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PREFACE

the treatment of the subject with which this
manual deals very little previous knowledge has
been assumed and the author hopes that he has been
successful in bringing within the scope of every
earnest reader some grasp of the principles. At
the same time the subject is no easy one, and the
book is not one for an idle half-hour.
In the short bibliography at the end will be found
a list of the books to which the author is mainly
indebted. In addition he desires to take this
opportunity of expressing his special indebtedness to
Professor Barton for permission to adapt some
tables from his 7Zext-Book of Sound, to Messrs
Newton and Co. for permission to reproduce the
photograph which appears as the frontispiece, to
Mr P. W. Wood for reading the proofs and for much
helpful criticism, and to the scientific editor of the
series for many useful suggestions.

A. W

December, 1912,
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CHAPTER 1

PRODUCTION AND PROPAGATION OF SOUND

THE term “sound " is used in two distinct senses.
It is used to denote both the external cause of a
particular sensation and that sensation itself Thus
we talk of the production of a sound and the pro-
pagation of a sound, referring to particular physical
phenomena considered quite apart from any possible
hearer, and under the same term we refer to the
sensation which these external phenomena produce
in ourselves and others.

The sensation of sound is always associated with
the vibratory motion of some sounding body. The
blurred outline of this body while sounding is suffi-
cient a8 a rule to convince us of its rapid to-and-fro
motion, and, immediately this motion is stopped by
a touch of the finger, the sound ceases. Many ex-
periments may be quoted in illustration of this fact.
For instance, a moistened finger passed round the
rim of a wine-glass or finger-bowl causes it to emit

W. M. 1



p] PFHYSICAL BASIS OF MUSIC [on.

a strong note. If the surface of the liquid contained
be examined by reflected light, the vibration of the
glass will be found to have revealed itself by throwing
the surface of the liquid into a beautiful pattern
which moves round with the finger. A moment’s
thought will convince us that all musical instru-
ments when sounding have vibrating parts—strings,
air-columns, membranes &c.

But, though it is true that our sensation of sound
is always associated with the vibratory motion of a
sounding body, the converse does not always hold.
It is possible to produce vibrations which do not
affect our sense of sound at all. For instance, in the
case of many sounding bodies where the vibrations
die out slowly, it will be found that we cease to hear
the sound before the vibrations have completely
stopped. In this case the energy of the vibrations
has become so small that it is insufficient to set in
action the mechanism of the ear. In order that this
may happen, the energy must be very small indeed.
Thus, in ordinary conversation, the amplitude of
vibration of the layers of air near the ear—that is
the greatest distance which they move in either
direction from their undisturbed position—is always
less than the thousandth part of an inch and often
less than the millionth part of an inch. Sounds
are audible even when the amplitude of the vibra-
tions is 20 or 30 times smaller stil. The changes



1] PRODUCTION OF SOUND 3

of pressure produced in the air in the ear may excite
the sensation of sound whenrthey are as small as the
pressure in the highest vacuum obtainable.

Again, if a card be held in the hand and moved
rapidly to and fro, no sound will be heard. This does
not mean that the card is in all cases incapable of
acting as a source of sound, for, if the edge of the
card be touched with the shaft of a vibrating tuning-
fork, the volume of sound coming from the fork will
be largely increased, the increase being contributed
by the vibrations of the card. A good deal of light
is thrown on these observations by experiments with
a metal strip clamped in a vice. If the end of the
strip be pulled aside with the finger and released,
it will execute to-and-fro vibrations which will be
more rapid the shorter the length of the strip which
is free to vibrate. If the strip is taken fairly long
at first and then gradually shortened, it will be found
that at first its vibrations produce only a feeble whir-
ring sound, but that, as the length of the strip is
diminished and the vibrations become more rapid,
they produce a faint note of low pitch, the pitch
rising as the strip is still further shortened. From
this we conclude that vibrations may be too slow
to affect our sense of sound.

At the other end of the scale a similar phenomenon
is found. It may be illustrated by the use of a
Galton whistle. This little instrument gives a very

1—2



4 PHYSICAL BASIS OF MUSIC [ch.

high shrill note, and the pitch of the note may be
altered continuously by adjusting a stop. If this stop
is moved so as to shorten the air-column of the
whistle, the vibrations become more and more rapid
and the note more and more shrill until suddenly a
point is reached at which the note ceases to be hegrd.
The vibrations have not ceased nor have they under-
gone any sudden change. They have merely become
too rapid to affect our sense of sound. The limit
varies for different people, becoming lower as a rule
with advancing age. Thus we find that the sensation
of sound always has its origin in vibration, but that
such vibration may be too feeble, too slow or too
rapid to produce the sensation.

We now come to consider how the vibrations of a
sounding body reach the ear. It isnatural to suppose
that they are conveyed by some medium, and this is
eagily verified by experiment. If we exhaust the air
from an enclosed space, the vibrations of a bell placed
in it fail to excite the sensation of sound. Sound is
usually carried by the air, but may also be carried
by liquids and solids. A detailed discussion of the
way in which the transmission of sound takes place
would be out of place here, but some general idea of
the process is essential to the right understanding of
what follows. One of the most important methods
of transmission of energy is by means of waves. All
the energy reaching us from the sun—and most of
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our energy comes from the sun ultimately—is con-
veyed to us by waves. The energy by which the
sensation of sight is excited is transmitted by waves.
The energy used for sending wireless messages is
carried by waves. The waves with which we are
mgst familiar are no doubt those formed on the
surface of water and they may be used to illustrate
many important properties of waves, but we get a
much clearer idea of the essential feature of wave
motion if we think, instead, of the waves which pass
across a field of corn under the action of wind. In
this case, more perhaps than in any other familiar
one, we are brought to realise clearly the distinction
between the movement of the waves and the move-
ment of the medium which transmits them. Thus
while the wave moves forward, preserving its indi-
viduality and to some extent its form, the particular
heads of corn whose arrangement gives the wave its
form are always changing, being caught up by the
front of the wave and then left behind. This is
typical of all wave motion. The progressive move-
ment of the wave is always associated with a to-and-
fro movement of each part of the medium. The
wave is a “form” imposed on the medium and is
transmitted without any transference of the medium
itself. One of the essential conditions for the propa-
gation of waves is that, when the medium is disturbed,
forces should be called into play tending to restore
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the original undisturbed condition. These forces are
supplied in the case under consideration by the
.elasticity of the corn-stalk, which raises the head
again after it has been depressed by the wind. In
water waves the principal restoring force is gravity.
If a ridge or a hollow is formed on the surface, of
water, gravity tends to restore the level surface.

We are now in a position to picture to ourselves
the propagation through air of waves set up by a
vibrating plate. As the plate moves forward, it com-
presses the layer of air immediately in contact with
it. The pressure of the air in this layer is conse-
quently increased. But the layer in front of this
again is still at the original pressure. The first layer
therefore expands forward into the second in order
to equalise the pressure. In doing so it compresses
the second layer and this in turn compresses the
third, so that a “ wave of compression ” is propagated
outwards with a speed which depends only on the
properties of the air and is quite independent of
the subsequent motion of the plate. Meantime, the
plate having arrived at the end of its forward motion
starts backwards again. This gives the layer of air
next it additional space to expand into, and the
expansion is accompanied by a fall of pressure. This
layer is therefore rarefied. But the second layer is
still at normal pressure. It therefore expands back
into the first layer, itself becoming rarefied. The
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third layer expands backwards into the second, and
80 a “wave of rarefaction” travels outward after the
wave of compression.

The waves by which sound is propagated are, of
course, ordinarily invisible. This is due to two causes.
In the first place they travel with a speed which,
c8mpared with that of light waves, is extremely small
but, compared with any ordinary standard, is very
great indeed. Thus in air under common atmo-
spheric conditions the waves will travel fully a mile
in five seconds. This is a speed which the eye would
find it impossible to follow. In the second place,
portions of the air differently compressed are not
eagy to distinguish although they do exert a slightly
different bending action on rays of light. This is
frequently apparent in" hot weather when layers of
heated air which have expanded, and so become less
dense, rise from the hot ground, causing a quivering
of objects seen through them. This phenomenon may
be utilised not only in photographing sound waves,
but even in rendering them visible to the eye. No
matter how rapidly an object may be moving, if it is
illuminated instantaneously, it will be seen distinctly
and apparently at rest. The more rapid its motion,
the shorter must be the duration of the flash which
reveals its presence. By using an electric spark as
the source of light, the waves caused by the passage
of a bullet through the air have been photographed.
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The frontispiece is a photograph of a bullet in flight
and shows V-shaped air waves spreading out from
the front and rear of the bullet respectively. Sound
waves, unlike water waves, are not confined to
one plane, but spread out in every direction. Thus
the waves are at any instant a series of concentric
spheres surrounding the source, and not, as in the
case of water waves, a series of concentric circles.

In due course these waves arrive at the layer of
air in contact with the membrane which closes the
inner end of the outer passage of the ear—the so-
called “drum ” of the ear. This layer is compressed,
the layer of air on the inner side of the membrane is
still at normal pressure, and so the membrane gets
driven inwards. Conversely when the wave of rare-
faction arrives, the pressure on the inner side being
normal while that on the outer side is less than
normal, the membrane gets driven outwards. Thus
the motion of the plate is reproduced by the drum
of the ear which moves out and in, keeping time
with the vibrations of the plate.

Sound waves, like all other waves, experience
reflection and refraction. When a series of sea
waves wash against a sea wall or esplanade, a series
of reflected waves may be seen moving outwards
as if they came from behind the reflecting surface.
This is of course exactly analogous to the echo;
here the sound waves emitted by a source strike
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a cliff or some similar surface and are reflected back
as if they came from a source behind the cliff Re-
fraction is a phenomenon, equally familiar, in which
the waves concerned change their direction of pro-
pagation. It occurs whenever the waves move in
a medium which is heterogeneous in the sense
that some parts of it propagate the waves with
greater velocity than others. For instance, in the
case of water waves it is a familiar fact that, in
whatever direction the waves may be travelling

in the deep water, as they ap-

proach the shore they change //

their direction and wheel /
round, until the length of the //,{,
wave is practically parallel ——————— shore
with the shore. Now this is
due to the fact that waves
travel faster in deep water than they do in shallow
water, and consequently the end of the wave nearer
the shore is retarded while the end farther from the
shore begins to overtake it, the direction gradually
changing as shown in the diagram (Fig. 1).

Two important examples of the refraction of
sound waves occur frequently. So long as the pres-
sure remains the same the velocity of sound waves is
greater when the air is less dense and conversely.
Consider the case of a hot still day. The layers of
air in contact with the ground get heated and expand,

Fig. 1.
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thus becoming less dense. It follows that if sound
waves are being propagated along the surface of the
earth the edges nearest the earth will travel more
quickly, and a glance at Fig. 2 will show the effect of
this on the direction of propagation of the waves.
Y " It will readily be seen that the di-
S\ rection of propagation soon becombs
\ so much changed that the waves
>\~ move off into the upper layers of
-\ the atmosphere and we have a sim-
ple explanation of the well-known
fact that under these circumstances
sounds carry very badly. Consider now the evening
of a day of the same kind. The earth radiates its
heat quickly and so cools. It then cools the layers of
air in contact with it so that these contract and
become more dense. In this case the edges of the
waves next the earth travel more
= slowly than the upper portions of
the waves so that the direction
changes as in Fig. 3, the waves being
R/~ directed down towards the surface
- of the earth instead of moving off
into the atmosphere. This explains
the great distinctness with which sounds frequently
carry in the evening of a hot day—a distinctness
which is of course all the greater over a smooth sur-
face, for instance a sheet of water.

Fig. 2.

Fig. 3.
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A very similar phenomenon is the propagation
of sound with and against the wind. Remembering
that the layers of air in contact with the ground
will be retarded by friction and so will move less
quickly than higher layers we see that if the waves
are travelling with the wind the upper edges will

ove more rapidly and we shall have very much
the state of things represented in Fig. 3, while if
the waves are travelling against the wind we shall
have the conditions represented in Fig. 2. Thus the
fact, that sound carries much better with the wind
than against it, is satisfactorily accounted for.

Of the large variety of sounds which affect our
ears only a certain proportion have any musical value.
The others are mere noises. If we try to analyse the
sensations which we classify as notes or as noises we
shall find that as a rule the sensation of a musical
note is smooth, regular and of definite pitch. Noises
on the other hand are sensations irregular and dis-
continuous. This distinction can be illustrated practi-
cally by means of a useful little instrument devised
by Koenig and known as the manometric flame.
Two saucer-shaped pieces of wood or metal are fixed
with their rims in contact and the chamber so formed
is divided into two parts by a flexible membrane (see
Fig. 4). Into the right-hand division of the chamber
a single wide tube A is led ; while into the left
hand division two tubes B and C are led. If now
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B is connected to a small gas-jet and C to the gas
supply it will be obvious that so long as the membrane
remains at rest the jet will burn with a steady flame.
Any motion of the membrane, however, will at once
affect the height of the flame which will be greater
when the membrane is moving towards the left and
less when the membrane moves towards the right.

T
gas jet

1

B

. Flexible
=" Membrane
A

Cc

N

7 From
gas supply

Fig. 4.

Obviously then, if the tube A is directed towards a
source of sound the arrival of successive compressions
and rarefactions at the membrane will cause it to
move and this motion will be communicated to the
flame which will move up and down in time with
the impulses arriving at the membrane. There still
remains one serious obstacle in the way of using
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the motion of the flame as an indicator of what is
happening in the sound waves. In an ordinary musical
note compressions and rarefactions succeed one
another several hundreds of times per second and if
the flame moves up and down with this frequency it
gill be quite impossible to detect any motion at all.
If a note is sung into the tube A and the flame
carefully observed, no trace of motion will be seen.
An ingenious device is used to overcome this diffi-
culty. If a mirror be made to rotate rapidly in the
neighbourhood of the flame, and if, instead of ob-
serving the flame directly, we observe its image in
the rotating mirror its motion will be revealed. As
the mirror rotates about a vertical axis the image
of the flame will appear to move across its surface
and if the flame is always of the same size the image
will be always the same height and so the bright
band which it shows in the mirror will have a smooth
upper surface. On the other hand if the flame is
moving rapidly up and down, the upper edge of the
bright band in the mirror will be serrated and the
character of this serration is capable of giving us
much useful information as to the nature of the
sound which is causing it. It is found that when
A is directed towards a “noise” the serrations are
entirely irregular, while a musical note produces
serrations all similar and equally spaced.

At the same time no hard and fast line can be
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drawn between the two classes of sounds. Almost all
notes are accompanied by noises and many noises
have some of the characteristics of a musical note—
e.g. pitch. A little practice will enable anyone with
a sense of pitch to assign a definite pitch to such
noises as are made for instance by a piece of firewood
allowed to fall on the hearth, or by the drawing of a
cork.

It is found that all the notes used in music are
associated with regular periodic motion—that is, a
motion which continually repeats itself and always in
the same time. The motion of the bob of a pendulum
is periodic, so is the motion of the prong of a tuning-
fork. In both cases the point on which we fix our
attention describes the same path again and again,
and always completes it in the same interval of time—
an interval which is known as its period. If for
instance we take the plate on which we based our
discussion on page 6, and fix it to some mechanism
capable of giving it a rapid and regular to-and-fro
motion it will emit a musical note. The to-and-fro
motion may be extremely complicated. The plate
may move rapidly at some points of its path and
slowly at others, may sometimes partially retrace its
steps—these eccentricities will affect the character of
the sound to some extent but if the vibration of the
plate, however” complicated, is regularly repeated in
equal intervals of time it will emit a musical note.
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The motion of the drum of the ear will of course also
be periodic and will have the same period as the
vibrating plate. The number of complete vibrations
executed per second by a vibrating body is called the
Jrequency of its vibration. The maximum displace-
ment of the vibrating body from its undisturbed
pSsition is called the amplitude of its vibration. It
is important to notice that while the frequency of
vibration of the drum of the ear, of the intervening
layers of air and of the source of sound are all the
same, the amplitudes of the layers of air fall off with
increasing distance from the source until the drum of
the ear is reached—its amplitude consequently being
in general much smaller than that of the source of
sound.

CHAPTER 1I

DISTINGUISHING CHARACTERISTICS OF
MUSICAL NOTES

MuUSICAL notes may be distinguished from each
other by three characteristics—loudness, pitch and
quality (or témbre). Our common experience will to
some extent have prepared us for the discovery that
loudness depends on the amplitude of vibration of



principle recognised in almost all musical instruments,
If a tuning-fork be held in the air after being struck,
the sound emitted is hardly perceptible, but if it is
placed with its handle resting on a wooden table the
sound immediately swells out. This is not due to any
increase of the amplitude of vibration of the fork but
to the fact that it now communicates its vibrations to
the table and so the whole surface of the table is made
to vibrate in unison with the fork. The table, being
in contact with a large mass of air, sets that vibrating
and in so doing communicates energy to it. But the
source of all this energy is the initial blow given to
the fork, the effect of the table being to increase the
rate at which the fork parts with its energy. Thus
more energy is received at the ear per second and
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-increase in the rate at which energy is received
‘the ear accounts for the increased loudness of
he sound. If this explanation is the true one, it
follows that the fork will remain sounding much
Flonger if held in the air than if allowed to touch the
taple. This will be found to be the case. If the
fork be struck as nearly as possible with the same
force in the two cases, its initial store of energy will
be the same, but will be much less rapidly exhausted
in the first case than in the second. This phenomenon
is of the greatest importance in the construction of
musical instruments. In many cases the primary
source of the note has so small a surface area that it
communicates energy to the air only very slowly and
consequently gives rise to a very feeble sound. Where
the surface is narrow, as in the case of a small tuning-
fork, there is very considerable lateral motion of the
air, which passes backwards and forwards round the
prongs without ever being appreciably compressed or
rarefied at all. This may be demonstrated by a simple
experiment due to Sir George Stokes. If a card is
held close to one prong of a tuning-fork while the
fork is sounding in air, in such a way as to obstruct
this lateral motion, the loudness of the sound emitted
by the fork will be considerably increased. In an
even greater degree is this true of a vibrating string.
If a string be stretched between two quite rigid
supports and plucked, hardly any sound is perceptible.

W. M. 2
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The sound produced by a piano or a violin is due to
the fact that, associated with the string are large
surfaces—the sounding board of the piano and the
body of the violin—which take up the vibrations of
the string and virtually increase its vibrating surface.
Sometimes a column of air is used for a similar pyr-
pose. The air contained in the box on which a tuning-
fork is frequently mounted plays this part, and in the
case of brass wind instruments the lips of the per-
former are usually the primary source of sound, but
this otherwise feeble sound is reinforced by the
vibrations of the column of air in the instrument.
This case is different from the others previously
cited, in that, while the sounding board of a piano
will reinforce every note of the scale, the column of
air in a bugle will only reinforce a very limited series.
This difference will be dealt with subsequently.
Musical notes are distinguished from one another
not only by loudness but also by pitch. The dis-
covery of the characteristic of the external vibration
which corresponds to pitch presents little difficulty.
We have all noticed, when running our finger-nails
down corded silk, that a note of quite definite pitch
is emitted. We may also have noticed that the pitch
depends on the speed with which the nail is moved
over the silk. If this is done very slowly we hear the
separate taps of the nail on the ridges of the silk, but
as the motion is made more rapid we get instead a
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note of higher and higher pitch. This at once sug-
gests that the sensation of pitch depends on the
frequency with which the impulses due to the separate
taps succeed one another at the ear.

The principle may be tested by means of an
ingtrument known as the siren. In its simplest form
it consists of a circular cardboard or metal disk
mounted on an axle. The disk is perforated with
a ring of equi-distant holes. When the disk is rotated
the perforations come successively in front of a nozzle
from which issues a blast of air. Thus the air comes
through the perforations in a series of puffs which
succeed one another more or less rapidly according
to the speed of rotation of the disk. If the number
of perforations in the ring be known and the number
of revolutions which the disk makes in a second be
also known, the number of puffs issuing per second
can be easily calculated. As we should expect, if the
rate at which the puffs are emitted be very slow the
ear perceives them separately, but as the speed of
rotation is increased the puffs begin to fuse into one
continuous sound of low pitch. Further increase of
speed causes a steady rise in the pitch of the resulting
note. The sound emitted by a siren of this kind is
very feeble and the instrument has been much im-
proved. In the later forms a wind-chest takes the
place of the tube conveying the air blast, and the
disk is made to rotate close to the upper surface of

2—2
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the wind-chest. This surface is perforated to cor-
respond with the perforations of the disk, so that
each time one of the holes on the top of the wind-
chest coincides in position with one of the holes in
the disk all the holes in both coincide and a puff of
air comes simultaneously through each pair of eo-
incident holes. This greatly strengthens the sound.
A very interesting and important fact which may be
verified by means of the siren is, that the pitch of a
note depends only on the number of impulses reaching
the ear per second and not at all on the way in which
these impulses are produced. Thus if a quill be held
so that it strikes the holes of the revolving disk it will
be found that it gives rise to a note of the same pitch
as is produced by the air puffs for the same speed of
rotation. Or again, if a toothed wheel be made to
rotate and a card or metal strip be held against it,
a note of definite pitch will be emitted. The pitch
will be the same as that of the note given by the
siren if the frequency of the impacts of the card on
the teeth of the revclving wheel be the same as the
frequency of the air puffs given by the siren.

The siren is very useful for enabling us to
determine the frequency of vibration corresponding
to any particular note. Thus, in order to determine
the frequency of a tuning-fork, we cause it to sound
and adjust the speed of rotation of the disk of the
siren until the note given by the siren is in unison
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with the fork. Keeping the unison as perfect as
possible we count the number of revolutions which
the disk of the siren makes in a given time, and then,
knowing the number of perforations in the disk, we
are able to calculate the number of puffs emitted per
second. This will be the number of vibrations made
by*the fork per second. Thus suppose we keep the
fork and the siren in unison for 30 seconds and that
during that time the counting apparatus shows that
the disk has revolved 320 times; suppose further
that we count the number of holes in the disk and
find it to be 24 ; then the total number of air puffs
emitted is 24 x 320 or 7680. The number per second
is therefore this number divided by 30, that is 256.
This last number then is the frequency of the fork.
Some of the more interesting frequencies are given
below. Here and elsewhere throughout the text we
shall use Helmholtz' notation—see Table I at the end
of this volume.

C,, Lowest tone of very large organs ... 165
,, Lowest tone of very large pianos 275
, Usual lower limit ... 33
a’ From Handel’s Fork, 1751 . 4225
a’ Erard’s Concert Pitch, 1879 4553
a” Usual highest tone of large pianos ... 3,520
d Highest tone of piceolo flute e 4,752
e Highest tone reached (Appun and Preyers
tuning-fork) . .. 40,960

The determination of the upper and lower limits
of audibility, especially the latter, has been the
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subject of much controversy, but it may be safely
asserted that our ears are sensitive to sounds having
frequencies lying between about 30 vibrations per
second and 40,000 vibrations per second, but that the
frequencies of sounds having any real musical value
lie between about 40 and 4000.

An interesting phenomenon bearing on the relation
between pitch and frequency is the apparent altera-
tion in pitch of a note due to the relative motion of
the source and the observer. An observer standing
in a railway station while an express train passes
through whistling can hardly fail to be struck with
the sudden drop in pitch of the note given by the
whistle just as the engine passes. Often, on the road,
the approach of a motor car at high speed is indicated
by a hum of very definite pitch and in this case also
the drop in pitch as the car passes is very noticeable.
In order to understand this we have only to realise
that as the source of sound approaches us the sound
waves which it emits get crowded up into smaller
space. Between the instant when one compression is
sent out and the instant when it is followed by the
next the source of sound has moved forward so that
these two compressions travel outwards separated by
less than their natural distance apart. Hence the
compressions sent out by the source arrive at the ear
in quicker succession than would be the case if source
and observer were relatively at rest. The converse
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happens when the source of sound is receding from
the observer. Here the compressions succeed one
another at the ear less rapidly than would be the
case if the source were at rest. Thus in the first
case the apparent pitch is higher than the true pitch
while in the latter case it is lower?.

¢ The siren may be used to investigate the frequency
relations between two notes constituting a simple
musical interval. For experiments of this kind a
further development of the siren is found convenient.
In this form there are four concentric rings of holes
in the wind-chest and revolving disk—each ring
having a different number of holes. A convenient
arrangement is that in which the numbers of holes
in successive rings are in the ratios 4, 5,6, 8. The
apparatus is arranged so that the various rings may
be opened or shut at will. Now we know that there
are certain pairs of notes which our ears at once
recognise as standing to one another in some simple
relationship. The most familiar case is the octave.
If a note and its octave are sounded successively the
observer instinctively feels that the two notes are
related. If we open successively the first and last
rings of holes in our siren while the disk is rotating,
we shall find that the note given by the last is the
octave above that given by the first. Moreover, this
remains true for all speeds of rotation, so that we

1 Known as Dopplers Principle.



—or numbered—Dby counting up the scale from one
note to another and including both the note we count
from and the note we couut to. Thus C to D is the
Second, C to E is the Third, C to F is the Fourth,
and so on. It is found, when we compare the fre-
quencies, that E to G is a smaller interval than C
to E. It is therefore called a Minor Third while C
to E is called a Major Third. In the same way we
have two kinds of Sixths, Major and Minor. We
shall find that, by utilising different pairs, the four
rows of holes in the disk of our siren will give us the
Octave, Fifth, Fourth, Major Third, Minor Third and
Minor Sixth. Other intervals may be obtained by
using a siren disk in which the numbers of holes are
in a different ratio. The results of investigations of
this kind are tabulated in Table II (see end of volume)
where the notes forming the interval are given as
well as the ratio of the frequencies. The first thing
that strikes’us on a glance at the Table is that it
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includes all the simplest and most harmonious in-
tervals and that in all cases the frequencies of the
notes forming the interval are in a ratio which may
be expressed by two small whole numbers. It will
also be seen on comparing the Minor Sixth with the
Fifth and the Octave that the simpler the interval
the smaller are the two numbers in terms of which
the ratio of the frequencies of the notes may be
expressed. We are here using the word simple as
an indication of the ease with which the interval in
question may be recognised and picked out by the
ear, and it is well known that in this respect the
Octave, Fifth, and Fourth come before the Sixths
and Thirds. The explanation of these simple ratios
will become clear later and meanwhile it is sufficient
to call attention to the fact.

We are now in a position to determine the relative
frequencies of all the notes of the scale, so that if the
frequency of one be given we can calculate all the
others. Thus we see from Table II that, whatever
may be the frequency of C, the frequency of ¢ must
be twice as great. Considering the interval of the
Fifth we see that whatever be the frequency of C
that of G must be 3/2 times as great. Thus if we
start with C as 1 then the Octave gives us c as 2, the
Major Sixth gives us A as 5/3, the Fifth gives us G as
3/2, the Fourth gives us F as 4/3, the Major Third
gives us E as 5/4. The corresponding ratio for D



26 PHYSICAL BASIS OF MUSIC [on.

may be got by noticing among the Fourths that it is
the Fourth below G. It must therefore be

3/4 x 3/2=9/8.
In the same way it will be seen that B is a Fifth
above E and must therefore have the ratio

3/2 x 5/4=15/8. .
Thus we now have the following series of ratios
c D E F G A B °

1 98 b5/4 43 32 53 158 2
We can clear of fractions by taking C as 24, in which

case the scale becomes

c D E F G A B (¢
24 27 30 32 36 40 45 48

Remembering that the size of the interval be-
tween two notes is always measured by the ratio of
the two frequencies, we can obtain the intervals
between the successive notes of the scale by dividing
the number representing each note by the number
representing the one immediately below. Thus the
interval from C to D is given by the ratio 27/24,
or 9/8. Similarly the interval from D to E is given
by the ratio 30,27, which simplifies to 10/9. Carrying
out this process for the whole scale we obtain the
following ratios as representing the intervals be-
tween successive notes,

c D E F G A B e
9/8 - 10/9 16/15 9/8 10/9 9/8  16/15,
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It will be seen that these intervals are of three
different sizes, the largest ratio is 9/8 and the interval
so measured is called a Large Tone. Next to it, and
not very different from it is the interval whose.ratio
is 10/9 which is called a Small Tone and last of all
and much smaller is the interval whose ratio is 16/15
which is called a Semitone. Now this matter of
measuring intervals by ratios is somewhat of a
stumbling-block to the uninitiated. For instance
it is hard for a mind unaccustomed to working with
ratios to form any idea of the comparative sizes of
the Tone and Semitone simply by looking at the
ratios which define these intervals. A further diffi-
culty is that in adding two intervals we have to
multiply the corresponding ratios. Thus the interval
obtained by adding a Fifth and a Fourth is repre-
sented by the ratio 3/2 x 4/3 =2, s0 that a Fifth added
to a Fourth gives us an Octave, as we know to be the
case. Inorder toievade this and similar difficulties, the
intervals are measured by logarithms in the manner
shown in the Appendix. In the system most generally
adopted the Octave is divided into twelve hundred
equal parts called cents. In terms of these cents we get
the following values for the various familiar intervals.

Octave ... 1200 Major Third 386
Major Sixth 884 Minor Third 316
Minor Sixth 814 Major Tone 204
Fifth 702 Minor Tone 182

Fourth ... 498 Semitone ... 112
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These numbers enable us to compare the different
intervals by simply adding and subtracting. Thus
we see that a Fifth plus a Fourth gives us

702 + 498 = 1200 = Octave.

28

For convenience of reference most of this information
is collected in Table III as we shall find it very neces-
sary to have it accessible while reading the later
chapters. It is perhaps well that the reader should
be warned at this point that the scale for which the
above calculations hold exactly is an ideal one, from
which it is found necessary to depart in actual
practice for reasons which will be discussed in the
chapter on Temperament. Thus the tuning of the
white notes of the piano only approximately follows
the numbers here given.

And now we must pass on to consider the third
characteristic of the musical note—quality. Like
pitch and many other quite familiar ideas it is
somewhat hard to define. It is the property which
enables us to distinguish between two notes of the
same pitch and the same loudness when produced
by different kinds of instruments or even by two
different voices. This will be found to depend on
the kind of vibration which is giving rise to the note.
The sounding body may for instance have a simple
to-and-fro motion like that of the bob of a pendulum,
fast at the middle of its range and slow at both ends.
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On the other hand it may move with uniform speed
from end to end of its range, experiencing a sudden
change of speed just at each end. The prong of a
tuning-fork has a vibration of the first kind while a
point on a violin string when the string is being bowed

is found to have a vibration approximating to the

second kind. It is very desirable to have some method

of representing graphically the various possible types

of vibration and in order to do this recourse is

had to what is called the displacement diagram of
the vibrating point. Suppose for instance that we

have a pencil point in contact with a vertical sheet
of paper and that we make the pencil point move up
and down vertically. It will trace out a vertical
straight line on the paper which will give us no

information at all about its motion. Suppose how-

ever that while the pencil is moving up and down
the paper is drawn steadily from left to right. The
pencil will now trace a wavy curve on the paper
from which much information may be gathered.
We know that had the paper been at rest while
the pencil moved we should have had a vertical line,
and on the other hand if the paper had moved and
the pencil been kept at rest we should have had a
horizontal line. The line we have actually obtained
is the resultant of the two motions and it follows
that where the pencil has been moving relatively
slowly the curve will be nearly horizontal, while



where it has been moving "'913“.701.7 rapidly the
curve will approach the vertical. A trace of this

kind, whether drawn directly by the vibrating body,
as in the case mentioned, or drawn from observations
and measurements of the motion, is called the dis-
placement diagram of the vibrating point. Below
are shown some typical displacement diagrams.

A
N N
/B\ N\

\A/ \c/ \/

Fig. 6.

Fig. 7.
Fig. 5 represents the motion of a pendulum bob.
It would be produced if the pendulum bob terminated
in a pencil and were made to vibrate across a sheet

of paper while the sheet was drawn sideways. We
see that at 4 and B the line is parallel to the
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direction in which the paper is being drawn so that
at these points the bob of the pendulum must be
momentarily at rest. At C and D on the other hand
the line is steepest so that these must be the points
of most rapid motion. Thus the curve reveals the
fact that the pendulum bob is moving most rapidly
at the centre of its range, slows up towards both
ends and just at either end is momentarily at rest.
This type of motion is very important and is known
as simple harmonic motion. Fig. 6 is the displace-
ment diagram for a point on a violin string. The
straight lines show that the speed of the point
remains constant from end to end of its range,
being suddenly changed at each end. The fact that
the two straight lines AB and BC which together
represent a complete vibration of the point are not
equally steep, indicates that the point moves faster
in one direction than it does on the return journey.
Many displacement diagrams are of course much
more complicated. In some cases, as was suggested
earlier, the vibrating point actually partially retraces
its path. A simple example of this kind is given in
Fig. 7. If a pencil be made to trace out this curve
by moving up and down the page while the page
itself is drawn from right to left, the pencil point
will execute the vibration which the displacement
diagram represents.

If a very narrow slit be cut in a sheet of stiff
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writing paper and placed with its length parallel to
the side of the page near the left-hand side of one of
these displacement diagrams, the intersection of the
curve with the slit will show as a black dot. If now
the sheet of paper be drawn steadily from left to
right this black dot will move up and down the slit
with the motion which the displacement diagram is
drawn to represent. The characteristics mentioned
in the text will be clearly shown.

CHAPTER III

INTERFERENCE OF WAVES. STATIONARY
VIBRATION

ONE of the most characteristic phenomena associ-
ated with wave motion of all kinds is what has come
to be known as “interference.” The discoverer of
the phenomenon was Thomas Young, of Emmanuel
College, Cambridge, and it was probably suggested
to his mind first of all in connection with water
waves. His application of the principle to optical
phenomena did much to establish the fact that light
is propagated by some kind of wave motion. In one
of his papers he thus describes the phenomenon.
*“Suppose a number of equal waves of water to move
upon the surface of a stagnant lake, with a certain
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velocity, and to enter a narrow channel leading out
of the lake. Suppose then another similar cause to
have excited another equal series of waves, which
arrive at the same channel with the same velocity
and at the same time with the first. Neither series
of waves will destroy the other, but their effects will
be combined: if they enter the channel in such a
manner that the elevations of the one series coincide
with those of the other, they must together produce
a series of greater joint elevations ; but if the eleva-
tions of one series are so situated as to correspond to
the depressions of the other, they must exactly fill up
those depressions, and the surface of the water must
remain smooth.” It is the latter case which makes
the strongest appeal to the imagination and no
doubt this fact is responsible for the application of
the term “interference” to the phenomenon. Not only
could we produce in our observation channel either
smooth water or a series of waves of double height,
but by suitably altering the conditions we could pro-
duce a system of waves which would have any height
between these extremes. Taking a broad view of the
phenomenon in all its aspects, we see that the principle
simply involves a statement of the fact that when
any point in a medium is influenced simultaneously
by two independent wave systems, its displacement
at any instant is the sum or difference of the dis-

placements, which each system would separately have

Ww. M. 3
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produced, according as these displacements are in
the same or in opposite directions. That is to say,
if at any instant the particle under consideration
would have been on the crest of a wave belonging
to one system and in the trough of a wave belonging
to the other system, then if the two systems have
waves of equal heights the particle will simply
remain undisplaced. Thus each wave system makes
its own contribution to the motion of the area which
is traversed by both and, when it has emerged from
the area common to both, proceeds exactly as it
would have done had the other system never been
present. If these facts are unfamiliar to us in the
case of water waves it is not for lack of opportunity
to observe them. Every sheet of water frequently
presents them to our notice. There we can see the
system of waves or ripples due to the wind moving
steadily in one direction and, perhaps, a circular
system spreading out from a spot where a stone has
been thrown in. Each system preserves its own
identity and moves exactly as if the other were not
present. Often we can see the V-shaped system due
to a moving boat passing out and through the wind
system, while on occasion these may even chance to
be combined with a third system, and we shall find
that what holds for two systems holds equally for
any number. We are in a position now to realise
that “interference” is an unfortunate term for the
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phenomenon. We see that each system moves on
without interfering with any other, and without
interference from any other, although it may happen
that at certain points the two or more independent
motions may combine to produce rest. A very familiar
case of “interference” of sound waves is afforded by
a tuning-fork. Obviously while the prongs are
moving outwards compressions are started in front
of the prongs and propagated outwards in the
direction in which the prongs are moving. On the
other hand a rarefaction will be formed between the
prongs and this will be propagated out sideways, at
right angles to the direction of motion of the prongs.
Thus if figure 8 represents the plan of the fork
we have compressions propagated along AP and
AC and rarefactions along AD and AE. It follows
that somewhere, approximately in directions bisecting
the right angles between these four directions, the
compressions and rarefactions must combine to give
normal pressure. The converse will happen when
the prongs are moving inwards. In this case com-
pressions will travel outwards along AD and AF
and rarefactions along AB and 4C, but it will still
be true that along the directions AF, AG, AH, AK,
the compressions and rarefactions will combine to
give normal pressure. Thus along the directions
AB, AC, AD, AE, there travel successively com-
pressions and rarefactions which will affect the ear,
3—2
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while along four directions between these the pressure
does not vary. It follows that as the tuning-fork is
slowly rotated close to the ear the sound will swell
and diminish four times in each revolution of the
fork—a result which may be readily verified.
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In order to get anything like a complete view of
the phenomenon of interference we must return to
the consideration of displacement diagrams. Let it
be borne in mind that, when a medium is trans-
mitting waves, each small portion of the medium
exactly repeats the motion of its immediate neigh-
bour a small fraction of time later. It follows that
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any diagram which represents the displacements of a
portion of the medium at successive instants will
also represent the displacement of successive portions
of the medium at any given instant. If for instance
we consider a diagram like Fig. 9, one of the broken
lines may be the displacement diagram for a drop on
the surface of a sheet of water which is transmitting
waves. In that case the successive ordinates Aa,,
Bb,, Cec, and so on represent the displacements of
the drop at successive instants. But the diagram

Fig. 9.

representing the displacements of successive drops
at any instant would have exactly the same form,
since the other drops in the line of propagation of
the waves are all executing the same vibration and,
at the instant in question, each shows a ditferent
stage of it. Thus the broken line may be taken to
represent the form of the water surface at any
particular instant, due to a system of waves. Now
let the other broken line represent the form which
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would have been impressed on the water surface
by another system at the same instant had the first
system been absent. If these two systems act simul-
taneously we shall get the resultant displacement of
successive drops on the surface of the water by
drawing at various points the ordinates Aa,a,, Bb:b;,
Ce.¢;, Dd,d, and marking off on them 4’, B, C', D,
making AA'=Aa, + Aa,, BB = Bb, + Bb, and so
on. Where the displacements are opposite as at
D the two ordinates must be subtracted so that
DD’ = Dd,— Dd,. 1If this construction is carried

Fig. 10.

out for each point and then the resulting points
A, B, C', D" &c. joined by a smooth curve, we shall
get the displacement diagram representing the united
effect of the two separate systems. This is shown
in the diagram by the continuous line. In Fig. 10
is shown the result of combining two waves of equal
amplitude and nearly equal wave length. Now
this method is perfectly general and can be applied
at once to the case of any kind of waves. For
instance we have seen that when layers of air are
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transmitting sound waves they move to and fro in
the direction in which the waves are travelling and
not up and down at right angles to that direction,
as in the case of the drops of water when waves are
passing along the surface. It is true that in the
case of air waves the displacement diagram does not
give such an accurate picture of the state of the
medium ; but if we adopt the convention that forward
displacements of the layers of air are to be repre-

a

b

Fig. 11,

sented by lines drawn upwards from the axis of the
diagram and backward displacements by lines drawn
downwards, we shall then obtain displacement dia-
grams exactly like those we have been dealing with
and shall be able to interpret them so as to ascertain
what is happening to the various layers of air.
Suppose for instance that Fig. 11 represents the
state at a particular instant of air transmitting waves
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from left to right. We see that the layer of air
whose undisturbed position is A, is at the instant
under consideration displaced forwards through a
distance = Aa. The layer at C is undisplaced, while
the layer whose normal position is B is displaced
backwards through a distance = Bb. Intermediate
layers are displaced by intermediate amounts. We
also notice that the layers between D and C are
displaced forwards, while the layers between E and
C are displaced backwards. There must therefore
be a crowding of the layers and so a compression at
C. On the other hand, fixing our attention on £ we
see that the layers between £ and C are displaced
backwards, while those between E and F are dis-
placed forwards. Therefore on both sides of E the
layers of air are displaced away from it so that we
shall have a rarefaction at £. Wherever then the
displacement diagram cuts the axis, passing down-
wards in the direction of propagation of the waves,
we have a compression ; while where it crosses the
axis upwards in the same direction we have a rare-
faction. We also see that as the crest of the wave,
represented by a, moves forward from left to right,
lines drawn upwards from points on the axis between
A and C to meet the curve would all become longer.
Now the lengths of these lines represent the forward
displacements of the corresponding layers of air.
These layers are therefore increasing their forward
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displacements—i.e. are moving forwards. On the
other hand downward drawn lines from points be-
tween B and C to the curve would get shorter.
This means that the backward displacement of the
corresponding layers of air is getting less—i.e. these
layers also are moving forward. Thus all the layers
of air forming the compression are moving forwards.
A similar discussion of the motion of layers of air
corresponding to points between B and F—i.e. to the
rarefaction—shows them to be moving backwards. It
is important to distinguish between displacement and
motion. Thus at the instant in question layers be-
tween B and C are displaced backwards but are moving
Jorwards. 1t follows from this that we can obtain the
resultant effect of a series of waves passing through
the air in exactly the same way as we have indicated
for water waves. The application of Fig. 10 to air
waves is particularly interesting and important. It
represents the case of sound coming from two sources
of nearly but not quite the same pitch. The one of
higher pitch will send out compressions and rare-
factions at slightly shorter intervals and so will have
a eiightly shorter wave-length. The resultant effect
of the two wave systems is, that instead of a series
of uniform waves, which would produce at the ear a
steady note, we get a series of waves whose amplitude
alternately increases and diminishes so that the sound
alternately swells and lulls. If the two separate
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wave systems have the same amplitudes, the amplitude
of the resultant wave system will sink to zero between
each consecutive pair of maxima and the resultant
sound will, at the corresponding instants, disappear
altogether. This phenomenon is well known in
acoustics. If we take two tuning-forks of the same
pitch and load the prongs of one with a little wax so
as to diminish its frequency and lower its pitch, we
shall find that if they are made to sound together
we get very marked alternate swells and lulls of the
gsound. The phenomenon is known as beating. Sup-
pose that the loaded fork now makes one vibration
less in each second than the unloaded one, and suppose
further that we start our consideration of the phe-
nomenon when they are vibrating in the same phase
—i.e. they send out their compressions together and
their rarefactions together ; these will travel to the
ear and simultaneously produce their effects on the
membrane which will thus have imparted to it a
double amplitude of vibration—assuming the ampli-
tudes of the two forks to be equal. Thus the ear will
hear a loud sound. But one of the forks is gradually
gaining on the other and after half a second it will
have gained half a vibration so that now when one
fork sends out a compression the other sends out
a rarefaction at the same instant and vice versa.
Consequently “a compression from one fork reaches
the ear simultaneously with a rarefaction from the
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other, the two annul one another, the membrane of
the ear does not move, and no sound is heard,
although both forks are still sounding strongly. The
fork of greater frequency still continues to gain and
at the end of the second has gained a complete
vibration and once more the conditions existing at
the beginning of the second are repeated. Thus we
have a succession of beats occurring regularly once a
second. In order to have periods of absolute silence
it is necessary that the two amplitudes should be
the same—a condition difficult to ensure—but if the
amplitudes are even nearly the same the beating
will be very marked. Beats have several important
applications in music. They enable us to achieve
very great accuracy in tuning two notes to unison.
If the two notes are at all close in pitch beats will
be heard. One of the notes is then slightly altered.
If the beating is rendered slower, unison is being
approached and the note is further altered in the
same direction until the beating finally disappears.
From what has been said it will be obvious that the
number of beats per second given by two notes is
equal to the number of whole vibrations which the
one will gain on the other in one second, and is
therefore equal to the difference of frequencies. The
slow beating due to imperfect tuning is usually con-
gidered rather pleasing and is intentionally utilised
in the Vox Humana stop of the organ which brings
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into play a series of imperfectly tuned pairs of
pipes.

We have seen that, when waves are being propa-
gated through a medium, each particle taking part in
the motion repeats the motion of its neighbour an
instant later. It executes an exactly similar orbit in
the same period of time. There is however another
type of vibration known as “stationary vibration”
which differs from this in several important respects.
In this case each particle vibrates with an amplitude
either greater or less than that of its neighbour—the
medium being divided up into regions of maximum
motion and regions of minimum motion, these regions
succeeding one another at equal intervals. One of
the simplest illustrations of this type of vibration is
given by a rope or rubber cord. If one end of the
cord be fixed to a hook and the other held in the hand,
a quick motion of the hand will be found to send a
pulse along the cord and the pulse will be reflected
from the fixed end and will travel back again to the
hand. By giving the hand a properly timed to-and-fro
motion it will be found possible to get the whole string
to vibrate together. This is a typical case of station-
ary vibration. The two ends are points of minimum
motion, the centre is a point of maximum motion.
The former points are called nodes, the latter point is
called a loop, and the division of a medium into loops
and nodes is characteristic of stationary vibration.






Fig. 12,

Stationaay Vibration
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If the hand be now moved to and fro with a
frequency twice as great, the cord will be found to
split up into two vibrating portions or loops, separated
by a comparatively stationary point or node at the
centre. Increasing the frequency still further we
find it possible to make the cord break up into three
loops and so on. It is a little difficult at first to get
the timing of the hand sufficiently accurate to give
the string a steady motion, but a little practice is all
that is necessary. Some clue to the way in which
these loops and nodes are produced is given by the
fact that we are really dealing with two systems of
waves—one, the direct system, sent along by the
hand, and the other the reflected system travelling
back again from the fixed end. If we apply the
method of superposition to the displacement diagrams
for the two systems we shall find it gives us the
complete solution of the problem. Let the red and
black dotted lines (Fig. 12) represent two systems
of waves, equal in amplitude and wave-length, the
system represented by the black line moving from
right to left and that represented by the red line from
left to right. Then the continuous line represents
the resultant effect on the medium. The condition
of the medium is shown at four successive instants.
At the first of these the two systems are acting
together so that the displacement of each point of
the medium is double what it would have been had



46 PHYSICAL BASIS OF MUSIC [cn.

either system been acting alone. At the second
instant considered, the two wave systems have moved
through a quarter of a wave-length to left and right
respectively, and now oppose one another at all points.
At the third instant they have again moved to left
and right through a quarter wave-length and are once
more acting together. In the fourth instant shown
they are once more in opposition. Thus we see that
the medium is alternately undisplaced and subject to
double displacement. Let us now fix our attention
on the portions of the medium represented by the
points A, B, C, D, E, F. 1t will be seen that A and
E are never displaced at all while ¢ and F' are
displaced alternately in opposite directions, their
maximum displacements being the sum of the ampli-
tudes of the two constituent wave systems. Thus
A and E are nodes while C' and F are loops, and we
‘have the conditions of stationary vibration. B and
D have vibrations whose amplitudes are less than
those of C and F. Indeed it will be seen that the
points from A to C have vibrations of gradually
increasing amplitude, while in passing from C to F
the amplitudes diminish again to zero. This distribu-
tion of amplitudes is repeated again between E and
@G. Tt will also be noticed that at any instant the dis-
placement of consecutive loops is opposite in direction.

If the waves with which we are dealing are trans-
verse waves—that is, if the vibrations of the particles
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of the medium which transmits the waves are at right
angles to the direction in which the waves are travel-
ling—then the displacement diagram we have obtained
gives a very exact representation of what is happening.
This is of course true for the waves travelling along
the cord, as in this case the vibrations of each small
portion of the cord are at right angles to the length of
the cord. Nevertheless the discussion applies equally
well to air waves if we use the convention already
mentioned (p. 39) as to the way in which forward
and backward displacements are to be represented.
The practical application of these results to the
vibrating parts of musical instruments is given in
the next chapter.

CHAPTER IV

VIBRATION OF STRINGS AND OF AIR COLUMNS
IN PIPES

WE must now proceed to apply the discussion of
the foregoing chapter to some important practical
cases. If we consider first the case of a stretched
string or wire such as is used on any stringed instru-
ment we find that waves will travel along it so rapidly
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that we shall be unable to follow them; but in a)
other respects the phenomenon is identical with that
of the rope or rubber tube. We should therefore
expect the direct and reflected wave systems to set
up stationary vibration with the two fixed ends of the
string always as nodes. The simplest way in which
this can occur is when two consecutive nodes are at
the fixed ends of the string and the intervening loop
is at the middle. In this case the string vibrates as a
whole, the centre swinging from side to side or up and
down. It is also of course conceivable that alternate
nodes might coincide in position with the ends of the
string, the intervening node being at the centre. If
this particular form of vibration could be induced we
should have the string vibrating in two halves with a
point of comparative rest at the centre. These and
other possible modes of vibration may be studied by
means of a sonometer—a wooden frame on which is
stretched a string or wire. One end of the string is
fixed to the frame, the other passes over a pulley and
. carries a scale pan in which weights may be placed.
The weight placed in the pan together with the
weight of the pan itself is a measure of the tension
with which the string is being stretched. If this
string be bowed in the usual way it will be found to
emit a particular tone and to be vibrating as a whole.
This latter, fact can easily be verified by placing on
the string a series of paper riders. All will be thrown
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into & state of commotion and probably all those. at
any distance from the ends will be thrown off the string
altogether. On the other hand if the string be touched
lightly at the centre with a camel’s hair pencil or the
corner of a handkerchief and bowed at about one
quarter of its length from one end it will be found to
emit a note an octave above the tone previously
given. This time the paper riders will reveal the
fact that the centre of the string is a point of minimum
motion. The next possible method of vibration will
have two nodes in the length of the string and will
yield a note whose frequency is three times as great
as that of the first note produced. A glance at
Table III will show that this note must be an Octave
and a Fifth, i.e. a Twelfth, above the first one. It can
be induced by touching the string at a point one
third of its length from either end, and bowing about
the middle. The paper riders this time will show two
nodes—one at the point touched and the other at
the corresponding point, one third of the length of the
string from the other end. These modes of vibration
are illustrated in Fig. 13. Thus we find that the string
is capable of vibrating in a great many different modes
by dividing into different numbers of vibrating seg-
ments. It will be seen that whereas in the first mode
the string is vibrating as a whole, in the second mode
it is really vibrating as two strings, each of half the
length, and in the third mode as three strings each

W. M, 4
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of one third of the whole length of the string. From
what follows it will be obvious that the frequencies
of these modes are in the ratios 1: 2 : 3 &c.

A theoretical investigation of the vibrations of a
stretched string leads us to the following results.

(a) The frequency of the simplest mode of vibra-
tion of a stretched string is inversely proportional to
the length of the string, so that if we halve the length

Fig. 18.

of a string, keeping its tension constant, we double
its frequency of vibration and so raise its pitch an
octave. This is easily verified by placing the movable
bridge of the monochord under the mid-point of the
string when either half of the string will be found to
give the octave of the note given by the whole

string. .
(b) The frequency of vibration varies directly as
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the square root of the stretching force. Thus in
order to raise by an octave the pitch of the note
given by the string the tension would require to be
increased four times. This relation can also be
verified by the sonometer although not quite so simply
as has just been suggested. Let weights be placed in
the scale pan until the note given by the string is the
same as that of a tuning-fork of convenient pitch—
say c. Weights are then added to the pan until the
note given by the string has risen to e. Now the
ratio of these two frequencies we know to be 5:4
and we should therefore expect the ratio of the
tensions to be 25 : 16—an expectation which will be
approximately realised.

(¢) The frequency of vibration varies inversely as
the square root of the mass of unit length of the
string. Thus, if equal lengths of two wires of different
thicknesses be compared and one is found to weigh
four times as much as the other, and if these two
wires are stretched on a sonometer by the same
weights, the note given by the thinner will be found
to be an octave higher than that given by the thicker
one.

Let us now apply the discussion of stationary
vibration to the case of air in a pipe through which
two systems of waves are passing in opposite direc-
tions. Let Fig. 14a represent the displacements of the
layers of air in the pipe at a given instant and Fig. 14

4—2
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represent them when each of the constituent systems
has moved through half a wave-length (cf. Fig. 12).
Remembering the convention by the aid of which
those diagrams are made to represent vibrations in
air, we see that in the first figure all the layers of air
between A and C are displaced forwards (which we
shall take to be from left to right) while those be-
tween C' and E are displaced backwards and those
between E and G forwards. In the second figure the
opposite is the case. Layers between 4 and C and

— M — T~
A B c ——LD —¢ F a
Fig. 14a.

/—_——\
A\\—B—/C D E\-E-—//G

' Fig. 14b, )

between E and G are displaced backwards while
those between C and E are displaced forwards. Thus
we see that the layers of air at B, D and F are loops,
i.e. have & maximum to-and-fro motion, while the
layers at 4, C, E and G are nodes, i.e. have approxi-
mately no motion. We also see that at any instant
consecutive loops are displaced in opposite directions.
The flat top to the curve at B shows us that the
layers of air close to B are displaced by nearly the
same amount and we see that they are all displaced
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in the same direction. This is true at both the
instants depicted and may be shown to be true for
intermediate instants also. It follows of course that
at a loop the layers of air maintain their relative
distances unchanged so that the pressure is normal.
If on the other hand we consider the layer repre-
sented by O, we notice that in the first figure the
layers of air immediately behind it are displaced
forwards while those immediately in front are dis-
placed backwards. The layer at C will thus be
compressed by the layers on either side. In the
second figure the contrary is the case. Here the
layers of air immediately behind it are displaced
backwards while those immediately in front are dis-
placed forwards. The layer at C is thus free to
expand in both directions and so becomes rarefied.
Thus the air at loops is continually in motion but
always remains at normal pressure, while the air at
nodes is at rest but is subject to periodic changes of
pressure.

Let us endeavour next to get a clear idea of how
air waves are reflected. If we consider a layer of
compressed air in the centre of a pipe we see at once
that if left to itself it would expand into the neigh-
bouring layers on each side, compressing them, and
compressions would thus be propagated in both
directions. But we have already seen (p. 41) that
when air is transmitting a system of waves the layers
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of air forming a compression are all moving forward.
This forward movement of the layers of air during
compression counteracts their tendency to expand
into the layers behind but encourages expansion
into the layers in front. For the same reason these
in turn expand into the layers in front of them and
thus the compression is propagated forwards only.
Now suppose the compression reaches the closed end
of the pipe. It is no longer able to expand into the
layers in front, and so, in order to relieve its pressure,
it must expand into the layers behind. These in
turn become compressed, and thus a compression is
propagated backwards, reflected from the closed end
of the pipe. Similar reasoning shows that when a
rarefaction reaches the closed end it is reflected
backwards as a rarefaction. Thus we have equal and
opposite systems of waves traversing the pipe, and so,
in the case of a closed pipe at least, we have all the
conditions necessary for setting up stationary vibra-
tions. The air at the closed end will be unable to
move but will be able to sustain changes of pressure.
The air at the open end will be free to move but will
be unable to undergo changes of pressure. Thus the
open end of a pipe will be a loop and the closed end
a node. Using this condition we see that the follow-
ing modes of vibration are possible for a closed organ
pipe. The simplest is shown in Fig. 15, both halves
of the vibration being represented. The air forming
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the loop alternately moves in, compressing the air at
the closed end, and out, rarefying the air at the closed
end. Fig. 16 shows the next simplest method. Here
there is one node at the closed end and another at a
point one third of the length of the pipe from the
open end. Consideration of the figure will show that
in the first position the first mentioned of the two
nodes is a rarefaction due 5

to the motion away from

]

it of the air in the adja- —P nodo |
cent loop, while the second
. . e

node is a compression due —
to the simultaneous mo-  loop node
tion towards it of the air Fig. 15.
in both adjacent loops. In
the second position shown, —> —
this state of affairs is re- loop node loop  node
versed.

A little consideration <— —_
will §how that in the next loop mode  loop ° node
possible mode of vibra- T

tion the first node will be
one fifth of the length of the pipe from the open end,
the second three fifths from the open end and the third
at the closed end. Now the frequency of the note
given by a column of air in stationary vibration is, as
in the case of the string, found to be inversely pro-
portional to its length if vibrating as a whole. The
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second mode of vibration is equivalent to three
stopped pipes each one third of the length of the
whole pipe and having their closed ends at the nodes
and their open ends at the loops. The frequency of
vibration in this case is therefore three times that
corresponding to the first mode. Similarly for the
third mode (which is equivalent to five stopped pipes
each one fifth of the whole length of the pipe) the
frequency is five times that of the first mode. The
frequencies of the possible methods of vibrations are
therefore in the ratio 1:3:5 &c.

This theory of the vibrations of air in a closed
organ pipe is confirmed by a number of experiments.
If for instance a closed pipe be overblown it jumps
a twelfth, indicating a change from the first to the
second mode of vibration. Also, if Koenig capsules
(see page 12) be fitted to the pipe to be experi-
mented on, much valuable information may be
obtained. A capsule is fitted to an organ pipe by
making the inside of the pipe act as the chamber
which receives the air vibrations, the membrane
being stretched over a hole bored in the side of the
pipe at the point where the motion of the air is to
be investigated. If the point is a node, changes of
pressure will occur and the flame will show the
jagged edgé, while if the point is a loop, no changes
of pressure will occur and the image of the flame
will show a smooth edge. If for instance we take a
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closed pipe with Koenig capsules fitted at the two
points of trisection and the flames be examined while
the pipe is overblown, it will be found that the point
nearer the open end is a node and that nearer the
closed end a loop.

The case of the pipe open at both ends is some-
what different. In this case when the compression
whose progress we are considering reaches the open
end of the pipe it is free to expand out into the open
air surrounding the end. If the air had no inertia
this expansion would only go on until the pressure of
the air just outside and just inside were equal, after
which there would be no further motion. Owing,
however, to the inertia of the escaping air it tends to
remain in motion when once started and so over-
shoots the mark, leaving the air at the end of the
pipe rarefied. This rarefaction is not filled up by the
layers of air just outside the pipe as these are moving
outwards. Therefore the layers of air behind it, just
inside the tube, expand into it, and become them-
selves rarefied in the process. Thus a rarefaction
travels back along the pipe. In other words, when a
compression comes to the open end of a pipe it is
reflected as a rarefaction. Similar reasoning will
show that a rarefaction is reflected as a compres-
sion.

In the case of the open pipe it is obvious that we
may have any mode of vibration consistent with the
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two ends being loops. Thus the simplest mode will
be that in which the two ends are loops and the
centre is a node. In this case the air at the two ends
alternately moves in towards the centre and out from
the centre (see Fig. 17). The next simplest mode is
shown in Fig. 18. Here we have a loop at the middle
as well as the loops at the two ends, these loops being
separated by two nodes situated at points a quarter
of the length of the tube from each end. The next
mode is shown in Fig. 19, where we have again a node
at the centre, and the distance from loop to node all
along the tube is one-sixth of the whole length of the
tube.

Now when we come to compare the pitch of the
notes corresponding to the different modes of vibra-
tion of the open pipe with the pitch of those of a
closed pipe of the same length we notice one or two
interesting points of difference. In the first place we
notice that the simplest mode of vibration for the
open pipe is the same as for two closed pipes, each
half its length, with their closed ends together at the
centre of the pipe. After what has been already
said we should therefore expect that the note given
by the closed pipe when vibrating in its simplest
mode would be an Octave below that given by an
open pipe of the same length. That this is approxi-
mately true can easily be verified by blowing into an
open organ pipe and then closing the open end with
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the hand. We shall find that the note drops nearly
an Octave. Another interesting point of difference
comes out when we compare the pitches of the
various modes of vibration of the open pipe. The first
mode is equivalent to two closed pipes each of half
the length of the open pipe; the second is equivalent
to four, each one quarter of the length ; the third is
equivalent to six, each one sixth of the length. It
follows that the frequencies of the notes correspond-
ing to these modes must be in the ratios 1:2: 3,
&c. It will be remembered that in the case of the
closed pipe the corresponding ratios were 1:3: 5,
&c., and in the case of the vibrating string 1 : 2 : 3,
&c. Now the series of notes whose frequencies are in
the ratio 1:2: 3, &c., are very important and will
occupy a good deal of our attention later. Consider-
ation of Table III will show that if C be taken as the
first member of the series the next five will be ¢, g,
c, e, g. g is the Octave above G and so has a
frequency 2x3/2=3. Similarly ¢’ is the Octave
above ¢ and so has a frequency 2 x2=4. Next
comes e’ which is two Octaves above E and so has a
frequency 4 x &/4=25. g’ is the Octave above g and
8o has a frequency 2x 3=6. The next member of
the harmonic series has a frequency 7, a frequency
which we shall find is not represented on our scale.
It lies between b’, which is the double Octave above
B and so has’a frequency 15/8 x 4=7'5 and a’ which
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is the double Octave above A and so has a frequency
4x5/3=666. The next two members of the series
after g’ will be found to be ¢”, d”, and e”.

We may now sum up our discussion of the modes
of vibrations of strings and pipes by saying that in
all cases they are capable of vibrating in a great
many different modes, but that whereas the strings
and the open pipes can be made to give any note of
the series whose frequencies are in the ratios 1: 2 : 3,
&ec., the closed pipe can only give the odd members
of this series.

CHAPTER V

RESONANCE—ANALYSIS OF VIBRATIONS—
COMPLEXITY OF MUSICAL NOTES

IN various places throughout the world there
exist large masses of rock so delicately poised that
they can be set rocking with comparatively little
effort. A steady push produces practically no effect
on them, but if a series of correctly timed pushes be
given the stone begins to rock. It has a time of
vibration of its own, and if the impulses given to it
are timed so as to coincide with this natural period
the energy communicated by each impulse goes to
increase the amplitude of swing. The effect is
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cumulative, but cannot be increased indefinitely.
Each oscillation of the rock dissipates energy—mainly
by friction on its support and friction against the sur-
rounding air. It is this dissipation of energy which
causes it to come to rest again when it is set in
vibration and left to itself. The store of energy
which has been communicated to it is gradually
exhausted. Of course the greater the amplitude of
the swing the larger is the amount of energy dissipated
during that swing. Obviously then if each push we
give to the rock communicates to it a certain small
amount of energy, this amount will, to begin with,
exceed the amount dissipated in the course of the
swing. The swings will therefore increase in ampli-
tude until exactly as much energy is dissipated in
the course of a swing as is received from the impulse.
When this point is reached the amplitude of swing
will remain constant.

Different vibrating systems vary very much in the
rate at which the energy of their swing is dissipated
and consequently in the rate at which their swings
“damp” or die out. In some cases the systems go
on swinging for a long time before coming to rest,
while in others they come to rest after one or two
oscillations. From what has been said it will be
clear that if anything is done to increase the rate
of damping of the vibrations of the rock the maxi-
mum amplitude which can be induced in it by
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correctly timed impulses of given strength is thereby
diminished. But the rate of damping has another very
important bearing on this phenomenon of “reson-
ance” as the response to timed impulses is called. If
the rate of damping is very great, the effect of the
first few impulses will soon have died out, so that
the advantage of absolutely correct timing is in this
case minimised. On the other hand if the rate of
damping is very slow, the effect of the first few
impulses persists for a long time, and if the timing
of the impulses is not very accurate the later pulses
will be more and more out of step with the earlier
ones until they are actually opposing them instead
of acting with them to produce a specially large
effect. Thus, if the damping is very small, very
correctly timed impulses will produce violent oscilla-
tion, but if the timing is not very accurate the
oscillation produced is by comparison slight. On
the other hand if the rate of damping is large the
oscillation produced by timed impulses is, by com-
parison with the former case, small, and if the timing
is not quite accurate no very marked difference in
the amplitude of oscillation is produced.

Let us now pass to acoustical illustrations of
these facts. It is of course from these that the
term resonance has come to be applied to the whole
phenomenon. Suppose we take a stout tuning-fork
whose frequency of vibration is 256. The prongs
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are of steel and it requires very considerable effort
on our part to produce in them any appreciable dis-
placement. That these prongs should be capable of
being set in vibration by pulses of air seems even less
credible than that a mass of rock weighing say 60 tons
(the supposed weight of the Logan stone at Land’s
End) can be set in motion by a series of pushes given
by the hand. Yet, if we take another fork of identi-
cally the same frequency and make it sound strongly

in the neighbourhood of the first, we shall find that

when this second fork is removed the first one is

gounding. A single pulse of air is a feeble thing, but

the fork has been receiving a series of these pulses

accurately timed at the rate of 256 per second, and

although the contribution of each may be infinitesimal

their combined effect is very marked. Now repeat

the experiment, but this time after loading one of
the forks with a small pellet of wax. The pellet may

be so small that when the two forks are sounded

together only about 2 beats per second are heard.

That will mean that the loaded fork has now a
frequency of about 254. When this has been done
the phenomenon of resonance will be found to have
disappeared almost entirely. The tuning-fork is a
case of a vibrating system in which the damping is
very slight—hence the marked response to the
accurately tuned fork and the failure to respond
appreciably for very slight mistuning.
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Next let us take an empty bottle and blow across
the neck of it. A definite musical note will result—
not perhaps very clear, but unmistakable in pitch.
This note can be tuned to some extent. Its pitch
will be raised by partially filling the bottle with
water and lowered by partially shading the opening
of the neck with a card. The bottle can thus be
brought into unison with a tuning-fork—Ilet us say
a fork giving 512 vibrations per second. If now the
fork is held over the open neck of the bottle the
impulses arriving from the fork will set the air con-
tained in the bottle into vibration, and the sound of
the fork will be reinforced. If the fork be so loaded
with wax as to alter its frequency by 12 and so
reduce it to 500, the bottle will still reinforce the
note and almost as strongly as before. Indeed if a
fork differing in pitch from the former by a semitone
(i.e. having a frequency of about 480) be held over
the mouth of the bottle, the resonance will still be
quite perceptible although distinctly more feeble.
The explanation of these facts is that the air in the
bottle is a system for which the rate of damping is
very great indeed. The vibrations can be evoked by
blowing, as has been indicated, but immediately the
blast of air is stopped the vibrations die out and no
sound can be heard. This rapid damping explains
why the system should respond, with hardly di-
minished intensity, to impulses not accurately timed

W. M, b5
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to its own period—i.e. to notes of sensibly different
pitch.

An intermediate case is that of the stretched
string. Here the damping is as a rule greater than
for a tuning-fork but much less than for a volume of
air. 'What may be called the sharpness of resonance
is therefore in this case less than that of the tuning-
fork but greater than the air column.

We next pass to consider a mathematical theorem
published by Fourier in 1822 and known as Fourier’s
Theorem. Its connection with what has gone before
will not at first be apparent but will become clear
later. The theorem states that any periodic vibration
however complex may be considered as built up of a
series of simple harmonic vibrations (the type given
by a pendulum bob) whose frequencies are in the
ratios 1:2:3:4 &c., the frequency of the complex
vibration itself being the first member of the series.
This series is called the harmonic series. The state-
ment is at first sight a very surprising one. It means
that any displacement diagram, however complicated,
can, by the use of the method used on page 38, be
built up out of a series of the smooth simple har-
monic displaccinent diagrams to which attention
has already been drawn (page 31), even when we
confine ourselves to choosing such of these as have
frequencies_ in the ratio of the whole numbers and
no others. When we reflect that if this is true it
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must apply also to the straight line displacement
diagram of Fig. 6, it seems almost incredible that it
should be capable of synthesis from a series of simple
harmonic curves. Of course we have an infinite series
of these smooth curves at our disposal and we can
adjust their relative amplitudes and relative phases
(relative positions along the axis) as we please, but
the theoretical discussion of the theorem shows that
the synthesis can only be effected in one way. If we
are given a complex displacement diagram and are
required to select from the harmonic series a certain
number of components such that their displacement
diagrams when compounded will give the complex one,
we shall find that the problem has only one solution.
There is only one selection which will satisfy the re-
quirement, and this selection will only satisfy it for
one particular amplitude of each component and one
particular position of the component on the axis
relative to the others. Looking at the matter from
the point of view of analysis we may say that if we
are given the complicated vibration referred to and
asked to analyse it into terms of the harmonic series,
the analysis can be effected in only one way—the
particular members of the series which are present,
their relative amplitudes and relative phases are all
completely determined.

Of course this is not the only possible method of
analysing a complex vibration. We need not confine

5—2
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ourselves to harmonic components, and it is evident
that if we do not do so it would be easy to draw

two or more displacement diagrams whose ordinates
would when added or subtracted give us the complex
curve required. It therefore becomes important for
us to consider whether analysis in terms of harmonic
components has any particular advantages for us over
other possible methods. The first important fact
from this point of view is that harmonic analysis can
be carried out practically by means of the phenomenon
of resonance already discussed. If the complex
vibration of a system A be communicated to another
system B, this second system will be set in resonant
vibration if, on analysis of the vibration of A4, it
appears that a simple harmonic component of the
period of the vibration of B is present. This cannot
be predicted of any other method of analysis. The
second important consideration is that this particular
method of analysis is almost certainly the one adopted
by the ear, which is a practical harmonic analyser.
This law of the action of the ear was stated by
G. 8. Ohm and may be expressed as follows: the
ear only experiences the sensation of a simple tone
when it is excited by a simple harmonic vibration.
It analyses every other periodic vibration into a
.series of simple harmonic vibrations (the members of
Fourier's series) each corresponding to the sensation
of a simple tone.
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That the air, like other media, is capable of
transmitting simultaneously several sets of waves, is
obvious from our common experience. In a room in
which several people are talking at once, the sounds
made by the individual voices all reach the ear
through the same air and we can, by an act of atten-
tion, separate from the combined noise the voice of
any one individual and listen only to that. As a
rule we hear best the conversation of those in our
immediate neighbourhood, but it is often surprising
how difficult it is to hear what our neighbour is
saying if a conversation in which we are interested is
being carried on in a more distant part of the room,
and our attention becomes focussed on that. Again
in following a vocal or instrumental quartette we can
concentrate our attention on any one part and follow
that. This brings us face to face with a very wonderful
property of the ear—its power of analysing complex
sounds. Remember that the membrane of the ear
can only have one motion at any particular instant.
It goes through a series of displacements which is
the resultant of all those due to the several wave
systems, and in this resultant the ear is able to detect
and isolate the components. This far surpasses any
power of analysis which the eye possesses. Yet even
here we have not by any means reached the limit of
the power of analysis of the ear. When we listen to
a musical note played on the piano or sung by the
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voice, we are not, as a rule, conscious that the sensa-
tion is an extremely complex one. When we first
meet the statement that a single note heard under
these circumstances is not a single note at all but
a whole series of single notes, we do so with surprise.
Nevertheless such is indeed the case and with a little
agsistante and practice the ear will carry out this
analysis too. We find that in almost every case
there is associated with what is apparently a single
note a whole geries of others forming with it the
harmonic series and having frequencies bearing to
the frequency of the note itself the ratios 2, 3, 4, 5 &ec.
to 1. The fact that these partial tones, as we shall
call the associated tones, usually escape observation
is not difficult to explain. In separating sounds
coming from different sources the ear may be assisted
by many small differences. The sounds probably
start differently, they may differ in duration, in the
certainty with which they can be sustained, and in
the manner in which they start and die away. On
the other hand in analysing a complex note into its
constituents these aids are not, as a rule, available.
Then again the separation of sounds coming from
different sources is often of the greatest service to us
and so is habitually practised while the analysis of
a note into its elements can rarely fulfil any useful

purpose. <
Nevertheless these partial tones are of the very
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greatest importance in music and the fact that few
people have cultivated the art of detecting them in
no way affects their importance. Their presence in
the case of notes sounded on the piano may be readily
demonstrated. Depress the key ¢’ (see Table I) without
causing it to sound. This will raise the damper from
the string and so leave it free to vibrate. Next
sound the note c strongly, if necessary striking it
geveral times in succession. If there is, associated
with the note c, a partial tone of frequency ¢’ then
the string corresponding to this will be set in vibra-
tion by resonance and when the key corresponding
to ¢ has been released ¢’ will be heard sounding if
its key is still kept down. The same experiment
ought to be repeated with b and d’ instead of ¢’ so
that it may be clear that the phenomenon is only
exhibited by certain particular notes—those in fact
which form with ¢ the harmonic series already alluded
to. The experiment will succeed with g’ and with ¢”
without any trouble but the higher members of the
series—e”, g”, and c¢” are a little hard to detect. A
method which Helmholtz used to detect these partial
tones was to have small hollow brass air chambers
with two apertures one of which was fitted into the
ear while the other was directed towards the source
of sound. The shape and size of these resonators
could be adjusted to tune them so that the contained
air would resound to a note of any required pitch.
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When placed to the ear they reinforced their own
particular tone if it was sounded, even if it were only
a partial tone in a more complex note. By the use
of these resonators Helmholtz showed the existence
of partial tones in notes produced by strings and
other musical instruments.

Perhaps however the most satisfactory and con-
vincing demonstration of all is the perception of
these partial tones by the unaided ear. This is
merely a matter of attention and practice. If the
note, corresponding in pitch to the partial which it is
desired to hear, be first sounded very gently as a guide
to the ear and the note of which it is a partial be
then strongly sounded, the ear will, after a time, have
little difficulty in recognising the musical note as
a complex and picking out its more important con-
stituent partial tones. In the case of the human
voice, which is particularly rich in partials, some ten
or twelve of these have been detected.

We are now in a position to realise fully how
wonderful the power of analysis possessed by the
ear really is. From the complex periodic motion of
the air in the ear passage—a motion which may be
the resultant of some eight or ten separate com-
ponents the ear is able to perceive separately each
of the components.

Thus we have strong evidence for the belief that
sounding bodies such as stretched strings and columns
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of air are not only capable of being made to vibrate
successively in a series of modes giving a series of
different notes but that as ordinarily excited they
give simultaneously a number of different notes.
The corresponding methods of vibration coexist and
the displacements of the various parts of the vibrating
body are, at any instant, the resultant of the dis-
placements which it would have had due to the
separate component vibrations. Hereafter we shall
use the term note to mean the complex musical
sounds of definite pitch produced by musical instru-
ments and by the voice. The simple unanalysable
tones of which these are composed we shall call
partials. The lowest member of the harmonic series
—the one which gives the pitch to the note—we shall
call the prime, or first partial. The others will be
the second, third &c. partials.

We have already connected quality with displace-
ment diagrams. It is now easy to see that the number
and relative intensities of the partials present in
a given note will determine the character of the
displacement diagram and so the quality of the note
which it represents. We shall proceed to consider
arguments which lend further support to the con-
clusion that a sounding body vibrates simultaneously
in a number of its modes, giving in consequence a
series of simple tones, and that the presence and
relative intensities of these partial tones give the
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note in question its distinctive quality. Tones which
are brilliant or even harsh in quality we shall find
to be rich in partials, while tones which are soft or
even dull are those in which the higher partials are
feeble or absent. As examples of the first may be
instanced strings struck or plucked with hard instru-
ments, while as examples of the latter we may take
the tuning-fork and the closed, or stopped, organ
pipe. The stretched string or wire of a sonometer
is very convenient for experiments on the relation
of partial tones to quality. Let the string be plucked
or bowed somewhere near one end, and while it is
sounding let its middle point be lightly damped
with a feather or the corner of a handkerchief. The
mid-point of the string will be brought to rest, and
as the first mode of vibration requires this point to
be in motion (see Fig. 13), the prime tone will dis-
appear and we shall hear clearly what the prominence
of this tone was masking, the second partial whose
pitch is an octave above the pitch of the prime.
Now merely damping the centre of the string could
not bring into existence a mode of vibration not
previously present and so we are forced to conclude
that the second mode of vibration of the string must
have been coexisting with the first. In the same
way we can obtain the third partial. If the string
be once more plucked or bowed near one end, and
this time be damped at a point one third of its length
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from either end, the Twelfth of the normal pitch of
the string will be heard sounding strongly. This is
due to the fact that both the prime and second
partials require the point of trisection of the string
to be in motion, and so damping this point stops
both these modes of vibration and gives in con-
sequence a new prominence to the third partial.
This partial also must have been a constituent tone
of the original note given by the wire. The process
can of course be extended to higher partials in a
similar way, and in order to make the proof of the
existence of these partials in the note given by the
string quite convincing, it is well in each case, after
obtaining a particular partial by damping, to pluck
or bow the string again and listen for that partial
in the resulting note. In the case of the first few
members of the series there will be no difficulty in
isolating it by an act of attention, and the demonstra-
tion of its presence will be complete.

So far we have .always excited the string at a
point near one end and have found all the lower
partials quite prominent. Now let us examine the
effect of bowing or plucking at the centre. We
shall find at once a marked difference in quality.
The quality of the note given when the centre of
the string is attacked is dull and nasal, the quality
when the point of attack is moved to the end tends
to be harsh and tinkling. A moment’s consideration
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will convince us that the second, fourth, sixth &c.
modes of vibration of the string require a node at
the centre. If then we bow or pluck the string at
the centre all the even partials must be absent.
If on the other hand we excite a point on the string
-one tenth of its length from either end, the lowest
partial which requires a node there is the tenth and
the next lowest is the twentieth, so that the full series
of partials below the tenth may be present and those
are the only ones of any practical importance. In an
exactly similar way the upper partials may be called
in to explain the very marked difference in quality
between a stopped and an open organ pipe of the
same pitch. We have already seen in Chapter IV
that the open organ pipe is capable of vibrating so
as to give any note of the harmonic series while the
closed organ pipe can only give the odd members of
that series. It follows that the quality of the former
should be brighter than that of the latter, and this
we find to be the case.

It is perhaps well to mention at this point that
all partials are not harmonic—that is to say there
are some vibrating bodies whose different modes of
vibration have frequencies the ratios of which to the
frequency of the prime cannot be represented by
whole numbers. As a rule these have no very import-
ant musical application although inharmonic partials
are prominent in bells, cymbals and instruments
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of the kind. In the case of wide organ pipes the
discussion given in Chapter IV is only approximate
and the possible modes of vibration are not strictly
harmonics of the prime. The intensity of the cor-
responding partials is on this account much more
feeble than would otherwise be the case.

CHAPTER VI

STRUCTURE AND ACTION OF THE EAR

IN a volume of the present size and scope any
detailed treatment of the structure and action of the
ear would be quite out of place, but the phenomena
with which we have been dealing make it possible
for us to propose at this point a mechanical theory
of the action of the ear which will be of the greatest
gervice to us in what follows, and which has con-
siderable experimental support. Let us first of all
consider the behaviour of a mechanical model whose
structure is suggested by the structure of the ear.
Suppose we have a long conical box filled with
liquid and divided longitudinally into three tapering
compartments so that its cross-section resembles
Fig. 20. AB is a membrane, while the partition 4C
consists of a series of stretched strings connected
together by a membrane, so that any motion of the



fluid may the more easily be communicated to ghep,
The base and sides of the cone are rigid, but the
former contains two apertures

one of which gives access to

g the uppermost chamber while

/ the other gives access to the
lowest. These apertures are

——_Jc closed with membranes. There

is a small passage at the ver-

/ tex of the cone which connects

: the uppermost and lowest com-

Fig. 20. partments. If now the mem-
brane giving access to the uppermost compartment be
caused to vibrate, its vibrations will be transmitted
through the fluid to the vertex of the cone, through
the small passage into the lowest compartment, and
8o down to the membrane cloging this compartment.
At the same time they will be transmitted through the
membranous partitions separating the three compart-
ments. Each time the membranous window giving
access to the upper compartment is driven in, the
corresponding window of the lowest compartment
will be driven out, and vice versa. The effect of
this transmission of vibrations will be to set the
fluid in the middle compartment vibrating also,
the vibrations being transmitted to it through the

membranous walls. Let us suppose further that
the strings which form the texture of the lower wall

A



vi] STRUCTURE AND ACTION OF THE EAR 79

of the middle compartment form a series, the length
and tension of which are so adjusted that their
frequencies of vibration diminish gradually from the
vertex to the base of the cone and that the damping
of the vibrations of these strings is appreciable. If
a simple harmonic vibration be now imposed on the
upper membranous window the resulting vibrations
will pass through the fluids inside, will act on the
strings and those strings which are nearest the fre-
quency of the imposed vibration will be set vibrating
by resonance, while the others. will remain practically
at rest. Let us see now how far this model would
show the properties which we know the ear actually
to possess.

It could perceive loudness. The louder the sound
the greater would be the amplitude of vibration of
the window, the greater the amplitude of the fluid
motion and therefore the greater the amplitude of
the strings affected.

It could perceive pitch. High notes would affect
the short tightly stretched strings. Low notes would
affect the longer strings. From the particular mem-
bers of the series of strings which were affected we
could deduce the pitch of the exciting sound.

It could effect the analysis of complex notes.
Each partial tone present in the note would affect
its own particular group of strings. From the groups
of strings affected and their relative amplitudes we
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could at once tell the pitch of the partials which

were present and their relative intensities. This is

a consideration of the utmost importance. It is

almost impossible to conceive any other mechanism

whereby this extraordinary property of the human

ear could be imitated. A very good example of the

process here suggested is given if we press down the

loud pedal of a piano so as to remove the dampers
from the strings and then sing or whistle into it a
note of any pitch. The piano will effect an analysis,
each string of the piano which corresponds in pitch
to one of the harmonic partials of the note being set
in resonant vibration, and the instrument will give
back a note not only of the same pitch but also in
point of quality quite a good imitation of the original
note.

The model would also explain very simply the
obvious if indefinable relationship which we perceive
between the sensations produced by certain pairs of
notes when sounded successively—for example two
notes giving the interval of an Octave. Let us
suppose we sound a note whose pitch is ¢. If this
note is sounded on an instrument which gives the
associated partials we shall have sounding at the same
time ¢, g, ¢, ¢”, and g’. Now suppose the Octave
above this note to be sounded—also with its series of
partials. This will give us ¢’ as the prime tone and
¢, g”, &c., as the partial tones. It will be noticed
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that the second note merely emphasises tones which
were present before and adds nothing new of its own.
The second note only affects groups of strings which
were already in action. In this way the relationship
of these two notes is easily explained and the
explanation will be found to hold for all the simple
intervals. If we take for instance the interval of
the Fifth—mnext to the Octave the closest and most
obvious relationship between pairs of notes—it will
readily be seen that a similar explanation suggests
itself. The lower note c¢ carries with it as before ¢/,
g, c’, e, g’ & The upper note g carries with it
g, d’, g”, &c. Here it will be observed that the
upper note does contribute something new—it does
affect groups of strings not affected by the stimulus
of the lower note—but at the same time the two
notes have several common partials, every third
partial of the lower note coinciding in pitch with
every second partial of the upper note, and this
common content is quite sufficient to explain the
relationship. This view is further strengthened by
the discovery that those intervals for which the
relationship of the notes seems to our ears to be most
distant are exactly those for which the common
content is very small.

Finally our model explains the phenomenon of
beats. If two notes are sufficiently close in pitch to

act on the same strings, then those strings which are
w. M. 6
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subject to the joint action of the two notes will
have a variable amplitude of vibration which will go
through a series of maxima and minima, the number

Fig. 21.

of complete cycles so executed in one second being
equal to their difference in frequency.
Now the mechanical model which we have taken
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as the basis of the foregoing discussion approximately
reproduces the actual structure of the inner ear (see
Fig. 21). Here we have our tapering cavity filled with
fluid but coiled into the form of a snail-shell and so
known as the cochlea. It is completely surrounded
by a hard bony wall except for two small openings at
the base. One of these, the upper, is a small oval
aperture called the femestra ovalis; the lower is
a small round aperture called the fenestra rotunda.
Both are closed by membranes. The interior of the
cochlea is divided like our model into three compart-
ments by longitudinal membranous partitions. The
uppermost of these is the scala vestibuli SV, the lowest
is the scala tympans ST while the middle one is the
scala media SM. The membrane separating the scala
media from the scala tympani is called the basilarmem-
brane bm and has a structure consisting of stretched
transverse fibres. The tension of the membrane in
the direction of these fibres being considerably
greater than its tension at right angles to them the
effect is practically the same as if they were a series
of stretched strings connected by the membrane.
This membrane carries the nerve endings. The
fenestra ovalis is connected by a chain of small bones
with the membrana tympani or drum of the ear.
These bones lie in a cavity called the middle ear in
which the pressure of the air is kept normal since
the cavity connects with the outer air through the
6—2
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Eustachian tube which is periodically opened in the
act of swallowing. The vibrations of the air pass
into the outer ear and act on the membrana tympani.
This takes up the vibrations and transmits them by
means of the chain of small bones to the fenestra
ovalis. The facility with which the membrana tym-
pani takes up these vibrations is very much reduced
if the pressure of the air in the middle ear becomes
large. Accidentally this sometimes happens and
temporary deafness ensues until the act of swallowing
opens the Eustachian tube and reduces the pressure
to normal, when the deafness disappears. The chain
of small bones acts like a compound lever, reducing
the amplitude of the vibrations in the ratio of 3:2,
increasing their force in-the inverse ratio and con-
centrating it on the much smaller area of the fenestra
ovalis. Arrived at this oval window the vibrations
pass up the scala vestibuli, through a little passage
at the vertex—the heliocotrema—and then travel
down the scala tympani to the round window.
According to our theory these vibrations set certain
of the fibres of the basilar membrane into resonant
vibration and so stimulate the corresponding nerve
endings. The analogy with our model is practically
complete.

Now before we rest satisfied with this view of the
process of hearing it will be well to consider what
objections may be urged to it and how far we can get
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any confirmatory evidence. It will be obvious at
once that if there is comparatively little damping
one serious objection would have to be met. In this
cage each fibre of the basilar membrane would
respond appreciably to its own particular note and
to no others. Therefore if a sound were made, and
the pitch gradually raised we should expect our
sensation to be discontinuous. On the other hand
if there is a reasonable amount of damping this
objection disappears. The note will affect, not one
fibre but a group of fibres, and as the pitch is
gradually raised there will be no discontinuity in the
sensation—the fibres constituting the group change
progressively, shorter ones being taken in to the
group and longer ones being rejected as the pitch of
the exciting note rises. This question of damping is
an important one and a certain amount of information
about it may be obtained by a study of rapid trills.
It is a well-known fact that very rapid trills become
confused and indistinct. This indistinctness does not
depend on the instrument on which they are executed
and so must depend on the ear itself. The existence
of this confusion in the case of rapid trills is almost
enough in itself to establish the fact that the ear
contains a number of separate vibrating parts. In
order that a single vibrating body should respond to
a series of vibrations corresponding to the range of
hearing, the damping of its vibrations would have to
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be practically infinite and trills would be distinct no
matter what their rapidity of execution might be.
Another fact of importance emerges in this connec-
tion and strengthens our argument considerably.
The rapidity for which a trill remains distinct depends
on the pitch of the note upon which it is executed.
Rapid trills in the treble are quite as distinct as much
slower ones in the bass. Now this is just what we
should expect. Suppose the damping for all the
fibres is such that the amplitude falls to a tenth of
its value in 30 vibrations. The time occupied by
these vibrations will be much less for notes of high
than for notes of low pitch. Thus C, frequency 128,
would fall to one tenth of its amplitude in 30/128
seconds or about one quarter of a second, while ¢”,
frequency 1024, falls to one tenth of its original
amplitude in 30/1024 or less than the thirtieth of
a second. So far then our theory is in accord with
the facts. It is of course impossible to make any
exact measurements of the damping but it is quite
possible to get an approximate value for it. Thus,
following Helmholtz, we may start from the fact that
a trill of 10 notes per second executed on A, frequency
110, is distinct. In this case each note is struck five
times per second. The trill could only be distinet if
in the interval of a fifth of a second the amplitude
of vibration fell to about one tenth of its original
value. But one fifth of a second is the time occupied
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by 22 complete vibrations. We take therefore as
a rough estimate of the rate of damping that in
which the amplitude falls to one tenth of its value
in the course of 22 vibrations. Now from this fact
theory enables us to deduce something about the
range of tones to which a fibre will give appreciable
response. We find for instance, that with this rate
of damping the fibre ought to respond to vibrations
differing from its own proper tone by a quarter of
a tone with an intensity equal to one tenth of the
intensity with which it would respond to a tone of
exactly its own frequency. Now shakes executed on
notes much lower than A soon become indistinct if
performed at the speed suggested, so that no great
error will be introduced if we assume the range of
tones to which any individual fibre will respond to
include those lying within the limits of a semitone
either above or below its own proper tone.

There is another line of evidence which brings
us to much the same conclusion. We have already
touched on the question of beats and reference has
been made to the fact that beats can only occur when
the two sets of vibrations act together on the same
vibrating system. This system must also have direct
connexion with the nerves and so must, on our hypo-
thesis, be one fibre or a group of fibres of the basilar
membrane. It is clear then, that if two notes be
separated by an interval greater than-about a tone,
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no beats can be heard as the two groups affected will
cease to have any fibres in common. Let it be clearly
borne in mind that in what follows we are dealing
with pure tones—i.e. tones free from any associated
partials. If two pure tones of the same frequency
are sounded together strongly, and the frequency of
one of them be then slowly raised, we at once hear
beats—slow at first but becoming more and more
rapid. To begin with, the ear hears them separately,
but as their rapidity increases we hear, in place of
the separate beats, a kind of continuous roughness.
This roughness becomes more and more harsh and
unpleasant until a maximum of harshness seems to
be attained after which the roughness diminishes and
finally disappears. There can be very little doubt
that the cause of the roughness is rapid beating.
Intermittent sensations are usually unpleasant, as in
the case of a flickering candle, and when we watch
a stretched wire beating under the joint action of
two forks of nearly equal frequency it is difficult to
resist the conclusion that if the action on our nerve
endings at all resembles it the sensation ought to be
a very unpleasant one indeed. The gradual dis-
appearance of the harsh character of the sensation
may be due to one of two causes—or perhaps to both
together. It may be due merely to the increased
rapidity of the beats producing in the end a sensation
which is practically continuous. In the neighbourhood



vi] STRUCTURE AND ACTION OF THE EAR 89

of ¢, frequency 512, the harshness seems to be a
maximum when the number of beats per second is
about 32. On the other hand for C, frequency 64,
the interval of the Fifth gives 3/2 x 64 = 96. If these
two notes be sounded together we have a frequency
difference of 32, and yet if the tones are pure there
is no trace of harshness. Obviously then the rapidity
of the beats is not the only factor. The other
possible cause is the increased interval between the
two beating notes and it is sufficient to point out
here that according to our deduction two notes must
be separated by an interval not much greater than
a tone if the two groups of resonators which they
affect are to have any fibres in common. It is hardly
too much to claim that this will be found to hold for
pure tones with certain exceptions to be afterwards
dealt with. A study of the beating of pure tones
then corroborates our hypothesis as to the action of
the ear. The theory may be summed up in the
following sentences due to Professor McKendrick.

(1) In the cochlea there are vibrators tuned to
frequencies within the limits of hearing, say from 30
¢o 40,000 or 50,000 vibrations per second.

(2) Each vibrator is capable of exciting its appro-
priate nerve filament or filaments, so that a nervous
impulse, corresponding to the frequency of the
vibrator, is transmitted to the brain—not corre-
sponding necessarily, as regards the number of nervous
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impulses, but in such & way that when the impulses
along a particular nerve filament reach the brain,
a state of consciousness is aroused which does corre-
spond with the number of the physical stimuli and
with the period of the auditory vibrator.

(3) The mass of each vibrator is such that it will
be easily set in motion, and after the stimulus has
ceased, it will readily come to rest.

(4) Damping arrangements exist in the ear so as
to extinguish quickly movements of the vibrators.

(5) If a simple tone falls on the ear, there is a
particular movement of the base of the stapes (the
small bone attached to the oval window) which will
affect all the parts, causing them to move; but any
part whose natural period is nearly the same as that
of the sound will respond on the principle of sympa-
thetic resonance, a particular nerve filament or
filaments will be affected, and a sensation of a tone
of definite pitch will be experienced, thus accounting
for discrimination in pitch.

(6) Intensity or loudness will depend on the
amplitude of movement of the vibrating body, and
consequently on the intensity of nerve stimulation.

(7) If a compound wave of pressure be communi-
cated by the base of the stapes, it will be resolved
into its constituents by the vibrators corresponding
to the tones existing in it, each picking out its
appropriate portion of the wave, and thus irritating
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corresponding nerve filaments. In this manner
nervous impulses are transmitted to the brain, where
they are fused in such a way as to give rise to a
gensation of a particular quality or character, but
still so imperfectly fused, that each constituent,
by a strong effort of attention, may be separately
recognised.

CHAPTER VII
CONSONANT INTERVALS

In the last chapter it was suggested that dis-
sonance is to be explained by the rapid beating of
the two notes forming the dissonant interval. This
explanation can of course only apply to the cases of
dissonance between notes lying within the interval
of a Minor Third. On the other hand, we know that
some of the intervals greater than a Minor Third are
extremely dissonant, the Seventh being one of the
most dissonant of all. The difficulty here disappears
when we remember the existence of partial tones.
In the case of the Octave we remember that every
second partial of the lower note coincides with a
partial of the upper note, thus we have a long series
of coincident partials of diminishing importance. If
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now the upper note of the interval is lowered a
semitone in pitch, we shall have the interval of the
Seventh, and at the same time each partial of the
upper note, which previously coincided with a partial
of the lower note, will now be a semitone out of tune
with it and so will give rapid beats and dissonance.
In support of this view it may be stated that where
the intervals are simple tones, free from associated
partials, the dissonance of the Seventh almost dis-
appears, although it strikes us as a somewhat unusual
interval. One reason why the dissonance does not
altogether disappear will be discussed later under
combination tones. Thus we see that in order to
determine theoretically whether or no an interval
is consonant, we must consider not only whether
beats may occur betwcen the two primes themselves,
but also whether beats may occur between higher
partials. In estimating the dissonance of particular
intervals, we shall assume first of all that each note
carries with it the first six partials, and that their
importance diminishes as their order increases. Thus,
other things being equal, an interval in which the two
primes are within the beating distance will be more
dissonant than an interval where the beating is due
to one prime and the second partial of the other,
while this in turn will be more dissonant than an
interval where the beating occurs between two upper
partials.
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Let us first of all apply these principles to the
discussion of the octave. Here we have a case of
absolute consonance. Every partial of the upper
note coincides with one of the partials of the lower.
Also the interval is very sharply bounded by dis-
sonance on either side because of the fact that any
mistuning of either note throws out of tune each
pair of coincident partials. The prime of the upper
note coincides with the second partial of the lower
if the interval is correctly tuned, and it is here that
any error of tuning reveals itself most clearly. The
mistuning of the interval gives rise to slow beats
between those two tones which, by a proper fixing
of the attention, it is quite possible to count and to
distinguish from the beats of higher partials. This
may be illustrated by an experiment carried out with
a modification of Dove’s siren due to Helmholtz. In
this form there are two perforated wind-chests and
two perforated disks. The two disks rotate together,
being fixed to the same spindle. The lower wind-
chest'is fixed while the other can be rotated. Each
wind-chest and disk is perforated with four rows of
holes, the rows in the lower chest and disk containing
as a rule 8, 10, 12 and 18 holes respectively, while
those in the upper chest and disk contain 9, 12, 15
and 16 holes. Any one or more of these rows can be
brought into action at a time. If now the 8-hole
row is opened in the lower chest and the 16-hole row
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in the upper, then at whatever speed the spindle may
be driven the resulting interval is always a perfect
Octave—there is absolute consonance and no trace
of beats. If now the upper wind-chest is made to
revolve, the frequency of the air-puffs coming from it
will be altered. If it rotates in the same direction
as its perforated disk the frequency of the puffs will
be diminished, if in the opposite direction the fre-
quency of the puffs will be increased. In either case
the consonance will be disturbed and beats will be
heard.

What has been said of the Octave applies almost
without modification to the Twelfth. Here the first
coincidence, and therefore the one on which the
definition of the interval mainly depends, is that
between the upper prime and the third partial of
the lower while the other partials of the upper note
coincide with every third partial of the lower. Like
the Octave it is an absolute consonance but less
clearly defined, as an interval, because of the re-
latively weaker beats between the prime and the
third partial. Following out this line of investigation
we shall find that absolute consonances occur only
for pairs of notes such that the prime of the one
coincides with a partial of the other, and as the next
of the series is the double Octave it is obvious that
the remainimg absolute consonances are of compara-
tively little importance.
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We come next to the consideration of intervals
defined by the coincidence of two partials, one be-
longing to each note of the combination. Taking the
interval of the Fifth and assuming the frequencies of
the two notes forming the interval to be 300 and 200,
we see that we get the following series of frequencies
for the partials:

300 600 900 1200
200 400 600 800 1000 1200

Here the second partial of the higher note coincides
with the third of the lower. It will be readily seen
that the orders of the two partials, whose coin-
cidence defines the interval, give the ratio of the
frequencies of the two notes forming the interval.
In this case it is the second partial of one note and
the third of the other which define the interval
and the ratio of the frequencies is 2 : 3. This is
true for all intervals. In the case of the Fourth,
for instance, where we have already seen that the
ratio of the frequencies is 3: 4, we shall find that
the interval is defined by the coincidence of the
fourth partial of the one note with the third of
the other. Bearing this rule in mind we shall see
that all important intervals are, as we should ex-
pect, defined by the coincidence of comparatively
low partials.
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Ratio of Partial of Partial of

Interval Frequencies Upper Note Lower Note
Unison 11 First First
Octave 2 1 First Second
Twelfth 3 1 First Third
Double Octave 4 1 First Fourth
Fifth 3 2 Second Third
Tenth 5 2 Second Fifth
Fourth 4 3 Third Fourth
Major Sixth 5 3 Third Fifth
Major Third 5 4 Fourth Fifth
Minor Third 6 5 Fifth Sixth
Minor Sixth 8 5 Fifth Eighth

Let us next examine the effect on the pairs of
coincident partials of errors in the tuning of the
notes. Take first a mistuned Octave in which the
frequencies of the notes are 200 and 101. The second
partial of the lower note will have a frequency 202,
and we shall hear two bedats per second between
it and the upper note, frequency 200. On the other
hand if the upper note is mistuned by 1, we shall
have the interval 201 :100. In this case the second
partial of the lower note is 200, and we shall only
have one beat per second between it and the upper
note. Thus the number of beats per second is 1 or 2
if the frequency of one of the notes be inaccurate by
1 vibration per second, according as the inaccuracy
is in the upper or the lower note. Take next the mis-
tuned fifth 201 : 300. The third partial of the lower
note is 603, thé second partial of the upper is 600, and
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between these two we have 3 beats per second. If
the fifth is 200 : 301, the two partials which ought
to- coincide have frequencies 600 and 602, and the
number of beats is 2. This indicates a general rule
which will be found to hold for all intervals. If one
of the two notes forming the interval is mistuned
by one vibration per second, then the two numbers
defining the frequency ratio give respectively the
number of beats between the two partials defining
the interval, according as it is the higher or the lower
note which is mistuned. Mistuning the lower note
gives the larger number of beats per second.

From these facts it is evident that the higher the
orders of the two partials whose coincidence defines
the interval, the more accurate must the tuning be
if disagreeable beating is to be avoided. At the same
time, it must not be forgotten that where the partials
in question are high, the beats will be much less
prominent, partly on account of the weakness of
the high partials which cause the beats, and partly
because, as we shall see, there is generally some
roughness present in these consonances due to the
beating of lower and more prominent partials. Also
for these intervals it is less true than for those defined
by lower pairs of partials that neighbouring intervals
must be dissonant. Very slight inaccuracy in tuning
causes fairly rapid beating in the case of the Minor
Third and Minor Sixth, and so a change of a

w. M. 7
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semitone in one of the notes forming either of these
intervals may well cause such rapid beating that
the resulting roughness is hardly noticeable. But
for the most part it may be taken as a guiding
principle in any discussion of the relative consonance
of various intervals that those close to an absolute
consonance or to one defined by low partials must be
dissonant, and that the more consonant an interval is
the more dissonant must its neighbours be.

Looking at the Fifth from this point of view, we
see that the nearest important consonant intervals
to it are the Fourth and Sixth—both of which differ
from it by a whole tone. The Minor Sixth is of
course still closer to it, but is such a very imperfect
consonance that its proximity hardly affects the con-
sonance of the Fifth. The Fifth is perceptibly rougher
than the Octave only when the upper partials are so
prominent as to give a comparatively harsh quality
of tone. What disagreeable beating there is occurs
chiefly between the fourth and fifth partials of the
one series and the third of the other. Writing the
first six partials of the lower note and the first four
of the upper we have

G _ 4 a’ g
o] ¢ g c’/ \e’ g

The single lines indicate pairs of partials at the

interval of a tone. Next in order of consonance
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comes the Fourth. This is perceptibly rougher than

the Fifth. Within a tone of it on one side is the

Fifth and within a semitone on the other side is the
F £ < £

AN N\ /

C c g 4 e’ 4

’

a

Major Third, so that it may be regarded as either of
these intervals mistuned, and our general rule would
lead us to expect roughness. On the other hand it is
the inversion, i.e. the defect from the Octave, of a
Fifth, and no doubt it is partly to this fact it owes
its importance. As we see there is beating at the
interval of a tone between second and third partials,
between fourth and sixth, and between fifth and sixth.
There is also beating at the interval of a semitone
between fourth and fifth partials as is indicated by
the double line.

It is unnecessary to carry this discussion further
in detail as no new principles emerge. Indeed we
have already discussed all the intervals which were
at one time allowed to be consonances at all. The
Major and Minor Thirds and the Major and Minor
Sixths have now fought their way to a place on the
list. Of these the interval with the weakest claim is
probably the Minor Sixth, although the fact that it
is the inversion of the Major Third is a point in its
favour. Obviously the question as to where the list
shall close is one which physics can never settle. It

7—2
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is a matter of taste and education. All that physics
can do is to explain the reason of dissonance and to
arrange the different intervals in order of consonance.
It is then open to different nations at different times
to draw the line where they please.

Helmholtz classifies consonant intervals as follows:

Absolute Consonances. The Octave, the Twelfth
and the Double Octave.

Perfect Consonances. The Fourth and Fifth.
These are so called because they may be used in
any part of the scale without important disturbance
of harmoniousness.

Medial Consonances. The Major Third and Major
Sixth. These are distinctly dissonant if used in the
lower part of the scale but in the higher part of
the scale they are comparatively smooth owing to
the rapidity of their beats. They are sharply defined.

Imperfect Consonances. The Minor Third and
Minor Sixth. The partials which define these are
usually very weak or altogether absent, and but for
their importance as inversions of the Major Sixth
and Major Third respectively they would hardly
occupy the position they do.

It is important to notice that increasing a given
interval by an Octave has a very marked effect on
its degree of consonance—an effect which cannot be
predicted without an examination of the intervals
involved. Thus the Fifth becomes the Twelfth and
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so passes into the category of absolute consonances.
This is exactly the kind of change that seems reason-
able and one might be tempted to expect it in all
cases. The Major Third is also improved and this
seems to bear out our expectations. On the other
hand the Fourth and Major Sixth both become much
more dissonant, being brought very close to the
absolute consonance of the Twelfth. The Figure
e ¢ v
C [ g c e g
Octave and Major Third
f f
AN VAN
C ¢ g 4 €
Octave and Fourth

shows the beating intervals in the case of the Octave
and Third and in the case of the Octave and Fourth.
There is no beating in the first case but very marked
beating in the second, especially between the prime
of the one note and the third partial of the other.

From what has preceded it will be evident that
it is impossible to discuss the consonance of intervals
without making specific assumptions as to the number
and prominence of the partials constituting the two
notes. The preceding discussion applies only to the
case—represented fairly accurately by the piano,
harmonium, violin and human voice—where the first
six partials form a series of diminishing importance
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and the remaining ones are either altogether absent
or very feeble. On the other hand feebly blown
stopped organ pipes give very nearly simple tones
and with these the Minor Sixth gives quite a smooth
impression; other intervals not allowed as consonances
at all, although they sound strange and unfamiliar,
are not dissonant.

An interesting special case is that of the narrow
stopped organ pipe or clarionet, both of which carry
the odd members of the series of partials only.
Here the dissonance of the various intervals is
diminished in a very marked way, and the explana-
tion will be readily grasped if the principles laid down
earlier in this chapter are applied to a discussion
of the consonance of intervals for this special case.

Another case of interest is that of intervals given
on different instruments and so with notes of different
quality. When this is the case it may make all the
difference to the harmoniousness of the interval
which instrument is selected for the lower note.
Consider for instance a Major Third given by oboe
and clarionet. The oboe gives the full series of

Oboe C ¢ g ¢’ e’ g

4 N\
Clarionet E b gl
Clarionet C g e

Oboe -E e b e



vir] CONSONANT INTERVALS 103

partials, the clarionet only the odd members of the
geries. Take first the case where the lower note is
assigned to the oboe. Here we have two semitone
beating intervals. If, on the other hand, we assign
the lower note to the clarionet we find that there

s %4 4/3, % 85 5/3, 27
¢ ebe f g’ aba ¢
Fig. 22.

are no intervals at all which beat, and the gain in
harmoniousness is unmistakable.

Fig. 22 is a graphical representation of the changes
in dissonance which take place when the interval
between two notes is gradually altered. If both are
originally tuned to ¢’ and then, while one is kept at
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that pitch the other be gradually raised to c”, we
shall have the conditions represented in the diagram.
The distance of the curve from the axis at any point
shows the amount of dissonance calculated on certain
assumptions when the upper note is tuned to the
pitch represented by the point in question. We see
that all the well known intervals are represented by
dips of the curve and are more or less closely bounded
by strong dissonance.

A fuller discussion of consonant intervals under
varying circumstances brings out many interesting
points but merely requires the application of
principles and methods already developed. It lies
beyond the scope of this manual and the reader
who desires to pursue it is referred to Helmholtz’
large work on Sensations of Tone.

CHAPTER VIII

COMBINATION TONES—FURTHER DISCUSSION OF
CONSONANT INTERVALS—CONSONANT TRIADS

WHEN it is renembered that almost all musical
notes carry with them a number of partial tones,
some idea of the complexity of the sensation which
is produced when two notes are sounded together
is borne in upon the mind. Yet this view of the
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complexity falls far short of the reality. We have so
far left entirely out of account a series of tones known
as Combination Tones which undoubtedly play some
part in our sensations. These tones were first dis-
covered by the organist Sorge about 1745 but after-
wards became known through the Italian violinist
Tartini and were called Tartini’s tones. They are
produced when two pure tones are strongly sounded
together. The most important type, the one discovered
by Sorge and Tartini, is known as the Differential
Tone from the fact that its frequency is equal to the
difference of frequencies of the two generating notes.
There is also a Summational Tone, whose frequency
is the sum of the frequencies of the two generators.
This tone is much fainter than the Differential Tone
and was not discovered till much later. Both these
tones are known as First Order Combination Tones
to distinguish them from those of higher orders.
These latter are given by one of the generators with
one of the Combination Tones. Thus the Second
Order Tones are generated by one of the generators
and one of the First Order Tones, and so on.

Starting with the most important of the series—
the First Order Difference Tone—it will be remarked
that its frequency is exactly equal to the number
of beats produced between the two generating tones.
It is not surprising therefore that the production
of these notes has been held to be due to the
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coalescence of beats to produce a musical tone. Koenig
held this view and called these tomes beat-tones.
Now if this view were established the hypothesis
advanced in the last chapter to account for the
action of the ear must be reconsidered. In the
first place Combination Tones can be generated by
pure tones separated by the interval of an Octave,
whereas we have given reasons for supposing that
beats cannot occur between pure tones separated
by an interval much greater than a Minor Third.
Further, suppose the generating tones to be ¢” and
e’p—their frequencies are 512 and 614'4. The dif-
ference tone has therefore a frequency of about 102
and so must act on the resonators of about this pitch.
On the other hand we have assumed the beats to be
effective on the resonators lying between the two
notes in pitch, i.e. in the neighbourhood of 560. But
in the form in which we have stated it Koenig's
hypothesis will not bear consideration and by no
manipulation can the phenomena of Combination
Tones be reduced to cases of beats. To begin with,
they entirely fail to explain the existence of the
summation tones. The refuge from this objection
which Koenig sought—a denial of their existence—
is no longer open, since their existence is established
beyond question. In the second place beats can be
heard when two quite faint tones are sounded to-
gether, but combination tones only occur when the



vii] COMBINATION TONES 107

two generators are sounded strongly. Perhaps the
most interesting fact bearing on the discussion
is that the mathematical theory of large vibrations
demands the existence of these combination tones
whenever the amplitudes of vibration are large. If
a vibrating system has imposed on it two sets of
vibrations so large in amplitude that the resultant
displacement of the system cannot be regarded simply
as the sum of the individual displacements, then there
appear as components vibrations of the above fre-
quency. Thus if the frequencies of the generating
tones are m and » we shall have the following:

First Order Difference Tone m-—mn
First Order Summation Tone m+n
Second Order Difference Tones m —2n, m, n

Second Order Summation Tones 2m — n, 2m + n,
m + 2n

and so on. Sometimes these tones can be rein-
forced by the use of a Helmholtz resonator but in
many cases the intensity of the sensation produced
in the ear does not seem to be appreciably increased
in this way. If the two tones are produced by the
same instrument, then some part of the instrument
may be the source of the combination tones produced.
This is the case for instance when two notes are
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sounded together strongly on the harmonium. The
air in the wind-chest is probably the source in this
case and the tones are clearly heard even without
a resonator, but are greatly strengthened when one is
used. Again the air traversed by the two sets of
sound waves on their way to the ear may give rise to
the combination tones, in which case again the use of
a resonator would reinforce them. The amplitude of
the air is rarely sufficient for this. Probably the
commonest case of all is that in which the combina-
tion tones are generated in the mechanism of the ear
itself—perhaps in the drum of the ear—and it is
obvious that in this case no resonator can be expected
to reinforce them. For a long time their objectivity
was questioned but it has now been put beyond a
doubt.

They can be quite readily heard on a harmonium
if the generating tones are sounded sufficiently
strongly. Their presence is the more easily marked
if the upper of the two generating tones is kept the
same while the lower is made to descend down the
scale. In this way the difference of frequency between
the two generating tones is increased and the pitch
of the difference tone is raised. The opposite motion
of the lower generator and the First Order Difference
Tone makes observation of the latter more easy. A
series of four diads (pairs of notes) is given in the figure
with the corresponding difference tones. The pitch
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of these tones is calculated in the following way.
The first diad is a Minor Third. The frequencies of
the generators are therefore 5 : 6. The frequency of
the difference tone will be represented by 1 on the
same scale that the generators are represented by
5 and 6. Now the upper generator is ¢ and its
frequency is represented by 6; c”, the octave lower
will therefore have a frequency 3 and the note a
Twelfth below that again—the note f—will have a
frequency 1. The difference tone in this case is

therefore f. In the second diad we have a Major
Third, ¢’” being represented by 5 on the same scale
that a”’p is represented by 4 and the difference tone
by 1. From this it will be seen that a”p is 2 and
therefore a’p is 1. The remaining two may be worked
out in the same way. These tones may also be
obtained on the pianoforte but are harder to hear.
To get the summation tone on the harmonium, sound
first the note ¢ and then add to it the note F. The
frequencies of these are in the ratio of 3:2. The
frequency of the summation tone will therefore be
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represented by 5 on the same scale. It is therefore
a Major Sixth above ¢ and so is the note a. The
existence of the tone will be more easily detected if
the note a is sounded softly first as a guide to the ear
what to expect. The existence of the same summa-
tion tone may be recognised in a similar way on the
piano although with more difficulty. The principle of
resonance may be called in to establish its presence.
If the key corresponding to a is depressed while the
two generating tones are strongly sounded two or
three times, then when the sound of the generators
has ceased the note a will be heard sounding. As a
is not a partial of either of the generators this must
be due to the summation tone.

The clearest demonstration of all is probably that
given by a double whistle such as is frequently used
by the police and by referees in football matches.
These consist of two short pipes side by side giving
tones of slightly different pitch so that the first order
difference tone is much lower in pitch and unmis-
takable after its existence has once been pointed out.
It is this tone which gives the characteristic quality
to these whistles.

We are now in a position to realise the full com-
plexity of the sensation produced by playing, say a
loud triad. Not only does each note carry with it
a series of partials, but each of the constituent partials
of each of the notes is capable of producing with each
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of the others a series of combination tones, some of
which are of merely academic importance but some of
which at least have a distinct bearing on the theory
of consonance and dissonance.

In our discussion of consonant intervals we have
up to this point dealt only with tones of fairly good
musical quality, assuming indeed the presence of the
first six partials in each case. In the case of pure
tones, however, there can be no beating for intervals
greater than the Minor Third. Is there in this case
any possibility of the simpler intervals being clearly
defined and hedged in by dissonances on either side ?
Of course it is more than likely that, being in the
habit of hearing intervals which are exactly defined
by coincident partials, we may carry over to other
cases, in which they are not so defined, associations
which assist the definition. In addition to this how-
ever, when we include combination tones in our
discussion of consonant intervals, we find that at
least in the case of the simplest intervals they do
assist us in defining them even for pure tones. In
the first place we find that in the case of notes of
good quality the combination tones add nothing to
the beats already present. This can easily be verified
by taking a particular case. 1f for instance we take
the imperfect octave 101 : 200, we get partial tones
from the lower note of frequencies 101, 202, 303, 404,
505, and 606. The partials of the upper note which
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are within beating distance of these are 200, 409, 69

b (] o
Thus we have three sets of beats, 9, 4, and 6 beat,
per second respectively. Now the first order differ.
ence tone has a frequency 99 and so gives with the
lower note 2 beats per second; while the second
order tones are 101, which coincides with the lower
tone, and 2 which is too low to be a tone at all. On
the other hand the first order summation tone is 301
and this gives with either generator a difference tone
of the same frequency as the other. Thus with all
these tones the only beating is at the rate of 2 beats
per second which is one of the sets of beats already
present if the notes are of good quality. Thusnothing
which has so far been said about the consonance of
intervals need be revised. On the other hand what
has just been said suggests at least that if the tones
were pure the first order differential tone formed by
two notes at the interval of an octave would give
beats with the lower generator if the interval were at
all imperfect. This is one explanation of the beating
of an imperfect octave when the constituent tones
are pure.

In the case of the Fifth the combination tones are
less helpful. Here the first order difference tone is
an octave below the lower generator but the second
order difference tone, made by the first order tone
and the higher generator, coincides with the lower
generator and 8o serves to define the interval. Under
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favourable conditions beats between these two tones
due to imperfect tuning may be heard, but it is
obvious that the process cannot be pushed much
further, and that for less consonant intervals than the
Octave and the Fifth, given by absolutely simple
tones, accuracy of tuning must be determined more
by memory than by the detection of any actual dis-
sonance or beating. Where tones are not absolutely
simple but contain the second partial as well as the
prime, most of the important intervals are defined by
the differential tones of low order.

Having now found a number of consonant intervals
we proceed next to see how these may be built up
into chords of three notes or triads. Obviously the
test of the harmoniousness of a triad will be that
when two consonant intervals are added together the
two extreme notes shall then form with one another
a third consonant interval. To add the two intervals
we may simply add the number of cents in each and
then see whether the total number corresponds to
a consonant interval. We shall confine ourselves
within the limits of the Octave, in which case the
intervals at our disposal are Minor Third, Major
Third, Fourth, Fifth, and Minor Sixth. The Major
Sixth when added to the smallest available interval,
the Minor Third, gives the Octave, and so is not
included in our list. We may add the intervals as
follows :

W. M. 8
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Resultant
First Interval  Second Interval Addition Interval

Minor Third Minor Third 816+816= 632 —_
Minor Third Major Third 816+386= 702 Fifth

Minor Third Fourth 816 +498= 814 Minor Sixth
Minor Third Fifth 316+ 702=1018 —_
Minor Third Minor Sixth 816 +814=1130 —
Major Third Major Third 386+ 386= 772 —

Major Third Fourth 886+498= 884 Major Sixth
Major Third Fifth 386+ 702=1088 —_
Fourth Fourth 498 + 498= 996 —

Thus we see that the only intervals which we can
build up into triads are (1) the Minor Third and
Major Third, (2) the Minor Third and Fourth, (3) the
Major Third and Fourth. On the other hand each
of these may be made to give two slightly different
triads according to which of the two intervals is put
in the lower position. Thus if we make C the starting
point in each case, the first triad may be either
C:E:G or C:Ep:G. In the same way the second
may be either C:Ep: Ap, or C: F: Ap, and the third
may be either C:E: A, or C:F:A. Thus there are
six consonant triads with C as the lowest note although
by thus limiting ourselves to C as the lowest note
we are compelled to introduce notes which do not
belong to the key of C. This could have been
avoided by making some of the triads start from
different notes. Let us now look a little more closely
at the two triads built up from the Major and Minor
Thirds. Taking first the triad C:E: G, we see that
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if the C be transposed an Octave higher we have
E:G:c. This triad is said to be an inversion of
the first. The intervals of which it is now composed
are a Minor Third and a Fourth, so that it is identical
with the triad C:Ep:Ap. If instead of this particular
inversion we had taken the G of our first triad an
Octave lower we should have had the triad G,:C: E.
This is also said to be an inversion of the first triad
and we see that it gives us a triad which is built up
of a Fourth and a Major Third. It is thus the same
a8 C:F:A Dealing in a similar way with the
second triad C : Ep : G, we shall find that its inversions
give triads having the same arrangement of intervals
as C:F:Ab,and C:E:A. Thus the last four triads
can be formed from the first two by inversions, and
so the first two are called fundamental triads. The
triad C:E: G in which the Major Third comes first
is called the fundamental major triad while the one
in which the Minor Third comes first—C : Ep : G—
is called the fundamental minor triad. Putting these
results in staff notation we see that the positions of
the major triad and minor triad are given below.

b 55T

Major triad. Minor triad.

It is a well-known fact that the three positions
8—2
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of the major triad given here are not all equally
harmonious. It will be a useful exercise in the
application of the principles developed in this chapter
if we try to find the reason of this by examining the
possibilities of beating between the partials.

E e b \ /e‘ \ 8'{
G g8 a g'/

The figure shows the possibilities of beating and we
see that we get semitone beating between partials of
order 3, 4; 4, 5, and 5, 6; also tone beating for 3, 4;
3, 4,and 3, 5. Let us compare this with the second
position. Here we have

E ) g l)”
G ) g b\’/d‘/e fé' b§c"

that is semitone beating for partials 2, 3; 3, 5, and
4, 5; also tone beating for partials 2, 3, and 3, 4.
Thus the pairs of partials giving both the tone and
semitone beating in this case are of lower order than
in the first position and therefore correspondingly
more powerful, This position ought therefore to be
less harmonious—a conclusion which accords with
experlence If we compare the first and third
positions in the same way we shall find that there is
little to choose between them, although Helmholtz
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puts the third first in order of tunefulness—at least
for true intonation. The Minor triads lend them-
selves to discussion in a similar way, but we shall
content ourselves here with a comparison of the
major and minor triads. There seems at first sight
to be no reason why the fundamental major and
minor triads should differ in the impression which
they make upon us. They are composed of the
same intervals interchanged in relative position ;
yet there is no doubt that there is a very marked
difference in the character of the sensation which
they excite. The Minor triad gives an impression,
perhaps of greater roughness, certainly of mystery
and vague mournfulness. There seems to be nothing
in the arrangement of the partials to explain this,
but if we take the combination tones into account
we at once find the explanation. Considering the
fundamental positions only and writing the dif-
ference tones due to primes as crotchets and those
between primes and second partials as quavers or
semi-quavers according to their importance we get
the following. For the major triad we may take the
frequencies of the primes to be 4, 5, and 6 and there-
fore those of the second partials as 8, 10, and 12.
These give us

(1) Difference tones between primes,

6-5=1, 5—-4=1, 6—-4=2.
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(2) Difference tones between primes and second
partials
12-6=6, 10-6=4, 8-6=2
12—5=7, 10-4=6, 8-5=3
12—-4=8.
Thus on the same scale on which the primes are
represented by 4, 5, and 6 the combination tones are
represented by 1, 2, 3, 4, 6, 7, and 8. Of these 1 and
2 are much the most important being formed by the

b=

~

)

T

primes. Next to these come 3 and 4 and after these,
and still less prominent because given by generators
separated by a considerable interval, come the fre-
quencies 6, 7 and 8. Looking either at the numbers
or at the notes in the staff notation which they may
be taken to represent, we see that all the combination
tones, with the single exception of one of the weakest,
are octaves of the primes. Passing now to the
fundamental minor triad we take as the frequencies
10:12:15. These notes give us
(1) Combination tones between primes
15-12=3, 15—10=5 12—10=2
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(2) Combination tones between primes and second
partials
30-12=18, 24-15=9, 20—15=5,
30 - 10=20, 24 -10=14, 20—-12=8.
Thus the combination tones have frequencies repre-
sented by 2, 3, 5, 8, 9, 14, 18. Showing these in

staff notation as before we see that the relation
between the combination tones and the primes is

Bk

this time entirely different. Here the differential
tone introduced by the two primes 12 and 10 gives a
note ap, foreign to the chord, and this note is repeated
two octaves higher in the next group. In this group
also another new note b, makes it appearance to be
repeated in the last group an octave higher with a
third new note gp. There is little doubt that it is this
absence of close relationship between primes and the
combination tones which gives the minor triad its
characteristic quality.
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CHAPTER IX
DEVELOPMENT OF THE SCALE—TEMPERAMENT

THE music of different nations shows many striking
and characteristic differences, but one fundamental
underlying similarity is at once apparent. Each
nation limits itself to a definite scale or series of
notes and its music proceeds from note to note by
determinate steps and not by slow gliding. It has
been aptly said that music produces its impression
by changes of pitch in time, and of course if these are
to be properly appreciated we must have some units
in terms of which we can measure the two quantities
involved. Rhythm supplies this need for the measure-
ment of time and musical intervals are necessary for
the measurement of changes of pitch. When we
come to examine the selections of notes which the
various nations have made we find them infinitely
varied in detail although certain broad principles are
seen to have influenced the development in all cases.
We find that the Octave is an interval universally
used and that the Fifth and Fourth are extremely
common. Now it will be remembered that these
intervals are the ones which give the most perfect
consonances aud if we think of music as we know it
to-day we shall be tempted to conclude that the notes
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of the scale were chosen so that they might be used
for harmony. This conclusion however will not bear
consideration. One of the most surprising features
in the history of musical development is the very
late appearance and very slow growth of harmony.
Incredible as it may seem, it is nevertheless true that
as late as the fifteenth and sixteenth centuries the
principles of harmony were unknown and the art
of simple “vamping” still undiscovered. We have
already seen, however, that not only do these intervals
give consonances, but the notes forming them if they
carry series of partials with them are related to
one another by the possession of certain of these
in common. This relationship is less close for the
Fifth than for the Octave and less close for the Fourth
than for the Fifth. In view of this it is at first sight
a little puzzling to find that in some scales the Fourth
is more prominent than the Fifth. This is most
probably to be explained by the consideration that
the note which is the Fourth in the ascending scale
is the Fifth in the descending scale, and that in
melodic music it is quite as natural to think of the
scale as developed downwards as to think of it—as
we are accustomed to do—as developed upwards.
There still remains the difficulty of pure tones, but
these are so rare that it is easy to see that the
development of the scale would be mainly influenced
by notes carrying a fair number of partials.



122 PHYSICAL BASIS OF MUSIC [cH.

The diatonic scale is developed from one of the
old Greek scales and subsequently modified by the
principle of tonality. The Greek scales were developed
with the aid of the tetrachord—a four-stringed instru-
ment as its name implies—at first only one being
used and then, later, another being added alongside
80 as to give a series of eight notes. The absence of
harmony made these scales somewhat vague and
indefinite, and this vagueness was further increased
by the absence of any note corresponding to a key-
note or tonic. There does indeed seem to have been
one note in each scale to which convention attributed
a more or less arbitrary importance, but the idea of
having one particular note from which a composition
should start and to which it should return—a note to
which all the notes used in the composition should
be more or less closely related—was unknown. This
is the principle which gives unity and intelligibility
to modern music, and the fact that ancient music did
not grasp the need of anything of the kind may have
been due to the secondary importance of music as an
art—its main function in the earlier stages of its
development being that of an accompaniment or
setting. We may summarise the achievements of
the Greeks in this respect in the words of Professor
Sir Hubert Parry. “The Greek system may therefore
be considered to have arrived at its complete maturity
in the stage in which a range of sounds extending
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only for two Octaves was mapped out into a series
of seven modes which can be fairly imitated on a
modern pianoforte by playing the several scales which
begin respectively on E, F, G, A, B, C and D without
using any of the black keys. The difference between
one and another obviously lies in the way in which
the tones and semitones are grouped, and the device
affords considerable opportunity for melodic variety.”

During the predominance of purely melodic, or
homophonic music, further important development
was probably impossible; but various influences were
at work which finally carried the art through a
transition stage of polyphonic music to our modern
harmonic type. The natural differences in voices no
doubt contributed. All the male voices of a given
group could not sing the same notes without putting
a strain on the highest pitched voices or the lowest
pitched voices——or on both. This led to the repetition
of the melody a Fifth above or a Fourth below—this
giving the most perfect consonances. Early in the
development of polyphonic music came also the dis-
cantus in which two entirely distinct melodies were
manipulated for simultaneous singing—such liberties
being taken with the time and even with the notes as
would avoid serious discord at any point. Occasionally,
if tradition is to be trusted, a somewhat doubtful
song and an ecclesiastical melody were coupled in
this unholy alliance. But the rapid growth of harmony
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and tonality was largely due to the Reformation. It
was a Protestant principle that the congregation
should do its own singing, and the ecclesiastical music
of the time was far beyond the reach of any untrained
congregation. There grew up therefore a collection
of chorales, often consisting of popular melodies,
Germanic in origin and showing—apart altogether
from their harmonisation—more feeling for tonality
than was possessed by the music of the Southern
nations. This development was not without its effect
inside the Roman Church, and Palestrina was set the
task of modifying the ecclesiastical music of the
Church along similar lines. Until recently modern
Western European music has shown a steady develop-
ment in the direction of tonality, all the notes of the
diatonic scale being more or less closely related to
the key-note.

Accepting this principle then, we shall see how
it leads to the development of our modern major
diatonic scale. We shall regard as related in the
first degree all notes which, when carrying a complete
series of the lower partials, have one or more in
common. It is obvious that the possession of common
high partials can have no real meaning for the ear, as
even if in a particular case they are actually present
their effect is bound to be masked by the prominence
of the lower partials. We shall regard as related in
the secorid degree a pair of notes, each of which is
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frequencies of 3/4x3/2=9/8 and of 5/4x3/2=15/8,
respectively. These give us two notes lying in the
gaps to be filled so that we may now write our scale
with frequencies and with intervals between successive
notes measured in cents as follows :

c D E F G A B ¢
1 98 54 43 32 53 158 2
204 182 112 204 182 204 113

This is in fact the major diatonic scale and other
scales and modes may be derived by similar methods.
As might be expected the last two notes added were
always more indeterminate than the others so long as
music was melodic. The most distant relationship
to C is that of B but this note has acquired a quite
new importance. In a sense it owes its position in
the scale to its relationship with G but it has developed
for itself the role of “leading note.” It is impossible
to play over the scale of the white notes and stop
at B with any sutisfaction—it demands c¢ as its sequel.
This is only anuther instance of the development of
tonality which explains also the unsatisfactory nature
of the impression made on our minds by one of the
old Greek scales.

One othier method by which the development of
the scale has been attempted deserves mention here—
that due to Pythagoras. He supposed it derived by
starting with C and proceeding by perfect Fifths,
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each note reached being brought down one or more
Octaves so that it might lie between C and ¢. This
gives us first of all a frequency ratio 3/2, corresponding
to G ; then 3/2 x 3/2=9/4, which, if brought down an
octave gives us 9/8 or D; next comes 3/2 x 9/4=27/8
which if brought down an Octave give us 27/16,
a note very close to A; and so on. It must be
obvious that this is a much more artificial method
than the one we have followed. The relationship
between D and C through G might be recognised,
but any more distant relationship than this can have
little meaning.

The comparatively modest requirement of scven
notes to the octave, as represented by the scale we
have just developed, has now been extended, and
the number of notes increased to twelve. In ancient
music the intervals of tones and semitones were
differently arranged in the different modes or scales,
and variety could be introduced in this way. By the
time the development of the diatonic scale was
complete those old modes had disappeared, only two
modes, the major and the minor, being at the disposal
of musicians. This made it eminently desirable that
composers should be free to “modulate” into a different
key for the sake of varicty and to return again to the
original key. Not only so, but the fact that the
human voice and many other instruments have a
limited compass made it important that the liberty
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of choice of a key-note should be extended to any
note of the scale so that one might be chosen of
such absolute pitch as would bring the composition
within the compass of the instrument in view. Now
if we are to be free to start with any note in the
scale and exactly reproduce the intervals of the
original scale we shall find that our seven notes are
quite insufficient. Indeed without taking the desira-
bility of freedom to modulate into account at all, the
desirability of a new note will be apparent if we
consider the intervals which D makes with A and F.
The frequency ratios of these notes are 9/8, 5/3 and
4/3. The interval D to A ought to be a Fifth
with the ratio 3/2 whereas the actual interval is
5/3+9/8=40/27. Then again the interval D to F
ought to be a Minor Third—6/5—while the actual
interval is 4/3 +9/8 =32/27. Thus neither of these
intervals would sound at all well. If, on the other
hand, we had a second D whose frequency ratio was
10/9 we should find that it made with A an exact
Fifth and with F an exact Minor Third.

The note most closely connected with the tonic C
is as we have seen the Fifth above it, G, and this
is the tonic of the key which is most frequently
chosen for modulation. Let us see then what notes
would be required if the intervals of our original
scale are to be reproduced with G as starting-point.
We shall find this by raising each note of the
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scale of C by a Fifth, by multiplying its frequency
by 3/2.

9/8 x 3/2=27/16

5/4x3/2=15/8 or B

4/3 x 3/2= 2 or C

3/2x3/2= 9/4, which taken an Octave lower
is9/8or D

5/3x 3/2= 5/2, which taken an Octave lower
is 5/4 or E

15/8 x 3/2 =45/16, which taken an Octave lower

is 45/32.

Thus in addition to G we can still make use of B,
C, D and E. Instead of A with a frequency of 5/3 we
have a note only slightly different whose frequency
is 27/16, but instead of ¥ with a frequency of 4/3
we have a note with a frequency 45/32—almost
midway between F and G. Now if we are to be
compelled to introduce two new notes for each
modulation, it is obvious that the total number of
notes required in the Octave will be very large.
For voices, and to some extent for stringed instru-
ments, this is a matter of no moment, but for
keyed instruments it is of the greatest importance.
Difficulties connected with the mechanism and the
execution increase rapidly with the number of notes
and so some sacrifice of true intonation has to be
made in order to limit the number of notes. This
w. M. 9
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limitation is demanded also by considerations of
simplicity in tuning an instrument and in writing
the music. The necessary compromise is termed
“temperament” and may be effected in various ways.
A glance at the keyboard of the piano will show that
our modern system of temperament is based on a
limitation of the notes in the octave to twelve.
That this does involve a departure from true in-
tonation may be readily shown. If we ascend twelve
Fifths on the piano we find that we have played each
note of the Octave once and have ascended seven
octaves. Twelve tempered Fifths are thus equal to
seven Octaves. But twelve true Fifths are equal
to 12 x 702 = 8424 cents, whereas seven Octaves are
equal to 7 x 1200 =8400 cents. There is thercfore
an error of 24 cents distributed over twelve Fifths.
Similarly three tempered Major Thirds are equal to
an Octave. But three true Major Thirds are equal
to 3 x 386 =115 cents while the true octave is of
course 1200 cents. An error of 42 cents is therefore
distributed between three Major Thirds. The com-
promise might possibly be avoided by admitting
narrower limiis of modulation and keeping the
intonation-true, but it is very doubtful whether in
the long run this would be an advantage. There
can be no doubt that counfining ourselves to tempered
intonation involves a real sacrifice. 1t is foolish to
attempt to deny this. No one who has heard the
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fundamental major triad successively in truec and in
tempered notation can have the least doubt that the
sacrifice is a real one. But the extended possibilities
of modulation is a real advantage and there seems
little prospect of it being abandoned in favour of
more correct intonation.

Many different methods of temperament have
been suggested and tried. Of these only two—
Mean Tone Temperament and Equal Temperament
—need concern us here, although the Pythagorean
is of considerable theoretical interest. In this method
the notes required were obtained by a series of as-
cending and descending Fifths. These may be written
thus :

CGD A E B F2(C2G3DE A% Ef BEFx (OxGx
CF Bp Ep Ap Dp Gp Cp Fp Bpp Epp App

This system requires 27 notes to the Octave. Its
symbols still linger on in our modern stafl’ notation,
but the system has long since disappeared except in
so far as it may be said to be used by violinists,
whose strings are tuned in a series of perfect Fifths.
The fatal defect of the system for harmonic purposes
is the serious error of the Major Thirds. It will
readily be seen that the Pythagorean Major Third
is four Fifths less two Octaves, or in cents

(4 x 702) — (2 x 1200) = 408.
9—2
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The true Major Third on the other hand is 386 cents
and this sharpening of the Major Third by 22 cents is
intolerable in harmonic music.

Coming now to Mean Tone temperament—which
takes its name from the fact that it abolishes the
distinction between the large and small tones—we
find that its Fifths are bad and the facilities for
modulation small so long as the number of notes in
the octave is limited to twelve. We have already
seen that if we ascend by four perfect Fifths and then
descend two Octaves we get the Pythagorean Major
Third, 22 cents sharp. If, on the other hand, we
flatten each of our ascending Fifths by 55 cents then,
on descending two Octaves we get a true Major
Third. Thus the Fifths are appreciably mistuned in
order to keep the Thirds true. For perfect freedom
to modulate, this system would require 21 notes to
the Octave. Nevertheless it prevailed all over the
Continent and in kngland for centuries and only
finally disappeared from our pianoforte about 1850.
It is probably the best for harmonic purposes.

We come next to consider the now universally
adopted system of Equal Temperament. In this
systemn the octave iz divided into twelve exactly equal
semitones. I'wo things follow at once. In the first
place the number of notes in the Octave satisfies the
demand for convenience and in the second place there
is complete freedom of modulation. All the intervals
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being exactly alike it is a matter of convenience
which note is chosen as the key-note or starting-
point. Rewriting the ascending and descending
series of Fifths from C and reversing the order of
the notes obtained by descending Fifths we get the
series

C G D A E B F#CsGS DS AS Ef Be
Dpp App Epp Bpp ¥p Cp Gp Dp Ap Ep Bp F C

B# is, as we have seen, twelve Fifths less seven
Octaves, or 24 cents, above C. Obviously then if each
of the ascending Fifths had been flattened by two
cents the resulting B would have coincided with C.
If, similarly, each of the descending Fifths had been
flattened by two cents then Dpp would have coin-
cided with C. In this case each note of the upper
row becomes coincident with the corresponding note
of the lower row, so that for practical purposes the
distinction between F# and Gp, C% and Dp &e. dis-
appears, and we are left with twelve notes in the
octave. If we put the comparison of the true
intonation with the two latter systems of tempera-
ment in tabular form we get the following table
which is taken from Bartow’s Tewxt-book of Sound.

The table indicates a clear superiority of the
Mean-Tone system over Equal Temperament in the
intonation of Major Thirds and Sixths and a not
very marked inferiority in the intonation of Fifths.
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Against this must be set the superior position of
Equal Temperament in the freedom to modulate
which it confers.

j Intervals above C and errors of Tempered notes

l Notes Just Intonation Mean-Tone i Lqual

‘ | T'emperament

! T (

i Frequ.ency«: Cents Intervals| Errors 1 Errors [Intervalq

i Rautios | | Cents Cents | Cents Cents

1 - “ ".—— )

\ C 1 l 1 0 o | 0 | 0

D 9:8 201 | 198 | 11 4 200
E 514 886 | 386 0 1 14 400
¥ 4:3 498 | 503 5 | 2 500

G 3:2 702 697 5 2 l 700
A 5:3 884 | 890 | 5 { 16 900

LB | 15:8 | 1088 | 1083 | 5 12 | 1100
C 2:1 1200 »I 1200 0 0 i 1200

' i |

|
I
|
T

t

Some reference ought probably to be made at
this point to s question which has been the subject
of much dispate. It has often been asserted that the
key in which music is written and played gives to
the composition a specific character and that certain
keys are more appropriate than others for com-
positions of certain kinds. This assertion will carry
a good deal of conviction to the mind of anyone who
tries to exccute the same piece of music first in the
key of C major and then in the key of Dp major.
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As performed in C it seems brighter, as performed in
Dp it sounds softer and more harmonious. It will be
readily agreed that the explanation is not to be found
merely in the difference of pitch in the two cases.
This has been verified by tuning one piano a semitone
below another. The character of the composition is
found to attach itself to the nominal keynote, and
even if DP on the first piano be tuned to C on the
second, a piece of music played in D) on the first
piano sounds appreciably softer than the same piece
performed in C on the second piano. If our keys—
like the old tonal modes—had a different distribution
of the tones and semitones, a difference of character
would be explicable. The difference in character of
music in our major and minor modes respectively
is undoubtedly partly attributable to this cause.
Between the various major keys however there is
no distinction of this kind—tones and semitones are
distributed in the same order in all of them. Indeed,
if the tuning process has been carried out so as to
give cxactly equal temperament, then playing the
same composition in different keys simply means
playing it at different pitches.  Some light is thrown
on the subject if we cousider how far these supposed
differences of character depend on the particular
instrument on which the composition is executed.
Most impartial observers scem to be agreed that on
the organ they are altogether absent. This of course
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suggests that the explanation is to be found in the
particular mechanism of the piano and may be due
to the different action of the black and white digitals
respectively. It stands to reason that whatever the
mechanism may be, it must be extremely difficult to
produce identically the same effect as regards time
of contact, force, displacement, &c., where the two
levers which start the action are of different lengths.
The black and white digitals are differently distributed
in different keys and of course the black digitals are
much used in the key of Dp and not at all in the key
of C except as accidentals. In some other types of
musical instruments similar differences are found.
For instance in stringed instruments notes produced
on the open string have quite a different quality
from those produced by stopping. Keys in which
frequent use of these open notes is made may well
differ in character from those in which their use is
less frequent. Not only so, but the system of tuning
stringed instruments does not give equal tempera-
ment, as the open strings are tuned in a series of
true Fifths. Similar arguments apply to some of the
wind instruments and so we see that in the case of
many musical instruments there are differences which
might be supposed to account for the existence of the
differences of character under discussion. On the
other hand no explanation has been given, apart
from particular instruments, and in the case of the
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organ, for example, no explanation along these lines
can be attempted.

A more extreme claim still is sometimes made—
the claim that a piece of music sounds different
according as it is played in Dp or in C#. Here, in
instruments tuned in equal temperament, exactly the
same succession of notes is played, and this fact sug-
gests that, in the minds of some enthusiasts at least,
association of ideas plays a larger part in the phe-
nomenon than is commonly admitted. A key is
probably associated mentally with one or more
familiar compositions written in that key, and the
characteristics of these compositions are then instinc-
tively transferred to the key itself.

CHAPTER X
MUSICAL INSTRUMENTS

FroM many points of view, the most important
class of musical instruments is that in which the
sound waves in the air take their origin from the vi-
brations of a stretched string or wire. The vibrations
are excited by bowing, by striking with a hammer or
by plucking, and are usually reinforced by being com-
municated to some extended surface, so that a large
mass of air may be set in vibration.
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Typical of the group of stringed instruments where
the vibrations are excited by a bow is the violin, and
we shall consider it first. Its essential features are
well known. The body of the instrument is a shallow
box, oblong in shape and with somewhat convex top
and bottom. From one end of this box projects the
handle of the instrument, which carries the pegs (to
which the strings are attached) and a finger-board
without frets. To the other end of the body is
attached a tail-piece into which the other ends of
the strings are fixed. The strings pass over a small
wooden bridge which rests on the upper side or belly
of the instrument and is kept in position by the
pressure of the stretched strings. The four strings
are tuned in perfect fifths by adjusting the tension
by means of the pegs, and are made to give the
various notes of the scale by “stopping”—i.e. by
pressing them with the finger down on to the finger-
board—and so shortening their vibrating length. The
absence of frets pives perfect freedom to the per-
former, who can play in true intonation if desired.
On the other hiand, it gives no assistance whatever to
the novice in the matter of correct intonation. As
shortening the string must always raise the pitch of
the note, it is obvious that the compass of the violin
is limited at the lower end by the prime tone of the
lowest string. The upper limit depends almost solely
on the skill of the performer. In addition to the
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high notes obtained by stopping in the ordinary way,
other notes, known as harmonics, may be obtained
by touching the string lightly at various points (see
page 74). Thus touching it at a fourth of its length
from one end makes it split up into four vibrating
sections, and so gives the double octave of its prime
tone. The special quality of tone characteristic of
the violin is associated with a very complete set
of partial tones, the presence of these being due
to the lightness and flexibility of the strings. The
go-called cat-gut of which these are made is obtained
from the intestines of lambs. In order to preserve
the flexibility in the case of the fourth string and to
avoid giving it a thickness appropriate to its low
tone, a comparatively thin gut-string is wrapped
round with fine wire. This incrcases the mass of
the string per unit length without unduly interfering
with its flexibility. The motion of the violin string
has been studied by Helmholtz and others. Difterent
points in the vibrating string may be made to reveal
their method of vibration by means of a device due
to Krigar Menzel and Raps. In their arrangement
a brightly illuminated vertical- slit is placed behind a
horizontally stretched string at the point where the
motion is to be observed. An image of this slit is
thrown on a photographic plate by a lens, and appears
as a bright slit with a dark spot where it is crossed by
the string. If now the string is bowed in such a way
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as to throw it into vibration in a vertical plane, the
spot will appear to move up and down, following
the motion of the string. If the string is stretched
g0 a8 to give a note of reasonable pitch, these vi-
brations will be much too rapid to be visible, but,
if the plate is moved horizontally at the same time,
a wavy curve will be traced on it which, a moment’s
consideration will convince us, is in fact the dis-
placement diagram of the point of the string under
observation. The diagram so obtained generally
shows the straight line type to which reference has
already been made, although the form depends to
some extent upon the point of observation and the
point at which the bow is applied. Thus, in a case
where the string was bowed at a point one-third of
its length from the end and observed in the middle,
it gave an almost smooth simple harmonic curve.
This is of course exactly what we should expect.
The middle of the string—which is the point under
observation—is a node for the second, fourth and
gixth partials. The point of trisection of the string—
which is the point bowed—must be a node for the
third, sixth and ninth partials. Thus we see that
the first group of partials will escape observation,
while the decond group, owing to the bow being
applied at the point where they require a node,
will be absent. Thus the only important partials
which can be observed are the prime and the fifth,
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and the latter will be comparatively very weak in-
deed. If we apply to the ordinary straight-line
displacement diagram the methods of interpretation
suggested on page 31, we shall see that it represents
the motion of a point which moves for a time in one
direction with constant speed, and then changes its
direction and retraces its path again with constant
speed. This gives us a little insight into the probable
action of the bow on the string. 1t is a well-known
fact that the frictional force between two surfaces is
greater when they are relatively at rest than when
they are in relative motion. The rosined bow grips
the string, pulling it aside until the tension of the
string tending to restore it to its undisplaced position
overcomes the force of friction. The string then
springs back until displaced in the other direction,
when it is again gripped by the bow. The bow is
usually applied to a point of the string about one-
twelfth of the length from the bridge. It is as a rule
applied nearer to the bridge in forte passages, and if
applied further from the bridge gives a softer and
mellower tone. Its motion ought to be across the
string. Any motion along the string tends to excite
longitudinal vibrations, and these correspond to very
shrill and high-pitched notes. It is the accidental
occurrence of these longitudinal vibrations which
makes the early efforts of the beginner so distressing
to hear.
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The vibrations of the strings themselves would
give a very weak and poor tone if they were unable
to communicate their vibrations to a resonant surface
of some kind. This is achieved by the bridge which
transmits the vibrations of the strings to the belly
of the instrument. The foot of the bridge under the
first string takes little part in this transmission.
The sound-post—which connects the belly and the
back and sustains the pressure of the bridge—touches
the belly at a point close to this foot. The foot of
the bridge on the side of the fourth string, however,
is subjected to less pressurc since this string is less
tightly stretched and at the same time the part of
the belly with which it is in contact is free to move.
This foot therefore plays the principal part in the
transmission of the vibrations. These vibrations are
then transmitted to the back by the sides, or ribs,
and by the sound-post—but mainly by the latter.
In addition to the two functions of the sound-post
already mentioned it helps to determine the form of
vibration of both belly and back of the instrument,
as the two pomts to which it is glued must be nodes.

The touwe given by the instrument as a whole
seenus to _depend upon the wood chosen, the shape
and the varnish. Mere antiquity confers no special
virtue on a violin but the best of the old violins are
undoubtedly superior to those of the present day,
and no important advance in the construction of the
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instrument has been made during the last 150 years.
It is difficult to fix on any one feature as being the
probable cause of the superiority of the old instru-
ments, but the records which have come down to us
show that the choice, application, and drying of the
varnish occupied a good deal of the attention of the
old makers.

A great deal of what has been said with regard
to the violin may be applied with modifications to
other stringed instruments. In the piano of course
the strings are set in vibration by blows from
hammers actuated by keys. There is a separate
key, hammer and, usually, a pair of strings for each
note in the range of the instrument. The quality
depends mainly on the point on the strings which
the hammers are made to strike, on the hardness of
the hammers, on their time of contact with the strings,
and on the sounding board. The point of attack
on the strings is usually selected so as to make the
seventh, eighth, and ninth partials very weak. The
sharper and harder the hammer surface is, the more
abrupt is the displacement of the string and the
more prominent are the upper partials. Thus hard,
sharp hammers give a quality which is brilliant and
even harsh, while soft flat hammers tend to dulness
of tone. The hammers are usually faced with com-
pressed felt and if the tone is too brilliant it can be
softened down to any extent by teasing out the felt.
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using pipes of various lengths and the tuning to the
exact pitch necessary may be achieved in a variety
of ways. The tone of the open pipe may be flattened
by partially shading the end with a leaden strip and
gsharpened by slightly opening a hole in the side of
the pipe a short distance from the end. The tone of
the closed pipe can be tuned by adjusting the stopper.

Reed pipes give a more cutting quality of tone,
and this is especially the case for beating reeds. In
these the reed is larger than the opening over which
it vibrates, and so the edges of the reed strike the
edges of the opening at each vibration. In this way
the cutting off of the air-blast is made more sudden
and more complete. To avoid a disagreeable harsh-
ness the reed is curved and made to roll over the
opening, the lower end of the reed closing over the
aperture before the tip, thus making the stoppage of
the air-blast more gradual. Reed pipes are, as a rule,
conical or pyrainidal in shape, the wide end being at the
top. In all cases the quality is duller and softer for
pipes of large cross-section and richer and brighter for
pipes of small cross-section. In the case of stopped flue
pipes and even open flue pipes if the cross-section
is considerable, * mixture ” stops are used coupling
with each pipe a series of others which reinforce
its lower partials. The quality of tone given by a
particular pipe is considerably aflected by the shape
of the lip and its position relative to the slit through
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which the air comes. The adjustment of this position
is called “voicing.” The reed is tuned by means of
a small wire with a cross-piece which slides over the
reed, clamping it against the side of the pipe. This
wire can be pushed up or down and so may be made
to shorten or lengthen the free part of the reed (see
Fig. 23(g)).

Another very important class of instruments which
depend on the vibrations of air columns is that com-
prising the wind instruments of the orchestra. Some,
as for example the flute, are special adaptations of the
flue pipe of the organ, the mode of vibration of the
air in the pipe and pitch of the resulting tone being
controlled by opening and closing apertures at dif-
ferent points in the pipe. In the brass wind instru-
ments of the orchestra the lips of the performer act
as a double membranous reed and are the controlling
cause of the vibrations of the air in the instrument.
In all instruments of the kind the essential fcature is
a brass tube tapering towards the end to which the
mouth is applied and opening out towards the other.
The degree of tapering is carefully adjusted, so that
the natural modes of vibration of the air in the tube
may give a series of partials forming an exact har-
monic series with the prime. The tension of the lips
of the performer determines the period of their own
vibrations, and that in turn determines which partial
of the series will be evoked. Only when the frequency

10—2
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of vibration of the lips coincides with one of the
partials of the instrument will any musical note be
produced. It is clear that this is a very serious
limitation. Thus the prime tone and second partial
are separated by an octave, the second and third
partials by a Fifth, the third and fourth by a Fourth,
and the fourth and fifth by a Major Third. Even
using the higher partials only, the scale is very
incomplete indeed. This necessitates the use of
some device for obtaining intermediate notes if
the instrument is to have much musical value. In
the bugle there is no provision of any kind. The
range of possible tones is confined to the harmonic
series. In the French Horn the possibilities are still
somewhat limited, although the device for obtaining
intermediate notes is fairly effective in the hands of
a skilled performer. Only the higher and therefore
closer partials are ased, and intermediate notes are
obtained by thrusting the hand into the bell of the
instrument and so lowering the natural note by a
semitone or even a whole tone. Of course the
character of the tone suffers a little in consequence.
The tuning of the instrument may be altered a
tone by méans ot a removable “crook.” Part of the
tube of the Horn is U-shaped and may be removed
and replaced by a slightly longer crook. In this way
the tuning may be changed from F to Ep. In the
trombone this idea is still further developed, as here
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we have a sliding crook which can be adjusted be-
tween the execution of two successive notes of a
piece of music. These sliding pieces have seven
positions and a change from one to the next changes
the scale by a semitone, so that the scale of the
instrument may be changed by three complete tones.
This serves to fill all the gaps between the second
and third partials, and, in addition, gives alternative
methods of playing the higher notes which are occa-
sionally useful. On the other hand the clumsiness of
the movement necessary for adjusting the tube makes
the trombone a very unsuitable instrument for the exe-
cution of rapid passages. In the trumpet and allied
instruments recourse is had to valves which bring into
action tubes of different lengths. There are, as a rule,
three such valves, depressing the scale of the instru-
ment by a semitone, a tone, and three semitones respec-
tively. As they can be used simultancously this makes
provision for the depression of the scale of the instru-
ment by six semitones—as in the case of the trombone.
The mechanism here is much easier to manipulate,
but unfortunately subsidiary valves and crooks have
to be added for a reason which will be readily
apparent. Some apparatus must be provided for
tuning the instrument if it is to be used with others.
This takes the form of a small adjustable crook which
may be used to alter the scale by about a semitone.
Now the effect of the addition of a length of tubing
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to the original length depends not simply on the
length added but on the ratio of this to the original
length. Thus if we were to add 20 cms. to a tube
whose original length was 20 cms. we should alter its
scale by an octave, whereas if the original length of
the tube were 40 cms. we should only alter its scale
by the interval of a Fifth. Thus if the lengths of
tube brought into action by the valves give a lowering
of the scale by an exact number of semitones for one
position of the tuning-crook, they will not do so for
another. Then again for a similar reason if the third
valve produces a lowering of a tone and a half when
used alone, the lowering it produces when used along
with one of the other valves will be less than this.
In order to give facilities for adjusting the valves
for any position of the tuning-crook each of them
is fitted with a small slide, and in instruments where
the lower notes of the series of harmonics are much
used, the second and third valves are provided with
compensating valves which come into operation when
these valves are used together or in combination with
the first.

A brief mention of instruments depending on the
vibrations of reeds alone, without associated air
columns will be enough. This type is represented by
the harmonium, the concertina aud the American
organ. The fundamental difference between the first
and last of these is that in the harmonium the air is
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driven through the reeds by the bellows, while in
the American organ the bellows create a partial
vacuum and the pressure of the atmosphere outside
drives air through the reeds to supply it. Con-
sidering the harmonium a little more in detail we
find that the notes are given by the vibrations of free
reeds. These are thin metallic strips fixed at one
end. Their natural frequency of vibration will depend
on the ratio of the stiffness to the massiveness (in
technical terms, the ratio of the restoring couple to
the moment of inertia). Filing the free end will
diminish the massiveness without appreciably affect-
ing the stiffness, and so will increcase the frequency.
Filing the fixed end will greatly diminish the stiffness
without much affecting the massiveness and so will
diminish the frequency and flatten the tone. The
reeds are tuned in this way and, unlike the piano,
the harmonium only requires very occasional tuning.
Above each reed is a small air-chamber whose shape
and size determines the quality but not the pitch of
the note emitted. Good instruments have eight sets
of these, controlled by stops—four for the treble and
four for the bass. The pressure in the wind-chest is
regulated by a valve which allows the air to escape
into a chamber communicating with the outer air.
A stop called the Expression stop can be used to cut
off this communication and the pressure of the wind
in the wind-chest is then completely controlled by
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the pedals and the sound may be made to swell or
diminish at pleasure.

The apparatus by which the human voice produces
musical notes may be classed as a double reed. In
a cavity known as the larynx, situated at the top of
the windpipe and marked in position by the familiar
projection called “ Adam’s apple,” are two horizontal
stretched membranous bands—the vocal cords. In
repose their inner edges meet at a fairly acute angle
while their outer edges are attached to the wall of
the larynx. During deep inspiration they are widely
separated while in the production of sounds their
edges are brought parallel and practically into con-
tact, thus closing the larynx against the passage of
air from the lungs to the mouth and nose. When
a sound is produced these bands are set in vibration
and maintained in vibration by the passage of a
stream of air between their edges. The lungs act as
a kind of bellows, increasing the pressurc of the air
below the cords. This pressure drives the edges of
the cords upwards and some air escapes. The pres-
sure is thus reduced and the elasticity of the cords
brings them, back into position, the cords being thus
kept vibrating steadily with a frequency determined
mainly by their natural length and their tension. Thus
in men the natural length of these cords is greater
than in women and the familiar phenomenon of the
breaking of a boy’s voice is due to the rapid growth
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of the larynx and the corresponding increase in the
length of the vocal cords. Differences in the quality
of the sound produced depend to some extent on the
flexibility of these cords and to a large extent also
on the shape of the cavities of the mouth, throat and
nose. A contrivance known as the laryngoscope
enables us to study the vocal cords in action. By
means of a mirror held at the back of the throat
a powerful beam of light is thrown down into the
larynx thus lighting up the mechanism it contains
and the reflection of this mechanism in the mirror
may then be examined. The vocal cords stand out
clearly from their surroundings, being greyish white.
It is usual to recognise the division of the human
voice into three registers—the low, or chest register,
the middle register, and the small, or head register.
These have been named by Behnke the thick, thin
and small registers respectively to correspond to the
method of production of the sound in each case.
Thus, according to this observer, the thick register
is produced by vibrations of the cords as a whole.
In the thin register only the inner edges participate
in the vibration, while in the case of the small register
the motion is confined to the central portion of the
inner edges of the cords.

Much work has been done on the production of
vowel sounds by the human voice without any very
general agreement being reached. It is well known
that to produce any particular vowel sound the

10—5
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mouth and throat cavities must be put into a par-
ticular shape, whatever note it is desired that the
vowel shall be sung to. It is found that when so
placed the mouth and throat reinforce notes of
particular pitch as may be found by holding tuning-
forks of different frequencies in front of the mouth.
Results of this kind suggested the “fixed pitch”
theory of vowel production—the theory that when
a given vowel is sung to any note whatever, one or
more partials of definite pitch, always the same for
the same vowel, are reinforced by the mouth and
throat cavities. Against this was placed a “relative
pitch” theory, which supposed that it was the relation
between the upper partials and the prime which was
effective in determining the vowel and that when the
vowel was sung to a note of higher pitch the whole
series of partials rose, the distribution of intensity
between them remaining roughly the same. Recent
work by Boeke and others seems to suggest that the
truth lies between the two views, Apparently when
the note to which the vowel is sung is raised, the
partial or partials whose prominence is characteristic
of the vowel rises too although through a much
smaller interval, a rise of one octave in the prime
tone being accompanied by a rise of only a semitone
or 8o in the characteristic partial.

Table IV taken from Barton’s Sound gives a rough
idea of the partials given by various instruments and
of their relative strengths.
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TABLE I

Helmholtz notation as used in the text

8ve
- = =
(S &=
= 17
< S v
8ve bassa loco
C, C ¢ ¢’ [ e cv

The letter denoting any particular note has the
same distinguishing mark as the C immediately below
it. Thus

sa
@1, S—r——

[ d e f g a b ¢ d &
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TABLE II
. Notes within
Interval FPatlono{e " a single octave
equency giving the interval
Octave 2:1 c:C
Major Sixth 5:3 A:C
B:D
Minor Sixth 8:5 ¢c:E
Fifth 3:2 G:
B:E
c:
Fourth 4:3 F:C
G:D
A:E
c: G
Major Third 5:4 E:C
A:F
! B:
|
- ' —
Minor Third 6:5 G:E
c: A
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TABLE 1IT
Notes of Scale .. C D E F G A B ¢
Frequency Ratios ... R | 3 % 4 3 ]
Frequency Latios expres»‘d
in whole numbers L.o24 27 30 32 36 40 45 48
Intervals between successive v 3 ¥ ¥ v v

notes expressed as ratios 1¢ 3 W g1y

v
b
Intervals expressed in cents 204 182 112 204 182 204 112

Simple Tutervals expressed im Cents

Octave ... 1200 Major Third 386
Major Sixth 884 Minor Third 316
Minor Sixth 814 Large Tone 204
Fifth 702 Small Tone 182

Fourth ... 498 Semitone 112
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APPENDIX

THE following short account of the logarithmic
method of measuring musical intervals is taken from
Professor Barton’s Tcat-Book of Sound.

“Let the frequencies of three notes, beginning at
the highest and proceeding in order of pitch be
L, M, and N. Also let the intervals be I, between
L and M, I, between M and N, and I between
L and N. Then if each interval be measured by
k times the logarithm of the ratio of the frequencies,
we have

1,——-klog1—’LI—=k(logL—logM) ........ (1),

I.lzklog%=lr(log M—-logN) ... (2),

1 =Iclox:~].}=k(loz:L —log N)... .....(3).
But by addition of (1) and (2)
s Ay — v \lll&’, Ad T IUB 4V j ......... (4),

so by (3) and (4)
I=0L+1,.................... (5).
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For I any convenient number could be chosen,
as (5) shows that the relation desired is independent
of it. But the late Mr A. J. Ellis (the translator of
Helmholtz’s Sensations of Tone) has adopted as the
unit for this logarithmic measure the cent, 1200 of
which make the octave. The name cent is used
because 100 cents make the semitone of those
instruments in which twelve equal semitones are
the intervals occurring in an octave. Hence the
clue to reduction of any intervals to these logarithmic
cents would be found in the following equations,
where 7 is the interval in cents between notes of
frequencies M and N :—

I=Flog X ., ),
1200=klog2 .....c..coeo.e. 7)
Whence by (6) +(7)
I=1200 08 M —log N,

log 2
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