-
tises as those of Liebisch and of Mallard, in the encyclo-
padic Mineralogy of Dana, and in that great storehouse
of crystallographic information, the Zeitschrift of Groth.

The growth of Crystallography during the last sixty years
has resulted, notably, from the recognition of the limitations
imposed on its symmetry by the homogeneity of a crystal.
By various methods, Hessel in 1829, Bravais, von Lang,
and Gadolin in 1866-7, and, among later investigators,
more especially Sohncke, Schonflies and Fedorow!, have
defined the varieties of symmetry which can be presented
by crystals.

The present Treatise, dealing solely with the Morpho-
logy of crystals, represents the substance of courses of
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lectures in which it was often found necessary to treat
Crystallography in the simplest form compatible with strict
geometrical methods ; the classes, in such cases, consisting
of students from other departments of science in which
familiarity with mathematics was not demanded. On
other occasions students of physics with high mathematical
training formed the class.

I trust that, while endeavouring to fulfil the requirements
of readers of the former kind, this book will not be found
lacking in demonstrations that may satisfy those of the
latter class, for whom indeed it may be said to commence
at Article 58, p. 65. Several chapters, those for instance
on Symmetry, are written with more detail than a geo-
metrical student might recognise as needed; but this
seemed unavoidable if the usefulness of the book was
not to be confined to such readers.

Among my old students there have been some who
have taken a great interest in the subject and in my book :
to their relations towards it and towards myself I may
only advert here in a few too inadequate words. To
a remoter time belongs Professor Lewis, formerly my
colleague at the British Museum, and now Professor Miller’s
successor in the Mineralogical Chair at Cambridge.

More especially are my cordial thanks due to the friend
who succeeded me in the Keepership of the Mineral
Department of the British Museum, Mr. L. Fletcher, for
numerous and valuable suggestions and additions to the
origital MS. and to the proofs which he has so carefully
revised.

To Mr. Miers’ skilful hand I am indebted for numerous
figures, the drawing of which I found, with failing eyesight.
to be increasingly difficult.
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Various features that I have adopted from the remark-
able Treatise (1866) of my old friend Viktor von Lang,
formerly, for a time, my colleague at the British Museum,
justify my numbering the distinguished Vienna Professor
among those to whom I am as much indebted for the
matter of my book as I am for their sustained friendship.

It is intended in a future volume to deal with the
physical problems necessary to the practical crystallo-
grapher. It being my purpose in that as in the present
work to bring crystallography into more familiar use by
students of chemistry, mineralogy, and petrology, it was
necessary that the treatment of the subject should not
demand the advanced mathematics needed for reading parts
of the master-work of Liebitsch. That the principles of
crystallographic optics can be thus treated without the
surrender of exact geometrical method is evidenced by
Mr. Fletcher's Tract on the Optical Indicatrix; and
there are other parts of crystallographic physics capable
of being represented with a like simplicity.

The greater part of the present Treatise was long ago
written, and indeed in print ; and for the delay in its publi-
cation its author is alone responsible. The causes have
been numerous, partly arising from the distractions of
other unavoidable and not unimportant duties, but mainly
from a certain indecision habitual to the workman, who has
felt how ‘easy it is to begin but to finish how difficult.’
For the acknowledgement of the longsuffering and kindly
treatment he has experienced at the hands of that unique
institution, the University Press, he has not words.

N. S.-M.
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CRYSTALLOGRAPHY.

CHAPTER I
ON THE GENERAL PROPERTIES OF CRYSTALS.

1. The Crystalline Condition.

Most substances, whether chemical elements or compounds,
assume the crystalline condition when they become solid under
circumstances favourable to the gradual and unconstrained deposi-
tion of their particles. Under conditions cgnducive to the growth
of separate individuals, crystals are polyhedra with plane faces and
without re-entrant angles.

The processes by which substances pass into the crystalline
condition belong generally to one or other of the following
classes:—

(@). From sublimation: in this case the substance passes directly
from the gaseous to the solid condition.

Iodine, arsenic and camphor are familiar examples of crystal-
lisation from sublimation.

(6). From fusion: when the substance passes directly from the
liquid to the solid condition.

Both bismuth and sulphur afford examples of crystallisation from
a fused mass during cooling ; and water, on freezing, assumes the
crystalline condition, though the individual crystals of ice are in
general difficult to distinguish.

(¢). From solution: the deposition of crystals may result from
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diminution of the solvent capacity of a liquid holding the substance
in solution : and this may arise from change of temperature, or of
osmotic pressure; or from removal, by evaporation or otherwise,
of the solvent liquid; or, again, from that liquid losing an ingre-
dient that imparts to it higher solvent power, or receiving a fresh
ingredient that diminishes that power.

These various methods of crystallisation from solution are uni-
versally employed in the processes of the laboratory, and, on a
larger scale, in the operations of technical chemistry.

(d). By change in the solid condition. It sometimes happens that
a substance passes from a non-crystalline to a crystalline condition,
or from one crystalline type to another, without passing through
the liquid or gaseous state.

Non-crystalline (vitreous) arsenious anhydride in lapse of time
developes octahedral crystals ; again, the transition of (tetragonal)
crystals of the red mercuric iodide into those of the yellow (ortho-
rhombic) type, and the reconversion from the latter type into the
former, as the temperature is successively above and below 126°C.,
is a familiar example cf a numerous class of changes. Of such
transformations the remarkable optical researches of Mallard and
others have contributed illustrations; prominent among these are
the passage of boracite at a temperature of 265° C., and of leucite
at about 500°C,, in each case from a pseudo-cubic symmetrically
grouped aggregate of crystals (orthorhombic in the case of boracite)
to a single crystal of cubic type, and the reconstruction of aggre-
gates of pseudo-cubic type below those temperatures (see Article 166,
p- 18%).

Further, under any of the preceding processes, new compounds
produced as a result of the mutual decomposition of two or more
substances may assume the crystalline condition.

Many of the largest and finest crystals met with among minerals
have resulted from natural processes involving mutual decompo-
sition, and numerous illustrations of artificial processes of the same
character are afforded by the microscopic crystals produced in the
course of micro-chemical analysis.

2. The characters of crystals may be referred to two different
classes :—
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I. Morphological characters, which result from the distribution
and geometrical relations of their plane faces;

II. Physical characters, which result from their homogeneity and
the distribution of the physical properties.

8. I. Morphological Characters.

Conclusions drawn from observations on numerous crystals of
one and the same substance are the following :—

On any individual crystal, faces presenting similar physical
characteristics, superficially exemplified in the lustre, striation,
hardness, &c., of their surfaces, may usually be recognised as
recurring on different parts of the crystal, and, indeed, recurring in
a certain ordered and symmetrical arrangement. In general the
faces of a crystal are not all alike either in form or in the characters
of their surfaces; they exhibit lustre that may vary from an ada-
mantine or a metallic brilliance, through a glassy or a nacreous
reflection, to a dulness that reflects no image: or, again, a striation,
that in some cases consists of a fine linear tracing, in others of
a coarse channelling of the surface ; the direction of striation being
generally parallel to certain edges of the crystal.

All the faces of the crystal fall into one or into several such
groups or_forms; each form comprising the symmetrically recurring

Jaces characterised by similar features and properties.

4. Crystallographic law. All the faces belonging to any one
crystal are connected by certain geometrical relations which obey
a simple law known as the Law of Rationality of Indices.

Different crystals of the same substance may present an indefinite
variety in their forms and combinations of forms: such crystals
may even have no form in common, and therefore no faces that are
directly comparable with each other. Yet, by virtue of the law just
mentioned, it is practicable to determine from any one crystal
of a substance all the faces that may possibly occur on the same
or different crystals of that particular substance, and to establish
a system of planes that shall be characteristic of it. By reference
to this system of planes, it is possible to establish the morphological
relationship of all crystals of the same substance, whatever faces
they may exhibit.

The faces of crystals of a given substance, even when they belong

B2
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to the same form upon the same crystal, are usually found to differ
in size; but while they obey no law as regards their relative mag-
nitude, the mutual inclination of every pair is the same as that of
every corresponding pair, whether of the same or different crystals
of the given substance, at the same temperature.

6. Crystallographic systems. Whereas the different forms upon
crystals of the same substance differ not only in the mutual inclina-
tions of their faces, but also in other characteristics, such as lustre,
striation, &c., they will all be found to conform to the same type
of symmetry.

Further, while in all crystals of the same substance the morpho-
logical features are distributed in accordance with one type of
orderly arrangement or symmetry, it will be hereafter shown that
there can be six and only six such types of symmetry to one or
other of which every crystal whatsoever can be referred.

These are termed the crystallographic systems and are distin-
guished as:—

I The Cubic system.

1I.  The Telragonal system.

II1. Zhe Hexagonal system.

IV. The Ortho-rkombic system.

V. The Mono-symmetric (or Clino-rkombic) system.

V1. The Anorthic system.

8. Crystallographic elemenis. The geometrical relations connect-
ing the faces of a given substance are expressed by means of certain
constants termed the crysiallographic elements, and, from what has
been said in Article 4, it follows that these are characteristic of the
particular substance. The crystallographic elements, and, as follow-
ing from them, the essential morphological characters of a crystal,
thus depend, not on the relative dimensions of its faces or lengths
of its edges, but on the relative directzons of both, and therefore on
the dihedral angles of the latter.

While the crystallographnc elements of an individual substance
are thus the same at a given temperature for all the crystals of that
substance, those of the different substances which crystallise in any
one of the systems present indefinite variety. Crystals of the Cubic
system are an exception to this statement ; for the crystallographic
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elements in this system are the same for all, so that analogous
forms have identical angles on such crystals. A like constancy
of angle attaches also to certain forms on crystals of the Tetra-
gonal and Hexagonal systems: the faces of such forms are parallel
to a particular direction, termed the morphological axis, peculiar to
such crystals, around which, either singly or in pairs, they are
symmetrically repeated in quadruple, sextuple, or triple recurrence.

7. II. Physical Characters.

Crystals are further distinguished from other matter in that
while the physical characters of ordinary uncrystallised matter are
generally the same, in crystals they are different, in different
directions. At the same time it is generally true that the properties
characteristic of any given direction in a erystal are found to
characterise also other directions in it. But the different directions
thus similarly endowed, which may be considered as if they were
repetitions of the first direction, will be found to be repeated sym-
melrically and in general accordance with the principle of symmetry
that controls the repetitions of the morphological features on the
crystal.

A brief review of some of the distinctive physical properties that
characterise crystals will serve to illustrate the above principle.

8. Elasticity and cohesion.

(@). The discussion of the conditions of elasticity in crystals
involves very complicated mathematical expressions. In the most
general case the determination of the stress requisite to produce
a given homogeneous strain involves as many as twenty-one inde-
pendent constants termed coefficients of elasticity : the constants,
however, become reduced as the symmetry of the crystal assumes
a higher type, and are reduced to three in the case of a cubic crystal.
In terms of these constants the coefficients of elasticity of volume
and the coefficients of elasticity of figure, or the rigidity, can be ex-
pressed.

It is found that directions which correspond in their morpho-
logical relations are endowed with the same characters as regards
elasticity.

(6). When a solid body is acted upon by forces which produce
deformation it may behave in one of various ways.
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The deformation may be permanent or it may be only tem-
porary : if it be wholly or in part permanent, the original arrange-
ment of the particles js not restored when the stresses to which the
strain was due have ceased to operate; a ductile body, for example,
undergoing a permanent elongation under a tensile stress; a malle-
able body admitting of entire change of form by successive impacts
from a hammer or the continuous pressure of a roller, in both cases
without disruption. It is obvious that though a crystal may possess
such qualities, the exercise of them is incompatible with its particles
retaining their crystalline arrangement.

(¢). Glide-planes. Certain remarkable changes, however, involving
permanent deformation in a crystal without disruption have been
effected by pressure at the edges or quoins (solid angles).

Fig. 1.

A simple mode of producing such a deformation in a cleavage-
rhombohedron of Iceland spar is one first suggested by Baumhauer.
Three edges of the rhombohedron meet on the morphological axis
at an apex where the three plane angles are each obtuse, being
109° 8’ 12”. If a knife-blade represented by the plane dgg” be
applied at a point ¢/ not very far from that apex, with its faces
perpendicular to one of the edges ¢, and be subjected to a steady
pressure or a slight blow, a wedge-shaped fissure /gg’% is readily
formed, and the portion of the crystal between the blade and the
original face 7 of the rhombohedron is moved to a new position.
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A plane parallel to the edge ¢, and equally inclined to the faces
forming that edge, is a not infrequent face of a calcite crystal. If
¢ be a plane parallel to such a possible face, meeting the two sides
of the fissure in the line gg’, the block included between the plane
¢ and the edge ¢ has been sheared, the sheared part of the face »
becoming 7/; the particles of the line ¢ between the blade and the
apex have glided until the displaced portion becomes 4%"; the
particles similarly aligned on all lines parallel to the edge ¢ have
in the same way glided into new positions in the crystal-block,
rolling over, doubtless, through a half-turn during the deformation.

The glide-plane ¢ bisects the angle between the original face r
and the sheared face »/ along the line mm’. The shear-plane
passing through the edge ¢ cuts the glide-plane ¢ and the plane
of the blade perpendicularly. The angles 2% and £%’m’ originally
obtuse are now acute, while the obtuse angle m#&’m’ has remained
unaltered in magnitude; # in the deformed part of the crystal is
thus no longer an apex situated on the morphological axis but
a lateral quoin similar to ¢. It will be easily seen that the
deformation has been effected without any change of volume of
the crystal.

(d). Cleavage. A characteristic property of most crystals is
that of their being more or less easily fissile along certain directions
which are termed cleavage-planes or cleavages. The cleavages (and
also the glide-planes) are usually parallel to prominent or crystallo-
graphically important faces of the crystal.

The facility with which the cleavages on the same crystal may
be effected will be found to be different where the faces to which
they are parallel have a different morphological significance :
where, on the other hand, they are crystallographically equivalent
(i.e. where they belong to the same form) the cleavages will be
equally facile.

The. relative facility of two or more cleavages presented by
a crystal is frequently of assistance in determining the morpho-
logical symmetry.

The glide-planes, in the case of deformed crystals, are also
planes along which disruption can be easily effected.

(¢). Impact-figures. When the cohesion is suddenly overcome as
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by the impact of a pointed instrument on a plane surface of
a crystal, linear cracks radiating from the point are produced,
giving rise to what is known as an smpact-figure. These cracks
may be parallel to cleavages when such intersect the surface, but
they are ofien due to the production of glide-planes as described
in paragraph (¢).

Since the directions of the cracks conform to the symmetry of the
crystal, the impact figures are often serviceable in determining the
character of that symmetry.

9. (f). Hardness. Attempts have been made to measure the
cohesion of bodies by determining their so-called hardness.

The hardness of crystals in different directions has been estimated
by means of an instrument termed a sclerometer. A pointed
fragment of hard material, one of diamond being employed in the
case of very refractory bodies, is loaded with a certain weight and
drawn over the surface a certain number of times along lines
parallel to a given direction. The loss of weight experienced by
the crystal during this process is taken as a measure of the hard-
ness in that direction. The operation is repeated for other direc-
tions in the same surface, and for other plane surfaces of the
crystal ; the values so obtained are always found to be symmetri-
cally repeated in accordance with the morphological symmetry of
the crystal.

Such a method is, however, obviously a rude one, and is subject
to mechanical sources of error that interfere with the accuracy of
the results obtained by it even as a means of determining hardness,
and it is therefore far from affording a true measure of cohesion in
a crystal.

The relations of hardness to cleavage have been carefully studied,
though by necessarily imperfect methods, with the results that
differences of hardness are found to be greater in crystals conspi-
cuous for cleavage ; that the hardness is more uniform in different
directions in the absence of distinct cleavages; that the planes
of cleavage are the surfaces of easiest abrasion; and that hardness
increases as the direction is more nearly coincident with the normal
of a cleavage-plane.

(&) Results of erosion. Differences in cohesion may also be
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made apparent by other than purely mechanical agencies. Thus
a crystallised substance frequently manifests unequal solubility, or
different degrees of resistance to chemical action, along different
directions in the crystal, and this is probably universally true.

Lavizzari by the action of nitric acid reduced a sphere of calcite
into the form of a crystal with pyramidal faces.

The action of a solvent on the faces of a crystal depends both
upon the nature and strength of the solvent and the directions of
the faces, one solvent acting more energetically on some forms,
another solvent so acting on others; but all faces belonging to any
one form are always affected in a similar way.

The action of an eroding agent on a single face of a crystal is
a valuable method of probing its symmetry. It generally com-
mences with the production of a number of minute hollows; these
are sometimes small inverted or negative crystal forms, sometimes
grooves or mere lines; but they infallibly indicate the symmetry of
the crystal face, and, where other morphological evidence has been
wanting, they have in important cases afforded the means of deter-
mining the merosymmetrical character of a crystal, that is to say
have revealed a partial development of symmetry in the crystal in
accordance with a law to be hereafter enunciated (in Art. 141,
p. 161).

10. Light.

The important subject of crystallographic optics will only be
treated here so far as to place the optical behaviour of a crystal
in general correlation with its other physical characters. In the
case of crystals belonging to the Cubic system, as in the case
of isotropic substances, along every direction a plane-polarised
ray may generally be transmitted having its plane of polarisation
in any direction whatever, and the velocity of the ray within the
crystal is the same whatever may be the direction of the ray or of
its plare of polarisation. In crystals belonging to other systems,
though a plane-polarised ray may be transmitted along every
direction, the plane of polarisation of that ray can in general have
only one or other of two mutually perpendicular positions, and
these are definitely related to other directions in the crystal.

The velocity of the ray within the crystal depends both upon the
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direction of the ray and that of its plane of polarisation, as enforced
by the last-mentioned condition.

The direction, the velocity and the plane of polarisation of
all rays of a mono-chromatic light within a given crystal can
be geometrically represented by the aid of a single surface, the
optical indicatrix, whose form and position completely define
the refractive properties of the crystal for light of that particular
colour. In the Anorthic, Mono-symmetric and Ortho-rhombic
systems the indicatrix is an ellipsoid; in the Hexagonal and
Tetragonal systems a spheroid; and in all of these the crystals
are doubly refracting with respect to light. In the Cubic system
the indicatrix is a sphere, and, by reason of the velocity being
the same whatever the direction and plane of polarisation of the
ray, the refraction on emergence cannot be other than single.

If the light be supposed to emanate in every direction from
a point anywhere within the crystal, it will after a small interval of
time reach a surface which is known as the ray-surface or wave-
surface. In the case of a cubic crystal it is evident from what has
been said that this is a sphere : but in doubly refracting crystals the
surface will consist of two sheets, since in any direction rays can be
transmitted with either of two velocities according to the position
of the plane of polarisation. Though the transmission of light
along any direction in a doubly refracting crystal may thus be
mathematically regarded as consisting in the separate and simul-
taneous transmission of two independent rays which arrive at
different points on the line afier the lapse of the stated interval,
the physical process must be one of a more complex nature.

In crystals belonging to the Hexagonal and Tetragonal systems
the ray-surface consists of a sphere and a concentric spheroid
that generally touch each other at the ends of a common axis; in
the remaining systems neither sheet is spheroidal or ellipsoidal
in form, but, for a given monochromatic light the ray-surface
possesses, in common with the ellipsoidal indicatrix from which
it may be geometrically derived, three perpendicular planes of
symmetry.

Although in form and position both the indicatrix and its
derived wave-surface may vary for monochromatic lights of
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different colours, they always do so in such a manner as to accord
with the morphological symmetry of the crystal—a symmetry-plane
in the latter being invariably identical in direction with one or
other of the symmetry-planes of the ray-surface.

11. Zhermal conductivity.

The degrees of facility with which heat is conducted in different
directions through the substance of a crystal have been investigated
by cutting thin sections with parallel plane surfaces along different
directions in the crystal, covering a face of such a section with
a thin layer of wax or paraffin, and observing the form ultimately
taken by the fused portion of the wax on the continued application
of a heated wire to a point on the surface. As the form is
invariably found to be either circular or elliptical, the confinuous
isothermal surface which would result from the maintenance of
a given temperature at a point inside a crystal must be either
a sphere, a spheroid, or an ellipsoid.

In each case the isothermal surface is found to be symmetrical
to the planes of morphological symmetry, taking the form of
a spheroid when the crystal possesses a morphological axis, and
becoming a sphere when the symmetry is that of the Cubic
system.

18. Zhermal dilalation.

The nature of the dilatational changes resulting from variation
of temperature in a crystal will be considered in a future chapter
in Part II, for they have an important bearing on the character of
crystal structure.

In general the amount of dilatation for a given change of tem-
perature varies with the direction in the crystal ; indeed, expansion
in one direction is sometimes simultaneous with contraction in
other directions. The mutual inclinations of the faces of the
crystal are thus in general dependent on the temperature: but
even for the largest attainable variations of the latter, the changes
of angle actually observed have never exceeded a few minutes
of arc.

If we conceive of a crystal-mass worked into a form which at
a particular temperature is a sphere, it may be asserted that at a
second temperature this will either remain a sphere, or will undergo
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a deformation whereby it becomes a spheroid or an ellipsoid ; and
it will have the one or the other form according to the symmetry
of the system ; planes of morphological symmetry being in every
case symmetry-planes to the dilatational changes wrought in the
crystal by changes of temperature.

18. Electricity.

While a crystal of tourmaline is being heated it becomes electri-
fied, and oppositely so at parts of the crystal situated at opposite
ends of the morphological axis ( pyro-electricity): during cooling the
polarity is reversed. This may be conveniently shown, as was
suggested by Kundt, by dusting the crystal during change of
temperature with a mixture of powdered red lead and sulphur
which become electrified during the process by mutual friction.
The positively electrified particles of red lead are attracted to
the negatively electrified end of the crystal and the negatively
electrified particles of yellow sulphur to the opposite end; the
distribution of the electrification is thus indicated by the distribution
of colour. A crystal which exhibits this character is said to be
pyro-electric.

Compression of a crystal of tourmaline along its morphological
axis also produces electrification (pzezo-electricity); the distribu-
tion of the electrification is the same as that caused by the
particular change of temperature, namely cooling, which, like
compression, produces a contraction of the crystal along the
axis. Conversely, it has been shown that electric induction causes
expansion or contraction of a crystal of tourmaline along its axis.

There are many other substances in which opposite electrifica-
tions are developed at opposite ends of the crystal by change of
temperature or pressure ; others, for example quartz, which possess
more than one axis of symmetry, may exhibit opposite electrifica-
tions at the extremities of more than one such axis.

In all these respects the electric properties of the crystal conform
to its morphological symmetry, since in the above cases the axis of
symmetry along which electric polarity is manifested is also dis-
similar at its two ends as regards the disposition of the faces and
edges of the crystal.

Magnetic induction. Unmagnetised bodies if brought near a
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magnetic pole are either attracted or repelled by it, and are said
to be magnetised by induction ; being described in the former case
as paramagnetic and as diamagnetic in the latter case. When the
body is a crystal, whether it be of para- or of dia-magnetic
substance, the intensity of the induced magnetism varies, in general,
with the position of the crystal relatively to the lines of magnetic
force: and if the magnetic field be uniform the induced magnetism
has the same character. In the general case, for a given set of
physical conditions, there are only three positions of the crystal such
that the direction of the induced magnetisation is coincident with
that of the inducing magnetic force. These directions are mutually
perpendicular; and the directions in the crystal which in these
several positions coincide with that of the inducing magnetic force
are called axes of magnelic induction; for one of them the
intensity of the induced magnetism is a maximum, for another
a minimum. Their positions in the crystal and the corresponding
intensities of induced magnetisation accord with the symmetrical
requirements of the crystal. The properties of the crystal as regards
magnetic induction under the given conditions may be geometrically
represented by means of an ellipsoid known as the ellipsoid of
magnetic induction ; for a uniform magnetic field of a different
intensity, the ellipsoid may be different both in form and position
in the crystal, but the variation will always be such as to conform
to the morphological symmetry.

14. Summary.

On comparing the results obtained on the one hand by geo-
metrical investigation, and on the other by experimental observa-
tions belonging to the domain of physics, of which latter an outline
has been here given, one cardinal fact will hereafter be prominently
brought out in regard to the physical and morphological characters
of a crystal. It will be seen, namely, that these characters are not
localised in particular portions of the crystal, but are attributes
belonging to different directions in it, the properties of the crystal
in respect to any given direction being the properties exhibited by
every part of the crystal in respect to any line parallel to that
direction. In a word, the crystal though zolotropic is a Aomo-
&eneous body.
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It will be found necessary for geometrical purposes to assume
lines and points fixed, not merely in direction but in position,
within and without the crystal, with a view to the comparison of
these its diverse characters in different directions, and in order to
establish the laws of crystal symmetry ; but it cannot be too clearly
understood at the outset that these form but the auxiliary scaffolding
by the aid of which the ideal structure of crystallography as
a science is reared, and that in Nature they have no reality or
significance.



CHAPTER IL

MODES OF EXPRESSING AND REPRESENTING THE RELA-
TIONS BETWEEN THE PLANES OF A SYSTEM.

Section I.—Elementary considerations as to the methods
of estimating the mutual inclinations of the Planes
of a System.

15. A System of Axes. The faces of a crystal have been
described in Article 4 as forming a system of planes whereof the
mutual inclinations or relative directions, but not the respective
magnitudes, nor therefore their relative distances from any arbi-
trarily chosen point within the system, have to be investigated.
The fundamental principle of the different methods by which
_geometry enables us to determine and compare the directions of
any number of such planes consists in the employment of certain
lines or axes fixed in their directions as regards the system of
planes and intersecting in a point within the system, termed the
origin.

Any three or more, but usually only three such axes, which of
course must not all lie in the same plane, but in the general case
are otherwise arbitrarily taken as regards their directions, are
supposed to exist within the system of planes; and to these axes
the planes are by various geometrical expedients referred. Where,
as will be the case throughout this treatise, the axes are three
in number, and intersect in a point, they are designated severally
by the letters X, ¥, Z, magnitudes measured from the point of
intersection or orsgin O along any axis being deemed positive or
negative according as they are reckoned in one arbitrarily chosen
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direction or its opposite. Each pair of axes, then, lies in a
separate plane; and these planes, ¥Z, ZX, X¥, divide the space
round the origin into eight hollow quoins or ocfants, which may
be distinguished by the signs of the axes which contain them. To
each octant there will correspond three adjacent octants, which have
each one axial plane in common with the original octant; three
attingen! octants, in
contact with it only
along an axis; and
one opposife octant,
meeting it only at
the origin. "Adja-
cent octants differ
in only one of their
signs, attingent oc-
tants differ in two,
and opposite octants
in all their signs.

It is often con-
venient to denote
the several octants
by numbers, as in-
dicated in Fig. 2.

Fig. 2. Those adjacent and

opposite to the first

octant (+ X, 47, +Z) are represented by even numbers ; octants
attingent to it by odd numbers.

The eighth octant, X ¥ Z, is not lettered in the figure.

The angles at which the axes are inclined on each other will be
designated— .

the angle POZ or YZ as ¢,
” ZOX or ZX as 1,

w XOF or XV as (
Each plane of the system must, if produced, intersect one and

may intersect two or three of the axes. The length along any
axis imercepted between the origin and the point in which a
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plane of the system is met by that axis is the Znfercep? of the
plane on that axis.

If several planes be supposed parallel to each other, their inter-
cepts on the several axes will only differ by a common factor:
where this factor is negative, the planes lie in opposite octants
or on opposite sides of the origin, being represented by opposite
signs.

Where two or more planes are not parallel to each other, they
must differ either in the relative magnitudes of their intercepts on
onc or more of the axes, or in the signs of these, or in both
of these respects. '

18. Normals fo Planes. 1If a perpendicular from the origin
be drawn to any plane of the system which must be supposed to
be extended if necessary for the perpendicular to meect it, then the
direction in space of this plane and of any planes parallel to it is
known when the dircction of this perpendicular is determined in
reference to the axes. A perpendicular so drawn through the
origin to a plane is called the centro-normal, or briefly the normal,
of that plane.

In this treatise the relative positions of planes will be represented
by expressions denoting the relative positions of their normals,
and normals will therefore be supposed to be drawn to all the
planes of the system.

We proceed to discuss the mode in which the relative positions
of planes can be thus simply represented.

17. If a planc P cut the axes X, ¥, Z in the points 4, B, C,
and for simplicity be supposed to lie in the first octant; i.e. to
intersect with all three axes belonging to that octant; and if the
intercepts of the plane be 04 = a, OB = 4, OC =, and if OP
(Fig. 3) be the normal of the plane 4B8C; then

. orP

cos PX, i.e. cos POA = 04’
or oP
cos PY = B and cos PZ =0C"

Whence OP = a cos PX =& cos P¥ =¢ cos PZ, expressions
which give the direction of OP and of the plane to which it is the
normal, whatever be the distance of that plane from the origin:

C
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this direction being thus represented by the direction cosines of
the normal OP expressed in terms involving the intercepts of the
plane 2.

Let now a second plane Q inclined to the first plane and lying
also for convenience in the first octant intersect the axes X, ¥, Z
in the points A, K, L respectively; then the intercepts OH, OK,
OL of this plane may be expressed by values involving those of

the intercepts of the plane P; as for instance by taking factors
%, k, and /, such that

RTT TR YT T R TR YT T Y T
And, if OQ be the normal of the plane Q,
0Q = OH cos QX,

~ A

2008 QZ, .. o wv e o (A)

Similarly, g cos RX = g cos RY = —: cos RZ

would indicate the direction of a third plane R of the system,

a b
: ° on the

the intercepts of which would be in the ratios 377

several axes taken in the order X, ¥, Z.
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18. The ratios a : & : ¢ of the intercepts of some one plane
chosen as a standard or parametral plane are termed the para-
metral ratios or parameters of the system as referred to the axes
X, ¥, Z, and these ratios are evidently two in number.

The literal symbols 247, pgr, &c., or any numbers in the ratios
of 2%/, &c., and generally the simplest numbers which represent
these ratios, are termed the 7ndices of the planes Q, R, &c.

The indices of a plane placed between brackets, e.g. (%47),
(pqr), (321), &c., &c., form a compact symbol, which is zie
symbol of the plane.

The parametral plane P evidently has for its symbol (x11), since
its intercepts are 2. 5 .

1T’

N. B. The brackets are in practice frequently omitted where
the use of the unbracketed symbol may involve no ambiguity.

In the cases so far considered the planes in question were
supposed to lie in the positive octant, ie. to intersect, either
actually or if extended, the three positive axes. If however
a plane will intersect two only of the axes, it cannot but be
parallel to the third. Its intercept then on this last axis will
be indefinitely great, as its point of intersection with it is infinitely
remote. The index for the particular axis will thus become zero ;

. . . AO , a . . ..
since, for instance, an intercept — v be g i infinitely great.

Hence (%40), (pg0), (110) are the symbols of planes intersecting
with the axes X and ¥ but parallel to the axis Z; (o#/), (og7),
(or11), (023) represent planes intersecting the axes ¥ and Z but
parallel to X'; and (%o/), (101) are symbols of planes intersecting
X and Z and parallel to 7. Furthermore, if a plane intersect only
one axis, it must have one of the symbols (100), (o10), or (cor)
if it intersect the axis on the positive side of the origin; any
other value than unity for the non-evanescent index being without
significance, since it is the direction, not the origin-distance, of
the plane that is to be expressed by the symbol.

Where a plane lies otherwise than in the first or positive
octant its position is at once defined by the signs of its several
indices.

C2
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An index is taken as positive unless a negative sign is placed
over it; and the signs of the indices so inscribed will denote
the directions on the axes in which the intercepts of the plane are
taken. Thus (213) would be the symbol of a plane lying in
the sixth octant of Fig. 2. -

Eight planes might therefore coexist having the same values
in their respective indices but differing in their signs; one plane
lying in each octant. Where, in a rectangular axial system, the
intercepts of such a group of planes have the same magnitude
on each axis, the solid is the regular octahedron of Geometry;
and other solids more or less resembling the octahedron in form
result from the coexistence of planes intersecting with the axes
in each octant with the same intercepts on corresponding axes,
but with intercepts that differ on axes of different denomination.
A plane of such a group, whatever be the axial system, has been
designated as an Oc/aid, or, more correctly, an Oclahedrid plane ;
it must have three indices that are not zero in its symbol.

For analogous reasons, plancs parallel to a single axis but
meeting the other two axes, and having thercfore one zero in
their symbol, will be termed Prismatoid planes; and the term
Pinakoid planes (from mivag, ‘a slab’) will be given to such planes
as, intersecting with only one of the axes, have two zcros in their
symbol; namely the planes (100) and (Too), (ox0) and (oTo),
(oor) and (ooT).

Each prismatoid plane may be said to lie in or belong to two
adjacent octants; its zero index refers to that axis for which the
sign is different in the two octants. ‘A pinakoid plane belongs
equally to four octants; it is parallel to an axial plane, and inter-
sects with the axis which does not lie in that plane.

In the event of a polyhedron referred to a certain system of
axes not presenting octahedrid planes, parametral ratios may be
determined by the ratios of the intercepts of two prismatoid planes
which intersect with different pairs of axes; their symbols be-
longing to two of the three groups, (o11) or (o11), (ror) or (Tor),
(110) or (T10).

It is convenient to assume that the two planes thus chosen cut
that axis with which they both intersect in a common point. The
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intercept on that axis thus becomes the same for both planes, and
their other intercepts are directly comparable.
Let the plane LA parallel to the axis of ¥ cut the axes of

"X and Z with intercepts OH = 2, 0L= %, and let the plane

BC parallel to the axis of X cut
those of 7 and Z at distances
OB=15 and OC=c. Then LH
and BC being taken for parametral .
planes, let a plane parallel to the
plane LA cut the axial plane XZ
in CA. The intercepts of the new
plane will be OC on Z and 04 on
. .. 04 OH

X ; and their ratio o0C =L that
of the intercepts of the original
plane LA ; and the two planes
AC, BC have their intercepts on
the Z axis in common, and their X
and ¥ intercepts are comparable.

The intercepts of the two planes are, on axes X and Z,

04, 0C;
and on axes Y and Z, OB, 0C:
whence the parameters are
OA:0B:0C=a:b:c;
OH %
where a=0A=OC.0—L—=7-c.

19. The angle contained between the normals to two planes
is the supplement of the internal angle
included between the planes them-
selves, i, e. that angle within which the
normals meet.

If OM, ON be the normals to two
planes ME and NE, and the plane |
containing these normals is the plane
of the figure; then will this plane be
perpendicular at £ to the edge formed by the two planes; and

V4

by

Fig. 5.



22 The edge of two plances.

ME, NE are the edges formed by the normal plane with the
two planes, and the angle VZM measures the inclination of the
two planes; MENO therefore is a quadrilateral figure, whereof
OME and ONE are right angles. Therefore MEN+MON = 2
right angles, and each is the supplement of the other.

Skction IL.—Expression for the direction of the Edge
formed by two Planes.

20. Let KL, PQR be two planes assumed for simplicity to
lie in the same octant and having for their symbols (%4/), (pg7).
The most general case is that in which the two planes have no
intercept in common on either axis.
Let the two planes lie in the octant X¥Z and intersect with
the axes in ZKL, PQR respectively. In this case there will be
common points of intersection of the two planes with each other

X

Fig. 6.

and with each of the axial planes: let s be the common point
in the axial plane XZ, and # be that in the plane ¥Z. With
the third axial plane they will intersect also in a common point #
in an adjacent octant. Then the points /4 #, s will lie in one
and the same straight line, which will be the line of intersec-
tion or edge of the planes ZKL, PQR.
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The direction of this line will be parallel to that of all edges
formed by planes parallel to the original planes. Let then a
plane parallel to PQR be drawn through X intersecting with the
axes X and Z in £ and G. The ratios of its intercepts will
thereby remain unaltered, and that on ¥ is common to the two
planes £ZKG, HKL.

By similar triangles, which need not be drawn,

()4 o) 4
OF = OP.w and OG = 012.5-0-

The planes will now have only two points of intersection with
the axial planes; namely, a
point K on the axis ¥ +Z
common to the two planes
XV and ¥Z, and a point
M situate in the plane
ZX. R

A line XA is therefore
the edge of the planes ZKL
and £KG. Through M
draw MD parallel to the
axis Z and meeting the axis
X inD. And on the axis
Ztake OM’'= DM finally,
through the origin O draw
ON nparallel and equal to
KM.

The direction of the line
ON passing through the Fig. 7.
origin is therefore that of
the edge formed by the original planes or by any planes parallel to
them ; and the coordinates of &V are

0D, —OK, and OM’' = DM
ON being the diagonal of a parallelepiped with OK”’, 0D, DM for
its sides.

In order to find the value of these coordinates, we have in the
similar triangles ZDM and HOL,
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oM’ = DM__-—— (OH—0D), (i)

OG S (0E-0D). (i)

Dividing (i) by OZ and (n) by OG, and subtracting, we obtain

and OM' =DM =

, 1 I
OM (OG OL) OD(’O'F"YE)'
Therefore ox = 0D s
I i I I
OH "OE 0G~ 0L
oM’ _ 0D
1 00 1 "0 % i
OH OK' 0P OK OR ™ OL
oM’ oD
and = 5
I I I I

OH.0Q ~ OK.0P OK.OR™ OL.0Q
and, by the symmetry of the problem,

_ OK
= — ~
OL.OP (OH.OR
1 h
Here OH =2’ &c. ;
I ?
0P =a' %
1 Izg—kp
Therefore 0 H 00 " OKOP= ab
&c., &c.,, = &c.

Substituting these values in the ratios and dividing by the com-
mon factor abec, we obtain
op o0k _ oM |
a(kr—lg) ~ b(lp—hr) — c(hg—hp)’
which expression gives the ratios of the coordinates of any point
in a line through the origin parallel to the edge of the planes
Akl and pgr, in terms of the indices of the two planes.
These ratios

a(kr—1g), b(lp—hr), c(hg—4kp)
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may be written briefly as
au, bv, cw,

if u = kr—1,
v = [lp—tr,
w = kg—kp.

.

Drr. A plane parallel to any plane of a system but passing
through the origin will be termed an origin-plane, and any line
through the origin parallel to an edge of two planes of the system
will be termed an origin-edge, and hereafter a zone-line or gone-
axis; and in speaking of the planes of a plane-system. the term
‘face’ will be more particularly applied to them when considered
as the faces that bound a polyhedron.

Section III.—A Crystalloid System. Principle of
Rationality of Indices.

21. In considering the general character of the expressions
for the relations of the planes in a system as referred to axes
of coordinates, the' indices of a plane were not limited to any
special kind of values, integral or fractional, rational or irrational,
and the axial system might be arbitrarily chosen. If however
the nature: of the system of planes be limited by the condition that
for a plane to -belong to the system its indices must be rational,
that is to say, capable of being represented by integral numbers,
or ore or two of them by zero, it will be obvious that some limita-
tior must also be imposed on the selection of the axes to which
the planes are referred.

22. It will be shown in Art. 75 that the axes must, in the case
supposed, be themselves possible zone-lines of the system. A
special case, confined to a single zone, will however serve here
to illustrate this important principle.

Let us suppose that OX, OZ are axes arbitrarily taken to which
two planes are referred, that may for convenience be prismatoid
planes, cutting only these two axes, and parallel to the third. Let
the lines 4C, AL be the intersections of these planes with the
axial plane X OZ, which is that of the figure; let 04 =a, OC=¢
be the intercepts on X and Z of one of the planes ; and let ¢ and ¢
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be taken as the parameters: and of the other plane let O4 and
OL = élc be the intercepts. Then 711- is the index on Z of the
plane AZ, and if the ratio of OC to OL be capable of being
expressed by whole numbers, fl}- is rational.

If we arbitrarily choose another axis OZ’ elsewhere in the plane
XO0Z, and take OC’ and OL’ as the intercepts on that axis of the

two planes ; it is evident that the ratio
Fv of these will vary with the direction of

OZ’ and is not necessarily rational.
Wherefore the axial system may not be
arbitrarily chosen in the case of a sys-
tem of planes of which the indices are
Z rational.

If, again, we change the axial system
in such a manner that C becomes the
% origin and C4, CO the new axes; and

if AO and AL be the lines of inter-

A™X  gection of two planes with the axial

Fig. 8. plane COA ; then CA and CO, the

intercepts of the plane OX, may be

taken as parameters for the system; and the intercepts of the
other plane on the new axes are i

CA=4d, and CL=—1— .G,

so that its indices in respect to these axes are /—#% and /, and
are obviously rational.

Hence, in the special case supposed, any planes, the origin-
edges of which form axes to which it is possible to refer a system
of planes with rational indices, must themselves fulfil the con-
dition required for all planes of the system.

23. By the term a crystalloid system of planes we shall under-
stand an assemblage of planes parallel to the faces of a poly-
hedron finite in number and presenting such mutual inclinations
that if they be referred to an axial system formed by three different
origin-edges parallel to edges of the system, and with parametral




Projection of poles on a sphere. 27

ratios determined by the intercepts of any plane of the system,
it shall be a necessary condition in order for a plane to belong to
the system that its indices be rational.

An axial system with axes and parameters so chosen will be
termed a crystallographic axial system.

The elements of such an axial system are five in number ; viz.
the three axial angles & %, and (, and the two parametral ratios
a ¢
Z‘ and Z'

SectioN IV.—On the Sphere of Projection, and the
principles of its Stereographic Representation.

24. A convenient means of representing and comparing the
relations of a system of planes forming a polyhedron is afforded
by treating their normals as radii of a sphere. A sphere of
arbitrary radius termed the Spkere of Projection is supposed to
be described round any point within the system taken as its
centre and as the origin of a system of centro-normals, or briefly
of normals, perpendicular to the faces of the polyhedron. The
point in which any such normal meets the sphere is termed /%e pole
of the plane to which the particular normal is perpendicular. A
pole may therefore also be defined as the point of contact of the
sphere and a tangent-plane parallel to a plane of the system on the
same side of the origin with the plane.

Where the system of planes is also referred to an axial system,
with the centre of the sphere for its origin, the point in which an
axis penetrates the surface of the sphere will be called its ax:a/
point.

It is evident that if the poles of planes be connected by great
circles, their distances and relative positions, and therefore the
inclinations and relations of the planes themselves, may be measured
and investigated by the methods of spherical trigonometry: for in
the plane of the great circle, thus connecting the poles of any two
planes, the normals of these planes must lie; and the arc between
their poles as measured on a great circle is that subtended by the
angle contained by the normals, and is therefore the supplement of
the angle of inclination of the planes themselves.
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Another great advantage of this method of representing the
positions of all the planes of a system by points distributed on a
sphere is, that by a simple process of laying down such points in

a projection of the
sphere upon a plane
we do not need the
somewhat elaborate
process of drawing a
crystal by projecting
its edgcs, in order to
give a complete con-
spectus of all that

Fig. 9.

crystallography seeks
to represent; that is
to say, of the general
symmetry of the poly-
hedron and the dis-
tribution and relative
inclinations of all its
faces. Fig. 9 repre-
sents in orthographic

projection the faces and the poles of the cubo-octahedron, i.e. of

the two regular solids the cube
and octahedron united into a
single figure in which the faces
of the one figure truncate the
solid angles (or quoins) of the
other figure. Fig. 10 represents
the poles of the same faces and
the great circles passing through
those poles in what is termed
the stereographic projection.
In the former case, which is
that usually employed for the

projection of the edges of crystals
in crystallographic figures, the eye

is at an indefinitely great distance (the crystal being seen as if
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from a considerable distance through a telescope); the visual rays
being parallel, and as a consequence all lines parallel in the ob-
ject remaining parallel in the figure that represents it.

The representation of the faces of a polyhedron by the
stereographic projection of its poles has the great advantage over
a drawing that it does not aim at representing the relative magni-
tudes of the faces; while also by this method the poles of any
number of planes may be laid down at their correct angular
distances with speed and accuracy, whereas the number of faces
admitting of representation in a drawing is necessarily limited.
Furthermore, crystallographic problems may often be solved and
calculation greatly simplified by its means.

25. In the Stereographic Projection, which is the simplest
form of projection of a sphere with the above view (Fig. 10),
the eye is supposed to be at a point of the sphere’s surface
and to sec such poles or great circles as are distributed on the
hemisphere opposite to it projected (as on a screen) upon a plane
passing through the centre of the sphere and cutting the sphere
in the great circle at the pole of which the eye is situate. The
plane of projection thus bounded by a great circle of the sphere is
represented by the plane of the paper on which the circle is
drawn, which latter will be termed the circle of projection or
primitive circle. The advantage of this over other forms of pro-
jection of the sphere is that any great or small circles of the
sphere on the hemisphere opposite to the eye are by it projected
either as straight lines or as circular
and not as elliptical arcs, and thus,
by means of a protractor and com-
passcs, all the great circles can be
laid down on which the poles of
planes are distributed.

That this is the case follows at
once from the properties of the ob-
lique cone ; but it may be otherwise X
proved thus: suppose S, Fig. 11, to Fig. 11.
be the point of sight on a sphere of
which O is the centre and OS therefore the radius. Let PP’

T




30 Stereographic projection.

represent the plane of projection. The circle of projection will
then be a great circle of which S, the position of the eye, is
one of the poles. The apparent position on the plane of pro-
jection of any point 4 on the sphere as seen by the eye at §
will evidently be that point in which a straight line drawn from
S to A meets the plane PP’. Thus the centre O of the circle
of projection will be the point at which 7, the pole of that
circle opposite to .S, will be projected. So the arc P72’ on
the opposite hemisphere will be seen from .S as a straight line
coincident with PP, and any greal circle passing through T will
be projected as a diameler of the circle of projection ; such great
circles or parts of them are therefore projected as straight lines.
Thus a portion 48 of the arc P7P will be seen as ab, a portion
of PP’ limited by the points @ and &, which are the projections of
the points 4 and B. It will further be seen that while all points
on the hemisphere opposite to the eye will be projected in points
within the circle of projection, the projections of points lying on
the same hemisphere with S will lie beyond the circumference
of that limiting circle.

26. We proceed to establish further that az arc of any circle on
the sphere not passing through the
point of sight is projected as a circular
arc.

Let ADB be a circular section
of the sphere, for convenience a
section by a small circle; and let
Fig. 12 represent a section through
S and also through any two points
A and B on this small circle. Let
PP be the trace of the plane of
projection; @, & the points in which
lines S4 and SB cut PP’ ; they are therefore the projections of
A and B.

Draw a tangent LS. Then

Fig. 12.

Therefore the four points 4, B, &, a lie on a circle.
Now A4 and B in the section ABS being any points on the
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small circle, the locus of a must be the section by the plane of
projection of any surface containing all such circles as have been
proved to contain any two points and their projections. That
there is such a surface and that it is a sphere, and that consequently
the projection adb of the circle ADPB is itself a circle, will be
evident from the following considerations.

Erect a perpendicular to the plane of the circle 4D2B from its
centre ; then every point in the circle is equidistant from any
point in this perpendicular ; and a sphere described round such a
point C taken at equal distance from 2 dnd & will carry on its
surface all the four points 4, B, D, é.

And 4, the projection of any other point D on the original circle,
will also lie on the surface of this sphere. For if it do not, it will
lie somewhere else in the line S, as at a point 0.

But, as in the case of the projections a, & of the points 4 and
B, we have proved 425 = ABS; whence, by comparison of the
triangles 42.S and A BS, we obtain the reciprocal proportion

Sa.S4 = Sb.SB.
Similarly, we should obtain for the points 4, D, , &
Sa.S4 = 55.8D.

But also, as SD must cut the described sphere somewhere, as in
a point d, Sa.SA = S84.SD
is also true, which can only be possible if 4 and & are one
and the same point. And this point is therefore at once the
projection of D and situate on the surface of the described
sphere. The locus of ab is therefore, as asserted, the section
by the plane of projection of the described sphere; that is to
say, is a circle.

27. The proof applies equally to the section of the sphere by a
great circle : it may also be thus illustrated.

Let AB, Fig. 13, be a great circle intersecting with the plane of
projection, of which the trace is 27, in a line perpendicular at O
to the plane of the figure; which plane passes in this case through
the centre of the sphere as well as through S. From S draw a
perpendicular to the plane 4B meeting the plane of projection
in C, and draw S4 through a the projection of 4, and §é through
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B to meet the plane of projection produced in 4 which will be the
projection of B: then these lines will necessarily lie in the plane

of the figure.
As in the previous case,
Sab = SBA,
whence Aab = bBA,

and the four points 4, a, B, 6 lie on a circle; and it will follow, as
in the previous case, that
every point of the great
circle AB will lie in the
circular section in which
the plane of projection
will cut a sphere that
shall be so described as
to carry on its sur‘face
the four points 4, e,

Fig. 13. Cor. 1. The centre of

the circle in which the

original great circle is projected will be C, the point in which the

perpendicular from S on the plane of A2 meets the plane of
projection ; for, since

Ca=CS= Cb;
and since ¢S4 7 lie on the same circle of which C is the centre,
two points in which the circle of projection is cut by the plane
through S and O perpendicular to the plane of projection will
be the points of intersection of the circle of projection and the
circular arc in which that circle, whose trace is 4 and B, is
projected.

Cor. 2. Since 4S84 is a right angle, # may be at once obtained
by drawing Sé perpendicular to 4. and meeting the continuation
of PP’ in b.

For the practical applications of the Stereographic Projection,
of which continual use will be made in this treatise, the following
propositions will be found necessary.
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28. ProBrEM 1.— 70 delermine the magnitude of the arc of a
greal circle whick is represented by the projection of that arc.

Let V and C be two great circles, Fig. 14, which intersect in
the extremities of the diameter 44’ of the sphere of projection,
and let their poles be P and S.

Now, every circle on the sphere, whether great or small, passing
through the points
P and S—e.g. the
great circle & or the
small circle U’—.
will manifestly cut
in a similar manner
the two circles V'
and C'; and more-
over, any two circles
on the sphere thus
passing through the
poles of two great
circles on it must
intercept on these
two great circles
arcs of the same
magnitude;; whence
it is evident that the
arcs intercepted on
the great circles 7 and C by the two circles & and U, or those
intercepted by U or U’, and by a third plane, say U”, passing
through 4, must be equal ; so that

if Q, R be the points of intersection of a circle U with the great
circles C and V7, and @', R’ be those in which these great circles
are intersected by the circle U”.

If now the plane of the great circle C be taken for the plane
of projection, § being the position of the eye, every circle U
(U’, U”, &c.), whether great or small, will be projected as a
straight line passing through p the projection of P. Indeed,

D
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since every such circle U lies in a plane passing through 2, §,
and a point R (or R’) on the great circle V, straight lines drawn
from S to points on the circumference of the circle U can only
intersect with C in points upon a straight line passing through p,
which is at once the projection of the circle U upon, and the
intersection of its plane with, the plane C.

Consequently, while the great circle V will be projected in the
circular arc ArA’, every one of the circles U, U’, &c. passing
through the points &, R, &c. will be projected in a straight line
20, (pQ')) &c., which will further cut Ar4’, the projection of the
circle ¥, in a point 7, (7', &c.) which will be the projection of the
point R (or of R’, &c.); r (or 7/, &c.) being in fact the point in
which the planes of three great circles ¥, U (or U’, &c.) and C
intersect with each other.

It is thus that straight lines drawn from p, the projection of the
pole of the great circle 7, through » and 7’ to the circumference
of the circle of projection (which straight lines are the projections
of two circles U, only one of which can be a great circle,) come
to intercept on this primitive circle an arc QQ’; and this arc
QQ'= RR’, the arc of which 7 is the projection, and QQ’ there-
fore measures the arc represented by 77”.

Whence follows the rule :—To determine the value of any arc
of a great circle as represented in
projection, find the projection of
the pole of this great circle (which
may be done by the succeeding
problem) ; then—

1. The value of an arc of which
the projection is given may be
measured by determining on the
circle of projection the arc con-
tained between two straight lines
drawn from the projection of the
pole through the extremities of the
projected arc, Fig. 15; and,

2. An arc of a great circle of given magnitude is represented
in the projection of that circle by the portion of the projection

Fig. 15.
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determined by the intersection with it of two straight lines drawn
from the projected pole to the circle of projection and intercepting
on that circle an arc of the required magnitude.

If the point in which one of the straight lines intersects with the
projection of the great circle be fixed (i.e. is the projection of
a given point on the great circle), then the other extremity of
the projection of the required arc will alone have to be deter-
mined by the latter of the two methods.

Cor. If the plane of a great circle, of which the projection is
given, be perpendicular to the plane of projection, the great circle
passes through S, the point of sight, and its projection becomes
(by Art. 28) a diameter of the circle of projection C'; and the pole
of the great circle will lie on the circlc C, at the point of intersec-
tion with it of a diameter perpendicular to that in which the great
circle is projected. And this pole and its projection manifestly
coincide. .

Hence arcs intercepted on the circle of projection by straight
lines drawn from this pole through the diametral line in which the
great circle is projected, will determine on that diameter the pro-
jection of an arc of any required angular magnitude.

ProeLeM IL.—Grven the projection of a greal circle, fo find that
of ils pole.

29. Let DIV, Fig. 16, be the diameter in which the given
projection, and consequently also
the original great circle, intersect
with the circle of projection.

Since the pole required will ne-
cessarily lie on the diameter per-
pendicular to that in which the
given projected circle intersects
with the circle of projection, and
must lie at a distance equivalent
to a quadrant on that diameter
from the point in which the given
circular projection intersects with

Fig. 16.

it; let V be the point of this intersection, ¥’ that in which a
D2
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line DV produced meets the circle of projection. Then, by Cor.
Pros. I, if V' be a quadrant, and a line DP’ cut the diameter
through ¥ and O in P, VP would be the projection of V2’ on
the line VP as seen from D ; and since a similar construction
would hold good were the great circle A7’ to be drawn perpen-
dicular to the plane of the figure, so as to be seen as 40P and
to pass through § the point of sight, and since the true pole of
V will lie on this great circle, the point 2 will be the projection of
that pole.

Prosrem II1.—70 draw the projection of a great circle, in whick
projection fwo poinls are given, that do nol botk lie on the
circle of projection.

30. Since only one great circle can pass through two points
on the sphere not extremities of a diameter, the centre of the
sphere and two such points suffice to determine the direction of
the plane, of such a great circle. Hence the projections of two
points and the centre of the sphere being given on the plane of
projection, it should be possible to describe the circle which is
the projection of the great circle on which the two points lie.
The most convenient way of doing this is to find the projection
of the point on the great
circle which is the op-
posite extremity of the
diameter on which one
of the points lies of which
the projection is given.

Thus, if two points on

a great circle ¥’ are pro-
jected in the points P
and Q, Fig. 17 —both
of which do not lie on
the circle of projection
Fig. 17. DAID—and if it be re-

quired to draw V, the

projection of V7, it is necessary to find the projection of a third
point in the circle 7”; and the point diametrically opposite to either
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of the points 2 and Q is convenient for this purpose. If then we
would project in 7, the point diametrically opposite to that point of
which 2 is the projection (and it is preferable for this purpose to
select the more remote from the centre of the two projected points
P and Q), we have to draw through the remoter point 7 a
diameter of the circle of projection; and, where P does not lie
on the circle of projection, from O, the centre of that circle, a per-
pendicular on PO is drawn to a point 4 in the circle of pro-
jection. A4 therefore is the projection of the pole of the great
circle which is projected in the diameter through 2; and 7’ will
lie on the line PO at a distance equivalent in the projection to
an arc 7w from P. From A draw a perpendicular to 4P, meet-
ing the prolongation of PO in 7’; then, by article 27, Cor. 2,
P and P are the projections of diametrically opposite points on
the original great circle, since the construction would equally
determine P’ were the point 4 revolved round P/ till it became
coincident with S the point of sight. Perpendiculars from the
points of bisection of the straight lines joining @, 7, and 7’
will now meet in a point C; and from C as a centre a circle
drawn through 2 and Q will be the required projection ¥V of the
original great circle V. It frequently happens that the points 2
and P’ coincide with the extremities of the diameter DI in
which the two circles 7 and C intersect.

Otherwise; where the distance from the circle of projection
differs appreciably for the
two points 2 and @, an
elegant mode of deter-
mining the position of the
diameter DI’ is the fol-
lowing. Through 2 and
Q, Fig. 18, draw any circle
intersecting the circle of
projection in points p and
¢; (any circular disc laid on
the figure will determine
these points). Let the two straight lines 2Q and p¢ be drawn
to meet in M. Then DD, the diameter of the circle of

Fig. 18.
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projection which would traverse M/ if continued, is the diameter
required.

Through PQ and D describe an arc of a circle intersecting the
. line D in a second point A. Then
MP.MQ = Mp. Mg =MD..

and A and 2 are the same point. Hence, DD’ is the diameter
at the extremities of which the arc ¥ (the projection of the arc V)
intersects the circle of projection.

If PQ and pg are parallel they are parallel to DD

Cor. In order to draw the projection of a great circle where the

projection of its pole is given:

P draw a diameter of the circle of

projection through the point M

in which the pole is projected;

then, as in Cor. Pros. I, by aid

of the lines Pm, Pg, where the

arc mg = ;, find the point Q on

this diameter equivalent to a
quadrant’s distance from A, the
projected pole. A second dia-
meter P27, perpendicular to the
first, will meet the circumference in the points of intersection with
it of the required great circle; which may now be drawn by the
help of Problem III,

N.B. The centre X, from which this circle is to be drawn,
will be the point in which a perpendicular on ZQ from 25, the
point of bisection of PQ, will meet the diameter through QM.
And the case in which this centre X falls on the circle of pro-
jection is that in which OM and OQ represents each an arc of

P
Fig. 19.

T when X coincides with C, and

CQ = CP = chord go = .42 = 1.4147,
the radius of the required circle being CP. That in this case,

where OM and OQ each represent an arc of T, the radius of the

circle to be drawn is the chord C2P is evident; for then,
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™
and CQP = —zf-—g—;-i-'s—— QPC;

so that CPQ is isosceles, and CP = CQ.

ProBLEM IV.—T70 draw the projection of a great circle whick
intersects with another greal circle al a given angle and in a
Siven point; the projections of the latler greal civcle and of
the poinl being given.

81. Let a great circle ¥’ intersect a second great circle W’
in a point 7" at an angle . Let ¥, Fig. 20, be projected in the
arc ¥, and #/ in the point . It is required to draw the projec-
tion of the great circle W’. Project the pole of 7 in 2, and
from 7 draw the line » Pp to the circle of projection ; on which
circle let the points p and ¢ inter-
cept an arc equivalent to 6: draw
U, the projection of the circle of
which-7 would be the projected pole.
U will therefore pass through P;
and let Q be the point in which U
intersects with ¢7.

Draw the projection W of the
great circle W, the pole of which
would be projected in Q: it will
be seen that the projection W will
pass through r; and furthermore Fig. zo.
that it will be inclined to the pro-
jected arc V at the required angle 8. For the distance of the
poles of two great circles, as measured on a great circle tra-
versing them on the sphere, is necessarily equal to the angle at
which the two circles intersect, and since  is the pole of the
projected circle through 2 and Q, the arc PQ represents the arc
on the great circle U measured by p¢; that is to say, represents
the angular magnitude 6.

Hence the circular arcs ¥ and W are the projections of two
great circles ¥/ and W’, which intersect in #” at an angle 6.
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ProBLEM V.—Given the projections T and P, Fig. 21, of fawo
poinis on the sphere ; to determine the position of a third poini A
- whick shall be the projection of a point on the sphere distant
by an angular arc ¢ from the point of which T s the pro-
Jection, and by an arc 0 from the point of whick P is the
projection.
82. If we suppose the triangle APT to be drawn, and if the
angle at 2 = £, and that at 7 = {, and the arc 7P = a; then
cos§ = cos:p‘—co'sﬂ cosa
sin 4 sin a

__cosf—cos¢cosa
~ " singsina

Draw, by Prob. III, Cor.,, UV, WV, the projections of two
great circles of which P and 7 are respectively the projected
poles; and let them intersect in 2 point V. From P and 7 draw
straight lines P Vp, 7V! meet-
ing the circumference in p
and 7, and through a point &
at a circumferential distance
w—§ from p draw Px, inter-
secting with the great circle
VU in U; and through 2 at
a distance w—({ from ¢/ draw
Tz, intersecting with the great
circle VWin W.

Through U and W draw
the projection of a great circle
(Prob. III), and find 4 the

Fig. 21. projection of its pole (Prob.

II). Then will 4 be the point

required. For, by construction, AP7 and UVW are projections

of polar triangles. And since in UVW, UV =n—§ WV =1n-,

and the angle at 4 = w—a, the angle U =7—0, and angle
W=m=n—0¢.

Whence in the triangle APZ, AT represents an arc ¢ and
an arc 6.




Position of a face-pole. 41

83. The manner in which the different varieties of crystals are
represented in stereographic projection will be considered in future
chapters. It is only necessary here to observe, that the plane of
projection is always so selected as to contain one of the most
important of the crystallographic planes, and is generally a plane
which divides the crystal symmetrically.

In the stereographic projections employed in this volume the
representation is such as would result from looking down on
a plane of projection on which the poles of the hemisphere
nearest the observer had been previously laid down, as seen by
an eye at the opposite pole of the circle of projection; that is
to say, at the nether pole of that great circle. It is often con-
venient to be able to represent the poles of both hemispheres
within the same great circle of projection. In such case the poles
of the upper hemisphere, as seen by an eye at the nether pole, will
be represented by black dots; those belonging to the nether hemi-
sphere, as seen by an eye placed at its upper pole, will be repre-
sented by small eyelets. Where two poles fall on the same spot
the black dot is encircled by the eyelet.

Where literal or numerical symbols are employed to express
the character of the faces to which these poles belong, the signs,
or other values of these numerals, will usually serve to indicate
to which hemisphere they are to be applied.

When the symbols of both sets of poles are introduced, those
belonging to the nether poles will be the fainter and smaller in
type upon the projection.

SkcTioN V.—Expressions for determining the position of
a pole on the sphere.

84. Let X, ¥, Z be the axial points, 4, B, C the poles of the
axial planes ¥Z, ZX, XY to which a crystalloid system of planes
has been referred.

Hence ABC and X¥Z, Fig. 22, are polar triangles, and 4 is
100, B is o10, Cis oor. Let P be the pole of a plane the indices
of which are +4, +4 +/ If however P lie on one of the
great circles passing through two of the poles 4, B, C, it is the
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pole of a face parallel to one of the axes, and one of its indices is
zero ; that is, the symbol is o&/ for any pole lying between two poles
B and C, kol for a pole lying between two poles C and 4, and
hko when lying between two poles 4 and B: and in each case
the index in question must change its sign as it passes from one
to the other side of the respective great circles.

Whence the poles of all faces lying in any given octant will Lie
within the corresponding one of the eight spherical triangles into
which the sphere is divided by the
great circles passing through two of
the poles + 4, + B, + C and the poles
opposite to them —4, —B, —C:
and the signs of the indices of the
face P will correspond with those de-
signating the particular spherical tri-
angles within which its pole lies: e.g.
the pole 4%/ lies within the spherical

Fig. 22. triangle +4—B8—C.

86. Let P be the pole of a plane
of the system lying within the spherical triangle AB8C. Through
P, Fig. 22, draw the quadrantal arcs XR, V'S, Z7.

Then,

cos PX = sin PR = sin CP sin BCP = sin BP sin CBP,

cos P¥Y = sin PS = sin AP sin CAP = sin CP sin ACP,

cos PZ = sin PT = sin BP sin ABP = sin AP sin BAP.

But the symbol of P is 2%/, and by the fundamental equation A
in article 17,

wUD & 4a o e & —
A Tk l

Substituting the above values for cos PX, cos PX, cos PZ we
obtain six equivalent expressions,

%sin CP sin BCP = 4 sin CP sin ACP,

Z
% sin AP sin CAP =" sin AP sin BAP,

§sin BP sin ABP = % sin BP sin CBP;
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whence are obtained the equations
h asinBCP &k bsinCAP | _csinABP -
£~ bsmACP’ 1 ¢sinBAP' % asnCBP’ %
which give the relations between the parameters and the indices
of the face P in terms of the angles which the arc joining its pole

kkl to any of the poles 100, o10, oor forms with the adjacent
pairs of the arcs that unite these latter poles.



CHAPTER IIL
ON ZONES AND THEIR PROPERTIES.

Section I.—Expressions for a Zone.

88. Definitions. If the centre of the sphere of projection coin-
cide with the origin of the axes to which a system of planes is
referred, the direction of any plane passing through this centre
(origin-plane) is determinable when the positions are known of
any two radii of the sphere not on the same diameter that lie
in the plane in question. And if these radii be the normals of
two planes of the system, the poles of these planes will be points
on the great circle in which the origin-plane intersects with the
sphere of projection.

Further, the two planes, and therefore also the edge in which
they mutually intersect, will be at once perpendicular to the plane
of the great circle containing their poles, and parallel to the dia-
meter of the sphere which is the normal of that plane: this is true
for all the planes the poles of which lie on the great circle, and for
the edges in which each pair of them may intersect.

Thus, the direction of the plane of this great circle and that
of its normal may be determined indifferently from any pair of
these planes.

The great circle which contains two or more of the poles be-
longing to a system of planes will be called a zome-circle, and
the plane containing a zone-circle its zome-plane : the planes or
faces perpendicular lo the zone-plane are the planes or faces of the
gome. The diameter of the sphere normal to the zone-plane, and
to which therefore the edges formed by the intersections of faces
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of the zone are parallel, is the gome-axis. Two or more poles
(or their faces) are said to be fautozonal or Aeferozonal with a third,
according as they lie in the same or different zone-circles (or zones)
with it ; and when two zones have a face in common, that is to
say when their zone-circles intersect in a pole, they will be spoken
of as fautohedral in that face or pole.

87. Symbol for a zome. That two different centro-normals,
and therefore two faces not parallel, suffice for the determination
of the position of the
zone-plane to which
the faces are per-
pendicular is further
evident from this,
that two points, and
therefore two poles
on a sphere, not ex-
tremities of the same
diameter, can only
be traversed by one
great circle: and
the direction of the
zone-plane contain-
ing such a circle is
known when that of
its zone-axis is known. In fact, if two planes in the zone be
P, or (A k1), and P, or (k,%,1,), the coordinates for any point
on its zone-axis are (Art. 20) in the ratios,

1
-

A convenient symbol for representing a zone is formed by
placing the letters or symbols representing the faces by which
its direction is determined within square brackets, or so placing
the coefficients of the parameters @, 4, ¢ in the above expres-
sion. Thus, [P, P), [Pkl hohyl),
or
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and, if P, be a third face of the zone,
[P, 2] or [wyv,w,], [PP,] or [w,v,w],
are symbols that equally represent the zone [P, P, P].

A zone, its zone-axis and zone-plane or zone-circle, will be
represented by the same symbol.

It is however to be observed that the form in which this symbol
is presented has not the same signification as the symbol for a
plane of the system : moreover in the coordinates au, §v, cw the
indices in the 'symbol are seen to be integral, not fractional, co-
efficients of the parameters.

But although the two kinds of symbol thus have, even where
their indices may be represented by the same numbers, entirely
different significance, there are cases in which the symbol for a
zone-plane or zone-axis comes to present identical indices with
those in the symbol for a plane of the system parallel to the zone-
plane.

These, and the conditions which have to be fulfilled by the
axial systems to which it is possible to refer the system of planes,

will be discussed in a future chapter.

Section I1.—Relations connecting three tautozonal
planes.

38. It results from the last article that if the different planes
belonging to a zone be taken in pairs, a fresh expression for the
zone-axis is obtained from each pair of the planes; as, for in-
stance, in a zone containing the planes (%, 4, 2,), (%, %, ,), (%5 A4 &),
the symbols

[wv,w,], [u;v,w,], [v5v, w,]
may be obtained, where [u,v,w,] represents [%,%,7,; Ak 1],
i.e. represents the symbol [%,,—12, &, & hy—hy Ly, hyhy—R, k),

[0, v, w,] being [4 & 4; 2, Ay 4],

and [w, v, w,] being [%, £, 4; k, k0,).
And as these symbols equally represent the direction of an
identical zone-axis, it is clear that their indices can only differ
in their actual and not in their relative magnitudes; and these
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actual magnitudes can only differ, therefore, in the various symbols,
by a series of common factors.
It will thus be seen that it must be necessarily true that, for

instance, A= L kl,—k, L
u, kl kl
_v, Lk —1 hy
- llz—lll
w, hoky—hyky
T A lzk’

where the value of A may in general be determined from either
of these ratios. It often happens, however, that from, for instance,
certain indices being zero, one or two of these expressions will

. . o . -
assume the indeterminate form 5 Since, however, all the indices

cannot equal zero, the value of A can usually be got by in-
spection and selection of the indices; but it may always be found
if the entire symbols be compared, that is, by determining the
value of

[, vy W] [Au, Av; Aw,]

(w, v, w,] [w, v, w,

89. MNotation for Factor-ratios. This relation between the

symbols of a zone as derived from those of different pairs of the
planes lying in the zone will presently be seen to have much
significance. A convenient notation for the representation of such
a relation is afforded by confining the symbols of the planes in
question between square braces or simply between vertical lines,
the symbols or their equivalents being in the form of a fraction.
Thus, if P or (k4 12), Q or (bt 14), R or (hkl)
be three tautozonal planes, their zone may be equally expressed
as [PQ], [QR], or [RP]; but as these several symbols differ
generally by a common factor, we should have, for instance,

viz. » which is A.

bk 1
f_g] N amLl| _(hl—t by L=k, bk —k A,
[QR =% 47 LRy, by lg— oy 0y, oy B By By
3788

usvswsl =A,
,v,w,
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as various ways of representing the relation of the symbols for the
zone as deduced from two pairs of its planes; and indicating
in this case that w, = Aw,, v, = Av,, and w, = Aw,. Where
we would indicate that an expression for the zone is to be derived
by the cross multiplication of the symbols of a particular pair of
A
kb, l,
or where the ratio of two such expressions is to be indicated,
as in the above example, the expression will take the form of
double line therein represented.

Thus, if the planes P or (211), Q or (111), R or (100), Sor
(o1T), belong to the same zone, we may indicate this zone as
[PQ]; ie. as [211, 111], OF “i]
[oT1]; or it may be designated from the planes P.S, therefore, as
|211, oTT] or [02Z]; or from R and Q as [oT1], or from R and §
as [01T], &c.

planes of the zone, the symbol may be written thus,

which gives its symbol as

And the ratio
PQ 211, 111 o1l
PS 211, OIT 02z
and the value of A may be variously represented by A = —3.
So the ratio
100
|| _ Jorr|
lR ) too|| = lorz| = "
o1l
PQ R Q _1I
And 7S

represents the proportion of these ratios.

In expressions of the kind under consideration, the direction
in which an arc joining two poles on the sphere is considered to
be estimated, and therewith its sign, is indicated by the order of
the letters or symbols which represent the poles; so that

QP =—PQ,
PQ QP orP

and —é's- -S—a -Q—S- y &c.
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40, Condition for a plane (hkl) to lie in a zome [uvw]. It
further results from the geometrical unity of a zone-axis and the
consequent invariability of the ratios of the indices in the various
symbols obtained for it as representing the edge formed by one
or other of the different pairs of planes belonging to the zone, that,
taking the symbols for any three tautozonal planes as before,

w_v,_w_huthvi+iw
Ez - v; - V-Fz - hu,+ kv, + 4w,
is evidently true.

Since the denominator of this last ratio is identically zero, as is
seen on substituting the values of u,v,w, in terms of 4,4 / and
hy ky Iy, the numerator must also be so; and consequently,

byu+ A v +Lw, = o,
Le. b (kyly—Lk)+ k(L os—hy B)+ 4 (hyby—FRy hy) = 0 ;
an equation establishing a relation between the symbols of any
three planes in a zone.
41, Symbol for a plane (kkl) in whick fwo zomes [u,v,w,]
and [u, v, w,)| are laulokedral. Since (% %) belongs to each of the

zones in question,
ko, +kv,+/w,=o0;

and hu+ikv,+iw,=o0:
whence k(a, w,—w,,) + &(v,w,—w,v,) = o;
and A0, vy—vi0)) + (W, v, — v, W) = o
k. vwW,—wW,vV,
also == . —
W, u,—u, W, !  uv,—wvu,
3 & l
or,

W, -, W, W V,— VU,
wherefore the indices of the plane (%%4/) have the ratios repre-
sented by the symbol

(MW, — W, ¥y, Wi W,, W V,—V ).

And it will be seen that the form of the expression representing
the indices of a plane in terms of the symbols of two zones
tautohedral in it, is identical with that of the symbol of a zone as
derived from the symbols of two of the planes tautozonal in it.

E
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42, Expedient for deducing the determimani symbols.  This
similarity in the form assumed by the symbol of a zone as de-
rived from a pair of its planes and by that of a plane common
to two zones (as obtained in Art. 40) leads to the adoption of a
similar process for obtaining the symbol in either case. An ex-
pedient for performing this operation, useful when dealing with
complicated symbols, is that of writing, one under the other, the
two symbols to be operated upon; each symbol being once
repeated on its own line and the first and last index on each of
the lines being struck out. The differences of the cross products
of each successive pair of indices on the two lines (these indices
being connected in the subjoined example by an X) form the new
indices, the product of the indices joined by the thin stroke being
deducted from the product of those joined by the thick stroke.
Thus if %,4,/, and A 4/, be two planes in a zone, we have,

ﬁﬂ kz Iﬂ
for the value of l ML ’
I 2 3
k2 12 hE k2
X X X
ks 13 hs kB
S O A A A N u,,
2. VA RN A A Y
3. hyoky — kybg oo, w,;

where [ h—1 ky, L h—hy Ly, hyk—k k) or [u,v,w,]
is the symbol of the zone sought.
Similarly, we get for the face (% 4/) in which two zones [uv w]
and [u’v’w’] are tautohedral, the symbol
(vw'—wv’, wu'—uw’, uv’'—vu’) or (%%/).
The symbol for the zone containing the faces (342) and (324)

~ 4234 2432
s 1 2432 ’ | 4234 ,
12 E; 6: 6;

—6 } or 12, 6, 6,
-6

which, reduced to their simplest forms, are [2T1] or [Zr1], ac-

cording to the order in which the two planes are taken.
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The same symbol [2TT] or [211] is similarly obtained from the
poles (111) and (oT1) which also belong to the above zone.

So again, the opposite poles in which two zone circles [111]
and [oT1] would intersect are (21T) and (211).

43. Relations connecting the inclinations of the edges and of
the normals of three planes.

If XOF, YOZ, ZOX, Fig. 24, be three planes, OX, OF, OZ
the zone-lines parallel to their edges, the great circles joining the
axial points X, ¥; Z of these zone-axes upon the sphere form a
spherical triangle the sides of which evidently measure the plane
angles at which each pair of edges meet in the solid angle
at O; the angles at X, 7,
and Z on the other hand C
are those of the inclinations :
of the planes.

If now 04, 0B, OC be
the normals of the planes
Yz, ZX, X¥; A, B, C
being the poles of these
origin-planes; ABC and
X¥Z are the angular points
of two polar triangles, and B
the ares 4B, BC, CA are
the supplements of the angles at which the planes ¥Z, ZX;
ZX,XY¥; XV, ¥Z are inclined to each other; while the angles
at 4, B, and C are the supplements of the angles Y0Z, Z0X,
XOF at which the edges of the planes meet.

The arcs AB, BC, CA are generally capable of being deter-
mined by processes of measurement, so that from these the other
values can be calculated.

Fig. 24.

Section IIL—On the signs of the indices of & plane as
determined by the position of the plane in respect to
a given gone.

44. Two poles are said to be on the same or om opposite
sides of a given pole lying in a zone with them according as
E2
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botk or as only one of them may lie within an arc-distance 7 from
that pole as measured in the same direction on the zone-circle
that contains the two poles.

Let [uvw] be a zone-circle containing the poles p,¢,7;, #,¢,7,;
then the equation ue+v/+wg = o gives the necessary condition
for a plane ¢f¢ to lie in the zone [p, ¢, 7y, 2. ¢a7.)-

Wherefore, for the plane 44/ not belonging to the zone,

uk+vi+wl> or <o;

so that, if the pole of this plane 4%/ lies on one of the hemi-
spheres into which the sphere of projection is divided by the zone,
this expression must have some definite value either positive or
negative.

If, now, for any particular pole this value be found to be positive,
it must be positive for all poles situate on the same hemisphere
with that pole, since the expression cannot change sign except by
the pole passing through zero, i.e. by its passing to the other side
of the zone-circle.

Der.—The kemispheres bounded by a zone-circle may be termed
positive or mepative in respect to that zone-circle according as the
symbols of the poles lying in them give the above expression
positive or negative; i.e. according as the determinant of the three
symbols two of which belong to planes in the zone may be positive
or negative.

45, The result of the process for determining the indices in
the symbol of a face by the rule of zones is ambiguous, as
regards the signs of the several indices, as is seen in the ex-
ample in Article 42; the ambiguity however can be removed by
determining the position of the pole on the sphere relatively to
two poles heterozonal to it, that is to say, relatively to the zone
containing those poles. And other conclusions determining the
distribution on the sphere of the different poles of a form, the
symbols of which differ in the relative order as well as in the signs
of their indices, can be arrived at by the aid of this principle when
put into the following form.

Determination of the signs of the indices in a symbol. If R, Q,, Q,°
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R .
be three planes in a zone, the ratio k—% will have a positive
2

value if Q, and Q, are on the same side of &, and will be negative

if they are on opposite sides of R.
If any pole X the symbol of which is Auv be taken external to

the zone, while Q,, Q,, R are ¢ /1 8,, /.8 P97 respectively,
then we have
(wr—vg) e+ (vp—A7)fi+(Ag—pp) & = Cp
and  (pr—vg)e+(pp—Ar)i+(Ag—pp)& = C;
both positive or negative or one positive and the other negative
according as Q, and Q, are on the same or opposite sides of R,—
that is to say, transposing the expressions,
AMega—rfe)+r(re—pg)+v(pf;i—1a) = C,
and  A(ggi—rfi)+p(ra—2&)+v(2/i—94) = G
present C, and C, with the same or with opposite signs according

as p qr
%:—, and therefore %ﬁ’ ie. as ggf

Iel/;gl l

is positive or negative; which thus follows from @, and @, lying
on the same or on opposite sides of R, that is, from their lying
on the same or on the opposite hemispheres divided by the great
circle [KR].

Examples.

I. On a hexagonal crystal the zone-circle containing the poles
21T and 112, that is to say [r11], intersects with the zone-circle
containing the poles o10, oo, that is to say [100], in two poles
which are o171 and orT.

It is required to determine which of these poles is the nearer to
the pole 112, that is to say which will be on the same side with
112, of the pole 2TT on the zone-circle [111].

| 2TT

Here :{ f = —:i has a positive value ; ¢ /g being the symbol

112
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of the face in question, where e = o and /= —g, while fand & are
unity.
The expression becomes

/=& —(2g+e),et+2f| m

3 3 3 | n
=|2fzfzf _|—28 —2g —2¢
3 33l |3 3 3

and o= 3/ f=—g; so thatif — s to be positive, / must be

positive and ¢ must be negative, and the symbol is o1T.

II. On a crystal of Calcite of which Fig. 25 is a projection the
forms r {100}, 6 {211}, » {201}, # {310} occur.

The poles # and 2 are found by measurements of the angles
28’ and ¥4, vr and ¥'7 to
be symmetrically situated and to
belong to the same form. Simi-
larly, 4, is found to belong to the
same form with # and so with /;
and 7 and v are the faces 310
and 2o07.

(1) Both faces 7, and 2’ lie on
a zone with # and 77, i.e. with
oro and oo, and therefore on
[1o0]).

Let then Z, be 0%/ and 2’ be

Fig. 25. (2) Also both lie on the same

side with o1o of the zone-plane

[rx1], which is the plane of projection of the figure, and therefore
#+/ and f+g are both greater than zero, i.e. are positive.

(3) And they both lie on the same side with oro of the zone-
plane passing through 2TT and 1o0e (4 and 7), that is to say, of
the zone [o1T]. Hence /—g and #—/ are positive.

Hence from (1) % and / can only be 3 and 1 or 3 and T, or else
1and 3or T and 3; and fand g can only be 2 and T or 2 and 1.

From (2) £+ can only be 3+ 1 or 143, and /+g can only be
2—1 Oor —I+2.
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But from (3) the second index must be greater than the third, or
# must be greater than 7 and f than g: wherefore the symbols are
of 7, 02T ; and of 4, o31.

Secrion IV.—Relations connecting four tautozonal
planes.

46. Let P (b k1), O (6 /fi8) Qi(afig,) and P, (k4 1)
be four poles lying on the same zone-circle, and let X, ¥, Z be

K oww
z, ‘(‘\%\

o T

&

Fig. 26.

the axial points in which the axes to which the system of crystalloid
planes is referred meet the sphere of projection. Then
cos'XPl = cos XQ, cos P,Q,+sin XQ, sin P,Q, cos P,Q, X,
cos XP, = cos XQ, cos P,Q,+sin X @, sin P,Q, cos P,0, X ;
cos X P, sin P,Q, = cos X, sin P,Q, cos P,Q,
+sin X Q, sin P,Q, sinP,Q, cos P,Q, X,
cos X P, sin P,Q, = cos X Q, sin P,Q, cos P,Q,
—sin X @, sin P, Q, sinP,Q, cos P, Q. X ;
whence
cos X P, sin P,Q, + cos X P, sin P,Q, = cos XQ, sin P, P,.
In the same way
cos VP, sin P, Q,+cos V' P,sin P,Q, = cos ¥ @, sin P, Py;
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therefore
sin 2, Q, sin Q, 7,
cos X Q, cos ¥P,—cos ¥, cos XP cos X2, cos ¥Q,—cos YP, cos XQ,

_ sin P, P,
~ cos XP, cos YP,—cos VP, cos X P,

Similarly, by considering the poles 2,,"Q;, Q,, and again the
poles 2, Q,, P,, we may shew that the above expressions are
equivalent to

sin Q,Q, sin P,Q,
cos X Q, cos ¥Q,—cos ¥ (, cos XQ1 cos X Q, cos ¥P,—cos PQ,cos X P,
sin Q, P,

= os XP, cos ¥Q,—cos PP, cos X0,

From the fundamental equations (A),

2 cos XP, = 2 cosVP, = < cos ZP,,
hy A 7,

2 cos XQ, = L cos FQ, = icosZQl,
Gl 1 &1
i cos XQ, = —b~ cos¥Q, = icosZQ,,
2 2 &2
2 cos XP,= icos YpP, = < cos ZP,.

]72 k! 12
By substituting values for cos XP,, cos X @, &c.

sin 7, @, f1 cos VP, ke,— h_/;_&c b PO,

sinQ, Q, k cos¥Q, Sia—e Sy @ 0,0,

sin P, P, _ f; cos ¥Py k}z—hk_&c.=& PP,

sin Q, P, k cos VQ, fih,—e %, 9 0P,
Hence

(1 sin P, Q, S_in_Q_]_Q_: _hea—hf, fx‘n—elfz
sinP, P, sinQ P, kh—ht, fik

=2,
TR P

Q’I_A’ e ©
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It may similarly be proved that

@) sin#, Q, sinP, Q, — ke—hfi ke—h, [
sinP, Q, sinP,Q,” ke—htfy be—hf,
PO, POy _4»
Pl 0! Pﬂ 03 ’
If Q, be external to 2, the relation may be put into the form

sinP, Q, sinP,Q, _ I
(3) sn?,Q, snP,Q A"

57

c’

In the expression (2) the ratio is positive, in (3) it is negative,
and these two relations, representing the cases where (), is internal
and where it is external to ,, may be comprised under the single

expression
sin P, Q, sin(P,Q,— P, P,) - P Q, : P O, — A
sin(P,Q,— P, P,) sin P, @,
where A may be positive or negative.
Sin‘PlQa_Pn PIQZ
By analogy, 02,0, 7, | B, o, » or
by sin Py Q, — P, 02’
2 sin Py Q,
bk X Lk by &
= ezf;ga ./;gz _ &b | __ & /3
hy by 1, A 0 &, A, %,
ee.f;gz f;gz 82 6 YA
A I kb k
A 1 %
f; & +E g 2 & ty &/
ky 1, A,k hy £,
f;gz ala &2 & ty & /2

"2("'1 —vky) + /o (vh — AL) +gn_(_)‘_k_"_lfl‘1)_
T g ("'1 s vh) + /3 (0hy — Nby) + &, (Ney — )
by Sin P Q.
2 sinP,Q,

sin P, Q, sin (P, Q,— P, P,)
sin(P,0,—P,P)~ snP,Q,

_aht/fiatsn, JaPktAatar

Similarly for ; and we have

T ep,+ /s q¢+gsrs 6 Pz"'/iqa"'glra
D

=A; ...
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where [p 1], [p,q,7,] are [h4 4, Apv], [AAl, Apv] re-
spectively, (A uv) being the symbol of an arbitrarily faken pole
K external to the zone-circle [P, Q,].

By selecting for X a pole presenting one or two zeros in its
symbol, this symmetrical expression takes a very simple form.

47. It is seen from the form of the expressions leading to
C and D that a fourth plane in the zone is needed in order to
obtain a relation between the faces of a zone mdependent of the
axial distances of the several poles.

It will moreover be seen that the expressions thus obtained
for the relations of four faces belonging to a zone are in the form
of one or other of the anharmonic ratios of the normals of the
four faces; which form a sheaf of lines lying in the plane of
the zone and meeting at the origin. And since these four normals
are homographic with the traces on the zone-plane of the origin-
planes parallel to the four tautozonal faces, it may be asserted alike
of the normals and of the faces, that in a crystalloid system the
anharmonic ratios of any four tautozonal planes must be rational ;
for it is obvious that the right-hand sides of the expressions C and
C’ as well as of D and D’ are rational.

The anharmonic function is in each case equivalent to the ratios
of the first minors of the determinants formed by the symbols
of the faces taken in corresponding order. Since there are three
anharmonic ratios resulting from the division of an angle or of
a line, those of the four tautozonal planes P, Q,, Q, P, are

XA a8
(1) ‘PIQR _Q}ioﬁ =A = iz_/;é'g_ . ezl’&
PP, Q2 ! /ll kl ll ah&
2 Fa by
PP 0,P
2 Slo2 222 =\, = &ec., &c.;
® Zo oo =M= * o
P Q P, Q,
3) T LG 4o g, &c.
® po Po =M= & °

Solution of problems involving four fautozonal planes.
48. The expressions arrived at in the previous paragraphs
afford the means of determining the position on a zone-circle
of one of the four poles, or the symbol of one of them, when
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the remaining positions and symbols of the four poles are
known.

Thus, first; let the position of the pole @, be sought where the
symbols of the four tautozonal poles P,, Q,, @,, P,, that is, (4, #, /),
(e /18) (6 /a8e) (g %, 1) respectively, and the arcs P, ¢, and
P, Py, i.e. the positions of the poles P, Q, and P,, are known.

From the equation D we get

__ sinP Q. =A_ sinP Q- = tan @

sin (Px Qa—Pl'Pz) sin (Pl QI—PIP’) ’
PO P 0,
where A= 2 20
P:Qa PIQI

and from this equation 6 can be determined, since the second limb
of the expression consists of known quantities. If the expression
D’ be employed, the value of A is obtained from the right-hand
side of that equation.

In order to reduce the expression into a form adapted for the
use of logarithms, we have,

I+tanfd o __sin(P,Q,— P, P)+sin P, Q,
ang WSO = s 5 —p Py —sn 2,0,

__2sin§ (2P, Q,—P, P)cos—} P, P,
T 2cos}(2P,Q,— P, P,)sn—} PP,

=—tan(P,Q,—% P, P,)cotan} P, P, ;
and tan(P, Q,—% P, P,) =—tan} P, P, tan(45°+6),
= tan} P P,tan(135°—0). .. .. B

49. Secondly, where the three angles between the four tauto-
zonal planes and three of the symbols of the planes are known,
and it is required to find the symbol of the fourth plane :—

Let the angles P, Q,, P,Q,, P,P, be given, and also the
symbols of P,, Q,, P,, viz. h k1, ¢ /18, %, k1, respectively:
it is required to find the symbol of Q,, viz. (¢, 1, &,).

Putting the equation D into the form

PI_Q, P,_Q_,A=m

P—zoa onx
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where A is to be obtained from the left side of either of the
expressions D or D', —:f is rational and can be found from the

known quantities constituting the right-hand side of the equation.
Then

’ by by g
ioa /28: 1ga —4 S b6~ hi&a by fa—ki ey
2,0, &y ka A b &y— sfzr bey—hygs, By fo—hy 6
basgse
m
=—)
n
and n (b fo—rhie) = m (b, fy—k, ¢);
23 Je 1)

whence

nh,—mh, = nk,—mk, = nl—mil,’
by symmetry ; and we have for the indices in the required symbol

of @, by = nh—mh,
So=nk—mk }. oo i iii oo, F
& = nh —ml,
Examples.

I. On a crystal of Diopside there occur in a zone four faces,
their symbols, and the arcs between their poles, being
P, or (h k1) or (100),
Q, or (¢ fi8) or (ro1), P, Q= 49°39,
P, or (k4,7 or (oo1), P,P,=13°59";
} P, P, = 36° 59" 30";
Q; or (e, /;8,) or (3o01),
where the arc P, Q, is to be determined.
From expression D,

100 100
2,0, o |erl| _oto; _x. 20 L2
P,Q, 'oox 030 3’ || oox
301 101

o N=—e

3

In order to find the position of the pole Q, in the zone, the
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symbols of and arcs between the other poles being given as above,
we have by equation E, A

! ______sm 49° 39" , and 0 =
3 sin —24° 20

tanf =— 31°39"17”;
tan (2, Q,— ;Pl P,) = tan 36° 59" 30” tan 103° 20’ 43",
= tan 10%° 28’ 46" ;
P, Q,—36°59 30" = 107—° 28’ 46",
and P, Q, = 144° 28" 16”.
The value of A might have been equally obtained from the expres-
sion D', Taking the pole (or10) for X, i.e. for (A, u, v), we have

| [roo];
6o+ /3418 4P +&. _ ot+o—1  oto-—I

6D+ f,0+8 T, oD +&C —3+o0+o0 I+°+°’

I
or A= —_-.

3
II. A zone on a crystal of Felspar presents the faces

P, or (zo03),

Q, or (111), P,Q, = 31°12,

Q, or (z41), P,Q, is the arc required,

P, or (130), P,P,=186°12, and } P, P, = 43°6';

for [p, q, 1],

=[ooT], and for [p,q,T,],

o10 OIO

and

203 _
P, 0, _ 241 1z 3 8] _ PO _§TE_
~ ||130 3 1z O P,QII_eu'-'_ ’
z4x|
and A= 4;
tanf =— 4sm31 I—?—, and 6 =-—68°25 47”.

sin 55°
Whence tan (P, Q,— =P, P,)=tan43° 6’ tan 23° 25" 47",
= tan 22° 4’ 29",
and P, Q, = 65" 10" 27",
In order to determine the value of A by the use of expression

D’, we may take for % the pole oo1.
Then

b an = [ 228] = [oo], and 5,037, = 220 = 31l
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AndbyD’, A=—:— =4;

the same result as by the other process.

Conversely, if the symbols in the above zone for the poles 7,,
Q,, P, are given and the arcs P, Q, and P, P, as before, but the
arc P ,Q, be observed as 65°20"; and it be required to find the

symbol of Q,.

Then

m _ (P,Q,| _|203 111 sm65 zo sin (31° 12" —86° 12')
n ‘PQQ, = |130, 1111 sin 31° 12" sin(65° 20'— 86° 12")

sin 65 20"sin 55°
sm31 °© 12’ sin 20° 52 =—4'034.
Assuming m_ "4,
n I

we have by equation F for the symbol of Q,
(—2—4, o+12, 3—0), ie. (6, 12, 3) or (Z41).

It will be seen, however, that on the assumption that the symbol
of Q, is (241) and that the arcs 2, Q, and 2, P, had been cor-
rectly determined, the true value of the arc P,Q, would not be
65° 20/, as measured, but is, approximately, as calculated in the
previous paragraph, 65° 10" 27”.

Problems relaling lo four laulohedral zones.

650. The method of introducing a fifth pole external to the
zone in which four poles lie, in order to represent the anharmonic
ratios of these four poles in terms involving two zone circles
intersecting with that of the original zone, may readily be extended
s0 as to involve four zone-circles passing through the poles of the
four tautozonal planes and also through an arbitrarily taken pole
external to their zone.

If % be this arbitrarily chosen pole and 7,, Q,, Q,, P, be as
before four poles lying on a zone to which £ is external, then % will
be the pole of an origin plane X or (Apuv), and zone-circles passing
through £ and through P,, Q,, Q,, 2P, will intersect with the great
circle of which # is the pole in the points p,, ¢,, ¢,, 2, (Fig. 27).

Through 2, the point in which the zone-circle P, 2; meets the
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great circle X, draw a straight line intersecting with radii of the
sphere Op,, Og,, Og,, Op, in @, ¥, &, p,.

The zone-plane [P, P,] will intersect the plane %2, in a line pd
which will meet in ¢4cd lines drawn from O to P,, Q,, P,, and Q,,
and from % to @’ & ¢’ p,: thus the pencil OP,0Q, 0Q, OP, is homo-
graphic with the pencil Op, Og, Og, Op,, which pencils are the traces
of the four original zone-planes on the planes OP, OP,and Op, 0p,,
and their anharmonic ratios are, as in the expression D,

sing, g, sin (4, ¢, —2125) —_ sin P, @, sin (P, Q,— P, P,)

sin(p,g,—2.0,)sinp, g, sin (P, Q,— P, P,)sin P, Q,
AR
PyQ, " 1P QT
where the arcs p,¢,, #, ¢, and p, p, measure the angles at which
the zone-circles 2P,, £Q,, £Q,, #P, are inclined to each other.

It will be seen then from this construction that if there be
two poles Q,, Q, and the zone-circle denoted by them intersects
two other zone-cir- :
cles the symbols of
which are [p, q, 1],
[p,q,r;] which are
tautohedral in a
pole %; then the
symbols (%, 4, 4)
and (%, £,7,) of the
poles P, and P,
in which the zone
[@Q)ie[efis,
¢, /> §2] intersects
the  zone - circles
[P, @, ] and
[p,q,r,]areknown;
and equally the
symbol of the zone
[, v, w,] passing
through (A wv), i.e. # and (¢, f; &,), i.e. Q, and the symbol
of the zone [£Q,), i.e. [Auv, ¢, /;8,), i.e. [u,v,w,], are known.
There remain then the inclinations of the planes in the zone [, 0]
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as measured by the arcs P,Q,, P,Q,, P, P, or the mutual in-
clinations of the four zone-planes )
[p.ayr) [wv,w] [wv, LA RN
as measured by the arcs p, ¢;, #, 74 10, t0 be determined. And
where three of these are given, since the symbols are all known,
the fourth may be found.
51. If then the arcs p, ¢,, and p, p, be given the arc ¢, ¢, may
be obtained by the method of Art. 48. In fact
sing, ¢, . sin (2, 9, —2,25) — sin?, 2Q, sinZ, kQ,
sin (; ¢, —212,) sing, ¢, sinP,2Q, sinP,kQ,
—_ Sinpl Qz sin (Pl Ql—Pl‘Pz)
T sin(P,Q—P,P,) snP,Q,
=aPtihtan aptfigtan _ ,.
6P+ f20+8T 4Pt /1% 4T ’

whence . i
_ sinp, ¢, = sinp, ¢, .A = tan8;
sin (2, Yz_.?d’z) sin ( #, ¢1—2124)
andasin B
tan(p,¢,— % 5, 2,) = tan} p, p, tan (135°—6). .. .. .. G

52. Or again, if the arcs be given between two pairs of poles,
the symbols of the zones [# P,] and [£ P,] and of the poles Q,, Q,
being given as before, then the third arc may be found. Thus,
if P, Q, be the arc sought, we have from D', Art. 46,

sin P, Q, sin (P, Q,— P, P,) = A sin P, Q, sin (P,Q,— P, P,),
2sin P, Q, sin (P, Q,— P, P,) = cos (P,Q,— P,Q,+ P, P,)
—cos (P,0,— Q, P),
2sin P, Q, sin (P, Q,— P, P,) = cos (P,0,+ O, P,)
—Cos (‘PIQI_ Qn Pz) 5
whence .
cos {2 P,Q,—(P,Q,— Q, P))} = (1—A)cos (P,Q,—Q, P,)
+Acos(P, 0+ 0, P) .. ....... H
an equation in which every quantity is known but 2,(,, and
which therefore gives this required arc P, Q,.
If P, Q, is a quadrant, the expression becomes
sin(2 P,Q,+ @, P,) = (1—2A)sinQ, P,. ...... H
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Section V.—Analytical investigation of the zone-law.

53. Expressions similar to those previously obtained may be
deduced more briefly and with greater elegance by the methods
of analytical geometry. Thus, if as before, OX, OF, OZ be any
three axes, and _g + _%; + ; =1
be the equation to a plane of the system, then, if the system be
crystalloid in character, every other plane belonging to it will be
parallel to one of the planes represented by the equation

h k l
—a'x + ZJ’ + z Z2=1;
where, as before, 2 and £
b c
are the parametral ratios, and
a b ¢
Bkl

the ratios of the intercepts of the plane in question; 7, £, /7 being
integers, or one or two of them zero.

It is frequently convenient to consider the planes of a system as
origin-planes : in which case the equation to the origin-plane, parallel

to a plane 3 7
PR ki

is éx+£,v+—lz=o.
a [/ c
54. If the equations to two origin-planes are
A k 4
;x + Z.y +.?Z=0,
%x + %J’ + EZ =0,
the line in which they will intersect will be the zone-line or
zone-axis x y z .

we vé we’
where u=4ikr—lg, v=Ilp—kr, w=rhg—kp.
And where the system of planes is crystalloid in character these
values for u, v, and w are necessarily represented by whole num-
bers, or in the case of not more than two of them, by zero.
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55. And if an origin-plane contain two lines passing through
the origin which are possible zone-axes, that is to say, which
have symbols involving only rational indices, this origin-plane is
parallel to a possible face of the system ; inasmuch as the equa-
tion to the plane containing the lines

LA SRS J 2
p=ik—a 2nd 7a
. g .
15 (kr—lq)g + (lp—hr) %’ + (hq—kp) -=o,

and the symbol for this plane, viz. (kr—1q, lp—hr, hq—kp),
contains indices which can only be integral, or equal to zero in
the case of one or of two of them; since the indices in the
symbols of the zones are only integers or zero.

56. Since the equations

2,7, T,
ax+b_y+ 2=0,

and Qx+ Ag +—z—o,
I c

are identical, representing one and the same origin-plane, the
symbol of which may be written indifferently as (p, ¢, ) and
(Ap, Ag, Ar), the indices in the symbol for an origin-plane of
a crystalloid system may be multiplied by any number positive
or negative, or be divided by a common divisor. And the same

is true for the symbol of a zone-axis, the equation to which is
X _y _ 2
ue vé  we
It may be written [uvw], or more generally [pupuvuw].
87. If (kb L), (A ky L), (kg ks L) be three origin-planes
intersecting in an identical zone-axis, their equations are

(1) ﬁ.1£+k11+11§ =0,

(@) hI+hs+hi=0
2

(3) 1;334-&,{ Li=o )
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Now x, 5, and z have the same values in these three equations
and are not all equal to zero, consequently the determinant
bl kl ll
h2 kﬂ 12

that is to say, by By Ly
V = by (b y— b k) + Ay (L ey — Ry 1) + 1, (By by — Ry ) = o,
68. Conversely, the three planes intersect in the same zone-
axis, if V = o.

For if the zone-axis in which, say, (2) and (3) intersect be the
bZ kﬂ lZ
hy kg 1
for which is formed of the first minors of the determinant of the
above three equations, the line is

V=

=0;

line u, v, w, or s> that is to say, the line the symbol

X J_Z

au, bv, cw,

b

and the plane %, £ / will contain this line if
Ay + A wt+Lw, = o,
that is, if V = o.
59. And furthermore it will be seen that the necessary and
geometrically sufficient condition for the plane %4/ to contain a
possible zone-axis [u v w] is

hu+tiv+ilw =o0;

for the plane is h%+k%+l§= Oy v ee e e e e o (1)
and the equation for the line must be
x z
Y . (2

au_bv _ew’
and any values for x, y, 7 satisfying (2) will satisfy (1); by sub-
stitution therefore in (1) of the values from (2) for the ratios
f,%’, §, we obtain Zu+4v+/w =o.
Since a fresh expression for a zone-axis is obtained from each
pair of planes in the zone, as, for instance, in the zone
[hl kl ll’ ;’z k2 Iﬂ’ ”s k! 13 ’
F 2
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the following symbols may be obtained for the zone-axis :-
(v, w] [uvaw,], [%vw];

where u, v, w, represent

hy byl

; ; ; or kl—lky Lk—hyly hk—hkhy;

3 73°8

and similarly for the others: but as these can only differ in their

several actual, but not in their relative, magnitudes, the actual

magnitudes of the different symbols can only differ by a series

of common factors ; that is, adopting the previous notation,

by ky 1
Iu;vlwx ENNA =)\=I—1~’-=‘—71=‘ﬂ‘
U, Vy Wy by ky g oV, W’
XA

results identical with those previously obtained.

80. The equation /%;u,+ 4, v,+/, w, = o, which represents
the condition for a plane (%, 4,/,) to belong to the zone [u, v, w,]
or [k &1, h, k,1,), is indeterminate ; the condition however which
has to be fulfilled by the symbol of the plane may be put into
another and more immediately applicable form.

_ Thus every origin-plane, the symbol of which has the form
(Ady+phy Noy+pk, N +pl,),

lies in the same zone with the two planes (% £, /) and (%4, £,7,),

and is a plane of the system if % is rational.

For the determinant
ﬁl kl 11
A, k, A = zero.
Aoy+ph, Nb+upk, Ai+pl,

And, conversely, if (4, £, /;) be the symbol of a plane belonging
to a zone determined by the planes (4, £, /) and (4, £, Z,), its symbol
—in general not its simplest, but some equivalent symbol—can be
represented in the form

()‘bl'}'“}lz Aey+pky N+ply).
For if these two sets of indices represent the same plane,
Aby+ph, M +pk, A+l =—p
ﬁs - k& - 13 . ’
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relations which may also be expressed thus,
(1) Ay +ph,+vh,=o,
(2) Ab+ph+vik =o,
B) A, +pl+vi =o.
By the reasoning in Article 57, we have
hy by by
'él &y oy I =0;
ll 12 18 |
wherefore the above equations are consistent, any pair of them
giving the same values for A, p, ».

Thus (2) and (3) give
S
kzls_lzks—kall"lskl—kllz"llkz’
A ® v
or —_——=— =
u, u, uy
(3) and (1) give =~ ~ =K 2,

(1) and (2) give Aob_2,

Having then found values from any one of these systems for
A, p, v, the ratios of which must clearly be rational, we may write
for (4, %, Z;) the equivalent symbol

(—vhy, —vk, —vl),
or Myt phy, Abtpky, MNo+pl);
which was the expression to be arrived at.

Example.—To find the symbols of a series of planes lying in
the same zone with the planes (rrr) and (320), i.e. in the
zone [231].

Let A= 2, p=1, then the symbol is (542),

A=—2, p=1, ” 9 (102),
A= I, p=2, ” ” (751);
A——“—I: rp=1, ” ’” (21}-);

all of which symbols belong to planes of the zone [231]: thus from
the symbol (542) we have

5X2—4Xx3+2X1=0,
and so for the others.
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61. Cor. Where A=p= + 1, the process is simply the addition

or subtraction of the indices in the symbols (%, £, /) and (%, %, /,).

Whence, whether we take the sums or the differences of the

correspondiftg indices in two symbols, we equally obtain a symbol
for a face belonging to the zone.

A face, the symbol of which is obtained by adding the indices
in the symbols of two other faces, will cut off or replace, and in
certain cases, where the faces are symmetrically disposed, will
truncale their edge; that is to say, will, in the latter case, be
equally inclined on the faces.

In cases where a face truncates an edge, symbols for faces
that Jezsl the edge (that is to say, would be inclined each at
the same angle on a truncating face) are obtained by adding the
indices of the symbol for the truncating face to those of the
symbols for any other pair of corresponding faces that meet in and
bevil the edge. [See Article 133.]

Thus, if (110) and (ror) be the symbols of two faces the edge
of which is truncated by the face (211), the same edge would be
bevilled by the faces (321) and (312), as well as by the faces 532
and 523, &c.

The problems of four taultozonal planes.

62. Let there be a system of tautozonal planes; the equations
to two of which are u = o and v = o; where

= BE LBy TE_
a b

1:3_ e (1)

r= D ® L DY
a b ¢ .
Any plane passing through the same zone-axis [uv] with these
planes p, ¢, 7, and p, g, 7, must be represented by an equation of
the form u+4puv = o, or

(2+e2) Z + (@) T +ritur) =0 (2)

But if the plane be crystalloid and (447) its symbol, its equation
may also be written in the form

T2 1123
B4R HIZ= 0w (3)
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In order that these equations may be identical we must have
V3 & Z
= = P €]
pl+“p2 91+F'fz r]+F'r2
whence p must be rational if the remaining letters represent
rational numbers; i.e. if the planes be crystalloid.

As in Article 48, let P,, Q,, P,, @, be four planes of a zone
[uv], of which u and v are any two planes; and let

u+pu, v = o be the plane P, or (%4, £, 1),

Ut v=10 »  Qor (efig), (5)

utp,v=o0 w  Pyor(hy k1), e

Ut v=0 »  Qyor(ef8)
where w,, Ky, Mg, 4, are, as above, rational.

Then the anharmonic ratio of these planes

]"LQ_@ . P0o — sin P, Q, . SinP'ng My By

£,0," P,Q, " sinP,0, sinP QT py—p, —p,
and thus must be rational.

In order to determine the value of the anharmonic ratio in terms
of the indices of the planes; since u and v are perfectly arbitrary
planes of the zone, we may take them such that each passes
through one of the crystallographic axes: and evidently such
origin-planes must be crystalloid, since each contains two zone-lines.
Take, then, u as passing through axis ¥'; .. ¢, = o:

v as passing through axis Z; .. 7, =o.

Hence, from equation (4),

=A,.. (6)

_._}‘1__=_l"’1_=—‘—, and #,=ﬁk~"
Pitpy Mg 7 2 4
Similarly, 3
rl fl rl 2 rl f2
=n/a = — =% m,o=—=% ... (7
Tea "Twl M s @

Hence the anharmonic ratio is
i ALy b1
A = (= 1ty) (Mg — g) - % 4 & A I :
(s —pe) (y—p) — 1” (ﬁ_é) (ﬁ_.ﬁ) r . (8)
7% h &L &
—_ (k_l_gQ—ll/;) Y YA

T (&= 0s) e —14f)
whatever be the values represented by these letters.
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In a similar way values may be obtained for A involving /% and
ge, or hkand ef; and the anharmonic ratio may be written
as

N A /A
& /28 e.f18:
h? kZ ]2 hﬂ kz 12
€ /282 o fis

_ sin P, Q, sin (2P, Q,— P, P,)
~sin(P,Q,—P, Py snP, Q
=Ac i i e (9)
the sign of an arc being indicated by the order of the letters.

The solution of problems involving the symbols and arc-distances
of four poles on a zone-circle follows from the last formula, as
in Articles 48 and 49.

Thus where the symbols of four poles and two arcs are given,
the position of the fourth pole Q, is found from the formula

tan (P, Q,—3% P, P,) = tan } P, P, tan (135 —9),
sin P, Q, .
sin (Pl Ql“Pl Pz)’
and where the arcs are given and three of the symbols, the symbol
of the fourth pole may be otherwise obtained from the expressions

in equations (7). For
_sinP Q, sinP,Q,

where tan 6 = A

T sinP,Q, sin P, Q,
and by equations (7),
LA k1, , 5 Ay 0k, by by hy ky
A= g — 1826 & = YANEYA
“2 l‘l kl 11 12 ﬁz ll ﬁl }l'l k? hl kl ‘
J2 8 S1& &2 6y 814 ¢ /3 a /i

where such pairs of symbols may be chosen by inspection as will
not result in an indeterminate value.

For the symbol ¢, £, g, of Q,.
Let ey = nh—mhy,
Sa=nk—mk,

& = nli—ml,.
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Then
‘ l ' | MEYARENA
(nk —mkz) (nl —mly) f.g, —__1hkh| Nh&
kyl, 7 ky Ly X
' (nk, —m/},) (nl —ml,) _f1g1 | i \ il A
ky 1,
_m _f. &
T on |k
fgl
In the same way, or by symmetry, '
Ik, h, R,
=ri&al _ __fl_/_rl_ 1
A== e = "’1f1 R § [1))]
1" 1 1

The multiplier of % is thus any one of the fractions obtained
by taking as numerator any determinant formed by taking a pair

of columns from 1f1 g ! and dividing by the corresponding

1 2 2
ﬁ 1 kl ll
1/181
The anharmonic ratio of the four planes P, Q,, 2,, Q, may
be written

determinant taken from -

bl kl i‘z kZ
sin P,Q,sin 2,0, _[P,0)[P,0)] _ /i e /o
sin#, ¢, sin P, @, | £, Q][ 2, Q] [ Ay Ry | by ey

A A

= &c. = A. .. (11)
Since the zones [P, Q,], [P, Q,], [P, Q.], [P, Q,] are identical
in position, corresponding indices in any pair of symbols must

bear the same ratio: let [ABC] be the simplest expression for
the zone.

Let [P, Q,]-'ﬁjf‘_’ = [4,8,C] =[a4aBaC],
b,
[Pa0] =],/ = [4.8,C] = [84 BB BC],
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hok
|6, /28:

_ Ikl _
[P0]=" =[4B.C]=[24258 5C].

[P102]= = [AsBsCs =[y4yByC],

Then from (11),
;4:;‘44 3EB;=CSC4_)/6

and, p, ¢, r being any three quantities whatever,
A A,pP=NA,A, 1% B, B,?=AB,B,8, C,C,r’=AC,C,¢*; (12)

(B,C,+B,C)gr {=2aBBCgr=2Ny8BCyqr}
=)‘(Bsc4+B4Cs)Yr') 13
So, (Cid,+Cyd))rp=\(C,4,+C,4) s, ) (13)

(4,8, + 4, B,)) pg = A (4, B, + A4, By) pg.
By addition of equations (12) and (13) and resolution into factors,
(4,24 8,9+ C,r)(A,0+ B,g+C, r)
(4s2+ B0+ Cyr) (A,p+B,q+C,r)’

Let [u, v, w,] be [¢, £,61, pg7] and [u,v,w,] be [¢, /65, £97],
2 ¢ r being the symbol of any heterozonal pole

A=

Then  A,p+B,9+C, r-—plf
fm

ﬁ & l

6 elf;

gl;‘ e‘fl‘_ll w+4 v+ w,.

So zp"'Bzg'l'Czr—ﬁzuz'}'lzvz"‘lzwzy
Ap+Byg+Cor = by +4 v+l w,,
Ap+B.g+Cir = hyu+kv,+]w,;

=(lzlu1+klvl+11v“1)(llzu2+’62v2+12w2).“ .
(Byuy+ by vyt Ly wy) (Ayuy + A, v, + 1, wy)

If [pq,m] is [ﬁlknlv pgr] and [quzrz] is [A,4.1,, 297),

. . . 1
by inverting the expression A, X becomes A, and we have the form

=4 +4 +1

and v A

of the ratio I, as in Art. 48 ; and similarly for any other form of
the anharmonic ratio.
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Section VI.—On Isogonal Zones.

83. Harmonic division of a zome. In investigating the relations
which connect the planes belonging to a zone, and establishing
the principle—which in fact is but a more philosophical form of
enunciating the fundamental law of a crystalloid system—that the
anharmonic ratio of four tautozonal planes is in such a system
rational, we are brought into a position from which we may
advance to discuss a problem which involves the whole principle
of crystalloid symmetry.

This problem deals with the conditions under which the angle
at which any two planes of a zone are
inclined on each other may be repeated in _x
the zone. -

The simplest case to be considered will
be that in which two planes of the zone \
are equally inclined on a third at an g \
angle ¢. : -S

Thus, if 2 and P’ be two origin planes
the angle between which is bisected by the \ /
plane S, as in Fig. 28, where the lines OP, P
OP’, &c. are the traces of these planes on Fig. 28.
the zone-plane which is that of the figure ;
it results from the principle of the harmonic division of an angle,
which is only a particular case of the anharmonic division, that if
= be a plane in the zone perpendicular to S,

(1) sin PP’ sinS

SnPS snSP - 0
() sinPZ sin 7S _

sinS sn PSS T

(3) sinPS sinZP 1

sin PP sinZSS "~ 2’

results easily verified by substituting the values for the angles in

the expressions ; thus expression (3) is

I;

sin ¢ —cos¢p 1

2sing.cos¢ —singo’ 2
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Since the expressions are independent of the value of ¢ and
have rational values, we may assert:

1. That where two planes in a zone are equally inclined on
a third, a fourth plane perpendicular to the last plane is a possible
plane of the zone; and

2. That, in a crystalloid zone containing two perpendicular
planes, for every possible plane of the zone another plane may be
found equally inclined with it on the two perpendicular planes,
which fulfils the condition necessary for its being a plane of the
system, namely that of its having rational indices.

In fact if S be (¢f¢) and P and P’ be (%247) and (¥ I');

then,
kRl fg
sin P7 sin §3 PP PX Kl gr
sin P2 sin SP SP ST ki fgl
gr K|

and thus % is rational ; p is determined from the relation

putgv+rw=o,
where uv w are the indices of the zone [ ;ﬁ,{?’ﬁ'] Hence the
indices p ¢  of = are necessarily rational—that is to say, fulfil the
necessary condition for a possible plane of the system. This how-
ever, as will be hereafter seen, is not always a sufficient condition
in order that a plane may exist in a symmetrical system of crystal-
loid planes.

It is obvious that any relations that are established regarding
the anharmonic ratios of the planes in a zone apply equally to
those of their normals and to the sines of the angles of the arcs
joining their poles on the zone-circle.

It will further be evident that what particular values of ¢ may be
possible, or whether any two angles between three consecutive
planes in a zone can have the same value ¢, will depend on the
nature of the zone, and ultimately on the axial elements to
which it is possible for the particular system of planes to be
referred.

64, We may next discuss the more general problem regarding
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the repetition of the same angle of inclination between several
consecutive planes in a zone': where however this angle is limited,
by the condition that the number of planes in a crystalloid zone
cannot be infinite, to such angles as are commensurable with 7 ;
so that the recurring angle

4):52‘”,

where p and g are integers.

And it is obvious that if the anharmonic ratios of four con-
secutive tautozonal planes inclined at the same angle ¢ are
rational, those of three of them and a fifth plane also inclined on
one of them at the angle ¢ are rational, and that in fact the whole
zone-circle may be divided by 7 of its origin-planes into 2z sectors,

the angles of which are each ¢, i. e.—g 2.

Drer. A zone thus divided by » equally inclined consecutive
origin-planes will be termed an zsogonal zone; and the angular
values which ¢ may be able to assume will be termed crysallo-
metric arcs or angles.

We shall proceed to prove that the number of possible values
for ¢ is extremely limited, and that in fact the only crystallometric
angles are go°, 60° 45°, and 30°.

It will be only necessary to establish this for the case of four
consecutive poles in a zone.

65. The only possible isogonal zones in which the
angle (¢) between consecutive origin-planes, and there-
fore between the normals of consecutive faces, is a sub-
multiple of 7 are those in which ¢ is ;1, %’ 3, %s and o°.

Let P, Q, P/, @ be four poles in such a zone-circle, so that

PQ = QP’:P’Q'=¢=§”.

. . sinPP’ sin QQ . )
nh P . TV Y
Then the anharmonic ratio S0 POSnPQ is rational, or
sin2¢ . sin 2¢
sin¢ . sin ¢

s 2c0s2¢ = A—2 and is a rational quantity.

= a rational quantity = A;
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By trigonometry* we have
2cosg2¢ = (2cos2¢)?+4,(2 cos2¢)? 2+ ...
+A4,,(2cos2¢)?2 + ...,

where ¢ — 27 is never negative and 4,, 4,, 4, 4,, are all
integers.

But 2C0Sg2¢ = 2COS 47 = 2;

(2cos2¢p)?+ A4, (2cos 29)? 2+ ... = 2.
Thus 2 cos 2¢p must be a rational root of the Equation
21+ 4,270+ 4, x4 = 2.

+ But if the coefficient of the highest power in a rational algebraical
equation be unity and the other coefficients integers, the rational
roots must be zero or integers,

Therefore 2c0s2¢p =0, or=+1, or= +2
for any other integer would give an impossible value for cos 2¢;
¢ = T 7w 27
=3 ) ’ —3‘ » TOr o,
T T T W
and ¢=Z, s 3’ —2—0r0°.

66. If three tautozonal planes in a crystalloid system be in-
clined on each other at a common crystallometric angle ¢ and
any fourth face belonging to the

r
- zone be taken ; then any planes
in the zone inclined on this
2 fourth face at the same crys-
/ @ tallometric angle ¢, or at any
I ; Q0 angle an integral maultiple

of ¢, will fulfil the condition
necessary for being possible

R
planes of the system; i.e.
their indices will be rational.
i Let P,, Q, P,, R be four tau-
Fig. 29.
tozonal planes, the arcs between

the poles of which are P,Q = QP,= ¢, P,R = a; then, if 7 be
a plane lying in the zone such that R7" = ¢, 7 is a possible plane
of the system.

* Todhunter, Trigonometry, Article 286.
+ Todhunter, Theory of Equations, 113.
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For by the principle of rationality of anharmonic ratios,
sinP, P,sin QR _sinz¢.sin(p+a) _
sin P, Rsin QP,  sin (2¢+a).sing
sin(¢p+a .
= 2 COs ﬁﬁ(—27¢-+a))' e ae se o we (l)
Also sinP,Qsin 7P, _ sing sin —(¢+a) _
sin P, P,sin 7Q ~ sin2¢ sin —(2¢+a)
1 sin(¢+a) "
= 2cos¢ sin (2 p+a)’ wee ()
let 2 cos ¢ = m, A=£2,
which is rational, since A is by hypothesis rational and m? is ra-
tional for all crystallometric values of ¢.

Hence the symbol of Z fulfils the condition of rationality in its
indices. And similarly another plane 7" inclined also at the same
angle ¢ on 7" is a possible plane of the zone, and so on for any
more planes.

- 87. But in the same zone crystallometric angles of
30° and 45° cannot concur; for,

1. f P,Q=QP,= ¢—3o,andPS—0-—45 then § is
not a plane of the system.

For the anharmonic ratio

sin 2,Q sin SP, _Ssiné sin @
sin 2,P, sinSQ ~ snz¢ sn(p+0) 3++3
which is irrational. And,

2. If R is, as in the last paragraph, a plane belonging to the
zone with P,, Q and P,, then 7" and 7 are possible planes of the
zone forming with R three planes successively inclined at the same
angle ¢ at which the planes P, and P, are inclined on Q ; and
therefore a plane inclined on R at 45° if ¢ be 30° or at 30° if ¢
be 45°, is not a plane of the system.

It is evident that in a zone containing three or more planes
inclined on each other successively at a crystallometric angle, each
of these planes will, together with planes perpendicular to them,
harmonically divide the zone ; and the latter planes therefore fulfil
the necessary condition for being possible planes of the zone.




CHAPTER 1IV.

THEOREMS RELATING TO THE AXES AND PARAMETERS
- OF A CRYSTALLOID SYSTEM.

SecTioN I.—On changing the Axial System to which a
Crystalloid Plane-System is referred.

88. In crystallographic operations it occasionally becomes
necessary to change the parametral plane or to refer the crystal
to a new set of axes or to effect both operations simultaneously.
The expressions necessary for performing these transformations
may either be obtained directly by the methods of algebraic
geometry or may be deduced from the expression previously
obtained for the anharmonic ratios involved in four tautohedral
zones.

The latter, the more brief and elegant of these methods, is due
to Professor Miller (Tract on Crystallography, § z1).

Both processes will however be given here as affording different
points of view of the operations performed.

(i) 70 change the parametral plane only.

89. a, b, ¢ being the original parameters and o/, &, ¢/ the new
ones as determined by the intercepts of a plane (¢fg), i.e. by
the ratios a & ¢

;: 7, E;

then a=de, b=Vf, c=/g,
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and the intercepts of a plane (%4/) as expressed by the new

arameters are
P a’i ) 6’€’ t’ % H

3
and the new indices of the plane are
, A k1
h, k’ s l' or 7’ 7, E,

i.e. the symbol is  (kfg, kge, lef).
If it should happen that any of the indices ¢, /; ¢ be unity,
the corresponding parameter will remain unaltered.

(ii) 70 transform a crystalloid system of planes referred fo one set
of axes to another set of axes formed by edges of the system.

70. Let the system of planes be referred to axes OX, OF,
OZ with a parametral plane 48C, the equation to which is

£+‘Z+£=l.
a b ¢

Let OX’, OF’, OZ’ be zone-lines of the system which are to
form the new axes; and let the equation to OX” be

Then the plane 4BC will cut the new axis OX’ in a point 4’
in which the coordinates of the plane and line are identical;
whence the coordinates of 4" are

u
X =a-t =20

Vi, W
8, 5’ AT%’
w K v, w 1 1
Dp Ay l=y of ———— =3
0, + 6, + 6, wtv,+w, 6,
and X, — O (1)

= u+v +‘w1.

The new parameter for the axis X’ is OA’, which is the
diagonal of the parallelepiped of which the sides are the old axial
planes, and the edges are the coordinates of 4" on the original
axes.

" If now HKL be a plane of the system the equation to which

referred to the original axes is
G
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x Y 2 _ .
Bltkgelo=x;

the coordinates of the point Z” in which it cuts the new_axis of
X, that is, cuts

rr_rty_r:_1
wae v, 6 woc 6
u, A£Y w,
are X, =a- - =6 — S =C.—»
2 82’ S 02 2 ;
hx, ky, Iz, _ ) v, w, _
Also +—5—+ S =101 h02 +k9_z+17;—1’
I 1
and @;*hul+k.§;—§-1 Wl. B )
But, clearly
o _x _6_ wivnitw, |
04" " x,” 6, h.w+k.vi+l.w’
- OK" _ 6/ u,+v,+w,
similarly, OF =0 “hutk v tlw)
oL _ 6~ WV W,

oc’ =8~ houg k. v+l.w,

where OK’ and OL’ are the intercepts of the plane ZKZL on
two zone-lines w,v,w, and u,v,w,, taken for the new axes of
¥ and Z, and cut by the parametral plane 4B8C in B and C’.
In fact the equation to the plane A KL referred to the new
axes
W,V W WV, Wy, UV Wy,

X L2 4 E

omt okt or

is

=1,

that is to say, is

X ¥y, 5 _
AR A A
bl kr ll

in which the denominators are the intercepts, and the indices #’, &, 7
of the plane HZKXL as referred to the new axes are the reciprocals
of the coefficients in these denominators of the parameters o/, ¥/, ¢/,
that is to say of 04’, 0F’, OC".
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ad 04

But OHI________T’
’

wherefore W= 04 _h.w+k. v+l w
OH — u+v,+w,

Similarly yhmth v tlw,
ug""",+w2

romth v+l W,

u+vy+w, ?

the zone-axes w,v,w;, u,v,w,, u,v,w, are the edges of three
origin planes p,¢,7,, 2,9x":, Ps 7575, SO that
[ulvlwl] is [£.9:70 239s ra],
[uzvzwz] is [ps 9373 L1 h rl]’
[usvaws] is [5qi70: 220s r2]3
W= G, 7=y sy Vi=13Ps—PoTss W= Pofs— PPy &C.;
values which may be substituted, if required, in the above ex-
pressions for 2, #,7.
If only one axis, saythe axis of Z be changed, the plane p, ¢, 7,

common to the other two unchanged axial zone-lines, remains
unchanged and is oo1.

Whence
W= gy VZ=—p W =0
=—¢y Vp,=+p, W,=O0;
and W= h?z—kpz, ¥ = hql kpl
"Pz h—h

h (@ra—7 @)+ & (np—217a) +H (A 72—91P2)
(@r,=ng)+ (=Pt (B1ga— ?1?2)

These expressions give the values for the indices of a plane in

a crystalloid system when transformed to a new set of crystalloid
lines as axes, but referred to the same parametral plane.

(ili) If the paramelers are to be changed as well as the axes.

71. Let EFG be the new parametral plane and let ¢ f¢ be its
symbol as referred to the original axes. Then the coordinates of
G2
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E, the point in which the new axis of X intersects with the new

parametral planes, are
au, bv, cw,
7

6‘ 08 03
and I _ I
" 0,—6u1+fvl+gwl
Hence

05’1_0: eul+fvl+gwl
OF, T hutiv,+iw,’
and the indices of the plane HKL as transformed to the new
axes, and also to the new parameters, become
W= Izu1+kv,-l’-lw1
eu+ /v, tg Wi
y b tEv,+iw,
e+ vyt Wy
_hutkvi+iw,
T et v tgw,
Derivation of the expressions for lransformation from those for
the anharmonic rativs.
72. Let the plane-system be referred.to three new zone-lines
as axes, the symbols for which are deduced from any of the faces

belonging to their several zones.
Let [VW], [WU], [UV] be zones of which the symbols are

W

CEATY|
fogw] '
174

[w,v,w,], [w,v,w,], [u;v,w,] as referred to the original axes, and
let the new axis of
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X be the zone-line [u, v, w;] which accordingly becomes [100],

' ” [uzvzwa] ” ” [° I °]’

z ] [“a Vs W] ”» » [°°1] H
UVW being poles in which the zone-circles intersect.

Let now P be the pole of a plane with the symbol (44/) under
the old axial system, and Q be similarly the pole of a plane (¢/¢);
then by the expression in article 81, which represents the form
adopted by Professor Miller for the anharmonic ratio, we have

sinVWP sinTUWP ullzi_v_r ktw !l whtv,ktw,l 1
GnVWQ SnOWQ  wetv f+w,g wetv,f+w,g
SinWVP sinOVP whtvik+w !l uhtvktwl @)
SnWVQ sinUVQ we+v,/+W g we+v,f+w,g
and if the symbols of P and Q when referred to the new axial
system become (##7) and (¢//’g’), while those of [u,v,w,],
[w,v,w,], [u,v,w,] become [100], [o10], [001],
sin VWP sinOWP _ 2 ¥

sinVWQ'sinUWQ=_'._/~” T €
sinWVP snUVP _# I
and SaWvVO' smUvQ "g N )
where by substitution and division, from (1) and (2),
Kuetv/f+wg nhtvitw! er o (B)

Fuetrv,f+w,g f'uzﬁ+v2k+w21

Fuwetv,f+wg f Whtv, k+w,l

Vuetvyfrweg g whtvihtw,l’ =~
two equations which are satisfied if

}l,=u1b+vlk+wll! ¢'=“1"+V1f+W,g, }
L

. (6)

K=whtv ktwyl, [f=wetv,f+w,g,

' =uhtvihtwyl, g =uet+v,f+wyg;
which two sets of equations are .those given by Professor Miller,
and thus comprehend all the processes of transformation. Besides
the symbols of the new axial planes in the two axial systems, it
is obvious that those of some fourth plane in each axial system
must be known. Such a fourth plane serves to give the parametral
ratios of the new axial system.
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The equations I then afford the means of determining either
the symbols of planes in the new system when their symbols as
referred to the old system are known; or conversely.

Thus, if (¢ ¢’) and (¢ fg) be the known symbols under the
new and the old systems respectively of any plane @ of the
system, and (%" % /) be the symbol of the plane P as referred
to the new axial system, (% £/) being its symbol as referred to the
old system, then, from the equations L, we have
W= e,u,lz+v,k+wll

we+v, f+wg
, WAtV k+w,! } M
Sk Twe [
PO kv Rt W, L I
€ U etv, frwg
which will be equivalent to the equations previously obtained in
the last article in the case where ¢’ /" ¢’ is the face (111).

If then the symbols (¢ /g), (¢ /"¢’) be given as well as [w,v,w ],
[w, v, w,], [u,v,w,], the values of 2'#7 can be found from those
of 247, and conversely.

And where Q is the parametral plane (111) under the new
system, ¢’ = /"= ¢’ = 1, and where the parametral plane remains
the same for the two systems, only the axes being changed,

e=f=g=1==f=¢g.
7. Let U, V, W, Fig. 27, be the poles (2,4,7,), (2.4, 72)

k/

U=

Fig. 31.

(24 9575); and let two zone-circles [hkl], [efg] intersect with the
zone-circles [UV], [VW], [W V], viz.
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[hk1] with [UV] in H, with [VW] in X, with [WU] in L,
[efg] with [UV] in B, with [VW] in @, with [WU] in F;
then, by D’, article 48,
sinUH sin VH plh+q,k+r,1 p,h+q,k+r l (1)
sinUBE "sinVE ple+qlf+ g petg,f+r,
sin WL sinUL _P:ht+gk+71 phty, k+r, . (2)
SIhnWF sinUF "~ pe+g¢,f+7,8 pe+q,f+r, g
On referring the plane-system to new axes, let the poles U, V, W
become (100), (o10), (oo1) under the new axial system, and let the
new symbols of [hk1], [efg] at the same time become [h'k'Y],
[e" &)
Then, by substituting and transposing in (1) and (2), we have
h’ betaftre e phtg k+r1l
K Pz°+92f+rzg f_p2h+g2k+r21’
h' pe+g ft+reg e_ sh+gk+rl
v p.,e+g3f+rg g psh+gk+7,l
F.quations which are satisfied if
h'=hp+kg+1r, &=ep+fg+egr,
K=hp+kg,+1l7r,, '=ep,+f¢,+875 ( w0 oo o« N
V=1hp,+kg+17, & =ep+ig,+ers;
from which expressions the symbols of any zones in the system
may be determined if the symbols of the three poles referred to
the old system are known.

The symbol of a zome when the paramefers but not the axes

are changed.

74. [uvw] being the symbol of the zone [4 47, ¢ fg] as de-
termined by the original parameters, let [u'v'w’] or [F'# 7, ¢ £ ¢’]
be its symbol as determined by the new parameters, and let the
new parameters be a’4'¢” ;

uvwis kg —1f, le—hg hf—rFe,
wv'w is Kg'—Vf, Ve—Kg, Kf—F¥F¢
and from article 69,
f=ckkl, /= hKI] g=ghkl,
K=rhéfg, K=rteflg, I=lefg;
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whence w'=¥g =t f = (khg—1f)eff=nef g,
V=0l —Kg=(le=hg)dfg=vefg,
w=kf-K=(f—lke)dfg=we[fg

Hence the new symbol of the zone is

[uefe, vfeded, wgeéf]

Examples.

1. To transform a crystal of Quartz from the customary axes to
a new set of axes such that the pole (412) becomes the pole (100)
of the axial plane ¥Z, (z41) the pole (o10) of the axial plane ZX,
and (124) the pole (co1) of the axial plane X 7.

Then [w, v, w,] is [241, 124), i.e. [210],

[w, v, w,] is [124, 412], i.e. [021],
[wy vy w,] is [412, 241], i.e. [102].

The symmetry of quartz is of a type which renders it possible
and convenient to refer the crystal to an axial system in which the
angles at which the axes are inclined to cach other are equal while
the parameters also are equal. It results from this that in trans-
forming a crystal of quartz from one axial system of this kind to
another of the same kind, the same face serves as the parametral
plane for both systems. Consequently,

f=f=g=1=¢e=f=g;
and the equations M become
¥ o= whtvkt+wl zﬁ+k’

w4+ v,+w, T3
k,=u2h+v,k+w,l=zk+l’
w,+v,+w, 3
.I’=u3h+v,k+ws_l=21+h_
Uy + V3 + Wy 3’
or BHDYis (2h+k, 2k+1, 21+k).

Therefore, for the face r1oo or r in the lettering of Miller
(Brooke and Miller’s Mineralogy, p. 246),
KH=2 K=o I'=1,
and the symbol under the new axial system becomes zo1 ; for z,
or 122, the transformed symbol is 063, i.e. oz1.
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And the new symbols for the following faces,

a, o11; ¥, 21f; b6, T2T; % 11 4 7; 11 4 7,
become 113; 1T0;  orI1; 631; 651;
those for x, 4 T 2; &, 421; 5,102 35; % 871%,
become 740; 212; 270; 520;
and those for w, 14 16 7; T4 7 16; ¢, 16 17 8; 16 8 17,
become 413 0; 7 106; 5140; 8 116;
and 17 8 16; p, 10 14 5, become 14 0 5; and Z 11 o.

II. A crystal of the (oblique) mineral Sphene as referred to the
axial system employed by M. Des Cloizeaux may present the faces
010, 00I, 100, III, II0, 102, 102, 112, O21I.

It is required to transform these symbols into accordance with

the axial system employed by Professor Miller for this mineral; in
which the zone-axis

:::l , i.e. [oo1] is [u,v,w,] and becomes [100];
[o10] is [u,v,w,] and remains [oro];
::Z , i.e. [z01] is [u,v,w,] and becomes [oo1].
The equations M here become
—! k —2h+1
= ¢ — = — = o .
h 14 _g’ f’f; l’ g -—2e+g

And any plane of the system, the symbols for which according
to both axial systems are known, will serve to give the ratios of
the indices in the new symbol (4 #'7’) to which the original symbol
of the plane (/% £7) has been transformed; or, conversely, will give
those of (% £7) the original symbol from the indices of (4" ¥ /).

The face T11 on the old system has for its symbol 123 on the
new: let (¢f¢) then be 111, (¢ / g") be 123.

Then =1 K=2k I=Il—2hA

Let now (A %£/) be 110; then for the new symbol

K ¥l = o022, i.e. = oI1T.
Soif (h%!) be Toz, k'=2, ¥=o0, I'=4, and (KK ) is 102;
i.e. the old symbol To2 becomes the new symbol 1o2.
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Similarly, 102 becomes 100, cor becomes 101, and 112 be-
comes 110.

Conversely, for the face (##7) or 112 of Miller the original
symbol would be (% £7), and we have for this

F=1=1 K=1=24 l'—z—l—zlz
2h=—1, and (k4/)is Tr2.

Similarly, 163 on the new system corresponds to T31 on the

old.

IIL. A crystal of the (anorthic) mineral Axinite is referred under
the axial system adopted by Professor vom Rath* to axes which
would be the zone-lines of the zones [or0, 10T], [101, 101],
and [101, o10] under the axial system to which Professor Miller
refers this mineral. Professor Miller's axes on the other hand
are the zone-lines which in vom Rath’s system would have the
symbols

roo i or [o11], i.e. [u,v,w,]| for the axis of X,
or1 1
oT1I .
oy OF [1oo] ie [www,] z,
o11 -
oo OF [o1T], i.c. [uyvyw,] » » Z.
Whence by the equations M
s R+l A , k=1
W= ——s F=f- VU=
‘e Y TeE ey

The face 102 under vom Rath’s system becomes the parametral
plane 111 under Miller's; and therefore efg is 102, and ¢ /g’
is I1I1.

Hence, K= k_:_l_, K=h, 1’=I_Tk.

For the new symbols therefore of the face 101 (%47) we have

K=3% ¥F=1, I'=}
or 121 is the symbol required; and the symbols on the system of
vom Rath,
101, 001, TOz, 120, 120, IIT, ITI, 2II, III, TII,

* Pogg, Annal. exxviii. 2o and 227,
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become

121, 101, 111, 111, T1T, OIT, OII, 120, 110, 110
severally, on the system of Professor Miller.

So also for the symbol 172 of Miller; since
F=1= k—+—l, KFK=—1=£Fk and I'=2 =l————k)
2 2

the symbol under vom Rath’s system is 113, and Miller’s face or12
is 122 with vom Rath’s axial system,

Skction IL.—The axes of a crystalloid system are neces-
sarily origin-edges or face-normals.

75. In establishing the expressions in article 70 for the trans-
formation of an axial system the ratios of the values u,v,w, &c.
were assumed as rational ; these formulae however are entirely
general and would be equally true were this restriction not intro-
duced. In that case however the component symbols resulting in
the symbol [u,v,w,] would not be necessarily rational. It will
however be seen that in every case in which the symbols of the
planes as referred to the new axes are rational, these axes must
necessarily be zone-lines of the system and as such present rational
symbols.

In the article referred to it has been proved that if the equation
to the new axis X be

and 4, 4,7/, be the transformed symbols of the plane 447 as referred
to the new axes, we have
A =ﬁu1+1:v1+1w1_

! u +v,+w,

v
or (1) :Tll (hy— ) +Vvl1 (b~ H)=—hy+1;

where %, and % 4/ are by hypothesis rational.
In a similar way, if p,¢,7, be the new rational symbols for a
plane p g7, we have

(2) v%— (2—2) +:,‘,',—’1 (Bi—0)=—t+7;
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and, solving these two simple equations, we get values for the

ratios —L and > which must necessarily be rational. Hence
1 W .

any axes for which the law of a crystalloid system of planes holds

good are themselves possible zone-lines of the system.

On the reciprocity of a zome-system and a plane-system.

76. It has been previously established that while the inter-
section of two origin-planes is a zone-axis, that of two zone-planes
is a normal to a face of the system; or, which is the same thing,
that while two zone-axes lie in an origin-plane, two normals must
lie in a zone-plane.

It may further be proved, that whereas in a crystalloid system of
planes any set of origin-edges may be taken, together with a face
intersecting with them, for the axial system to which the system of
planes and of zone-axes parallel to the edges of these is referred;
s0, on the other hand, any set of normals of faces belonging to the
system may be taken together with a parametral gome-plane, for
the axial system to which may be referred the system of zonme-
Pplanes and of ‘rays’ (i.e. of radii of the sphere coincident with
normals 1o the planes of the system) in which these zone-planes
intersect.

And the expressions for a zone-axis as referred to three zone-
axes with a parametral plane belonging to the system are identical
in form with those for a ‘ray’ as referred to the axial system
formed by three normals and a zone-plane. In the one case, for
instance, the expression for the zone-axis is that already obtained

in art. 53, namely
x _y 3

ue ~ vd  we

in the other case, that for the ray belonging to the pole A4/ is

X _y _ 3
ko k3 Iy’
where a, 3, y are the parameters on a zormal system of axes, in
which the axes are the normals to the axial planes of the former
system.
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This may be thus proved. If OA, OB, OC be normals to the
axial planes ¥YZ, ZX, XY to which a plane-system has been
referred, and (/% £7) be the symbol
of P a pole referred to these
normals as axes, see Fig. 32;
then a zone-circle through A4
and 2 will intersect the zone-
circle BC in a pole D which
will have for its symbol (0 /).

The position of a point P on
the normal of the plane (%4/)
is determined by the lines ZJ,
LN, LP parallel to the axes Fig. 32.

(and proportional to the inter-
cepts of the plane); and clearly the points O, Z, D are in a right
line.

J _ ﬂf_ sin LON _sinDC
g NO™ sinOLN ~ sinDB’
by the fundamental equation (A)

b c
7 cos DY = 7 €08 DZ,

or %sin DCsin BCA = ; sin DB sin CBA,
ke .
sin DC _ 7 sin C4
sinDB =~ sindB
Thus SAN 7 z , and by symmetry
—sinCA —sindB
b c
x
—sin BC .
a
22
and B iB =Ty » where
a B Y

SnBC _snCAd~ sndB



94 Plane- and zone-systems.

Hence equation (1) represents the normal or ‘ray’ of the face
P as referred to normal axes; and again, if

x y z
= =<_=-— and
ha kB Ly
x X %
hya kB Ly

be the equations to two such rays, these rays will lie in a plane of
which the equation is
where u=K=W v=IK—-h, w=h—k,
and are rational.
Thus, if OU, OV, OW be the intercepts of a plane parallel to

[uvw], then

X
u— <4+v
a

ouv ov ow

) £ 7
and @, 3, y are the intercepts of the parametral zone-plane [111].

The reciprocity in the expressions for a face-normal and for
a zone-plane as referred to an axial system of the kind adopted
in this treatise, and for a zone-plane and a face-normal referred to
such an axial system as has been discussed in this article, is com-
plete. And it will further be seen that the indices are the same
for the same face or for the same zone-plane as referred to the two
axial systems, though the symbols in which they are embodied
have a different significance in the different systems.

Some of the results of this reciprocal relation between the zone-
system and the plane-system of a crystalloid system of planes have
been examined by Professor Miller in his elegant tract ‘On the
Crystallographic Method of Grassmann’ (Part V of the Pro-
ceedings of the Cambridge Philosophical Society, Cambridge,
1868), wherein he has shewn that all the problems of crystal-
lography may be approached from the side of a system of rays
referred to normals as axes, and that this method yields expressions
identical in form with those which are obtained by the other
method.
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Case of a sone-axis being coinciden! with a plane-normal.

77. An important question however arises as to the possibility
of a zone-axis being not only a normal belonging to a system of
zone-planes reciprocal to the system of actual planes, but being
also a normal to one of the faces of this actual system,

It is clear that in general it is not so; i.e. that a zone-axis and
a plane-normal, or that a zone-plane and an actual plane, can only
in particular cases be coincident,

Those cases will form a subject of enquiry in the Fourth Chapter,
in connection with the subject of Symmetry.

It will be well however to investigate here the general conditions
to which a plane-system is subject when presenting a plane or
planes the normals of which are zone-axes.

Taking the most general case, that namely in which the plane-
system is referred to oblique coordinates, let the origin-line /m»
perpendicular to the plane

Ax+By+Cz=o0
x ¥ 2z

be — ==

ua  vé we
then the condition for this line to be perpendicular to the plane
is that it shall be so to every origin-line /’m’#’ lying in the plane.
But for the angle 6 between the lines /m»n and /m’’,
cos 0 = '+ mm’ + nn’ + (mn/ + m’n) cos €
+ (n? + n’l) cos n + (Im’ + I'm) cos ¢,
& n, ¢ being the axial angles ¥Z, ZX, and X¥; and this ex-
pression equals zero, when the lines are perpendicular.
The condition for the line Z/m’#" to lie in the plane
Ax+By+Cz=o0
is Al + Bm'+ Cr’ = o.
We have therefore
I+ ncosn+mcos § = kA,
m+ I cos{+ ncos§ = #B,
n+mcosé+ I cosn = 4C;
1

where Y= AT BnvCn
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By substitution, the equation to the plane to which the line
x

ue

Z

wc

=2 =

vé

is perpendicular is
({+ncosn+mcos{)x+ (m+Icos{+ncos )y

+(n+mcosé+Icosn)z = o;
that is to say, is

(ne+wecosn+vhcos () x+(vé+uacos(+wecos )y
+(we+vbcosE+uacosn)z = o.

Comparing this expression for the plane in question with the
equation to an origin-plane parallel to the plane (¢fg), i.e. with

e Jf.. 8, _

PR T
where f-, -‘C: g
a /] c

are the inverse ratios of the intercepts on the axes of the plane
(¢/&); we find for the case where the zone-axis [uvw] is normal

to the plane (¢/g),
ue+wecosn+vbcos{ vé+uacos{+wecosé-

e VA
a 3 P
_we+vbcosé+uacosy | T
.= Z J
c

Hence if we assume any rational values for ¢fg, by these equa-
tions we may determine the symbol of a zone-plane [uvw] parallel
to the face (e/¢), but only in the case of uv w being also rational
will [uvw] be a zone-planc of the system.



CHAPTER V.

ON THE VARIETIES OF SYMMETRY POSSIBLE IN A
CRYSTALLOID SYSTEM OF PLANES.

Section 1.—Application of the principles of Geometrical
Symmetry to crystals and crystalloid plane-systems.

78. Symmetry in Nature consists in the rhythmical recurrence
of a morphological element, that is to say, the repetition of the
element in accordance with a law of arrangement.

In animal and vegetable organisms the conditions of growth
appear never, or rarely, to be compatible with that geometrical
exactitude in the distribution of morphological features which is
requisite for their treatment by a geometrical science.

Crystallography, which treats of the morphology of inorganic
nature, offers, on the other hand, in the persistence of the angular
inclinations of the corresponding faces of crystals.the means of
bringing the subject of their symmetry within the domain of
Geometry.

79. Geometrical symmelry of plane figures. In Geometry a
plane figure is said to be symme-
trically divided by a straight line (as /?/]f’

a ‘line of symmetry’) when a perpen- &
dicular falling on this line from cach
point in the figure meets at an equal B %
distance beyond the line a point b N

. . -
corresponding to the first point. Fig. 33.

If either of the halves into which
the line of symmetry S divides the figure be reverted round that
line of symmetry, as an axis of revolution, through an angle of
180°, it falls into congruence with the other half.

H

N g
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A plane figure may also be symmetrical to a point as a ‘ centre
of symmetry.’ This point will then bisect all the lines traversing
it that join the several points of the figure with points corresponding
to them. Any one such line divides the figure into two halves
which become directly congruent by the
revolution of the figure in its own plane
through an angle of 180° round the centre
of symmetry.

1 A plane figure may furthermore be sym-
metrical with regard to a point within it
as a pole of symmelry when by successive
revolutions in its own plane through an

[N

B,

!

2
Z
Fig. 34 figure in each new position is congruent
with itself as seen in its original position.
If #» = 2 the plane figure is symmetrical to a centre, and where
n =2, or = 3, 4, or 6, the symmetry may be defined as being
diagonal, trigonal, letragonal, or hexagonal,
And a plane figure may be simultaneously symmetrical to two
or more lines of symmetry and to a pole of symmetry.
Der.—A face of a crystal or any other plane surface or figure
symmetrical to one line will be said to be ewthysymmetrically
divided by that line, as by S in Fig. 35; where it is symmetrical

. 2w .
angular distance of - round that point the

Fig. 35.

to two lines perpendicular to each other it will be said to be

orthosymmetrically divided by these lines.
An isosceles triangle, a deltoid, a symmetrical (as distinguished
from a regular) pentagon, Fig. 35, are euthysymmetrical figures;
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and a rhomb, Fig. 36, is orthosymmetrical to its diagonals, as a
rectangle is to diameters parallel to its sides; and so the polygon
in Fig. 36 is also orthosymmetrical to the lines .S and Z.

80. Symmetry of solid figures. In an analogous manner a
solid figure may be symmetrical to

one or to several planes of symmeltry,

to an axis of symmeiry, or to a &4 L
cenlre of symmelry,; or simultane- ‘T |
ously to several of these. 5 - 8-

It is so to a plane of symmetry
when corresponding points equi-
distant from the plane would lie on
any line drawn perpendicularly to Fig. 36.
the plane. Where the solid figure
presents symmetry to only a single plane (and not to a centre
also) the corresponding portions of its surface cannot be brought
by reversion into congruence. They are to each other as either
would be to its own image if seen reflected by the plane of sym-
metry as by a mirror.

Dzr.—Such a correspondence of form will be termed antistrophe,
and such figures will be said to be antistrophic to each other.

A solid figure is symmetrical to an axis when every radius vector
moving in a plane perpendicular to the axis and meeting a point
of the figure would also meet corresponding points at the same
distances from the axis at each revolution through an arc-angle

27
of —-
n

The aspect of such a solid figure will not therefore be changed

by a revolution of the solid round this axis through the angle z_n-r_r,

and any portion of its surface so revolving will move into a
position in which it will be congruent with another portion of the
surface entirely corresponding to it.

Der.—Congruence of this kind will be termed metastrophe, and
such corresponding parts will be said to be mefastrophic to each
other.

Der.—Where #=2, or 3, or 4, or 6, the axis is one of diagonal,
of trigonal, of tetragonal, or hexagonal symmetry.

H 2
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A solid figure may likewise be symmetrical to a point, or centre
of symmetry. Corresponding points will lie equidistant from this
centre on straight lines traversing it.

Der.—Such a figure will be termed centrosymmetrical,

Other varieties of symmetry may be imagined : such, for in-
stance, as a spiral symmetry resulting from symmetry round an
axis along as well as around which the radius vector would be
supposed to move at a given relative rate of motion.

Application of principles of symmetry to crystals.

81. Eyuipoised polyhedra. It would obviously be futile to
attempt to apply these geometrical definitions directly to the
interpretation of such symmetry as crystals may cxhibit. Crystals,
in fact, only in exceptional cases present any such complete
geometrical symmetry, since the magnitudes and the distances of
their faces from any point or planes within the crystal follow
no law. .

But in the distribution on the Sphere of Projection of the Poles
(which represent the relative directions in space) of the faces of a
crystal, as also in the relative directions of origin-planes drawn
parallel to the faces, we have the means of establishing that a
crystal is, in a sense which is not the less real because somewhat
more elastic than the strictly geometrical sense, a symmetrical
polyhedron. The poles of its faces will in fact be found to be
symmetrically distributed on the sphere, and inasmuch as any
planes parallel to the actual faces of the crystal would equally
represent those faces in a crystallographic sense, we may conceive
of a polyhedron so constructed that while its faces were all
parallel to those of the crystal, such of these as correspond sym-
metrically, that is to say which represent the same repeated face
of the crystal, should be taken at equal distances from the point
within the crystal which is the centre of the Sphere of Projection.
An imaginary polyhedron of such a nature is said to be
equipoise.

The outline figures in which crystals are commonly represented
by the projection of their edges are drawn in equipoise; though
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faces of different kinds are generally projected with differently pro-
portioned magnitudes.

Before discussing the results established by observations made
upon actual crystals it will be well to determine what different
sorts of symmetry it is possible that a crystalloid polyhedron may
present, and the character of the limitations that the law of
Rationality of Indices must impose on the number of such
varieties of symmetry ; the expression ‘symmetry’ being of course
understood in the sense just defined.

82. Crystalloid symmetry. Two planes, whether referred as
origin-planes to the centre or taken as faces of a polyhedron,
will be symmelrical in respect lo or ‘on’ a third (which it will be
preferable to consider as an origin-plane) when they are tautozonal
with the third plane and the dihedral angle which forms their
edge is bisected by it. Their poles lying on the same side of
the plane of symmetry will be equidistant from either one of its
poles, those on opposite sides of it will be so from opposite poles
of that plane.

Evidently the two faces are antistrophically symmetrical: and
their edge lies in the plane of symmetry.

Der.—Two poles or planes thus symmetrically dlsposed in
regard to an origin-plane will be termed Aomologous fo eack other
in respect to that plane of symmelry ; and this term will be extended
to embrace all the planes or poles or other features which in a
system of planes correspond to each other as being symmetrically
repeated, whether in respect to one or more planes, or to an axis or
axes, or to a centre of symmetry.

Drr.—A plane or its pole will be termed an independent plane or
pole when the pole is not the pole of a plane of symmetry, and
does not lie on the great circle in which a plane of symmetry
intersects the sphere of projection.

Drr.—In a crystalloid system a group of homologous planes
will be comprised under the term ‘e form. The general symbol
of a form will be represented by the indices of one of the planes of
the form enclosed in brackets, e.g. {#4/}, {110}, &c.

Drer.—The great circle in which a plane of symmetry intersects
the Sphere of Projection will be occasionally termed a circle of
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symmelry, and the axial point of an Axis of Symmetry a pole of
symmelry ; such an axis will be frequently designated by the
symbol. of or by a letter indicating a face-pole in which it will be
found to meet the Sphere of Projection.

The adjective form symmetral will further be employed as a
convenient expression as applied to a plane, an axis, &c. of
symmetry. And we may speak of an axis or pole of symmetry
being diagonally symmetral, or diasymmetral, or orthosymmetral,
tri-, tetra-, or hexa-symmetral, according as the face or zone of
which it is the pole or the axis presents diagonal, orthosymmetrical,
trigonal, tetragonal, or hexagonal symmetry.

83. Di-n-gonal symmelry. But the most general and frequent
kind of symmetry that we have to deal with is that in which
an axis of a zone is an axis of symmetry by reason of the
symmetral character of a certain number of the planes belonging
to the zone. In such cases the recurrences of each feature take
place in pairs from repetition over each plane of symmetry; but
so that adjacent features are antistrophically, alternate features
metastrophically, repeated. It thus will happen that the zone-
axis of » tautozonal planes of symmetry will only be an axis of
n-gonal symmetry, notwithstanding that any single feature occurs
2 xn times.  For instance, to take illustrations from plane-figures,
those known as the symmetrical hexagon, symmetrical octagon, or
symmetrical dodecagon (as distinguished from the regular figures),
and of which indeed all the sides but only the alternate angles are
similar, present as do the polygons in Fig. 37 only trigonal, tetra-

. 37.

gonal, and hexagonal symmetry when considered solely in the
aspect of symmetry round the centre of the figure as a pole of
symmetry, while the sides are repeated in three, four, or six pair$.
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It will be in fact observed that the same distribution of features
in # pairs round an » symmetral axis, resulting from the influence
of n planes of symmetry, is virtually extant, even in such figures
as the equilateral triangle, regular hexagon, &c.; since the ad-
jacent halves of their edges or angles as well as of the faces
themselves may be considered as due to repetition over three,
six, &c. planes of symmetry.

Where homologous elements of form are thus coupled or re-
peated in pairs, the symmetry may be designated as di-#rigonal,
di-tetragonal, and di-kexagonal in character.

It is obvious that a polyhedron will equally, with a plane figure,
present such 2z-gonal symmetry in the distribution of its morpho-
logical features around an axis where that axis is the zone-line in
which # planes of symmetry intersect.

It is to be observed that, for reasons which will be developed
when the principles of crystalloid symmetry are further discussed,
»n cannot exceed 6 and can never be 5, pentagonal symmetry
being precluded by those principles. The orthosymmetry which
is the result of two supplemental planes of symmetry perpendicular
to each other, to the exclusion of any other plane of symmetry in
the zone, is distinguished from merely diagonal symmetry by this
duplication of the recurring features.

84. Morphological features of crystals. The morphological
features of a crystalloid polyhedron are recognised in its edges,
its faces, and its solid angles or (its coigns or) guoins. Two
edges may be accounted in a geometrical sense as similar when
their dihedral angles are the same, and when further, for any
plane in the zone of or otherwise inclined on the one edge, a
plane is also possible in the zone of or inclined on the other
edge in such manner that the angular relations of this second
plane to the planes forming the latter edge are the same as those
of corresponding planes in the case of the former edge.

Since a face of a polyhedron is bounded by edges, two crystal-
loid faces are geometrically similar when they are bounded by the
same number of actual or possible edges severally similar and
inclined at the same plane-angles, each to each. Such similar
planes distributed as they are on the surface of an equipoised
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polyhedron, may be considered as plane figures irrespective of
their relative position in space, capable of being brought into
congruence either by direct superposition or by superposition
after retroversion: i.e. they are either metastrophic by the im-
agined congruence of the inner surface of the one with the outer
surface of the other; or they are mutually antistrophically con-
gruent by the supposed contact of their outer or inner surfaces.

The faces of a form will, by the fact of their being mutually
homologous, fulfil these conditions of similarity.

In a crystalloid plane, edges that are symmetrically repeated will
be thus far similar, and such directions on the plane will be
similar as are equally inclined on similar edges.

85. Similar faces. In order that two faces on a crysfal may
be crystallographically similar, their physical properties as well as
their geomelrical characters will have to be identical in respect to
similar directions on the two faces. These must also be identical
along similar directions on the same face. And this will also be
true in respect of any sectional planes carried in similar directions
through a crystal; the normals of such arbitrary planes being
similarly inclined on similar edges.

N.B. We shall have hereafter to discriminate between this
geometrical similarity of features in the case of a crystalloid
polyhedron and the crystallographic similarity involving identity
of physical characters also, in that of a ¢rysial.

88. Quoins : their symmetry. Similar guomns. Quoins are of
different kinds. Thus the faces which meet in a quoin may
have all their poles symmetrically distributed on the same small
circle of the sphere. In such a case the diameter of the sphere
passing through the pole of the small circle will, if continued,
meet the vertex of the quoin, and will be an axis of symmetry
to it.

And such a quoin may be formed of groups of faces of
which the poles are symmetrically disposed on different small
circles having a common pole.

Such quoins may evidently present the various kinds of crystal-
loid symmetry that are possible round an axis of symmetry.

And on the other hand there may be quoins that are sym-



Forms with parallel faces. 105

metrical to one plane passing through their vertex, or again that
are devoid of any symmetry at all.

Two guoins of a crystalloid polyhedron will be similar if com-
posed of the same number of actual or possible edges severally
similar and inclined at the same angles, each on each.

87. Octants as quoins. An octant formed by three axial planes
is a trihedral quoin transferred to the origin. Any two of its
edges, i.e. of the axes of the system, are therefore similar when
they are equally inclined on the third axis, and when the
intercepts of a plane, actual or possible, upon these axes are
the same.

Of the octants into which the axial planes divide space any two
will be similar when their respective elements are the same; that
is to say when the corresponding axes are inclined at the same
angle in both octants.

88. ZFaces in parallel pairs. Since every origin-plane has
two poles lying at the opposite extremities of its normal on
the sphere of projection, while the indices in the symbol of
such a plane differ only in having opposite signs; we must
consider the two faces on either side of and parallel to the
origin-plane as equally representing that plane in the polyhedral
system in the absence of any special geometrical condition to
the contrary. .

Der.—A polyhedron or a ‘form’ of a polyhedron presenting
both the planes thus parallel to but on opposite sides of each of
its origin-planes will be termed a dzplokedral form or polyhedron.
Where for each of its origin-planes the system or a form be-
longing to it has only one plane extant parallel to the origin-plane,
the system or form will be termed Aaplokedral.

It is evident that a centrosymmetrical system of planes must be
diplokedral, and vice versd.

89. Planes of symmetry in a zome presumably supplementary.,
The consequence of the anharmonic ratios of four tautozonal
planes in a crystalloid zone becoming harmonic in the case
where -two of the planes are symmetrical to a third, has been
alluded to in article 63.

It was there shown that a plane of symmetry in a zone implies a
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second or supplementary plane perpendicular to the first, which is
also a possible plane of the system, and like the first plane invests
with rationality the symbol of any plane symmetrical in respect
to it with some actual plane belonging to the zone. We have at
present only to deal with this general statement regarding the
symmetry of a zone to one of its planes, or to two perpendicular
planes in it.

If in a zone the planes are diplokedral, the plane perpendicular
to a plane of symmetry will clearly be acually symmetral:
in a Aaplokedral zone one of these planes is actually, while the
plane supplementary to it is only polentially symmetral, the zone
being as it were incomplete and its symmetry so far in abeyance.

Section II.—Conditions for a crystalloid system of planes
to be symmetrical to one of its planes.

90. A plane of symmelry is parallel lo a possible face. (i) If, in
a crystalloid system, an origin-plane S be at once a zone-plane and
a plane of the system, it is a possible plane of symmetry to the
system.
Let s, Fig. 38, be the pole of the plane S, p be the pole of any
plane P of the system. Then the zone-circles [ ps] and [S] will
intersect in m a pole of a possible plane
of the system.

If now mp’'= mp, the poles s and m
harmonically divide the zone-circle [ '],
and p’ is a possible plane of the system.
Thus, for any pole existing in the system,

" another pole symmetrical with it in re-
spect to the plane § is a possible pole of
the system. The entire plane-system

Fig. 38. must therefore be potentially symmetrical
to S.
(ii) Conversely, any symmetry plane of the system must be
at once a possible zone-plane and possible plane of the system.
Let pp" and ¢4 be two pairs of poles symmetrical to a plane S,
Fig. 38. Then the zone-circles [#2"], [¢¢] will intersect in a
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possible pole of the system. But they intersect in s the pole of
the great circle in which S intersects the sphere. .S is therefore
a possible plane of the system. And if the arcs pp’, ¢¢” are bisected
in 7 and #, the zone-circles [ "] and [¢¢"] are harmonically divided
by s and 7 and s and n respectively: and therefore m and z are
possible poles of the system. Therefore [m#] is a possible zone
of the system. But 7z and # lie in the plane .S which must there-
fore be at once, potentially, a zone-plane and a plane of the
system.

The necessary conditions therefore for a crystalloid system of
planes to be symmetrical to a plane are, that this plane shall be
atonce a plane of the system and a zone-plane; or, they
may be expressed in the form, that two planes of the system
are perpendicular to a third plane of it.

O1. Resirittions imposed on a crystallotd system by ils being
symmelrical fo one only of ils planes. In -the general case con-

sidered in the last article, if the arc mz = —g, the origin-planes

M and WV, of which 7 and 7 are the poles, will be perpendicular
to each other and will become potentially planes of symmetry
orthosymmetrically dividing the zone [S]; but also each becomes
a zone-plane, M of a zone [PP’], N of [QQ]. They are
therefore potentially planes of symmetry to the entire polyhedral
system: a condition inconsistent with the uniqueness of S as a
plane of symmetry to that system.

Evidently therefore, if S is to be the only plane of symmetry of
the system, no two planes belonging to the zone [S] can be
perpendicular to each other.

Nor, it may be added here, can any two of the planes belonging
to the zone, the zone-plane of which is the primarily assumed
plane of symmetry, be inclined on a third plane at any other
crystallometric angle : for it will hereafter become apparent that if
such were the case, the zone lying in the plane of symmetry would
itself present trigonal, tetragonal, or hexagonal symmetry, ac-
cording to the value of the particular crystallometric angle between
the planes. And the symmetry of the whole plane-system will be
found to follow that of the zone in question, so that we should



108 A monosymmetrical system.

pass from the symmetry of the plane-system to a single plane on
to a kind of symmetry of a much higher order.

92. Awial-syslem where there ts one plane of symmelry. Cha-
racler of a form. The two conditions that a crystalloid system
symmetrical to one of its planes must satisfy are most simply
embodied in an axial system wherein the plane of symmetry S,
and any pair of planes such as 47 and WV, Fig. 39, perpendicular
to it but inclined on each other at an angle generally greater than
60° and less than 9o, are taken as the axial planes, so that the axes

Fig. 30.

are the normal.of .S taken for the axis # and the intersections of
the planes M/ and AV with the plane § which are taken for the axes
Z and X. And, whereas these two planes are necessarily oblique in
their inclination on each other, the obtuse angle 8 which represents
their inclination (and cannot be of crystallometric value) is taken
for the positive angle; that namely of X 0Z and X OZ; the
supplemental angle 8'(= w—n) being taken for that of X 0.Z
and X OZ, The symbol of the plane of symmetry is then oro,
and its normal, the axis Z, will coincide with the axis of the zone
containing the poles 100 and oor—that is to say, with the zone-
axis [o10].
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The planes M and NV will have for their symbols + 100 and

+ oo1, and their poles will lie on the great circle of symmetry S,
distant from each other by an arc 8"

The parametral ratios may be provided either by a single plane
intersecting with all three axes, or by a plane in each of two out of
the three zones [MS], [VS], or [MN].

The axial-system is thus represented by the expression

E=090°=(, n>90°<120° a:b:q
wherein two out of the five elements are fixed and the remaining
three are unfettered by conditions.

The first, fourth, fifth, and eighth octants, viz.

X¥zZ X¥Z X727, X¥Z
are similar: so are the remaining four octants adjacent to them.

The poles of an independent form {%%/} will lie on a great
circle passing through the pole oro and the diplohedral form
will have four faces. If the pole in which this great circle con-
taining the poles of the form intersects with the zone-circle [o10]
lie between oor and 100, the symbol is {£4/}, and the four faces
are hkl, h%l, A k1, k%7; if it intersects with the zone-circle [o10]
in a pole lying between oor and Too, the symbol of the form is
{Ak1} and its faces are £#7, kI, hk1I, h%1. Apolelyingon the
zone-circle of symmetry [S] will belong to a form {%Zo/} or
to a form {% 07} which will comprise only two parallel faces.

A form {% %o} will have four faces the poles of which lie on the
great circle [1o00, oro]. The four poles of a form {o %7} will lie
in the great circle [o10, 0o1]. The normal to the plane of sym-
metry olo is an axis of diagonal symmetry when the system of
planes is diplohedral.

.

Section III.—Conditions involved in a crystalloid poly-
hedron being symmetrical to more than one of
its planes.

©3. Where a plane-system is symmetrical to more than one
plane it is obvious that not only must each pole or plane or other
actual morphological feature, but that also each zone-circle and
each plane of symmetry, must be virtually as such repeated over
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each and every plane of symmetry of the system. Where one
plane of symmetry S, is so repeated over a second plane of
symmetry = the third plane of symmetry S is originated; and the
distribution of all the features of the system, as illustrated for
instance by the poles belonging to a form, will necessarily
be identical when viewed as circumjacent to the two planes of
symmetry S.

But the distribution of these features of the system in respect to
either of the groups of planes will not be the same, nor will it
ever be so, in respect to two adjacent planes of symmetry.

DEr.—Where the situation of a pole or where the distribution of
the poles of a form is different when considered as circumjacent to
one or to another of two planes of symmetry, these two planes are
said to present wnconformable symmetry ; where the situations of
the poles fall into congruence by such a revolution of the system
round the zone-axis of the two planes as brings one of the planes
of symmetry into coincidence with the position previously occupied
by the other, the two planes of symmetry will be termed similar,
or of conformable, or also of congruent symmetry.

Further, it may happen in certain cases that the distribution of
the features of a crystal may be unconformable in respect to the
two halves into which each of three planes of symmetry is divided
by the common zone-axis; so that for instance three similar zone-
circles, as in Fig. 45, article 115, may present conformability in
the symmetry due to alternate hemizones. Such zone-circles or
planes of symmetry will be termed Aemicyclically conformable in
the symmetry they govern.

94. Nomenclature for planes of symmelry. Der.—The plane or
planes to which a plane-system is symmetrical will hereafter be
called its systemalic planes; where it is symmetrical to different
planes or groups of planes not conformable in their symmetry,
these several planes or groups of planes are designated as profo-
syslematic, deulero-sysiematic, and Irito-systematic planes or groups
of planes:.and in this treatise these designations will correspond
to the letters S, =, and C by which the different planes and groups
of planes of symmetry are denoted.

85. Planes of symmelry are inclined at crystallometric angles.
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It follows from what has been said regarding the mutually re-
petitive character of planes of symmetry, that two planes S, and
3., reflected each by the other in planes S, and 2,, &c., form a
zone of planes of symmetry in which the planes S alternate with
the planes =, and the inclinations of the planes on each other are
equal.

This equality in the angles at which successive planes of sym-
metry are inclined to each other, leads directly to the necessity
of these angles having only crystallometric values; and indeed
having only a single crystallometric value in the case of planes
of symmetry lying in any particular zone. And it is further evident
that a zone cannot be symmetrical simultaneously to two inde-
pendent sets of planes.

Were the angles in question not commensurate with ar, these
angles would continue to recur in the zone through each successive
revolution round the zone-axis, while also in each such revolution
new series of planes of symmetry inclined on each other at new
angles of inclination would present themselves until the number of
such planes would become indefinitely great, and the symmetrical
character of the zone would entirely disappear.

The necessity will thus become apparent for the limitation
which was imposed in article 85, on the character of crystallo-
metric angles, whereby they were confined to such as were

. w
commensurate with 7 and not greater than .

96. And this necessity for the angles between planes of
symmetry being crystallometric is no less imperative in the case of
a plane system than it is in the case of the symmetry of a zone;
so that we have to recognise that the condition, necessary and
sufficient for a single plane to divide the plane system sym-
metrically—namely, that it shall be simultaneously a zone-plane
and parallel to a face—is no longer sufficient in the case where a
second plane is, simultaneously with the former plane, a plane of
symmetry ; but that this has to be supplemented by the condition
that when a certain plane is established as a plane of symmetry to
a zone or plane-system, any other plane or planes of symmetry
can only be inclined on it at crystallometric angles.
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97. Relations between the degree of symmelry of a crystalloid
plane-system and the axial sysiems lo which 1t may be referred.
The equations P, obtained in article 77, implicitly contain the
conditions uhder which a crystalloid plane-system may present
symmetry to one or more of its planes.

It has been proved that a plane of symmetry must be parallel to
a face of the system, and that when there are more planes of
symmetry than one these must be inclined on each other at
crystallometric angles. The equations P give the conditions ne-
cessary for a gome-axis to be perpendicular to a face, and it is
obvious that these equations will become greatly simplified in
cases where the plane-system can be referred to axes that are
rectangular and where two or all three of the parameters are
equal.

On the other hand it is evident that where there is a plane of
symmetry the plane system is capable of being referred, as in art.
93, to axes whereof one is perpendicular to the other two.

We might proceed to enquire what would be the conditions
under the different varieties of axial systems to which a crystalloid
polyhedron might be referred, in order that the normal of a face
and a zone-axis may be coincident in direction.

But hereafter, when the changes of volume accompanying changes
of temperature in a crysfal are discussed, it will be shewn that,
in a crystal as distinguished from a crystalloid polyhedron, the
parametral ratios can never be permanently rational except where
one or both of them is unity; and that the cosines of the axial
angles are equally only capable of being momentarily rational
where the axes containing them are not coincident with the
normals of actual or possible planes of the system, or, which is
an equivalent statement, do not lie in an isogonal zone.

98, It will be sufficient, then, for our purpose, to consider here
the cascs arising under each kind of axial system in which zone-
planes will be parallel to faces of the system; i.e. the conditions
under which the substitution of the designated values for the axial
elements in the equation P, article 77, gives rational indices for
the coincident normals and zone-axes. And in fact it will be
seen that with the selected axial elements this resolves itself into
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determining all the cases in which the equations P will reduce to
the form u v w

i.e. to the cases in which the zone and the face to which it is
parallel have the same indices in their symbols.

I. Clearly one series of values by which this condition is satisfied
will be that in which the plane-system is capable of being referred
to an axial-system in which the axial-angles are

E=n= (=90
and the parameters are equal, i.e.

a=b=c
Then n_y_v
e f g

is true_for the symbol of every plane and of a possible zone-line normal
fo 17, in the system.

II. If, the axes being as before rectangular, two only of the
parameters are equal, for instance
a=6Se
the equations 2 become
u v Jdw

P A
where the third expression must be taken as irrational (since %
can only be temporarily rational), unless,

(@) w=o0 and g = o, and therefore the condition holds good
for all the normals in the zone [oo1] for which ¢/ o is the symbol
so long as e and f are integers or one only of them o. It holds
therefore for the normals of the faces 100 and o10: and—

(8) it is true also for the normal of the face oo1, since it is true
for the case where

u=v=o=e=/f,
simultaneously with w and g being finite; as then the equations
become adu adv w

— T —— T —

and are satisfied if w =g = o.
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IIL. If again, with rectangular axes, the parameters be all
unequal, the equations 2 would become
w

a’E= 6’Z=c'—;
e S ¢
writing the equations as
w_Pv_JAw
PR A \
(2) the second and third expressions are irrational (since %

2
C .
and = must be treated as if they were permanently so), if v, /, w

and g are not all zero, while u and ¢ remain finite. The condition
holds, then, for the zone-axis [100], which is also the axis X, and
coincides with the normal of the axial plane.

And similarly (8) for the zone-axis [o10] or axis P,

and (¢) for the zone-axis oor which is the axis Z.

Hence in this case the infersections of the axtal planes are the
only cases of coincidence in zone-line and normal, and in the
symbols of these.

IV. Assuming the parameters still to be unequal but only two

of the axial-angles to be right-angles, i.e.

aZzZb2Zc and £= (= 9o,
7 being an angle greater than 9o°, the cosine of which may be
treated as irrational, the equations become

au—cwcosn bv _ cw—a

e v £

a o ¢
and can only be satisfied by the first and third ratios which contain
the irrational cosine becoming indeterminate, in which case
u = w = o simultaneously with ¢e=g =0 and v and / remain
finite.

Under the assumed conditions therefore the only zone-axis that
is also a face-normal is that in which the indices for the X and Z
axes are zero; namely, where the symbol #s [o10].

99. V. In the case where only a single axial angle can be a
right angle and the parameters are unequal it will be found that no
zone-axis can be a face-normal of the system. It remains then to
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consider the cases in which all the axial angles are oblique. And
here we have first that in which these angles are equal as well as

the parameters; i.e.

a=b=c; cosf=cosn= cos(=a£~
Here, as in case IV, the angle #n not being a permanently per-
sistent angle the value of % may be treated as irrational. Then the
equations become

8u+v+w u+Bv+w ut+v+odw
¢ S g
_(d42)(utv+w)
T etSfHg .

and Odu+tvi+w=2Ae utdv+w=Af ut+v+dw=12Ag;

=)\;

A
and u+v+w=m(e+f+g).

Subtracting the last from each of the three previous equations in
turn,

bl

G—n)u=A(e—HHE) @ +2)=S

0+2 o+2
s—r)v= A (fm ST/ FE) = \ L@+ =S
@-n)v=r(r= FLEE = 3 L0
S Dw = Ao $T/TE g§0+2)—S
@=1)w=A(g 3+2 )=A d+z
where S=c+/+g.
H 'ﬂ. v w
BT ( F ) f(5+2) =5~ 86+ s
Since s rational, let = ==n, and ~ = n,
v v w

n(f(0+2)—S)=e¢(d+2)-S5,
O+3)(nf—e)=(n—1)8.
Similarly, O+2)(ng—f)=(—1)S.
So long as & is irrational this can only be true provided either

that
nf—e=o, Wg—f=o, and S=o0=c+/+g,
I2
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. u
that is, - = 7:—, where e+/+g=o0;

or that nf—e=o, Wg—f=o0, and n—1=o0=n'—1;
that is, =v=w and e=f=g

There are therefore two cases that here arise in which the
coincidence of face-normals and zone-axes is possible; the one is
the case of all normals of faces the indices of which fulfil the con-
dition e+/+g = o, i.e, for the normal of every face in the zone
[111]; and the other case is that of this zone itself, the axis of
which is Zke normal of the face (111).

100. VI. It will have been noticed that the cases in which
the coincidences under consideration are the more numerous are
those in which the greater number of the axial elements are fixed
in their values, and that in case IV, where only a single zone-plane
was parallel to a face of the system, two of the axial elements were
fixed.

And all remaining cases that may be conceived will be found,
where they present any zone-line coincident with a plane-normal,
to resolve themselves into one or other of those already discussed.

Thus, for example, if we take

§=(=90°Zn a=c2Z}
we have to eliminate the cosines of ('and £ from the equations 2,

and we get
u—wcosn __ 8 v _ w—ucosy
e TE@TSTT e
__ (u+4w)(z—cosn)
— —_—‘_'_"'—‘e’l-g H]
2
or n?:e—;ﬁ, where p,=f;—2(x—§)

and is irrational ; and the equation is satisfied if
v=o, f=o,
and if u+w=o0, ¢et+g=o,
ie. if w=—u, g§=-—¢
In the case supposed then there will occur at least one case of
a coincident symbol for a zone-line and a normal, that, namely, of
the normal to the plane (¢0?) or 10T, But this normal must of
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necessity bisect the arc Too,001, since the parameters @ and ¢ are
equal; and the normal 101 will bisect the supplementary arc
100,001. And the zone [or0] is thus symmetrical to the two
perpendicular planes 1or and 1oT: and, since the axis of that
zone is also perpendicular to the normals 100 and oor, and
therefore to 101 and 10T, the case in question resolves itself into
one presenting identical conditions with those discussed under
case III of this article.

The assumption of irrationality of the parameters and of the
cosines of the axial angles, on which the reasoning in articles
97, 98 and 99 is founded, involves statements regarding physical
characters which, while true of a crystal, have no place in a plane-
system that is simply crystalloid.

For the discussion of the principles involved in the parallelism
of zone-axes and normals in a system of the latter kind, see a
memoir by H. J. S. Smith, Savilian Professor of Geometry, in
the Proceedings of the London Mathematical Society, vol. viii.
Nos. 109 and 110, an abstract of which is given in the Procecdings
of the Crystallogical Society, Pkil. Mag., Ser. V. vol. iv. p. 18.

101. Conditions for more than one plane of symmetry. It has
been seen that the conditions necessary for a single plane to
be a plane of symmetry to a crystalloid system, namely, that it
be at once a zone-plane and parallel to a face, are not sufficient
to impart to a second plane the character of a plane of symmetry.
Such a second plane, in fact, must furthermore de #nclined on
the first plane, and therefore also oz every other plane of symmetry,
at one of the crystallometric angles.

The method of reasoning adopted in article 90 suffices to
prove that every plane of symmetry to a crystalloid plane-system
must be also, by that fact, the plane of a zone: and it is shown in
article 96 that two planes of symmetry must always belong to an
isogonal group in the zone that contains them,

In fact, if S, be a plane of symmetry and 2, be a plane of the
system, 2, will be symmetrically repeated over S,; and where the
two planes are inclined at a crystallometric angle, the zone [ST]
will be isogonal as regards the repeated planes and symmetrical to
each of them. And by article 83 the zone will further be sym-
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metrical to a series of planes perpendicular to the planes § and =,
and therefore also included with them in an isogonal group
harmonically dividing the zone : indeed in all cases except where

b= g these supplementary planes will each fall into coincidence

with one or other of the planes S or 2.

It is evident that in this case each of the planes of the isogonal
group is at once parallel to a face and to a zone-plane. And
each will, in accordance with the reasoning in article 80, be
potentially a plane of symmetry to the entire plane-system.

That a plane inclined at other than a crystallometric angle on a
plane of symmetry cannot be a true plane of symmetry to a plane-
system may be seen by considering the class of cases that have been
already alluded to in articles 98. I and II ¢, and 89. V; in which
a series of tautozonal planes fulfil the primd facie conditions for
being planes of symmetry to the zone they lie in, while, from the
plane of that zone being parallel to a possible face, it might be
assumed that all or some of them would be planes of symmetry
to the entire plane-system. And yet they are not true planes of
symmetry either to the system or even to the zone; for the reason
that they are not inclined at crystallometric angles on certain
planes belonging to the zone, which, being at once (like the planes
in question) zone-planes and parallel to faces, are on the other
hand unlike those planes in belonging also to an isogonal group,
and so being established in the position of true planes of symmetry
alike to the Zone and to the entire plane-system.

102. Planes of abortive symmetry. The cases just alluded to,
in which all the planes lying in a zone may in unison with other
planes perpendicular to them (in accordance with article 63)
orthosymmetrically divide the zone, need some further consider-
ation. It is clear that for any plane belonging to such a zone
the symbol of another plane can be calculated that shall be
rational, provided this second plane is equally inclined with the
first on some third plane belonging to the zone. In fact, the
symbols of the three planes will, with the symbols of a plane
perpendicular to the last, form a harmonic ratio. Every plane of
the zone would in short fulfil the first condition of a possible plane
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of symmetry to the zone; and by virtue of a plane perpendicular
to it, and of the plane of the zone itself being both planes of the
system, each plane of the zone would seem presumably to be a
plane of symmetry to the entire plane-system.

But such presumptive planes of symmetry are evidently pre-
cluded from really possessing symmetral characteristics by the
principle that if they were actual planes of symmetry they would
of necessity be recurrent; whereas if they were so they would
mutually repeat each other in numbers without limit, since their
angles of mutual inclination cannot be commensurate with 7. For
it is the essence of a plane of symmetry, actual or potential, that all
the morphological features of a zone or of any form be not
capriciously or partially, but systematically, or not at all, repeated
in respect to it. Where a plane may hereafter be spoken of as
only potentially a plane of symmetry, it will be implied that its
influence on a form is as it were suspended or iz adeyance in
respect to the emsire form. In the cases under consideration
however a zone would contain an indefinite number of planes;
and the faces of a form would be repeated at an ever-increasing
variety of angles: from a plane-system we should pass to a solid
with a curved surface. Symmetral characters in planes of the kind
under discussion cannot therefore be spoken of as being merely
in abeyance: they are impossible, and such planes are con-
sequently abortive as planes of symmetry, and that for the reason
that they are not inclined at crystallometric angles on certain
particular planes which in a crystal are naturally selected from
among the possible planes of the zone as true planes of morpho-
logical symmetry.

103. The several cases of abortive symmetry. In articles 98
and 99 the whole of the cases have been recounted in which
planes of aborfive symmetry occur. Case I in that article pre-
sents an entire plane-system the faces of which are all such that
they are parallel to possible zone-planes; and it will be seen that
these faces, when a system of this kind falls under consideration,
will divide themselves into such as are parallel to true systematic
planes (of symmetry) and such as cannot be parallel to such planes
nor be inclined on them at crystallometric angles.
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The other cases are those of case II, article 98, and case V,
article 9, which however are each confined to the faces of a single
zone. In either case we shall find that the true planes of sym-

. . w
metry in the zone have a crystallometric angle less than 3 such,

in fact, are the only cases not included under case I in which
we shall meet with zones of this kind.

The point under discussion is sufficiently important to receive
illustration from an example, which may be taken from the second
case in article 8. In that case
the plane oor is parallel to the
zone-plane containing the axes
X and 7 and also the poles
100 and oro which lie on the
normals of the planes ¥'Z and
ZX ; the parameters on these
axes being equal. Conse-
quently, two planes £, 3,, Fig.
40, perpendicular to each other
45 bisect the right angles between

the planes ZX and ¥Z which
may be designated S, and S,,
and ihese four planes are successively inclined at 45° and will be
recognised in a future article as the planes of symmetry for the
zone [oo1] and also for the whole plane-system. A pole g, on
the zone-circle [oor] will be repeated over the plane 2, in a pole
2/, and this over the plane S, in a pole p,; and the angle roo
on p;, equals the angle o1o on p,, and the arc p, g, is a quadrant,
So p, fulfils the primary condition for being a plane of symmetry
to the zone. In fact, if we assign a rational symbol, say 320, to
the pole p,, then a pole ¢, equidistant with 1oo from p, must have
a rational symbol. In fact, the symbol of p,” will be 230, and of
2, will be 230, and the ratio

sing,g, s_in&g_l_
sin g, 10¢

is harmonic, and
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hko
230

lzko
320
100 100

whence 54 = 124, and the symbol of ¢, is 5 12 o.

Now taking the poles 100, p,, 110, 010, by the problem of four
planes, the arc 100, p, = 33°41"= 2,¢,, and the arc ¢;, 010 =22°37".
So that if p, were the pole of P a plane of symmetry, this plane 7
and the plane S, would be mutually repeated at angles of
33° 41, while with 5, and §,, 2 would form a series of planes
inclined at 11° 19" and 56° 19’, while Q the plane of which ¢ is the
pole would furnish repetitions with these planes at again new
angles.

It would be futile to pursue such repetitions into their results.
In a word, the zone can exhibit no symmetry other than to the
planes S and 2.

104. It has been established in the preceding articles that in
order for a plane-system to be symmetrical to more than one of
its planes, each such plane must be parallel to a possible zone-
plane and inclined on each other plane of symmetry at a crystal-
lometric angle. It is however to be observed that where this
condition is fulfilled by two planes of an isogonal group in a zone
that are not supplementary, it is necessarily true of the remaining
planes belonging to that group.

We may now proceed to discuss the various kinds or types of
symmetry which result, in the first place from assuming different
crystallometric angles between planes in a zone fulfilling the above
conditions, and in the next place from the discussion of the
problem of the possible modes in which such isogonal zones are
capable of intersecting with each other.

zk+ 31; .3k—2k

Case I.—The type of symmetry where ¢ = -

105. The first case to be considered will be the simplest, that
namely in which two planes of symmetry are perpendicular to each
other.

If there be two and only two planes of symmetry S and S,
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Fig. 41, in a zone, these must be perpendicular to each other and
divide the zone-circle orthosymmetrically: and the zone-plane C
containing the normals of the two planes will be parallel to the face
in which their two zone-circles intersect and be itself potentially a
plane of symmetry. And the three zone-lines ss’, oo’, cc’, which
are the normals as well as origin-edges of the three planes S, 3, C,
will, where the plane C is an actual plane of symmetry, be
axes of orthosymmetry to the
system. And it will further be
seen that the system will, as a
consequence of its symmetry to the
plane C as well as to S and 2,
be centrosymmetrical.

The conditions of symmetry
assumed in the particular type
under discussion preclude the
possibility of other than two per-
pendicular symmetral planes in
either of the zones [SZ], [2C],
or [CS].

And they therefore preclude the possibility of a pole of any form
lying on a great circle that should bisect either of the right angles
formed by the intersection of the planes (or zone-circles) S, =, C,
and therefore also of a pole bisecting any of the quadrantal arcs
connecting the poles of the planes S, £, C. For if such a pole
existed, e.g. if a pole m, were to bisect one of the quadrants on the
great circle [C'] between the poles of the planes S and Z, a great
circle [m, ¢] would bisect the angle S= and would be perpendicular
to a second zone-circle [¢,”] bisecting the supplementary right
angle of $, and these two zone-circles thus intermediate to, and
equally inclined at 45° on .S and £ would each be potentially a
plane of symmetry to the system; and this would superpose a fresh
condition to those assumed for the type of symmetry under
discussion; so that the plane-system would in fact belong to
another and a more complex type of symmetry than that to only
three perpendicular planes.

In the type under consideration, therefore, any independent

Fig. 41.
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pole p must be situated asymmetrically, that is to say, at a point
on the sphere of projection the distances of which from the great
circles S and C must all be different; wherefore, every plane of
an independent form (to which such a point p would be the pole)
must be inclined at different angles on the three planes of sym-
metry and will meet their zone-axes ss’, o0, ¢c” at different distances
from the origin.

108. The systematic triangle. The necessity for this unsym-
metrical or eccentric position of the pole in a case where three
adjacent great circles of symmetry so intersect to form a spherical
triangle as that other great circles of symmetry are precluded
from invading the triangle, is not confined to the case in which
the triangle is quadrantal. It in fact is true for every spherical
triangle formed by the intersections of adjacent great circles of
symmetry. And it will be well therefore to make a brief digression,
in order to give form to this principle.

Evidently a spherical triangle of the kind in question will have
for each of its angles an axial-point in which a zone-axis of a zone
of symmetry-planes and is consequently an axis of symmetry
meets the sphere of projection ; while, further, each such point is
the pole of a possible face.

Der.—A spherical triangle formed by the intersection of ad-
jacent planes of symmetry with the sphere of projection, and which
therefore may not be intersected by any other circle of symmetry,
will be termed the systemafic iriangle for the particular type of
symmetry to which it belongs and which moreover it charac-
terises ; since it is not conceivable that the surface of the sphere
should be symmetrically subdivided into systematic triangles of
more than one kind.

107. The general independent form is a scalenohedron. It is
obvious that one and only one pole of a form can occur in each
systematic triangle, and that the position of this pole in every such
triangle will be the same relatively to corresponding sides and
angles. It is also evident that the amgles of a systematic triangle
can have only crystallometric values.

Furthermore, since from the nature of a systematic triangle no
two of its sides can be in a crystallographic sense homologous,
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and since the edges of adjacent faces of an independent form
drawn in equipoise will lie in the several planes to which those
faces are symmetrical, the edges of each face will necessarily be
three in number and will all be dissimilar; so that every face of
such a general independent form will have the character of a
scalene triangle. Such a general form therefore, in every case
where the type of symmetry admits of a systematic triangle, may
be termed a general scalenohedron of the system.

108, Systematic iriangle and axial sysiem where ¢ = ,;T‘ The

systematic triangle in the case last under consideration, that namely
of three perpendicular planes of symmetry, will be formed by three
quadrantal arcs of the great circles .S, 2, and C, and be represented
by the expressions S=3S=C= ;_-r’

s=0=c¢=90°;
S$, 3, C being the arcs that form the sides; s, o, ¢ the angles
opposite to them, of this quadrantal triangle.

Taking the three planes of symmetry for the axial planes, their
normals become the axes for the polyhedral system and the axial
octants coincide with the eight systematic triangles. The octants
and the systematic triangles adjacent to each other, and the faces of
any form of which the poles lie in them, will evidently be anti-
strophic in the character of their symmetry, those belonging to
attingent octants will be metastrophic.

The axes being the zone-lines or origin-edges [SC), [CX], [SS]
are dissimilar, since from § 105 it is seen that no plane is possible
in the system which intersects any pair of these axes with equal
intercepts; so that equal, and therefore commensurate, parameters
are equally precluded.

For the purpose of uniformity in the representation of crystals
that accord with the same type of symmetry, it will be desirable to
assign aun ‘orienfation’ of a definite kind to the different axes; and
for this purpose in the type under consideration the order of the
magnitudes of the parameters will be adopted. Thus the longest
paramcler will be that assigned to the X axis, the mean to the
Y axis, and the least to the vertical or Z axis.
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The expression representing the axial system will therefore be
E=n=_=90, a>b>c;

in which the parametral ratios @ : 4: ¢ are unfettered by conditions
and may be different for each distinct system of planes conforming
to this type of symmetry. The remaining three permanently fixed
elements of the axial system are therefore engaged in satisfying
those conditions which all plane-systems must fulfil in order to be-
long to this type of symmetry; the conditions namely that a plane
of the system is the plane of a zone symmetrical to one of its planes,
or, as a consequence, that the plane-system is symmetrical
to three perpendicular planes which are also zone-planes.

109. The character of a form. As each octant is conterminous
with a systematic triangle, eight
faces will be comprised under
the symbol of an independent
form {k#%l}; see Fig. 42. And
as the intercepts on any one of
the several axes will have the
same value for every face of
the form, the position of the
indices in their symbols will
not admit of permutation; the
signs of these will however
change, following those that
designate the octant in which
a particular pole may lie; and
therefore undergoing every possible interchange. The symbols of
the eight planes are therefore

Rkl hEl, hkl, BRI, BRI BRI, RRI, BRI

The position of the axes in this system being so taken that the
zone-lines [SC], [EC], and [SZ] are the axes X, ¥, Z respectively,
the plane .S has for its symbol (o10), £ is (100), and C is (oo1).

The prismatic forms {440}, {%#0l}, and {0k!/} are constituted
each of four planes, the first form being technically termed a
prism ; the other two, domes (from the Greek 8épa). Thus the
dome-form {101} comprises the planes (1or1), (Tor), (10T), (To1).

The parametral form {111} is a scalene octahedron.
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Case IL.—The type of symmetry in which ¢ = E

110. The case next to be considered involves the condition
precluded by the conditions of the last case, which required two
adjacen? planes of symmetry to be perpendicular to each other.
If a pole be recognised as possible on a great circle that would
bisect an angle and the quadrantal side opposite to it of the
systematic triangle in the case last considered, we admit the con-
dition that a face of the system may be equally inclined on and
intersect with equal intercepts two of the axes, for instance, the
axes X and ¥; for this would evidently be true of every plane the
pole of which lies on such a great circle.

Then the pole in question will with the pole €' (or oor) serve
to designate a zone-circle intersecting with the great circle C in

another pole equidistant, that is to say, separated by an arc of 7;1'

from the poles of the axial-planes ZX and ¥Z; see Fig. 42.
The plane corresponding to this last pole would thus be inclined

at the crystallometric angle of E on each of the two perpendicular

planes of symmetry .S and £ characteristic of the last considered
type. It, and obviously also a plane perpendicular to it and also
lying in the zone [SZ], would therefore each fulfil the necessary
conditions for a plane potentially symmetral.

Adjusting the letters to indicate conformable planes of sym-
metry, it will be seen that we have in the case under consideration
two proto-systematic perpendicular planes S, S, alternating with
two perpendicular deutero-systematic planes Z,, =, tautozonal
with the planes S and forming with them an isogonal zone with
the crystallometric angle of 45°

Each pair of planes S and of planes = will be conformable
inler se, but unconformable each with the other. And the plane
" of the zone-circle [SZ] will also be potentially a trito-sys-
tematic plane of symmetry to the system unconformable with
both the pairs of planes S and 2. Moreover, it will be evident
that the poles of a form on either of the hemispheres divided by
the equatorial plane C will be repeated in the same manner of
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distribution on the opposite hemisphere, whether the repetition be
due to the system being centrosymmetrical or to the influence of
the plane C as an actual plane of symmetry.

The sphere of projection will be divided by the five planes S,
3, S,, Z,, and C into sixteen systematic triangles, each having
two of its sides .S and = quadrants and the third side C = ;
The systematic triangle will therefore be represented by the
expression

s=o0=90° c=45"

111, 7%e distribution of the poles of the tetragonal scalenokedron.
If under any type of symmetry the letters designating the sys-
tematic triangles be read in one order of rotation (e.g. that of the
hand of a clock).it will be
seen that these triangles fall
into two groups indicated by
letters taking the order, in the
one group cos, in the other
group cso.

The triangles of the one
group and the faces whose
poles lie within them are mu-
tually metastrophic, but are
antistrophic to those of the
group designated by letters in
inverse order to theirs. Thus
if in the type under consider-
ation the poles in the group of triangles cso be designated as
215 Pg» &c., and those in the triangles cos as p/, p,, &c., the
scalenchedron {p} will consist in the assemblage of the faces

bHbabsds B0 s P

I_)lﬁz;siu i)’l ?’2 ;’3 ’le;
wherein the minus sign is used to indicate poles on the lower
of the hemispheres divided by the plane C, and the faces be-
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longing to the poles p are antistrophic to those belonging to
the poles .

112. The axial system for this ype. The necessary conditions
for the type of symmetry under discussion are four in number,
and may be embodied in the statement that a plane of the system
is a zone-plane, and that a second plane of the system also
parallel to a zone-plane is inclined on the former plane at 45°
Of the five elements constituting the axial system four will be
constants occupied in satisfying these conditions, a single element
only remaining to vary with the particular system of planes. As
in the previous case, three of the perpendicular planes of sym-
metry, namely the two planes .§ and the equatorial plane C, are
taken as axial-planes, the zone-axis [SZ] becoming the Z axis,
and the zone-axes [S,C), [S,C] the axes X and ¥, respectively.

While any plane having its pole situate on one of the zone-
circles [2] will meet the X and ¥ axes with equal intercepts, such
a plane will, under the conditions assumed for this type of sym-
metry, meet the Z axes at a distance incommensurable with the
intercepts on the axes X and ¥; that is to say, the parameters
a and & are equal but are unequal to and generally incommensurate
with the parameter ¢. Hence also there can be no pole on a
great circle bisecting the quadrantal arcs § or £ of the systematic
triangle or the right angles which they subtend.

Taking then for a parametral plane a face belonging to the
zone Z,, the axial system is represented by the expression

E=n=_=90,
a=106Zc

The symbols of the axial-planes will be for S,, S, the poles of
which lie on the 7 and X axes respectively, oro and 100; the
symbol for the pole of the plane C which will lie on the Z axis
being oor.

Der.—Where two or more planes of symmetry lying in a zone
are conformable, their zone-axis will be termed a morphological
axis or axis of form for the system; and where there is only one
such axis to the plane-system, the plane (potentially symmetral) to
which this axis is the normal will conveniently be termed the
equalorial plane.
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In the type of symmetry under discussion the morphological
axis is an axis of tetragonal symmetry for all forms of the system,
since two congruent planes of symmetry perpendicular to each other
intersect in this axis; and when the symmetry is complete it is
ditetragonal.

Of each zone-circle .S and 2 the two hemizones on either side
of the morphological axis are similar.

118. Symbols for forms of letragonal fype. Each octant of the
axial system is composed of two systematic triangles antistrophic
to each other, in which the order of the indices, like that of
the letters indicating the systematic triangle, will be direct for
metastrophic, inverse for antistrophic planes. Hence the indices

% and £ relating to the similar axes X and ¥ will be interchanged
in position in the symbols for the two faces of a form {44/} that
lie in the same octant; the position and value of the index Z re-
maining unchanged, except that its sign is + or — according as
the face intersects with the axis Z above or below the origin; see
Fig. 44.

K
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The symbols of the faces of the general scalenohedral form will

therefore be - o
hkl kkl, hkl Rhl, kRl RRI, hkl kR,
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If the poles lie on the zone-circles 3, % and # do not differ in
value, and the symbol of the form is {447}, which is an isosceles
octahedrid form and, for the parametral plane, becomes {rr1};
while the zones C and = are tautohedral in the faces of a four-
faced form {110}.

If the poles of the form lie on the zone-circles S, the symbol is
{Aol}, and the form has the eight faces—

kol, okl, kol, okl %kol, okl, hol, okl

And the symbol for a form consisting of eight poles distributed
on the zone-circle C will be {£40}, all the faces being parallel to
the axis Z. The angles between planes belonging to this zone
will be constant for all plane-systems presenting this type of sym-
metry.

The zone-axes [SC] and [EC] are, as in the type of symmetry
previously discussed, axes of orthosymmetry, since they are the
intersections of two perpendicular planes of symmetry.

The abortive character of the symmetry which every plane in
the zone-circle C simulates has already been exposed in article 108.
It is only in the case of the systematic planes that this symmetry
is real.

Case IIL.—The type of symmetry in which ¢ = 7—; .
114, We have next to enter on the consideration of the case
in which a plane of symmetry is inclined on another plane of the

system at the angle ¢ =§- Here therefore there will be two

planes of symmetry S, and S, inclined to each other at 60°, which
will be mutually repeated in a third plane S; symmetrical to each
in respect of the other and inclined on both at 60°. Three
simultaneous tautozonal planes S, ,, S, result; their common
zone-line being a morphological axis for the system of planes.
This axis divides the zone-circles into hemicyclically conformable
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hemizones. And the great circles [S] divide the sphere of pro-
jection into six lunes, the alternate lunes becoming congruent by a
revolution through 120° round their zone-axis as an axis of
trigonal symmetry.

116. Distribution of the poles of a form of trigomal fype. A
form of a system symmetrical to three such planes will present,
if » be an independent pole, six poles p ditrigonally grouped round
the axis of form: viz. 2y, 2y, 235 #'ss £.» #s» 35 in Fig. 45, in which
the poles on the nether hemisphere are indicated by eyelets, those
on the hitherward hemisphere by dots.

If the pole lie in a zone-circle S, there will be but three such
poles, viz. 7,, r,, 7y, OF 4, £, 1.

Since however the form is to be generally assumed to be centro-
symmetrical, and therefore diplohedral, there will be six addi-
tional poles p in the former case, or three new planes r or ¢ where
they lie on the zone-circles S. There are, thus, the poles

D15 215 Pas Bas Bos s D1s P15 Doy Pos j’s_» ?'s;
and 1, Tay Ty Tiy Ty Fo3 O 4y By, By 2y, 1, 1,.

Since the zone to which the planes .S belong is symmetrically
divided by these three planes, it
may therefore, by article 101, also
be symmetrical to three new planes
3, each perpendicular to one and
inclined at 30° on the other two
planes §; and these planes =
will thus be also pofentially planes
of symmetry for the entire plane-
system : as is also the equatorial
zone-plane C.

Hence, that these planes = or
the plane C may become actual
planes of symmetry entails no condition that is not involved in
those originally assumed in this case; a point in which the type
of symmetry now being considered differs from the otherwise
somewhat analogous case where two intermediate planes of sym-
metry are equally inclined on two perpendicular symmetral
planes.

Fig. 45.

K 2
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118. T%e quasi-independent nature of ithis Irigonal lype of
symmetry. Another and very characteristic point of dissimilarity
between the rectangular systems already discussed and the system
now under discussion is that diplohedral and therefore centro-
symmetrical symmetry is independent in the present case of the
influence of the equatorial plane as a plane of symmetry. In the
former systems centro-symmetry involved symmetry to the plane
C and vice versd. Here these are independent of one another, and,
according as we may suppose one or the other principle of sym-
metry to be in abeyance, the system will assume distinct characters.
To assume a form to be haplohedral is however inconsistent with
the view hitherto taken of the developement of a plane-system as a
system of faces parallel in pairs to a system of origin-planes, though
hereafter we shall have often to deal with such forms. But the
supposition that the influence of a group or groups of planes of
symmetry may be in abeyance puts no such strain upon the
conceptions of symmetry that we have formed. And in fact,
though it involves no new geometrical condition for a system

. . - w .
symmetrical to three planes in a zone inclined at — to pass into
a system symmetrical at once to two triads of tautozonal planes

inclined at the crystallometric angle of 7_61’ and to a plane

equatorial to these, yet the distinct and quasi-independent
characters of the symmetry to a trigonal axis as in the former
case, and of symmetry to a hexagonal axis as in the latter case,
would alone justify a separate treatment of the two resulting
varieties of symmetry. But this treatment will be further borne
out when we find ourselves hereafter dealing with a veritable
trigonal system of symmetry, such that the circumstances of the
particular system (the tesseral system) in which it occurs are in-
compatible either with the three planes intermediate to the original
three planes or with their equatorial zone-plane being recognised
as actual planes of symmetry.

But where the zone-circles £ are only potentially symmetral,
i.e. where they are not actual planes of symmetry, a pole may lie
on one and be repeated on each of these great circles simply as
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the result of the symmetral character of the S-triad of planes :
since the existence of such poles does not invalidate the conditions
assumed for this type of symmetry, as it did in the case where

m, ., . .
b= 2 inasmuch as in the present case no new condition has to

be assumed as necessary to be fulfilled by the system of planes in
order to render the presence of the faces corresponding to these
poles possible.

Such poles, which we may designate by the letter %, will be
repeated according to the same law as the poles p, namely in
six poles which, through hexasymmetrically grouped round the
morphological axis, are in the case in question to be viewed
(see Fig. 46) as grouped in a ditrigonal manner round that axis.
And if the poles # fall on the
zone-circle containing the poles
of the planes § they coincide
with the poles s of the planes
of symmetry.

In the same way, if the
three poles » on the great
circles S fall on the equatorial
zone-circle C they coincide
with three alternate poles o of
the great circles £; and if
this form be diplohedral, the
poles opposite to r falling on
the zone-circle C would coin-
cide with the remaining poles o: and in this case also the result
is a form with six poles grouped round the axis [§], that may be
viewed as an axis of ditrigonal symmetry.

It will be seen then that some forms presenting even the aspect
of regular hexagonal symmetry may be conceived as resulting from
a law of trigonal symmetry in which, as it were, there lurks though
concealed the potentiality of a hexagonal type of symmetry. But
such a system is evidently incapable of being represented by 2
systematic triangle, since the surface of the sphere is partitioned
into six similar lunes alternately congruent.
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The only real axis of symmetry is the zone-axis of the planes S,
ditrigonal in its character.

Case IV.—The type of symmetry where ¢ = %

117. The discussion of the last case shows that no new
fundamental conditions will have to be assumed in order to pass
to the consideration of a plane system in which a plane of sym-

. w
metry is inclined at the crystallometric angle of g on another

plane of the system which is at the same time a zone-plane. It is
in fact the case in which the symmetry resulting from a plane

parallel to a zone-plane and to a face being inclined at the angle 1—;

on a plane of symmetry has received its complete developement :
it is the case, namely, in which the latter kind of plane system is
symmetrical simultaneously to its centre and to its equatorial
plane ; and in which as a consequence the planes 2 influence the
system as a triad of planes of actual symmetry (of deutero-
symmetry). The polyhedron thus becomes symmetrical to seven
planes, namely, to one triad of proto-systematic planes S, a triad
of deutero-systematic planes 2 unconformable with the planes §,
and to the equatorial plane C as a trito-systematic plane. These
planes 2, =,, 2, are then perpendicular each respectively to one
of the planes S, S,, S, and inclined at 30° to the other two,
their mutual inclination being 60°: the systematic triangle where
the symmetry is thus complete being represented by the symbol
S =3 = ‘l_l’, C = :I_T,
2 6
s=0=90°% c=30°

It will be seen that the sphere of projection is partitioned into
twenty-four such triangles. The number of faces presented by an
independent form is therefore twenty-four. And the morphological
axis [SZ] becomes an axis of hexagonal or generally of dihexa-
gonal symmetry,

The conditions which the crystalloid axial system—and therefore
also the particular polyhedral system that is to accord with such
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an axial system —has to satisfy are embodied in the statements that
a plane is to be at once a plane of the system and a zone-plane,
and that it is to be inclined either at g or at g on a second plane
which must be parallel to a face of the system. In satisfying
these conditions four out of the five axial elements will be em-
ployed, one only being left, as in the case where the morpho-
logical axis was tetragonal, to vary with the different varieties of
the plane systems.

118. Axial Systems. Various axial systems may serve for the
geometrical treatment of such a polyhedral system. Thus :—

(1) Three of the planes of symmetry, perpendicular to each
other, e.g. S;, =,, and C, may be taken as the axial-planes; and
if C be taken as parallel to the plane oor and therefore the
morphological axis be the axis Z, a plane the pole of which lies
on the zone-circle S, may be taken for the parametral plane; or
the plane S, may be taken to determine the parametral ratio for
the axes X and Z; this ratio having therefore the constant value

g: +/3; while another plane the pole of which lies in a great

. . . .oa b
circle S, or =, will serve to determine the parametral ratios Zor—
[

for the axis Z.
The axial elements would thus be represented by the ex-
pression

f=ﬂ=§=§’ a:bic, /3:1:¢;

the paramental ratio for the axis Z being the single varying
element.

Such an axial system, the details of which have been elaborated
by Schrauf (Sitzb. d. k. Acad. Wien, 1863), presents the insu-
perable disadvantage, that while the three planes of symmetry §
divide the sphere symmetrically with respect to a trigonal axis, the
axial-planes so divide it that congruent lunes are not similarly
situated in regard to the axes, so that even the simplest trigonal
forms have to be represented by double symbols.

(2) This difficulty of representing by a single symbolical ex-
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pression even the simplest and most frequent forms of a crystal
presenting trigonal or hexagonal symmetry, when its forms are
referred to rectangular axes, led to the adoption by some crystal-
lographers of an axial system itself according with this symmetry,
the three proto-symmetral planes being taken with the equatorial
plane C as axial-planes. Thus, their intersections form four
axes to which the system of planes is referred, three of these
presenting an axial-angle of 60° with each other and being
perpendicular to the fourth which is the morphological axis.
Since however three points are sufficient to determine a plane,
an axial system by which a plane has in fact or virtually to be
represented by four points involves an element in excess of what
is needed. The further discussion of such an axial system will be
entered on in a future chapter.

119. The axial sysiem of Hauy and Miller. On the other
hand, an axial system more in accord with geometrical method is
provided by the selection for axial-planes of three origin-planes
parallel to faces of the system, symmetrical in regard to and
therefore equally inclined on the morphological axis; the poles of
which planes lie on the great circles of proto-symmetry S.

Thus, r, being the pole of a plane R, and lying on the zone-circle
[S,], two other poles r, and r,, poles of planes &, and &;, will lie
on the alternate hemizones of the zone-circles [.S,] and [S,], equi-
distant with r, from ¢ the pole of the equatorial plane C.

Accordingly the zone-axes [r,x,], [ryr,], [r,r,] which are the
edges of the planes R,R,, R,R,, and R R, become the axes
X, ¥, Z, and the axial-points A, A,, A, in which they meet the
sphere will also be equidistaht from ¢, on the same side with 7,, 7, 7,
respectively on the circles [S,], [S;], [S;]; and they will only
coincide with the poles r,, r,, r, in the case in which the planes R
and therefore their edges also are perpendicular to each other.

This however involves a condition that would remove the
system of planes into another type of symmetry, in which not only
would the parameters be equal, but the axial-angles would, besides
being equal, become right angles.

In fact it will be seen hereafter that

tanarcr,c = 2 cotan arc Ay,
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so that where 7, and A, coincide
ric=MAc¢ =54 44.14" and 7,7, =\ A, = g0°.

120. That in the axial system under consideration the
parameters will be equal is involved in the statement that the
pole ¢ is equidistant alike from the poles r and the axial-points A.

For then, evidently, a face parallel to C, the equatorial plane,
meets the axes with equal intercepts and serves as the parametral
plane 111 or T11; the former symbol being taken for that lying
in the upper hemisphere on C.

Such an axial system as that here defined will be represented
by the expression

f=n=( a=b=c;
where the required four conditions are satisfied by an equal
number of the axial elements, and only the particular angle 7 at
which the axes are inclined remains a variable element character-
istic of the particular system of planes.
Great circles passing through each pair of the axial-points X ¥ Z,
If_ will divide the sphere into octants, two of which, X ¥'Z and

Y Z, are similar, while the remaining six, viz.

Bl il

Z
Z

ZXF¥, ¥XZ, XFZ,
are also similar to each other but in ‘zig-zag,’ that is, alternately
inverted in their position on the sphere.

It will thus be seen that the systematic triangles are not co-
terminous with the octants formed by the axial system: and, as a
consequence, the symbols of a complete hexagonal form will in
certain cases have a double character. Thus of the general
scalenohedron, one pole will lie in each of the twenty-four
systematic triangles: but the poles lying in those adjacent pairs of
triangles that have in common for one of their sides an arc §
containing one of the axial-points X, ¥, Z or of the poles 100, oro,
oot, will have different intercepts on these axes from those of the
planes the poles of which lie in the triangles which in pairs
alternate with them. Hence the symbol for the general form will
be of a double kind; the poles corresponding to those of a
simple trigonal form retaining in their symbol indices which will
be distinct from those in the symbols for the poles of the other
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trigonal form correlative to the former, and which united with the
former complete the form in its hexagonal type.

Retaining the letter p for the general trigonal form and desig-
nating the trigonal form correlative to it by the letter ¢, the
general symbol for the completed form will be {p¢}. The dis-
tribution of the poles, including certain of those on the negative
hemisphere, is seen in Fig. 44.

They will be Dbty Dbl s

the faces in the two left-hand blocks being, as in article 109,
antistrophic to those in the right-
hand blocks, while the faces the
symbols of which lie in either
block are mutually metastrophic.

The six poles » and six poles
¢ in Fig. 47 unite to form a
double form {r¢}, the poles of
which lie on the proto-systematic
great circles S; while the poles
u, alike twelve in number in the
trigonal (article 115) and in the
hexagonal type, constitute a form
of which the poles lie on the
great circles . The poles of a
form m on the great circle C will also be twelve in number
in the hexagonal as in the trigonal type of symmetry.

The poles of the proto-systematic plane S are six, lying in the
zone-axes [SC] on the great circle C, namely,

S 81 Say 3 S9 S5
those of the planes = being
0y, 0’y 0y 0%y 0y, O

on the axes [SC]; while the zone-circle C has two poles ¢
and /.

121, Symbols of the different forms. The poles r,, r,, r, of the
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axial-planes R,, R,, R, must have for their symbols 100, o10, oco1;

and since (in accordance with the principle established in article

99) the planes of symmetry [S] which pass through these poles

and the pole ¢ or 111 have the same indices in their symbols as the

zone-axes have which are their normals, their symbols are, severally,
111

for S, ” 100

for S,, 10T or Tor; and for S;, 170 or T1o0.

Of these symbols, by article 45 the former of the two will in
each case be that of a pole lying on the same side with 100 of the
great circle passing through the poles 111 and oro, the latter will
be the poles lying on the same side of that zone-circle with the
pole oor.

The symbols of the planes Z,, =,, 3,, the poles of which lie in
the intersection of the zone-circles § and C, are, of Z,, Zr11 or 2T71;

”, i.e. oIT or o1I;

Fig. 48.

of =,, 121 or T2T; and of Z,, T12 or 112. And of these the
former will be the symbol of the poles lying-on the same side with
oo1 of the zone-circle passing through 111 and 17o. The symbols
will then be distributed as in Figs. 48 and 49.
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The symbols of all the axial-points forming the angles of the
systematic triangles having been determined, we may proceed to
consider those of a pole lying on one or other of the sides of the
systematic triangle.

With respect to the symbol of any form of which the poles lie
on the zone-circle [111], it is evident that the sum of the three
indices is zero; i.e. the symbol has to fulfil the condition

p+g+r=0 or p=—g-—r.
And this is precisely the zone which corresponds to one (namely to
Case V) of the two cases in which it was shown in articles 88 and 99

Fig. 49.

that a plane-system might present a zone which could be con-
ceived as being symmetrical to each of its planes, all these planes
being parallel to possible zone-planes. In respect to these planes
however it was shewn that this symmetrical character can be only
abortive where the planes in question are not inclined at crystallo-
metric angles upon any of the systematic planes S or Z, that is
to say, must be so for all planes other than these.

In considering the arcs S forming the sides of the systematic
triangle we shall have to distinguish between those which contain
the poles of the form {100} and those which do not; since the
poles of this form on either of the hemispheres that stand on C lie
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only on the quadrantal arcs § of alternate systematic triangles.
Now whereas the symbol of any pole lying on the great circle [S,]
i.e. [o1T] which traverses the pole 7;, must fulfil the condition
A—I=o0, it is clear that the symbol must be of the form mn#;
and if it lie on the positive side of the great circle [111], m+ 27
must be greater than zero; if, again, it lie on the same side of the
great circle [2TT] with the pole 100,
2m—zn>o0 and m >n;

and if it lie on the other side of [2T1], m < ». Forms fulfilling
the former condition will be termed direcs, those fulfilling the latter
will be termed znverse.

If the pole 7, for which m > z have for its symbol (%44%), and
the so-called ¢ /ransverse’ pole ¢ equidistant with » from 111 on
the other side of 111, and therefore also homologous with 7,
be (¢ff), then #, f,, # will be three poles homologous with and
severally correlative to 7,, 7, 7, that is, to (£4%), (k4 £), and (££4).
Now ¢ will be symmetrical to 7, in respect to the plane Z; and
to 7, in respect to the plane 2,, and a great circle passing through
¢ and r, will also pass through 112; # therefore is the pole in
which the two great circles [112, oro] and [o1T] are tautohedral
and the indices in the symbol (¢ £ /) are

4k—h, k+2h, k424

Thus, for example, the poles correlative to 100, o010, co1 are
122, 2T2, and 22T.

Hence the six homologous poles » and 7 lying on the great
circles S on one side of the zone-plane C will have their two
correlative triads of symbols connected by the relation just estab-
lished between the symbols k4%, k%%, k%% and the symbols
eff, fefs ffe; and on the opposite hemisphere the symbols of
planes parallel to these will only differ from them in having
opposite signs.

The symbol for a pole (7z) lying on the side 2 of a systematic
triangle is characterised by one of its indices being the arithmetic
mean of the other two. Thus, a pole %%/ lying on the great
circle [2,], i.e. on [2T7] or [z11], must fulfil in its indices the
condition

2h—k—l=o0 or .
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where 4 = f—:—l- For a pole situated on the positive side of

the zone-plane C, i.e. of [111],
h+ki+l>0 or k+l>o0;
and if it be also situated on the same side with oro of the zone
[o1T], #—I > o, that is # > /. Whence if m7n be the symbol of a
pole u where m > n and 7= m—:'—”, the poles on the upper or
positive hemizones of the great circle
3, are min, nim,
2, tmn, inm,
and on 3, ,, mni, nmi;
the poles on the nether or negative hemisphere of faces parallel to
these having their signs reversed. .
122, Composite symbol of the general di-scalenokedron. Of the
general independent form 4%/ a face lies eccentrically in each
of the twenty-four systematic triangles of the hexagonal system.
If the pole 247 be that lying in the triangle co,’,, Fig. 4%, the pole
symmetrical with it in respect to the plane S, will lie in the triangle
co, s, on a great circle passing through the poles o1T and o11:
and since the positive sides of the great circles [2TT] and [111]
are those containing the pole 100, the symbols for the poles in
the two systematic triangles in question must satisfy the conditions
2h—k—10>o0 and A+i+!> o0,
or 2k > (k+7)) and A>—(k+)).
So that the first index must be greater than the other two; and as
% > k > [ is the assumed order of magnitudes of the indices, the
first index is 4 in the symbols for both the poles. So again the
pole k] is on the same side with oro of the great circle .S, or
[01T], and therefore the second index is greater than the third,
while for the pole lying in adjoining systematic tnangles the third
index is greater than the second.
Hence the symbols of the poles in the triangles
co,s’, and co,s, are kk/ and A/#,
and in co,s, and co,s’; are Akl and lhk,
¢o,s’, and coys, are klk and lkh.
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The symbol of the pole ¢ transverse to and correlative with a
pole p or (4£7) may be readily found by the problem of four planes.

It lies on the zome [pc], i.e. ”ff;l “ or [k—l, I—h, k—£], at a

distance ge=pc=0 from ¢. And as this zone will intersect with the
great circle [111] in a pole d, or (p¢7), the symbol of which will be
2h—tk—1, 2k—Il—h, 2]l—h—4i,
m cd| sinf coséd
n  |cp| sinz0 1
_3(#=2)3(/—4)3(h—%) sinBcosd _ 3,
T k=1 I=h h—k z2sinfOcos@ 2’
and the indices in the symbol ¢/g of the pole ¢ are obtained by
equations F, article 49. They are, substituting the values obtained
for pgr,

(article 49),

e=np—mh=2(k+0)—4,
Sf=ng—mk=2(+Ak)—4,
g=nr—ml=z(k+k)—1;
where ¢ < /< g for e—f = 3k—3#%, and, % being greater than 4,
J > e; also f—g = 3/— 34, where, % being greater than /, f < g.
The same ratios for ¢ /g are obtained directly from the symbols
of the zones [ %/, 111] and [121, /% %] which are tautohedral in
[efg), since [efg] and [I%£%] are symmetrical on the plane 2,.
They may also be written
2(h+k+l)—3h =,
2(h+k+)—3k=/,
2(k+k+l)—3l=g.
128. Symbols of the prisms. Reverting to the poles lying on
the equatorial zone-circle, we have from the last article
p=2h—tk=1l, g=2k—1—-h, r=2]l—h—"F
whence ¢g4+7 = k+1, ¢g—r=3(%k—/); and, since £> 1, also ¢ >r.
So that the absolute relative magnitudes of the indicesare p > ¢ > r
for all poles not lying at the intersections with C of the great
circles S or £; and these for the axial points at the intersections
of the zone-circles S give ¢ = r = 1, while those at the inter-
sections of the zone-circles 2 gives p = r = 1, the values of p¢r
being taken absolutely.
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Planes of congruent symmelry not in one zone.

124. The four cases have now been considered in which it
is possible for two or more tautozonal planes of symmetry to
be inclined on each other at one of the crystallometric angles;
and they have been seen to involve three distinct types of sym-
metry. In fact the symmetry of the whole system of planes is
controlled in these cases by the symmetry of the zone to which
the proto- and deutero-systematic planes belong.

The question however remains as to what other types of sym-
metry may be possible that are not included under these three and
that of symmetry to a single plane.

Thus of the polyhedral systems hitherto considered some were
symmetrical to planes at once tautozonal and conformable in their
symmetry; but it remains to be determined whether it may not be
possible for three or more Aeterogonal planes of symmetry to
present conformability; and after these have been considered, there
will remain the question whether there may not be yet other types
of crystalloid symmetry.

Since it follows that an axis of symmetry potentially tetragonal will
result from the existence of an independent pole lying on a circle
that bisects one of the right-angles formed by three perpendicular
symmetry-zones and bisects therefore also the quadrant of the
systematic triangle which subtends that right-angle; we may en-
quire what will result from the further condition that any pole or
poles may lie on a great circle bisecting the right-angle formed by
another pair of the three perpendicular planes. Or, which is the
same thing, it may be asked what will be the nature of the sym-
metry resulting from a third plane of symmetry being conformable
with as well as perpendicular to either and therefore to both of two
perpendicular and conformable planes of symmetry.

Case V.—Three heterozonal planes of congruent
symmetry.

1256. Case of three conformable planes of symmetry that are helero-
zonal. In the case suggested in the last article each of the three
right-angles s, o, and ¢ of the systematic triangle, Fig. 40, will be
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bisected by a zone-circle lying in what will be potentially a plane
of symmetry but not conformable with the two planes with which
it intersects. Hence also each of the three zone-lines in which
the proto-symmetral planes intersect becomes an axis of tetra-
gonal symmetry, since in these same zone-lines two perpendicular
deutero-symmetral planes will intersect with the two former planes
at 45°

Assigning similar letters to conformable planes of symmetry,
namely, S to the three planes of proto-symmetry and 2 to the
planes of deutero-symmetry, we have three perpendicular planes .§
intersected by six planes 2 (see Fig. 50) that are in pairs tautozonal
with two and perpendicular to the third of the planes S.

It will be seen that one zone-circle £ of each of the three
deutero-symmetral pairs must intersect with other two belonging to

Fig. s0.

the other pairs, in a point o that will be equidistant from the
poles of the planes of proto-symmetry, and this will be the axial
point of an axis of trigonal symmetry.
For the three zone-planes 2,, 5,, 3; (Fig. 50) will obviously
intersect with each other at the crystallometric angle of 60°; since
L
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in the triangles #do (Fig. 50) we have the angles # = 45°, @ = g0°,
and the side 2d or O = ;; whence also 4o or D = 54° 44'14’, and

do or H = 35°15-86’, and D+ H = 90°, and of the eight points o
the mutual distance of any two adjacent poles as mecasured
on that arc of the zone-circle £ which traverses a pole & is
70* 31-7, while the distance of two poles 0 measured on the arc
traversing a pole 4 is 109°28-3".

On comparing the relative distances of the points o and the
points £ with the angles between faces of the polyhedron known as
the cubo-octahedron, it will be seen that they are supplementary to
each other, and that in fact the points o and % correspond to the
poles of the regular octahedron and cube respectively which
combine to build up that figure. The conditions supposed will
thus give rise to a type of crystalloid symmetry different from
those which have been hitherto considered.

128. ZThe systemalic friangle, and axial system. 1In it the sphere
of projection will be divided by the nine intersecting circles § and
I into forty-eight systematic triangles, of which the sides O, .D, 17
opposite respectively to the angles o, d, 4 have the values

v c ’ o ’
0=;’ D =54 4414, H=35 1586,

while the angles are 0=60°, d=90° k=45
and there will be
three pairs of tetra-symmetral poles 4,
four pairs of tri-symmetral poles o,
six pairs of ortho-symmetral poles d.

The general scalenohedron under such a type of symmetry will
therefore have forty-eight faces.

Taking the proto-symmetral planes S for the axial planes and
consequently their perpendicular intersections for the axes, and
taking a face of the octahedron for the parametral plane, it is
clear that since the latter truncates a quoin of the cube it will cut
the axes with equal intercepts, so that all the parameters are equal :
and the conditions for this type of symmetry as embodied in the
axial system thus chosen are expressed by the symbol

E=n=(=90° a=b=vc
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It will be seen that all the five axial elements are required to
have special values in order to fulfil the general conditions of the
system; no element remaining variable to characterise any different
systems of planes that may conform to this type of symmetry.

The six poles % are those of three symmetral planes S, parallel
to the faces of the cube; and they are also the axial points in
which the axes of the quoins of the octahedron meet the sphere ;
the ecight poles o are those of the faces of the octahedron and are
the axial points of the quoins of the cube; and the twelve poles
are those of the six symmetral planes I, parallel to twelve faces
which, truncating the edges alike of cube and octahedron, con-
stitute the form {110}, termed the rhombic dodecahedron (the
dodecahedral rhombohedron), a figure the quoins of which have
axial points in common with those of the cube and of the octa-
hedron.

127. Symbols for the forms in suck a system. Since the axes
and the edges of the proto-symmetral planes .S are coincident,
it is evident that the faces of the cube will have the six symbols
arising from the various permutations of the indices roo and the
interchanges of the sign of the unit index; and the different faces
of the octahedron will be represented by the eight interchanges
of + and — sign of which the general symbol {ri1} for this
form is susceptible. And since the axial octants are formed by
the intersections of the proto-systematic planes S, each of them
will be conterminous with six of the systematic triangles; so that
six poles of the general scalenohedron will lie in every octant.

In fact, since the edges §,S,, S;S,, S,S,, and therefore also
the axes, are necessarily similar, a face presenting three different
indices in its symbol will be so often repcated in the octant as is
necessary to interchange each pair of the indices for every two
axes; so that the different symbols for the faces in an octant will
be six in number, corresponding to the six interchanges of position
in their indices of which three different numbers are susceptible,
and falling each into one of the six systematic triangles in the
octant. Further, if we consider the symbols thus indicating the
six poles of the form {44/} in an octant, it will be seen (see
Fig. 49) that those in which the indices follow the same order as

L2
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hkikk or as lkkhlk are symbols of poles lying in alternate
systematic triangles, which, as in article 125, may be designated
as hdo or kod, and their faces are metastrophic; while those in
which the order of the indices is reversed belong to antistrophic
faces lying in adjacent triangles.

In passing from one octant to another, it is obvious that the six
faces belonging to any octant will have their signs in the same
position in their symbols, the position namely of the signs of the
X ¥Z which designate the octant.

The symbols of the faces of the general independent scaleno-
hedral form in this system will consequently represent all the
permutations of three numbers taken positively and negatively.
The variety and distribution is given in the following table :

TasLE A.
i Q. v, vil i, iv. vl vill
hkl, hkl, hkl, hEI, hkl, hEL hEL, R,
1w lhk, 1kk, 1hk, 1hk,  1hk, lhk, [kk, 1k, allL
klh, klh, kI, klk;  kih, klh, kik, kik;
hlk, kiR, ki, hik, Rik, kiR, hik, KR,

I a. Rkl kkl, kil, k1,  khi, khl, khl, %kI, pIV.
Ikh, Ik, lkk, lhk;  Ikhk, lkk, 1kh, 1kh;

where the columns represent each an octant; the first four giving

the symbols of the poles lying in the octants X ¥ Z and those

attingent to it and adjacent to X ¥ Z; the remaining four

columns giving the poles in the octant X ¥ Z and those attingent

to it.

The blocks I . and IV p. represent the systematic triangles
metastrophic to each other and to the triangle containing the pole
&%/, ihe blocks II a. and III a. represent the triangles antistrophic
to the former, but mutually metastrophic.

The symbols of a form the poles of which lie on a great circle S
will have a zero in the place of the index corresponding to that
axis which is normal to the great circle; and since all the eight
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arcs O on each of the great circles S are similar and will each
carry a pole of the form, the form will have twenty-four poles, in
the symbols for which two of the indices are different and one is
zero. These then will correspond with the twenty-four various
interchanges of position in the indices and of character in their
signs of which the general symbol {£40} is susceptible.

The poles of a form lying on a great circle £ will be the poles
of planes intersecting with identical intercepts on two of the axes.
Two of the indices must therefore be identical; hence the general
symbol for a form the poles of which lie on the great circles = will
be either {#££} or {#4!}; and according as its position lies on
one or the other side of the pole of the octahedral form {rr1),
it will present the one or the other of these types of symbol.
In fact, when the pole lies on an arc / its indices for two axes
are greater than that for the third and the form is {44/}, when it
lies on an arc D its symbol is {#4%£}. The form in either case
has twenty-four faces symmetrical to the great circles X; their
symbols interchanging the positions of the indices in each octant
and the character and position of their signs from octant to octant.

General discussion of the systematic triangle.

128. We have so far considered certain special cases in which
a crystalloid polyhedral system may be supposed to be sym-
metrical to one or simultaneously to several planes. These cases
have included all the possible conditions under which such planes
of symmetry may lie in the same zone, and certain conditions
under which other planes heterozonal to these may also be planes
of symmetry for the system.

It remains however to determine whether these are the only
possible cases of crystalloid symmetry, or whether some polyhedral
systems may not exist the law of whose symmetry may have to be
represented by a different systematic triangle from any yet con-
sidered. And for this we may discuss the general characters of
such a triangle and the limits these impose to its variation; and
the most general form of stating this problem will be that of
determining under what conditions three great circles may inter-
sect at crystallometric angles.
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129. The six systems of crystallography deduced from lhe crys-
tallometric law. Let S, C, T be the sides and s, ¢, o be the angles
respectively opposite to them of such a spherical triangle. Then
as s, ¢, and o can ncither of them be greater than 9o°, while their
sum must be greater than 180° only the values for these angles in
the three first columns of the following table are possible, the
corresponding values for the arcs forming the sides of the triangle

being those in the three last columns:

s c o S C =
f90° 60°% 60°  70°317, 5474414, 54°44147;
1 90% 60°% 45°; 5474414, 455 35°15-867;
f90°, 90°, 60°; ” T i
II. § 2 2 3
. . . ™ 1.-
_99% 99, 30°; S’ o 6
R % ] ]
III. 90°, 90°% 45°; 2’ S Y
. T -
IV. 90° ¢0°, ¢0°%; - >

If to these we add (V) the case of a system symmetrical to a
single plane, and (VI) that of a system merely symmetrical to a
centre, we shall have represented every possible case in which a
crystalloid polyhedral system can be said to be symmetrical at all.
It is evident that these are precisely the cases that have been
investigated in this chapter. These varieties of symmetry will
hercafter be distinguished by the following designations :

I. 3 planes S, 6 planes 2,.................. Cubic System.
1. 3, 8§ 3 , 2, 1 plane C, Hexagonal System.
m.= , 8 2 , 32 1 , C, Tetragonal System.

.« ,, S 1 , 2 1 , C, Orthosymmetric
System.

Vo 1, 8, ceieeied cevenieieeiieienenee ... Monosymmetric
System.

VI. a centre of symmetry, ..................... Anorthic.
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And the planes of symmetry which characterise these several
systems, and by their intersections with the sphere of projection
in arcs of great circles determine the systematic triangle in each
system, will henceforward be designated only as systematic planes.
180. Relations of the cubic system to the trigonal and hexagonal
system. It results from this that the trigonal axes of the first of
these systems—those namely which represent the normals of the
regular octahedron—can in no case become axes of hexagonal sym-
metry, and therefore the planes of the octahedron cannot be planes
of symmetry for that system. Of course planes belonging to a
form analogous to the form {min}, the z of Fig. 47 of the
trigonal system, and lying in great circles that bisect the angles

at which three planes ¥ meet each other, may exist on crystals of
this type. But they are essentially trigonal and not hexagonal in
the character of their symmetry round the axes O. It will be
furthermore apparent in the comparison of the cubic system with
the trigonal type of symmetry, Figs. 50 and 51, that the case
alluded to in article 119, where tan ¢ = 2 cotan A¢, is that in

which a form in the trigonal system is directly comparable to
one belonging to the cubic system; since then

re= ko =54°4414 = H
and rr,=hh, = 9o°
in the cubic system, and the three axes are perpendicular.

181. Symmelry of faces. The features that undergo symmetrical
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repetition in the faces of a polyhedron are the edges that form
its sides and the plane angles in which any two of these edges
meet 5o as to form one of the sides of a quoin.

The character of the boundary line of a face, as being an edge,
is determined, not by the length of the side, but by the angle at
which the face is inclined on the other face meeting it in the edge;
and generally edges of which the angles are the same are geo-
metrically similar and homologous, except in the ambiguous case
of such angles being right-angles.

It is however necessary, especially where they are right-angles,
to enquire as to the character of the faces that lying in the zone
can intersect each pair of edge-forming faces, and to determine
whether two different edges can have faces so replacing them as
to cut off the edge in each case at the same angles to the
corresponding faces.

And the symmetry of a face will be known when we know the
law of repetition of its edges and angles; and this will obviously
depend on the number and nature of the planes of symmetry that
may intersect with it perpendicularly.

When it is not parallel to a zone-plane and is therefore also not
parallel to a plane of symmetry it can only be perpendicularly
intersected by a single plane of symmetry, and where it is not
perpendicular to such a plane of actual or potential symmetry it can
have no symmetry at all, except where the system is symmetrical
to a single plane, when a face parallel to that plane will be
centro-symmetrical. And when we consider any other position
that a face may occupy on a crystalloid polyhedron, it is clear that
its pole can only lie on a side or at an angle of a systematic
triangle, or must be an independent pole; in which last case it
is without symmetry.

When its pole lies on a side of a systematic triangle, the face is
traversed perpendicularly by one plane of symmetry to the trace
of which it is euthy-symmetrical; when the pole lies in an angle
of a systematic triangle, and therefore at the intersection of two or
of four, of three or of six planes, the face is symmetrical to an axis
of symmetry and is ortho-symmetrical or ditetragonal, ditrigonal
or dihexagonal in character.
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Striations and recognisable physical features in the case of a
crystal often throw light on the character of the symmetry that the
face obeys which exhibits them ; and it is from the aid which such
characteristics, as exhibited in important faces, afford for the
determination of the type of symmetry, not merely of the face but
of the entire crystal, that this study of these features derives its
significance: and indeed the information thus attained will be
found often to go deeper than a symmetry that is merely
morphological, and to involve the symmetry that rules in the dis-
tribution of physical properties and underlies the geometrical
symmetry.

132. The symmelry of a quoin is determinable in a similar
manner to that of a face. For the quoin is composed of edges
and plane angles, and where these recur symmetrically the quoin
will be symmetrical to a line which is an axis of symmetry of a
corresponding order.

Thus, where a quoin is symmetrical to a zone-axis, its summit
is capable of being truncated by a plane parallel to the corre-
sponding zone-plane, and according with it in symmetry; where it
is not symmetrical to a zone-axis, it may be symmetrical to a
single plane or it may be altogether without symmetry. And it is
evident that the symmetry which a quoin will present will corre-
spond with that of the diameter of the sphere which meets its
vertex. If, as in the case of the axis of symmetry in the clino-
thombic system, the diameter in question is an axis of diagonal
symmetry only, the quoin or a face replacing it is diagonally
symmetrical to this axis. 1If, again, the diameter is a normal to a
plane the pole of which lies on a side of a systematic triangle,
the quoin is cuthy-symmetrical to the systematic plane in which
the arc lies that carries the pole. Where the axis of the quoin
mects the sphere at the angle of a systematic triangle, the quoin
is symmetrical to the zone-axis which at that point meets the
sphere.

In every other case the quoin is devoid of symmetry. And the
characteristics of the quoins of a crystal, as in the case of the faces
forming them, offer one of the most important features by which
to recognise the type of the crystal’s symmetry.
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133. Symbols of truncating and bevilling planes. From the
principles established regarding crystalloid symmetry it will be
seen that the only cases where the edge formed by two faces is
truncated by a third face or bevilled by pairs of faces of the system
will occur when the faces forming the edge are adjacent faces of a
form symmetrical to a systematic plane, or else lie on a great circle
traversing an axis of symmetry in regard to which they are sym-
metrical ; so that the pole of a face truncating an edge will lie on
an arc and may lie at an angle of a systematic triangle. It further
results from the symmetrical character of the axial systems adopted
for each crystalloid type that the symbols for two adjacent faces of
a form either differ only in the signs of one or of two indices,
or clse differ by the permutation of certain of their indices. In
either case, the ratios of the indices in the symbol of the truncating
face is obtained by the addition of corresponding indices in the
symbols of the planes whose edge is truncated.

In the Hexagonal system this rule will be found to hold directly
only for those faces of, for instance, the general form {£%/ ¢/f¢}
which belong to the trigonal semiform {%#/}, or else to those
belonging to the correlative semiform inverse to it {efg}; for in
attempting to apply the rule to adjacent faces belonging, the one
to a direct the other to an inverse form, it appears to fail. In fact,
however, the principle involved in the rule is only obscured. The
symbol of a form derived from the symbol of an inverse form
by the same method as the latter is derived from that of a direct
form should evidently be the identical symbol of the original direct
form ; so that the inverse form to {¢/g} should be {#4/}. If how-
ever it be derived by aid of the formulae given in article 122, this
symbol will be found to be not (£%/) but (9% 9% 97) ; whence it is
evident that if the condition above asserted is to be fulfilled we
should have to consider the indices of the form inverse to 2%/, i.e.

2(A+D)—bh, 2(l+h)—Fk 20+k)-—]
as equivalent not to ¢/ but to 3¢ 338, and in order to compare
%%l with ¢fg on, so to say, equal terms, we should take ¢fg as
ranking with 343432 In order then to determine the symbol of
a face truncating an edge of adjacent faces of a form {447 ¢fg}
we have, where the faces belong the one to a direct the other to
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the inverse semiform, to multiply the indices in the symbol of the
face of the direct semiform by a common factor 3, and to add
them to the indices belonging to the face of the inverse semiform.
The rule will then be found to be general, and it applies equally,
of course, to other forms besides those of the general scaleno-
hedron.

Thus, for example, the face truncating the edge (4/7%) (/)
that is to say, the edge of the faces (3% 37 34), and

(f—:
is 4h—2k+14, k+l—2k k+l—2h, or 21I.




CHAPTER VL

CRYSTALS AS CRYSTALLOID POLYHEDRA.

SecTioNn I.—Mero-symmetry.

134. Tue properties of a system of planes mutually related
by the law of the ¢ Rationality of Indices’ have been so far in-
vestigated as a crystallosd system from a purely geometrical point
of view; and, by establishing as one of these properties the
principle that the varieties of isogonal zones that can be extant
in such a system are limited to four, it has been possible to shew
that only a limited number of types or systems of symmetry can
be llustrated in crystalloid plane-systems. When we turn to the
natural polyhedra presented in crystals in order to determine to
what extent these actually accord in their geometrical characters
with the crystalloid systems hitherto considered, we cannot fail to
recognise that whereas the crystallographer, guided heretofore
solely by observation and cxperience, referred every crystal to one
or other of six crystallographic systems, those systems furnish
precisely the several types of symmetry which coincide in their
distinctive features with the six crystalloid types of symmetry
resulting from the above principle.

But in order to carry on the enquiry by means of exact ob-
servation into the geometrical relations connecting the faces of a
crystal, we must have recourse to instrumental methods admitting
of the requisite precision. This object is attained by the use of
the Goniomcter, an instrument constructed for the measurement
of the angular inclinations of planes, of which the description and
the use will be given in a future chapter.
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The results that have been accumulated by means of this instru-
ment form a body of observations on which crystallography as
a science rests ; but in dealing with these results the crystallo-
grapher is often more or less embarrassed by errors incidental
to the use of instruments, and still more by difficulties due to
peculiarities and imperfections presented by the faces of the crystals
themselves.

In proportion however as the errors arising from such sources
are diminished, it has been found that the values obtained for
the angular inclinations of the faces of a crystal more and more
closely accord with those which would result from the crystal
being a crystalloid polyhedron ; that is to say, from the Law of
the Rationality of Indices being the fundamental law presiding
in its construction.

And that this is true for all temperatures at which the integrity
of the crystal is maintained may be assumed, since it is true within
the limited ranges of temperature at which such measurements can
be effected ; while within these ranges of temperature some crystals
are near the highest limit at which they can exist, while others are
examined at temperatures far lower than those at which they have
been formed.

The analogy of the law—that indices are integral coefficients of
the parametral ratios—to the fundamental law of chemical com-
bination by which bodies unite in simple multiples of their weight-
equivalents, can hardly escape notice; and the inductive method
by which each has been arrived at has consisted in an accumu-
lation of experimental results scarcely less extensive and exact
in the case of the crystallographic than in that of the chemical
law.

135. A significant illustration of the occurrence on crystals of
only such forms as are possible in a crystalloid polyhedron, is
furnished in the fact that of the five regular solids, three, namely,
the cube, octahedron, and tetrahedron, are frequently crystal forms,
whereas the dodecahedron and the icosahedron have never been
met with on any crystal. The three first figures are crystalloid
in their symmetry; the faces of the two last cannot be expressed
by symbols with rational indices, and they furthermore present
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a pentagonal symmetry which is of an order impossible, as has
been seen, in a plane system obeying the law of rational indices.
Experience however has, on the one hand, proved that a crystal
is not merely thus externally and geometrically, but is also phy-
sically and throughout its substance symmetrical and zolotropic ;
while, on the other hand, it has led to the recognition of a natural
principle which in a great number of cases limits the complete-
ness of the symmetry of the crystal. Thus it not unfrequently
happens that certain of the faces on a crystal which, in accordance
with the geometrical principles of symmetry laid down in the last
chapter, should constitute a form, will present in their physical
characteristics differences so marked and occasionally so contrasted
that it is impossible to view them all as equally repetitions of the
same face.

136. This partition of the faces geometrically similar into phy-
sically dissimilar groups is, however, found to be itself obedient to
principles of symmetrical distribution which concord with those of
the crystallographic system to which the crystal belongs: and such
an interruption in the complete accord of physical and geometrical
symmetry will be seen to be a particular case only under a more
general law which deals not only with a division of the faces of the
crystal into correlative groups, but in general also with the entire
suppression of all the faces not belonging to one of the groups.

187. Mero-symmetry. In the last chapter the character of a
form under each of the different types of symmetry were con-
sidered, and the trigonal type was treated as a partial and incom-
pletely developed variety of hexagonal symmetry.

While observations directed to such crystals shew that this
incompletely developed type is represented abundantly in nature,
numerous analogous cases of incomplete symmetry are also met
with in other crystallographic systems.

Der. A holo-symmetrical form in any system will be the
term applied to a form in which all the faces required to complete
the symmetry of the system are present, and are physically as well
as geometrically similar.

The term mero-symmetrical will be employed in all cases in
which the faces requisite to build a geometrically complete form
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are partially suppressed, or in which these faces fall into physically
contrasted groups; the suppression of faces or of the features
characteristic of the form taking effect however in a certain sym-
metrical manner.

Mero-symmetrical forms may be hemi-symmetrical, and
will then present one-half of the faces of the complete form; or
tetarto-symmetrical, presenting one-quarter only of the faces
of the holo-symmetrical form; a form of the hemi-symmetrical kind
will be termed a semiform or a hcmihedron, one of the latter kind
a tetartohedron. And the term merohedral will be reserved for
certain cases in which a defalcation is met with in the faces of
a crystal out of accord with any fixed law of symmetry; though
sometimes such a merohedral crystal simulates the mode of
grouping of a crystal belonging to a different type of symmetry
from its own.

138. Hemi-symmetry. Now in considering in what ways it may
be possible, while conserving the essential idea of each type of
symmetry, to suppress one-half of the faces of a form, we have to
keep in view the principle that in surrendering or modifying the
symmetral character of a systematic plane or zone-line, each cor-
responding similar systematic plane or zone-line must simulta-
neously undergo the same degree of deprivation of its symmetral
character. And again, the kinds of mero-symmetrical forms will
be essentially different according as the suppression of their faces
is due to the form ceasing to be symmetrical to its centre, or
to the symmetral character of a plane or group of planes of
symmetry falling into abeyance.

If the crystal be not centro-symmetrical, each origin-plane will
be represented by only one of its two poles on the sphere; or,
to adopt the corresponding fiction of centro-normals, each normal
will be represented by a single ray, that is to say, will carry but
one face and one pole.

Where the form is centro-symmetrical, on the other hand, the
suppression will affect the faces in parallel pairs; so that only
one-half the origin-planes corresponding to faces of the crystal—
and only one-half the number of normals—will be extant, the
remaining half being absent.
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And a mero-symmetrical form may further be conceived such
that alternate normals only should be extant and should cach carry
but a single face.

139. Holo- and mcro-sysiematic forms. Since failure of sym-
metry in the number of normals or of origin-planes belonging to
a form in any system can only result from abeyance of symmetral
character in one or more of the planes or groups of planes of
svmmetry which have already been designated as ( profo-, deutero-,
Irito-) systematic planes, we may avoid the ambiguity in which the
terms hemihedrism, tetartohedrism, &c. are involved by the more
restricted or wider senses in which different authors have em-
ploved them, if we adopt a nomenclature cunsistent with our use
of the former term.

Der. A holo-sysiematic form, then, is a form in which all the

origin-planes or normals required by the complete symmetry of the
system are extant.
A hemi-systematic form is a form in which only half the origin-
planes or normals are extant, the correlative half being absent,

In a #elario-systematic form only one-fourth of the origin-planes
or normals can be considered as extant.

A diplokedral form will, as before defined, be a form in which
every origin-plane is paralle] to two faces (or has both its poles

extant); or in which each normal is made up of two rays or carries
two faces and their poles.

In a kaplokedral form each origin-plane or each normal is repre-
sented by a single face and its pole.
140, Kinds of mero-symmetry. Whence there is—

I Holo-symmetry, where a form is at once holo-systematic
and diplohedral.
II. Hemi-symmetry, where a form is
1. holo-systematic and haplohcdral, | Semiforms or
or ii. hemi-systematic and diplohedral. { kemihedra,
III. Tetarto-symmetry, where the form is

i. hemi-systematic and haplohedral, 7
or ii. tetarto-systematic and diplohedral, } Harlohedra.
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IV. Hemimorphism s the term for a particular case of
haplohedral mero-symmetry. One-half or, it may be, one-fourth
of the faces of the original form are present in the hemimorphic
form: but these all lie on one side of a systematic plane, the
symmetral character of which is in abeyance.

141, The law of mero-symmetry. The conceivable modes in
which either one-half of the normals or one-half of the faces cor-
responding to the full complement of normals (each represented
by a single face) might be suppressed are evidently numerous and
varied. And in the resulting polyhedra we should in many cases
look in vain for any characteristic features of the symmetry of the
system to which the holo-symmetrical form belonged. But in
crystals, as has been before observed, some special quality dis-
tinguishing the original type of symmetry is always preserved in all
their mero-symmetrical forms; and it is in accordance with this
experience that we seek for a geometrical principle that shall
embody such a condition.

Now the only geometrical assumption that can be made

regarding the mero-symmetrical suppression of the faces of a
system so as to satisfy this condition is one which we find in
Nature to include all known cases of mero-symmetry, while
without extension of its terms it will also be found to embrace
the symmetrical conditions presented by holo-symmetrical forms.
It may be stated then in the form of a general law of crystal-
lographic symmetry, that on a crystal the extant or absent
features of a form must be extant or absent in the same
way in respect to equivalent systematic planes. This is
the second fundamental law of crystallography.

142. The nature of the forms necessitated by this law in the
different systems will be discussed hereafter. But certain of
the general results which are involved in its application may be
pointed out here.

Thus hemimorphism can only exist in relation to a unique
systematic plane, since it could not hold in the case of two con-
formable systematic planes. It is thus precluded from every form
of the Cubic system. It may, on the other hand, occur on a form
otherwise holo- or hemi-systematic, and so be either hemi- or

M
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tetarto-symmetrical in its character (i.e. presenting only the half
or the fourth of the faces of the complete form).

143. So, again, a tetragonal axis of symmetry is, so to say, the
creature of the two pairs of alternating planes of symmetry §
and = of which it is the zone-line, and in the holo-symmetrical
case the poles of an independent general form {% £/} are grouped
ditetragonally round this zone-line. If, now, we suppose one of
these pairs of systematic planes—say the planes =, Fig. 52 (1)—to
fail of being symmctral, the result will be that either the planes §
continue planes of symmetry and their zone-axis becomes an axis
of ortho-symmetry, as in Fig. 52 (2); or the planes .S also fail as
planes of symmetry, while the zone-axis retains its character as an
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Fig. 52.

axis of tetragonal but not of ditetragonal symmetry, the grouping
of the faces round it being in alternatc systematic triangles, as in
Fig. 52 (3).

144. In the same way, Fig. 53 (1), an axis of hexagonal (in the
general case dihexagonal) symmetry is the zone-axis of two triads of
alternating planes of symmetry; and the mero-symmetrical sup-
pression of half the poles of a form can be effected by the suppression
either of the symmetral character of one of the triads of systematic
planes, or of both triads simultaneously. 1If, for example, the =
planes are the triad of which the symmetral character is in abey-
ance, the grouping of the six faces that remain extant out of the
twelve of the original scalenohedral form {447} lying on one side
of the equatorial plane will be such that the dihexagonal axis
becomes a ditrigonal axis; see Fig. 53 (2).

If, on the other hand, both triads of planes are no longer planes
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of symmetry, the twelve faces may become reduced to six in such
a way that the poles lie in alternate systematic triangles, see
Fig. 53 (3); the zone-axis, then, continues to be an axis of
hexagonal but not of dihexagonal symmetry.

In a trigonal system, indeed, in which the axis of form is an
axis of ditrigonal symmetry and is the zone-line of three con-
formable systematic planes S;, S,, S,, it is evident that the
abeyance of the symmetral character must take effect on all
three or on none of these planes; that is to say, the ditrigonal
axis becomes a trigonal axis, or else the system, if conceived of as

) (€)
Fig. 53.

derived from one originally diplohedral, must become hemimor-
phous in respect to the zone-plane [S|S, S;].

145. In the case of an axis of ortho-symmetry which is the zone-
axis of two perpendicular planes of symmetry S and 2, Fig. 54 (1),

Fig. 54.

if the symmetral character of one and one only of these planes is

in abeyance, for instance that of the plane Z, their zone-axis will

not be an axis of symmetry. In this case, however, it will be
M2
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seen that in a holo-systematic system the zone-axis of the planes
S and C (C being in a diplohedral system a third systematic plane
perpendicular to S and =) must be an axis of ortho-symmetry,
and that the system will be hemimorphous in regard to the plane 2,
see Fig. 54 (2) and (3). On the other hand, the symmetral
character of the two planes S and C may both be in abeyance;
and then there is no symmetral plane and each zone-axis becomes
an axis of diagonal symmetry, as in Fig. 54 (4).

(3) Fig. 54. ()

148. In the casc of the Mono-symmetric system, obeying only
one planc of symmetry of which the normal is an axis of diagonal
symmetry, the only available varieties of mero-symmetry are
hemimorphism resulting from the abeyance of the symmetral
character of this single systematic plane, and the case of a semi-
form presenting two poles symmetrical to that plane. For, were
the form diplohedral, it would retain but a single normal and its
symmetry be undistinguishable from that of an anorthic crystal.

The varieties of mero-symmetrical partition, which faces of a
general independent form may undergo in any particular crystallo-
graphic system, will have to be considered in detail in chapters
specially devoted to the description of the forms of the different
systems. But their character is always determined by the necessary
conditions that the distribution of the faces must be consistent
both with the law of mero-symmetry, and with the rules which
have been laid down in the preceding articles regarding the order
of the symmetral influence which an axis of symmetry may retain
when some or all of the systematic planes of which it is the zone-
axis lose their symmetral character.
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147, That the different forms of the same crystal cannot be
simultaneously obedient to different types of symmetry, that is
to say, cannot belong to different systems, is as obvious a neces-
sity as that the different features of the same form cannot be so.
There remains however the question whether a crystal hemi-
symmetrical in regard to a particular form or forms can exhibit
holo-symmetry in regard to other forms; for instance, where
geometrically diplohedral forms are found concurrent with haplo-
hedral forms, it may be asked whether the possibility of such
a concurrence is not proved.

The general answer to this question is however to be found
in the principle that planes of symmetry are such for all features
of a crystal, and, where they are in abeyance at all, they are in
abeyance for all the forms.

If the effect of any particular mero-symmetrical principle in
influencing the different kinds of forms of the same crystal be
considered, it will be scen that what in the case of one variety
of form will result in the suppression of the half of its faces, may
in another produce not a suppression of any of the faces, but a cor-
responding loss of symmetry in the outline or in the physical
characters and molecular structure of each and all the faces of the
form. The latter case, that namely in which the suppression takes
effect, not in the obliteration of half the faces of the form but in
that of half the features of each face—in fact in the partial suppres-
sion of the symmetry which these faces would obey in the holo-
symmetrical form—occurs wherever the poles of the form lie on
any systematic great circles whereof the symmetral character is

001

(1) . (3)
Fig. 55.

in abeyance. A cube with its alternate quoins truncated by the
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faces of a tetrahedron would illustrate such a suppression. Its
six faces are all ortho-symmetrical, not tetra-symmetrical. Thus
the striations on the faces of the cube in Fig. 55 (1) will be
seen to run parallel only to the edges these faces form with
those of the tetrahedron which truncate its alternate quoins;
while in Fig. 55 (2) the cube faces are striated parallel to their
intersections with alternate pairs of faces of the rhomb-dode-
cahedron. Fig. 55 (1) represents a crystal of blende symmetrical
to the Z-planes only and haplohedral; Fig. 55 (2) is that of a
crystal of pyrites symmetrical to the S-planes only, but diplohedral.
In both the symmetry of the cube-faces is secen to be orthogonal,
not tetragonal.

148. A uniform notation to represent the kind of mero-symmetry
presented by any correlative pair of hemihedra or group of four
tetartohedra is of some importance; and the more as the Greek
letters which have been employed as prefixes to the symbols of
holo-symmetrical forms in order to represent their semiforms have
received different significations from different authors.

In the Tetragonal system, for instance, the semiforms represented
by Prof. Miller as A {44/}, x {447}, and a {4/} carry in the treatise
of Prof. V. von Lang the symbols y {4/}, x {44/} and « {kkl}
respectively.

The symbol 7 is alone in carrying by general consent a con-
stant signification, namely, that the semiform it designates is diplo-
hedral; but as employed in the Cubic and Tetragonal systems, for
instance, it represents different ideas of symmetry.

To avoid confusion, therefore, a notation will be adopted in
this treatise such that, in the cases where ambiguity has heretofore
arisen, the letters employed as prefixes will recall by their sounds
the nature of the symmetry that is not in abeyance and which
therefore controls the extant form.

The following prefixes will accordingly be employed, in the case
of hemi-symmetrical forms, to represent that the faces of these
forms which are extant (or absent) are so symmetrically, only

(as haplohedral and holo-systematic forms)
1. to one or more zone-lines of symmetry .. .. .. .. .. .. a
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2. to one or more such resultant zone-lines, and also
to the (proto-systematic or) S-planes .. .. .. .. .. s
to the (deutcro-systematic or) =-planes
to the (trito-systematic or) C-plane, sec below, ¢.
to the C-plane and the S-planes .. .. .. .. .. .. ..
to the C-plane and the Z-planes .. ..
to the S-planes and the =-planes .

® m K

(as diplohedral and hemi-systematic forms)
to the §-planes and to a centre of symmetry .. .. #
to the S-planes and to a centre of symmetry .. ..
to the C-plane and to a centre of symmetry .. .. ¢

The diplohedral character of the last three kinds of form is sug-
gested by letters which involve the sound of m (opposite poles
on the sphere separated by a distance 7 being extant in such
forms), the meaning of the affix 7 being restricted to a special
case; while the double letters a- and £ serve to recall the letters
CS or (X that represent those of the systematic planes which
alone retain an actually symmetral character and thus determine
the nature of the symmetry ; p has been used by V. von Lang to
represent hemimorphism in general, and is here retained for a
frequent case of hemimorphism, that on the trito-systematic plane.

The usual mode of representing a tetarto-symmetrical form is
that of uniting the prefixes corresponding to two out of the three
pairs of hemihedra that may be constituted out of the faces of
the four corrclative tetartohedra.

Thus, in the Tetragonal system we have for the mero-symmetry
of the general form {44/} (see Plate 1I) three hemi-symmetrical
pairs of forms,

sihkl}, sikhl}; o {hkl}, o lhkl}; ¢ L{hkl}, b {khl}:
and these three sets of correlative semiforms may be produced by
combining in distinct pairs four tetarto-symmetrical forms, which
may be therefore indifferently designated as

so [hkl}, so (khl}, so {/_f,{'/}, so {Z'-fll';
or s¢
or o¢
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149. It results, as a consequence, from the law of mero-
symmetry, that any holo-symmetrical independent form in the
Cubic, Tetragonal, or Hexagonal systems may be considered, from
a purely geometrical point of view, as a composite form capable
of being analysed into various correlative pairs of hemi-symmetrical
forms, while these again may undergo further analysis into tetarto-
symmetrical forms; each stage in the analysis necessarily sub-
tracting from the completeness of the symmetry of the figure, yet
always so that the type of symmetry distinguishing the system is
recognisable. Conversely, the various semiforms may be built
up by a synthetical process of combining correlative tetarto-
symmetrical forms in pairs; while again by the assemblage of
the faces of either pair of corresponding semiforms the complete
holo-symmetrical form will be constituted.

AM Thus, 4, M, A’, M, four cor-
P — relative tetartohedra, form three
4 M pairs of correlative hemihedra
Na' M AMand M'A’, AM’ and MA’,
AN A rar A4’ and M’ M, the faces of each
correlative pair constituting if
united the holo-symmetrical form.
L 4 See also plates I to VIL
M 1560. In discussing, by way of
Fig. 56. illustration, certain kinds of forms

resulting from the disparting of
holo-symmetrical polyhedra into constituent correlative hemihedra,
the principle of the partition was not discussed. Evidently each
semiform may appropriate one face from the pair belonging to every
normal, or, on the other hand, may be built up of pairs of parallel
faces belonging to alternate normals. But there are consequences
depending on this character of the mero-symmetry which must
not be lost to view. Thus, in the haplohedral holo-systematic
case the original form is so disparted into two semiforms
that, for each face of the one semiform, a face, parallel to it
in the complete form, belongs to the other semiform. Whether
the two semiforms can be brought into congruence will depend
on whether their faces are severally capable of being so, meta-
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strophically ; and this, again,’on the mode in which these faces are
grouped.

From the general scalenohedron of a system may be derived
two kinds of correlative semiforms. These may be such that the
poles of one semiform lie in alternate systematic triangles—and
so, therefore, that the faces of the one semiform are metastrophic
to each other, but antistrophic to the faces of the other semiform:
or, it may be that metastrophic are united with antistrophic faces
in each of the semiforms. But it is impossible to partition the
faces of a semiform of haplohedral character between two tetarto-
hedral forms, otherwise than so as that each of the latter forms
shall have all its faces antistrophic to the faces of the other
correlative tetartohedron. The configuration of the one tetarto-
hedron will then correspond to that of the other as seen in a
mirror, In a word, the two tetarto-symmetrical forms are enantio-
morphous.

And since antistrophic asymmetric faces on a crystal cannot
be brought into congruence by the revolution of the crystal round
any diametral line, it is not difficult to determine whether in any
particular case correlative mero-symmetrical forms are enantio-
morphous or tautomorphous; i.e. cannot be brought into
congruence, or can be so brought by revolution round one or
more zone-lines.

If the tetartohedra in Figure 56 that are represented by different
letters are antistrophic and those with the same letters metastrophic
to each other, of the correlative pairs of hemihedra formed by their
combination those represented by union of different letters and
formed by antistrophic tetartohedra will be tautomorphous, viz.
AM with M’A’, AM’ with MA’, while the pairs represented by
union of the same letters, viz. 44’ and MM’, are formed by meta-
strophic tetartohedra but are themselves enantiomorphous.

161. It has been stated in articles 135 and 138 that, whereas
the hemi-symmetrical developement of a form implies in general
the suppression of one of the correlative groups of its faces, the
two groups may nevertheless be concurrent on the crystal; but
that, whether they are so concurrent or are found only on separate
crystals, they are often distinguishable from each other by differences
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in external feature or otherwise in physical character. It may be
evidenced by variation in smoothness or lustre, or in roundness
or plane character of surface, in the directions, depth and form of
striations or of hollows, or in the relative magnitudes habitual with
the faces of the respective semiforms; or, also, it may be associated
with polarity of character in the physical properties of the correlative
hemihedra, especially under pyroelectric excitement due to changing
temperature. Such differences, then, may generally be held to
indicate a mero-symmetrical habit, and they often impart a very
marked contrast to the faces of the correlative semiforms. It may
occur, on the other hand, that the distinctive features of concurrent
mero-symmetrical forms may not be apparent or recognisable.
That they should nevertheless exist follows as a consequence of
the principles of crystallographic symmetry.

In the case of semiforms which are holo-systematic, and there-
fore haplohedral and not centro-symmetrical, each normal of a
form would carry either a single face or else two parallel faces
which differ in physical features; and the fulfilment of the con-
ditions imposed by the mero-symmetry of the system is compatible
with the supposition that the crystal is endowed with different—or
also, in a polar sense, opposite—properties in opposite directions
of any given line. This character has been designated by V. von
Lang as Antihemihedrism.

When the crystal is at the same time hemi-systematic and hap-
lohedral the forms are tetartohedral, and for two of the four
quarter-forms which are tautomorphous the character of the dis-
tribution of the properties and of the features (as, for instance, of
the poles) round corresponding lines in the crystal will be meta-
strophic, but will be antistrophic to that round corresponding lines
in the two quarter-forms enantiomorphous to the former,

Along the principal axis of symmetry in particular crystals of the
Tetragonal and Hexagonal systems, and along every direction in
certain crystals of the Cubic system, a ray of plane-polarised light
acquires rotatory polarisation. That this property should be con-
fined to haplohedral crystals, hemi-symmetrical or tetarto-sym-
metrical, in which all the symmetral planes of the original holo-
symmetrical form are in abeyance, will be shown hereafter, when
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the physical characters of crystals are under discussion, to follow
from the laws of symmetry.

162. In this chapter the subject of mero-symmetry has been
treated as involving the presence or the absence of certain faces,
consequent upon the abeyance of the actual symmetral character
of planes which are otherwise potentially planes of symmetry. But
in this treatment of the subject a symmetral influence has still
been recognised as, so to say, latent in these dormant systematic
planes; inasmuch as the zone-lines, which may be considered as
becoming axes of symmetry by virtue of the original symmetral
nature of those planes, generally retain this character in a greater
or less degree, notwithstanding the abeyance of a direct symmetral
influence in the planes themselves upon the forms of the crystal.
By an inverse method of treating the subject of symmetry, it would
have been possible to have evolved the laws of symmetry, and
deduced those of mero-symmetry, from a discussion of the con-
ditions regulating the degrees of symmetry possible round a
zone-axis, and to have considered the various planes and groups
of planes of symmetry, not as originating axes of symmetry so
much as being the results of the symmetral character of such
axes.

It is however evident that either method, and indeed that the
whole treatment of crystallographic symmetry on the assumption
of planes and axes of symmetry, actual or potential, represents a
geometrical abstraction; an abstraction that needs for its develope-
ment and due explanation a complete science of position applied
to the molecular mass-centres, competent to embrace not merely
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