NATIONAL COMMISSION ON AGRICULTURE 1976

RAINFALL AND CROPPING PATTERNS

GOVERNMENT OF INDIA
MINISTRY OF AGRICULTURE AND IRRIGATION
NEW DELHI

NATIONAL COMMISSION ON AGRICULTURE 1976

RAINFALL AND CROPPING PATTERNS

Volume I

ANDHRA PRADESH

सत्यमेव जयते

GOVERNMENT OF INDIA
MINISTRY OF AGRICULTURE AND IRRIGATION
NEW DELHI

RAINFALL AND CROPPING PATTERNS—STATE SERIES

Volume No.	State
I	ANDHRA PRADESH
п	ASSAM
111	BIHAR
IV	GUJARAT
V	HARYANA
VI	HIMACHAL PRADESH
VII	JAMMU & KASHMIR
VIII	KERALA
IX	MADHYA PRADESH
\mathbf{X}°	MAHARASHTRA
ΧI	orisa
XII	PUNJAB
xIII	RAJASTHAN
XIV	TAMIL NADU
XV	UTTAR PRADESH
XVI	WEST BENGAL

CONTENTS

SECTION	1												Page
1.	INTRODUCTION												1
2.	METHODOLOGY									,			1
	Rainfall Patterns												1
	Boundaries of Rainfall Zon	es		,									2
	Cropping Patterns .												3
	Relative Yield Index of Cro	ps											3
	Livestock Patterns .	•											3
	Soils			•					•				4
	Other Data												4
	Presentation of Information						•						4
3.	GENERAL FEATURES .												4
	Elevation					•	-					·	4
	Population												5
	Land Use									•			6
	Soils .			~ F	TE.	~							6
	Irrigation .		8			1						•	7
	Temperature			7									7
	Potential Evapotranspiration	1		SAR!		F.		•			,		8
	RAINFALL ZONES, THEIR C	D \triangle T	mini	CAND		TETA	OV F) A 71	? ው ኤነር				0
4.	Rainfall Zone I	KUI	PIIN	G ANL	, 1714	ESIC	I AU	Alli	CKINS	•	• • •	·	9
	Rainfall Zone II	•	•		9-1		•	•	•	•	•	•	1 0 11
	Rainfall Zone III	•	•	The same of		eger où	•	•	•	•	•	•	11
	Rainfall Zone IV	•	•	सन्द्रम	ল-গ	(1)	•	•	•	•	•	•	11
	Rainfall Zone V	•	•	•	•	•	•	•	•	•	•	•	12
	Rainfall Zone VI	•	•	•	•	•	•	•	•	•	•	•	12
	Rainfall Zone VII .	Ċ		·			•		•	•		•	13
	Rainfall Zone VIII .					·			•				13
	Rainfall Zone IX			•				,				•	14
	Rainfall Zone X						·				,	_	14
	Rainfall Zone XI												14
	Rainfall Zone XII						•		,		,		15
	Rainfall Zone XIII .								•	,			16
	Rainfall Zone XIV .	•					•				,		16
	Rainfall Zone XV .			•		•		•	,				17
	Rainfall Zone XVI .		,	•				•					13
				(i)								

SECTION												LAGE
	Rainfall Zone XVII .				•		•					19
	Rainfall Zone XVIII .			•		•						19
	Rainfall Zone XIX .	•									•	20
	Rainfall Zone XX .	•	•	, •	*				•			20
	Rainfall Zone XXI .								•			21
	Rainfall Zone XXII .								•	, .		21
	Rainfall Zone XXIII .											22
	Rainfall Zone XXIV .									•		22
	Rainfall Zone XXV .											23
	Rainfall Zone XXVI .									•		23
	Rainfall Zone XXVII .											24
	Rainfall Zone XXVIII .			•						٠,		25
	Rainfall Zone (Special I)	•										25
	Rainfall Zone (Special II)			•								25
	Rainfall Zone (Special III)) .										25
5. F	UTURE CROPPING PATT	ERNS-	-SON	иЕ О	BSER	VATI	IONS					26
J. 1	General				450							- 26
	Some observations pertain	ning to-	—And	lhra 1	Prade	sh					•	26
		- .	AN AN			St.						
APPENDIX 1.	Talukwise Land Use (1969	9-70) ai	nd Po	pulati	on Sta	atistic	s—An	dhra	Prade	sh		28
2.	Talukwise Livestock Popu		- 1	11 120	0.11.76							24
3.	Rainfall and Cropping Pa			[48] 3	25,176.74							44
3. 4.	Talukwise Arca Under Pri		467	NAME OF TAXABLE PARTY.	75-2574004	ĮΦ,				Anc	lhra	
4.	Pradesh			(1010								50
5.	Map-Rainfall Patterns-	-Andhr	a Pra	desh	जयते							57
6.	Map—Cropping Patterns-						•			,		59
7.	Map—Livestock Patterns										٠.	61

RAINFALL AND CROPPING PATTERNS ANDHRA PRADESH

INTRODUCTION

- The human population of the country is estimated to rise from the 1971 Census figure of 548 million to 935 million in 2000 AD. This rise calls for increased production. Land resources being limited emphasis has to be placed on increasing productivity per unit area. Temperature and other climatic conditions being favourable for crop production throughout the year over most parts of the country, it is possible to grow more than one crop in a year provided water, the most important input, is available. In some parts of the country, the rainy season is long enough to provide scope for double cropping. This potential is yet to be fully exploited. There is scope for increasing irrigation resources in the country, but our estimates show that the area under irrigation is not expected to be more than 42 per cent of the total cropped area even in 2000 AD as against 22 per cent in 1970-71. Therefore, judicious utilisation of direct rainfall and irrigation water, singly and in combination, will have to be thought of for increasing production.
- 1.2 Farming technology has so advanced that it is possible to increase crop yields even under rainfed conditions, but the choice of crops would have to depend upon the amount and distribution of the prevailing rainfall. Additionally, it will be necessary that the maximum possible quantity of rain water is conserved in ponds and pools situated either within the farm area or elsewhere, in soil profiles and underground storages so that the same could be readily used to save crops in times of water stress. Not only in rainfed farming but even under irrigated conditions, one will have to plan for the most economic and efficient use of water so as to derive maximum possible benefit from rainfall and reduce dependence on irriga-
- tion. This necessitates a close study of the existing cropping patterns vis-a-vis rainfall patterns aimed at determining the nature of changes needed in the former. The cropping patterns depend primarily on the soil and climatic factors but the evolution of a cropping pattern in course of time is the combind effect of soil, climate, food habits and requirements and economic factors. In the context of increasing production, it is necessary to examine the cropping patterns from a scientific angle and find out possible alternative patterns having higher potential. Accordingly, the Commission undertook a comprehensive study of the rainfall and cropping patterns of the taluk or tehsil as unit of area. It covered several country using other relevant factors such as orography, land use data, human and livestock populations, soil and climate, the object being to make, as far as possible an integrated assessment.
- 1.3 Chapter 14 on Rainfall and Cropping Patterns of the Commission's Report presents a consolidated account of the data collected together with analysis of their inter-relationships on all-India basis. In this analysis, the Commission has been greatly benefited by the discussions with the concerned officers of State Governments. It was realised that by condensing the vast amount to information collected from each State into the small space of a chapter, many important and peculiar features of individual States were likely to be missed and hence the data and analysis of each State have been presented in separate volumes. The manner of presentation is similar to Chapter 14. It has also been considered desirable to include in each State volume the methodology and suggestions for future cropping patterns, which are practically the same as given in Chapter 14.

2 METHODOLOGY

2.1 The chief features of the study are (a) use of taluk or tehsil as unit of area for all basic data and analysis; (b) introduction of coded numerical forms to express patterns of distribution of monthly rainfall throughout the year, crops and livestock; (c) inclusion of information on orography, temperature, evapotranspiration, railfall, soil, irrigation, land use, human and livestock populations and yield performance of crops, all of which influence in different ways and degrees the cropping patterns of a place and

(d) presentation of coded information on rainfall, crops and livestock on 1:1 million scale maps.

Rainfall Patterns

2.2 A major feature of Indian rainfall is that the southwest monsoon season (June to September) accounts for 70 to 95 per cent of the annual rainfall throughout the country except in the south east peninsula and Kashmir and adjoining hill areas. The

monsoon as well as the annual rainfall show large fluctuations from year to year but, as stated in Chapter 13 on Climate and Agriculture, there is no significant evidence of any trend or periodicity in either of them. Considered in relation to crop production, the total annual or seasonal rainfall does not have much significance and what is important is its distribution during the period of growth of different crops. A relevant question, therefore, is whether should be examined on a weekly, fortnightly or monthly basis. The coefficient of variation (CV) of monthly rainfall is as high as 40-50 per cent even in the rainiest month of July over most of the central, northern and eastern India. In the south excluding the west coast, CV is higher and varies from 60 to 100 per cent. The variability of weekly or fortnightly rainfall being still greater, makes the use of either of them undependable as indicators of rainfall distribution. For a macro-study like the present, monthly rainfall data which are more dependable and also the most convenient to handle have been used.

- 2.3 In order to relate crop production with rainall, certain norms have to be assumed depending on the duration of the crops and their water requirements. On the basis of available information and the fact that most crops mature in about 90 days, the following broad norms have been drawn up:
 - (i) Rainfall greater than 30cm per month (cm pm) for at least three consecutive months would be suitable for a crop like paddy whose water need is very high.
 - (ii) 20-30 cm pm for not less than three consecutive months would be suitable for crops whose water need is high but less than that of paddy, for example, maize and black gram.
 - (iii) 10-20 cm pm for at least three consecutive months would be suitable for crops requiring much less water, eg, bajra and small millets.
 - (iv) 5-10 cm pm for three consecutive months would be just sufficient for crops which have low water requirements eg, moth (P. aconitifolius) and ephemeral grasses.
 - (v) Rainfall less than 5 cm pm for three consecutive months is not of much significance for crop production.
- 2.4 For denoting the year's rainfall distribution using monthly totals, a convenient code in letter symbols with numerical subscripts explained below, has been evolved. The letters A to E in Table 1 indicate the ranges of monthly rainfall and the subscripts to these refer to the number of months having these ranges of rainfall, eg, A₂ indicates two months with rainfall greater than 30 cm pm. The ranges correspond to those stated in the preceding paragraph.

TABLE 1

Code for Rainfall Data

Symbol	Monthly rainfall cm pm	
A+-	Greater than 30	
В	20-30	
C	1020	
D*	510	
E*	Less than 5	

+An examination of monthly rainfall in the country shows that except for areas in the west coast and some hillstations in extreme north-east, normal monthly rainall seldom exceeds 40 cm.

In distributions containing ranges of rainfall covered by A or B termed briefly as A&B types amounts less than 10 cm are not so significant and their frequency is generally small. To reduce the number of combinations, D is omitted in A or B type distributions; instead E is used to denote less than 10 cm pm. Thus B_2E_2 would denote two months of 20-30 cm pm and two months less than 10 cm pm rainfall.

The southwest monsoon months of June to September being the principal rainy season dominate the rainfall distributions of the country. To indicate the season's importance, monthly rainfall distribution durning June to September is shown in brackets in the annual pattern. To the right of the bracket is the distribution for the post-monsoon months, namely, October to January and to the left that for the premonsoon months namely, February to May. In order to explain how such a coded rainfall distribution written in smybols with numerical subscripts has to be interpreted, a hypothetical example may be considered. D₁ E₈ (A₂ B₁ C₁) C₁ D₃, in which for each of the three periods, the symbols are in order of decreasing rainfall which is not necessarily the calendar sequence, can be explained as under:—

- (i) D₁ E₃ represents the period February to May in which one month's rainfall (usually May) is in the range of 5-10 cm and the remaining three months get less than 5 cm pm.
- (ii) A₂ B₁ C₁ represents the period June to September, in which two months (usually July and August) get more than 30 cm pm rainfall, one month (September) gets 20-30 cm and the remaining months, i.e., June gets 10-20 cm.
- (iii) C₁ D₃ represents the period October to January in which October gets 10-20 cm rainfall and the rest 5-10 cm pm.

Boundaries of Rainfall Zones

2.5 Since differences in monthly, seasonal and annual rainfall are not large within short distances, linear interpolation of rainfall data is permissible. Rainfall data being point measurements, isolines for the same or nearly the same type of distribution of monthly rainfall can, therefore, be drawn. These isolines may

not necessarily follow the boundaries of taluks which are taken to be unit of area in this study and hence for delineation of boundaries the following procedure has been adopted:—

- (i) Where variations are small, isolines follow the taluk boundaries;
- (ii) where variations are large, isolines delineate the zone boundaries; and
- (iii) any taluk, more than three quarters of which lies outside of a zone is not considered a part of that zone.
- 2.6 If an identical distribution is observed over two or more adjacent taluks a pattern is said to have evolved and the area covered by it is distinguished as a zone and indicated suitably by a Roman numeral. Rainfall patterns have been identified for the whole country using the methodology described above. The data used for the analysis are the monthly normals of rainfall (1901 to 1950)¹¹ and the patterns and zones are depicted on all-India map which forms part of Chapter 14 on Rainfall and Cropping Patterns of the Commission's Report.

Cropping Patterns

2.7 The basic data for the study of cropping patterns of the country are the areas under different crops in each of the taluks. A large number of crops are grown in a taluk but most of them occupy small areas, often less than one per cent of the total cropped areas of the taluk. With a view to limiting the number of crops constituting a pattern only those crops are considered which individually occupy 10 per cent or more of the gross cropped area of the taluk. In this process, several crops have to be excluded, even though they may be otherwise important. The minimum limit has been fixed at 70 per cent, so that the number of crops, which together cover at least 70 per cent of the gross cropped area, and in which none occupies less than 10 per cent, is not large. Trial computations have shown that in such distributions any crop occupying more than 10 per cent area is rarely omitted and the number of crops hardly exceeds five. When the same distribution holds good for two or more adjacent taluks, a pattern is obtained.

2.8 As in the case of railfall, percentage area coverage by crops is expressed by means of numerical subscripts affixed to crop symbols shown in Table 2. The list of crops given below is comprehensive and will hold good for all the States.

TABLE 2
Crop Symbols and Area Intervals

	Crop	Symbol
1	rice	Pd
2	wheat	w
3	jowar (kharif)	Jk
4	jowar (rabi)	Jr
5	bajra	В
6	maize	M
7	ragi	R
8	small millets	Mt

TABLE 2—Contd.

	1110202		
	Crop	Symbol	
9	barley	Ва	
10	oats	Oa	
11	gram	G	
12	pigeonpea (tur)	T	
13	pulses other than pigeonpea a gram	nd Pu	
14	groundnut	Gn	
15	oilseeds other than groundnut	О	
16	cotton	С	
17	jute	Ju	
18	other fibres	Fb	
19	sugarcane	S	
20	potato	Pt	
21	vegetables	V	
22	fruits	Fr	
23	tapioca	Та	
24	plantations	L	
25	fodder	F	
26	chillies	Ch	
27	tobacco	To	
1800 -	ea interval (per cent)	Subscript	
124	70 or more	1	
	50-70	2	
	30—50	3	
11 17			

The crop code contains the crop symbol and the appropriate subscript. In writing crop distribution, the first crop has always the highest area but the rest may not necessarily follow the order of decreasing areas. For example, crop distribution, C_3 Jr₄ Mt₄, means that cotton area is 30-50 per cent, and jowar rabi and millets each occupies 10-30 per cent of the gross cropped area, the total being 70 per cent or more. Two or more taluks having the same distribution of crops constitute a pattern. Cropping patterns so derived have been indicated on maps of 1:1 million size.

Relative Yield Index of Crops

2.9 Besides the absolute figures, the Yield of a crop has also been expressed as per cent of all-India average which is called Relative Yield Index (RYI). Relative Yield Index Values have been computed for the principal crops on the basis of (1968-69 to 1970-71) data available in the records of the Directorate of Economics and Statistics, Ministry of Agriculture and Irrigation.

Livestock Patterns

10--30

less than 10

2.10 The livestock patterns are relevant only insofar as these are related to production of fodder and feeds. As taluk wise data were not available for the livestock Census, 1972, those of 1966 Census as published by the States have been used. The animals considered

¹ Memoirs of India Meteorological Department, Volume XXXI, Part 3, 1962,

for livestock analysis are shown in Table 3 together with their symbols.

TABLE 3
Livestock Symbols

Category	Symbol	
Cattle male (over 3 years)	Cm	
female (over 3 years)	Cf	
young stock (under 3 years)	Су	
buffaloes: male (over 3 years)	Bm	
female (over 3 years)	Bf	
young stock (under 3 years)	Ву	
sheep	S	
goats	G	
horses, mules and ponies	Н	
donkeys	D	400
camels	Ca	(C)
pigs	P	(E18)

The livestock patterns are expressed in coded form in the same manner as the cropping patterns.

Soils

2.11 Soil data on a taluk basis are not available for all the areas of the country. As such, soils have been discussed in a general manner using the traditional nomenclature in describing their characteristics.

Other Data

2.12 The sources of other data featuring in the

study are given below:

item	source
taluk area	States' Census Reports 1971 or from the data furnished by the States in their land-use returns.
orography	maps of the Survey of India and Natonal Atlas Organisation
temperature	Climatological Tables of Observatories in India, India Meteorological Departments, 1931-1960 normals
evapotranspiration	scientific Report No. 136 of the India Meterological Department, 1971
human population irrigation and land use	Census of India, 1971
statistics	basic data pertaining to land utili sation statistics obtained from the States and refer mostly to 1969-70

Presentation of Information

2.13 The tables required for following the text are given in the text itself at appropriate places, whereas the basic data are appended as follows:

Appendix 1	Talukwise Land Use (1969-70) and Population Statistics, (arranged according to State rainfall zones)
APPENDIX 2	Talukwise Livestock Population— 1966 (arranged according to State rainfall zones)
APPENDIX 3	Zonewise Information on Rainfall, Rainy days and Cropping Patterns
Appendix 4	Zonewise area under Principal Crops (per cent of Gross Cropped Area)

2.14 Rainfall, cropping and livestock patterns of each State are indicated on maps in the 1:1 million scale and given in Appendices 5, 6 and 7 respectively. In the case of rainfall patterns, the zonal numbers in State maps have been given in Roman numerals and their all-India equivalents as used in Chapter 14 of the Commission's Report have been show in three digit Arabic numerals within brackets.

3 GENERAL FEATURES

3.1 The State has an area of 276,754 sq km and consists of 21 districts with an average area of 13,179 sq km. Frequency distribution of district areas is shown below:

range of areas in 6-8 8-10 10-12 12-14 14-16 16-18 18-20 (000sq km)
no. of districts 3 3 3 3 4 2 3

3.2 The total number of taluks including a few independent sub-taluks is 195 and the average area of a taluk is about 1400 sq km. The areas of individual taluks vary from 225 to 3000 sq km. About 30 per cent of the taluks have areas of less than 1000 sq km and most of these are in coastal districts from

Srikakulam to krishna. Nine of 10 taluks with less than 500 sq km in area are in the coastal districts, West Godavari (7), Srikakulam (1) and krishna (1). Fifty-five per cent of the taluks have areas between 1000 and 2000 sq km,

Elevation

3.3 The State can be divided into three regions—coastal area, Rayalaseema and Telangana regions for discussion on orography. The coastal belt is small in width with elevations ranging between sea-level and and 150-200 masl (metres above sea-level). The rise is rapid in the interior and most of it is between 200 to 800 masl. At the western and the northern

boundary of Srikakulam, Visakhapatnam and East Godavari districts, elevations vary between 1200 and 1800 masl. The Rayalascema area is plateau with elevations between 150 and 900 masl in general except in Chittoor district. Excluding a few eastern taluks, elevations in Chittor district range between 600 and 1200 masl. The highest elevations are between 1000 and 1200 masl in Punganur, Chandragiri, Madanapalle and Vayalpad taluks of Chittoor district and Rajampet of Cuddapah district. Telangana region is also an elevated plateau. In this area, the minimum elevation is 150 masl and maximum 650 masl. Considering the State as a whole, the maximum and minimum elevations over the area east of longitude 79°E range between 300 and 100 masl. north-western belt from Yellavaram (East Godavari district) to Parvathipuram and Pathapatnam has the highest elevations between 1200 and 1800 mast.

Population

3.4 The total population of the State is 43.5 million with an average population density of 157 per sq km.

Only two districts of Hyderabad and West Godavari have population density exceeding 300. Adilabad has the lowest population density of 80 and the remaining districts have population density ranging between 100 and 270.

3.5 About 40 per cent of the taluks of the coastal districts have population density exceeding 300 and 50 per cent of the taluks of Ongole and Nellore districts to the west have low population density less than 100. In Rayalaseema region the taluk with the highest population density is Chittor being 268 and except for two all the rest have population density of less than 200. In Telengana region, Hyderabad (urban) has the highest population density of 6929. Forty per cent of the taluks have a population density ranging between 100 and 150 and about a fourth of the taluks have a population density of less than 100. The frequency distribution of population density of taluks together with district density is given in table 4.

TABLE 4

Density of Population (per Sq KM.)

			t Percentage of rural population												
_	Taluks	density		L-100	101 150	151 200	201 300	301 500	501 750	751 1000	1001 1500	71500			
1	2	3	4	5	6	37	8	9	10	11	12	13			
1 Srikakulam	11	268	89	(2.55)	(0-1)	2	3	6			_				
2 Visakhapatnam	11	203	78	2		9"	4	4		1	-				
3 East Godavari	14	285	81	2	रमेव ज	à	2	6	4						
4 West Godavari	8	305	82	1	रमेव ज	[2]	2	2	2			-			
5 Krishna	10	283	73		_	3	3	3	1			_			
6 Guntur	8	251	75	1	1	1	1	2	2						
7 Ongole	9	112	89	4	2	1	1	1							
8 Nellore	9	124	84	4	3		2								
9 Chittoor	11	151	87		6	4	1								
10 Cuddapah	9	103	86	5	2	2	-		-						
11 Anantapur	11	111	82	4	5	2	-								
12 Kurnool	11	113	80	5	4	1	1					_			
13 Mahbubnagar	12	105	91	3	8	1		-							
14 Hyderabad	9	360	34	_	6	1	1					ı			
15 Medak	8	154	91		3	5					_				
16 Nizamabad	7	163	84		3	2	2								
17 Adilabad	10	80	84	8	2			,							
18 Karimnagar	7	165	89	1		3	3					_			
19 Warangal	6	146	87	1	2	2		1							
20 Khammam	7	87	86	5	1		1								
21 Nalgonda	7	128	93	1	4	2			~-	-					
Total	195	157	81	47	53	32	27	25	9	1		1			
Coastal Andhra	80			14	7	7	18	24	9	1					
Rayalaseema	42		***************************************	14	17	9	2								
Telangana	73			19	29	16	7	1				1			

Land Use

3.6 Forests account for 24 per cent of the geographical area, land put to non-agricultural uses 15 per cent and fallow lands 9 per cent. The net sown

area is 42 per cent of geographical area and is nearly the same in each of the three regions. Land use percentages to the total geographical area is indicated in table 5.

TABLE 5

Land Use Statistics (Percent of total reporting area)

District	Forests	Barren & un- cultur- able land	Land put to non agri. uses	Cultur- able waste	Permanent pastures & other grazing land	under s mise, trees,	ı	Other fallow lands	Not area sown	Area sown more than once	Col. II an per cent of col. 10
1 Srikakulam	16	16	7	55	2		0 ·4	3	50	9	18
2 Vishakhapatnam	34	7	15	4	22h	2	1	2	34	6	18
3 East Godavari	27	7	8	10	3	2	3	2	38	14	37
4 West Godavari	12	8	12	6	3	1	0.3	4	55	17	31
5 Krishna	9	7	- 11	6	4	2	2	3	58	20	33
6 Guntur	15	7	9	4	4	3	1	1	58	20	34
7 Ongole	26	6	6	5	6	2	5	6	38	4	10
8 Nellore	19	9	13	9	12	2	2	6	27	5	20
9 Kurnool	21	6	5 8	5	0.3	0 · 1	3	4	57	6	10
10 Anantapur	10	10	8	8	120	1	12	6	44	1	2
11 Cuddapah	32	5	9	8	- 4	1	3	2	30	2	7
12 Chittoor	30	12	9	5	4FI 3	2	5	4	30	4	13
13 Hyderabad	9	7	10	2	9	2	11	4	47	ŧ	2
14 Nizamabad	22	9	7	3	6	1	8	4	40	3	7
15 Medak	25	6	5	3	5	2	2	3	50	1	2
16 Mahbubnagar	16	5	5	2	4	1	11	2	54	2	4
17 Nalgonda	6	7	6	3	7	I	20	6	45	13	3
18 Warangal	22	6	7	1	7	ł	14	2	39	8	20
19 Khammam	53	6	4	2	4	1	38	1	28	3	11
20 Karimnagar	21	8	7	2	5	1	14	2	40	4	10
21 Adilabad	44	7	4	2	3	1	3	2	36	1	3

3.7 The percentage of area under forests to total reporting area in the whole State is 24 per cent, the area varying from 21 per cent in Rayalaseema to 26 per cent in Telengana region. This area under forests in individual districts varies considerably from 6 per cent in Nalgonda to 53 per cent in Khammam. There are 9 taluks in the State with more than 70 per cent of geographical area under forests, and 10 per cent of the taluks have more than 50 per cent of geographical area under forests.

3.8 Barren lands are 10 to 12 per cent in Anantapur and Chittor districts, 16 per cent in Srikakulam and 5 to 9 per cent elsewhere. Current fallow areas are

significant in six districts covering 11 to 20 per cent of geographical area. Other fallow lands are generally less than 5 per cent. Net sown area varies between 27 and 58 per cent and area sown more than once as per cent of net sown area is about a third in the coastal districts of East Godavari, West Godavari, Krishna and Guntur.

Soils

3.9 In Rayalaseema region the main soil types are red sandy and mixed red and black. In Kurnool dis-

trict, mixed red and black soils predominate whereas pockets of deep black soils are present in Cuddapah
and Kurnool districts. In telengana soils are red
sandy and deep/medium black. A belt of red loamy
soils runs across most of the northern boundary from
Asifabad taluk. Medium black soils belt is present
along the western boundary. A significant belt of
deep black soils is an important feature of Khammam,
Warangal, Karimnagar and Adilabad districts. The
coastal taluks have coastal or deltaic alluvium. Pockets
of coastal sand are also present. Deltaic alluvium is
the main soil in East Godavari. In the interior of the
coastal districts, red sandy soils together with mixed
red and black or deep black soils are present. Laterite
soils are present only in small pockets.

Irrigation

3.10 The total area irrigated in 1969-70 was 32 million ha which accounts for 28 per cent of the net sown area. In Rayalaseema and Telangana the percentage of net area irrigated is 17 per cent as com-

pared to 50 per cent in coastal Andhra. The district with maximum area under irrigation is West Godavari with 74 per cent. The percentage area irrigated is quite low in some of the coastal taluks such as Kaikalur and Bheemavaram. Tanuku and Bandar taluks are almost completely irrigated. Outside coastal Andhra area, the number of taluks with 50 per cent or more area under irrigation is small being confined to a few taluks in Chittoor and Cuddapah districts. For the State as a whole nearly 50 per cent of the area irrigated is by canals, the percentage being 60 for coastal Andhra. Fifty per cent of the area in Telengana is irrigated by tanks. Wells form a significant source in Rayalaseema.

Temperature

3.11 Normals of daily maximum, minimum and mean temperatures for 19 stations in the State are given in Tables 6, 7 and 8. During the rainy months of July to September, temperature variations are small being less than a degree C.

TABLE 6
Normals of Daily Maximum Temperature (°C)

Station	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Annua
1 Kalingapatnam	27 ·4	29 ·6	31 •9	33 ·1	33 •9	33 ·6	31 •6	31 .9	31 ·8	30 · 7	28 · 5	26 ·8	30 .9
2 Vizag	27 · 7	29 •2	31 - 2	32 ·8	34 •0	33 •7	31 •7	32 •0	31 •6	30 ∙9	29 ·3	27 • 7	31 .0
3 Nidadavolu	29 ·8	32 ·1	34 • 2	35 •9	38 •3	36 •1	31 ⋅0	30 • 7	31 •4	30 ⋅8	30 ·3	29 • 5	32 · 5
4 Rentachintala	31 ·2	34 · 1	37 · 5	39 •6	41 .5	37 -8	34 ·1	33 •9	33 •4	32 •9	30 ⋅8	29 .9	34 •7
5 Vijayawada	30 ·1	32 .9	35 •6	37 ⋅8	39 -7	37 • 5	32 .6	32 •1	32 •4	31 •5	30 · 7	29 •7	33 •6
6 Masulipatnam	27 ·8	29 · 6	31 -9	34 ∙0	36 • 5	36 ⋅4	32 •6	32 •2	31 ·8	30 •8	29 •0	27 ·8	31 •7
7 Ongole	28 -7	30 •6	32 · 3	34 •4	38 •2	37 •4	34 ·1	34 ·1	33 •7	31 •7	29 ·8	28 ·6	32 ·8
8 Nellore	29 ·8	32 •0	34 · 5	37 ·1	39 •6	38 • 2	35 ⋅6	35 - 2	34 · 7	32 · 5	29 ·6	28 .7	34 •0
9 Ramagundam	31 ·1	34 · 1	37 · 7	40 · 3	42 ·8	38 •6	32 ·1	31 ·3	32 •0	32 · 5	30 · 7	30 •2	34 • 5
10 Nizamabad	30 •0	32 .6	36 ⋅4	39 •2	41 · 5	36 ⋅2	30 · 5	30 ·1	30 · 6	31 ·5	29 · 7	28 •9	33 •1
11 Hanamkonda	29 •9	32 -4	35 ∙9	38 •3	40 ·8	36 ⋅5	31 •2	30 •9	31 -2	31 •7	29 ·9	29 •0	33 ·1
12 Bhadrachalam	30 ·9	34 •0	37 • 2	39 · 3	40 ⋅8	37 -6	31 -9	31 ·3	32 · 2	32 •0	30 · 5	29 · 7	34 ⋅0
13 Begumpet	28 ·6	31 •2	34 ·8	36 ∙9	38 · 7	34 ·1	29 ·8	29 · 5	29 · 7	30 ·3	28 ·7	27 ·8	31 · 7
14 Khammam	31 ·0	33 •6	36 ·8	39 ⋅0	41 · 3	37 ⋅6	32.6	32 • 2	32.6	32.5	30 · 6	30 ·1	34 • 2
15 Mahbubnagar	29 -2	32 · 3	35.6	37 · 5	38 •4	33 ⋅8	29 ·	29 · 5	30 · 3	30 ·4	29 •2	28 -4	32 0
16 Kurnool	31 · 3	34 · 3	37 ⋅5	39 •3	40 ⋅0	35.6	32.5	32 ·1	31 •9	32 •4	31 ⋅0	30 · 3	34 ⋅0
17 Anantapur	30 ·4	33 •4	36 ⋅8	38 •4	38 ·1	34 · 7	32 • 4	32 •4	32 · 5	31 •4	30 ∙0	29 1	33 •3
18 Cuddapah	30 ·9	34 · 3	37 · 7	39 ·8	40 · 3	37 ⋅0	34 · 5	34 •0	33 •3	32 · 5	30 •4	29 · 5	34 • 5
19 Arogyavaram	27 ·1	30 ·1	33 ·2	34 -7	34 · 7	32 ·0	30 •0	30 ⋅0	29 ·8	28 · 3	26 · 5	34.5	30.2

TABLE 7

Normals of Daily Minimum Temperature (°C)

Station	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Annual
1 Kalingapatnam	17 · 7	19 ·8	22 ·8	25 · 7	27 •4	27 ·1	25 ·9	26.0	25 -8	24 · 5	20 ·4	17 .6	23 •4
2 Vizag	17 -5	19 • 3	22 .6	25 •9	27 -8	27 -4	26.0	26.0	25 .6	24 • 5	21 -2	18 - 3	23 • 5
3 Nidadavolu	17 -8	19 · 3	22 · 3	25 · 2	26 -9	26 -3	24 • 9	24 • 9	24 .9	23 .8	20 .6	18 -2	22 • 9
4 Rantachintala	17 · 3	19 .9	23.0	26 · 1	28 · 6	27 .8	25 · 3	25.6	24 .8	23 -2	19 · 6	16.8	23 -2
5 Vijayawada	19 -1	20.0	22 .3	25.6	27 .7	27 · 3	25 -3	25 · 1	25 - 2	24 · 2	21 -1	19 · 1	23 -5
6 Masulipatnam	19 -4	20 .8	22.9	25 .9	28 .0	27 •4	25 - 7	25 .8	25 .7	24 .9	22 · 1	19 -8	24 .0
7 Ongole	19 -7	20 .9	23 -3	26.0	28.0	28 •4	26.5	26 · 3	25.8	24 .7	21 .8	19 .9	24 · 3
8 Nellore	20.0	21 -1	23 -1	25 · 7	27 ·8	28 • 2	26 · 7	25 .5	26 .0	24 . 7	22 · 3	20 .4	24 -4
9 Ramagundam	16.1	18 ·8	22 - 7	26 -9	29 .7	28 -2	24 · 7	24 -4	24 -4	22.8	17 .5	15.0	22 · 6
10 Nizamabad	15.3	17.5	21.0	24 ·8	27 - 7	25 .4	23 -2	23 -0	22 .7	20.6	16 -2	13 .8	20 -9
11 Hanamkonda	17 · 2	19.2	22 -2	25 - 3	28 ·1	26 .7	24 •4	24 . 2	23 -9	22 .2	18 -4	16.1	22 · 3
12 Bhadrachalam	16.7	19.0	22 .8	25 -7	28.0	27 · 5	24 .9	24 ·6	24 -4	23.0	18 .2	15 .7	22 .5
13 Begumpet	14.6	16.7	20.0	23 .7	26 -2	24 - 1	22 · 3	22 ·1	21 .6	19 .8	16.0	13 -4	20.0
14 Khammam	£7·6	20.0	23 -1	25 .9	28 1	27 · 2	24 .9	24 · 7	24 .4	22 .9	19-1	16.7	22 -9
15 Mahbubnagar	16.4	17.9	21 ·2	24 · 5	$26 \cdot 2$	24.0	22 .5	22 .2	22 ·1	21 · 3	18.1	16.6	21 ·1
16 Kurnool	17.0	19 - 3	22 .5	26.0	27 .2	25.0	23 ·8	23 .5	23 · 3	22 -4	19 · 2	16.6	22 - 2
17 Anantapur	17 · 3	18.6	21 .6	25 .7	25 .8	24 .7	23 .7	23 - 5	23 1	22 · 5	19 -4	17 -2	21 -9
18 Cuddapah	19 -2	21.0	24.0	27 •4	28 .7	26.9	25 · 6	25 -4	25.0	23 -9	21 -3	19 ·1	24 -0
19 Arogyavaram	15 · 3	16 · 7	19 ·1	22 ·0	23 -5	22 · 7	21 ·7	21 ·7	21 -2	20 ·1	17 ·6	15 · 5	19 ·8

TABLE 8

Normals of Daily Mean Temperature (°C)

Station	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Annual
1 Kalingapatanam	22.6	24 · 7	27 · 3	29 ·4	30 -7	30 -4	28 .8	29 ·0	28 ·8	27 · 6	24 · 5	22 •2	27 ·2
2 Vizag	22 .6	$24 \cdot 3$	26 .9	29 •4	30 •9	30.6	28 .9	29 .0	28 .6	27 • 7	25 · 3	23 .0	27 •3
3 Nidadavolu	23 -8	25 .7	28 · 3	30 · 6	32 .6	31 -2	- 28 ·0	27 -8	28 · 2	27 · 3	25 · 4	23 .9	27 .7
Rantachintala	24 · 3	27 -0	30 · 3	32 .9	35 ·1	32 .8	29 .7	29 ·8	29 -1	28 · 1	25 - 2	23 •4	29 •0
5 Vijayawada	24 .6	26 · 5	29 ·0	31 -7	33 · 7	32 · 4	29 ·0	28 •6	28 · 0	27 ·9	25 -9	24 •4	28 •6
6 Masulipatnam	23 .6	25 .2	27 .4	30 ⋅0	32 .3	32.0	29 · 2	29 .0	28 ·8	27 • 9	25 · 6	23 .8	27 • 9
7 Ongole	29 - 2	25 .8	27 .8	30 -2	33 -1	32 .9	30 · 3	30 · 2	29 ·8	28 -2	25 ·8	24 · 3	28 · 6
8 Nellore	24 • 9	26 · 6	28 ·8	31 ·4	$33 \cdot 7$	33 •2	31 .2	30 -9	30 · 4	28 .6	26 .0	24 .6	29 ·2
9 Ramagundam	23 .6	26 • 9	30 · 2	30 •6	36 ⋅3	33 •4	28 ·4	27 ·9	28 · 2	27 · 7	24 · 1	22 · 6	28 -6
10 Nizamabad	22 .7	25 -1	$28 \cdot 7$	32.0	34 ⋅6	30 ·8	26 • 9	26 · 6	26 · 7	26 · 1	23 .0	21 ·4	27 .0
11 Hanamkonda	23 -6	25 .8	29 ·1	31 .8	24 - 5	31 .6	27 ·8	27 .6	27 .6	27 •0	24 · 2	22.6	27 • 7
12 Bhadrachalam	23 .8	26 · 5	30 · 0	32 . 5	34 • 4	32 · 6	28 ·4	28.0	28 · 3	27 · 5	24 ·4	22 .7	28 · 3
13 Begumpet	21 .6	24 .0	27 •4	30 · 3	32.5	29 ·1	26 ·1	25 · 3	25 · 7	25 · 1	22 · 4	20 .6	25 -9
14 Khammam	24 • 3	26.8	30.0	32 · 5	34 · 7	32 .4	38 ⋅8	28 · 5	28 · 5	27 - 7	24 .9	23 -4	28 .6
15 Mahbubnagar	22 .8	25 · 1	28 •4	31 .0	32.3	28 .9	26 ·2	25.9	26.2	25.9	23 · 7	22 . 5	26.6
16 Kurnool	24 · 2	26 ·8	30.0	32 .7	33 ⋅6	30 · 3	28 -2	27 .8	27 .6	27 •4	25 ·1	23 .5	28 -1
17 Anantapur	23 .9	26.0	29 · 2	32 · 1	32 -0	29 ·7	28 · 1	28 .0	27 ·8	27.0	24 .7	23 •2	27 .6
18 Cuddapah	25 -1	27 .7	30 .9	33 · 6	34 ·5	32.0	30 · 1	29 -7	29 -2	28 · 2	25.9	24 · 3	29 ·3
19 Arogyavaram	21 •2	23 •4	26 ·2	28 •4	29 ·1	27 ·4	25 -9	25 .9	25 · 5	24 · 2	22 · I	20 · 5	25 .0

Potential Evapotranspiration

3.12 In Table 9, potential evapotranspiration (PE) values are given for 20 stations in the State. The highest values of PE are over Rayalaseema area and are about 180 cm annually. In Telengana, annual PE values are between 160 to 170 cm. Annual PE of coastal stations is about 150 cm rising in the interior to 170-180 cm

3.13 Moisture Index has been computed using Penman's formula and Thornthwaite's approach. The values are negative. These range numerically between 30 and 55 in the coastal areas and Telangana and 55 to 70 in Rayalaseema. Most of the State comes under the semi arid zone but for Anantapur and Kurnool these values are —70 and —63 respectively, and these areas could be regarded as arid.

TABLE 9

Normal Monthly and Annual Potential Evapotranspiration (PE) (mm)

Station	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct.	Nov	Dec	Annual
<u> </u>					C	oastal Ar	ndhra Pra	ıdesh					
Kalingapatnam	101 -6	113 ·0	156 .0	164 · 5	173 -5	143 ·4	127 - 7	124 · 3	114 ·1	116 · 2	106 · 5	99 •0	1540 · 1
Visakhapatnam	95 - 2	109 · 3	154 · 7	162 ·8	166 •2	128 - 3	118 -4	120 .0	110.0	116.3	105 · 7	94.4	1481.8
Kakinada	111 -9	123 -4	167 · 7	176 · 3	194 ·0	169 ·0	136.0	137 ·2	124 · 5	124 •9	116 ·1	107 -9	1689 ·5
Nidadavolu	106 · 1	116 -4	149 ·7	151 -1	162 · 3	150 -2	114 · 3	109 ·8	105 •4	100 ·2	101 •9	98 •9	1467 · C
Rentachintala	110.9	131.8	184.5	195 •8	214.0	187.5	151.9	150.8	127.1	120.5	101 ·8	98.00	1775.1
Gannavarm	125.1	136.3	181.3	197 -1	227 .0	198 · 7	147.5	138 · 5	126 - 7	120 -8	121 -2	115 -9	1836.7
Masulipatam	111 -7	120 /8	161-9	177 -0	205 ·0	181 ·4	144.0	140 · 3	124 · 6	121 -3	109 -2	10€ •5	1704 -
Ongole	110 -1	124.0	162 -9	172 -0	193 • 7	171 -0	139 -7	146.1	130 0	116.6	107.0	101 -4	1674
Nellore	110 · 7	126 - 4	172 - 5	184 - 3	197-0	169 · 5	152.2	152.9	142 -1	122 -2	99-2	98 •8	1728 -3
						Telar	igana						
Rangundam	107 -8	128 •4	178 - 9	199 •2	224 · 3	183 - 5	124 · 4	117 -2	115.3	123 - 2	104 -4	92 -5	1699
Nizamabad.	98 · 8	115.6	157 -9	176 • 6	201 ·8	168 •0	126 · 6	124 - 3	114 -9	120 -9	97 -9	87 (1591 -
Hanamkonda	113.3	134.6	184.0	204 - 8	233 •5	185 · 7	136 · 7	134 • 9	123 ·6	131 -8	106 · 5	97 •	178 7 ·
Bhadrachalam	106 - 5	125 -9	176 · 3	191 -8	205 •0	165 · 3	116.5	188 • 9	105 ·8	108 •9	99 ·6	91 ·5	1602.
Hyderabad	109 ·8	129 · 5	181 - 5	197 -8	219-9	196 • 4	140 · 4	135 -0	119 · 3	128 · 6	104 ·1	98 · 6	1756 ⋅8
Khammam	111 -8	131 -4	179 · 7	19 -0	211 -0	168 · 7	129 -0	122 ·8	115 -1	115 · 6	102 •0	97.9	1676 •
Mahbubnagar	119 -5	133 - 1	176.8	183 -1	198 -0	157 - 5	123 -9	119 ·1	116.7	120 -5	116.8	110 · 5	1675 -9
					Ra	yalaseem	a						
Kurnool .	117 · 6	134 -8	180 ·8	194 · 7	221 -4	189 ·8	161 -4	154.6	133 -5	125 - 7	108 -3	104 -1	1827 -
Anantapur	131 -0	142.6	190 •4	196.7	199 •0	178 · 5	160 -9	558 -1	142 · 7	124 · 2	117 -8	114 -5	1857 -
Cuddapah	131 - 1	156.0	208 -8	209 · 5	205 -1	167 -1	148 -0	143 - 9	131 -7	124.0	105 ·8	103 •0	1834
Arogyavaram	102 • 6	122 -4	168 -8	162 · 4	167 · 5	149 - 5	137-0	139 ·1	125 -1	101 -4	91 ·1	88 -7	1556 -2

सन्धमेव जयते

4 RAINFALL ZONES, THEIR CROPPING AND LIVESTOCK PATTERNS

Three talk are shows below to	State is divided into 28 uks which could not be gron as special I to II. These gether with the number of to them and their total approx	e are indicated aluks included in	i V Vi	2 $E_4(C_1D_3)D_1E_3$ $E_4(C_1D_3)D_2E_2$	3 (7014) 2 (3062)
			VII	$\mathrm{E}_4(\mathrm{C}_1\mathrm{D}_3)\mathrm{C}_2\mathrm{E}_2$	2 (5545)
Rainfall	Rainfall pattern	No. of taluks with	VIII	$E_4(C_1D_3)A_1B_1C_1E_1$	(4066)
			IX	$E_4(C_2D_2)D_2E_2$	(3237)
		sq km	x	$\mathrm{E}_4(\mathrm{C}_2\mathrm{D}_2)\mathrm{C}_2\mathrm{E}_2$	(3536)
I	$E_4(D_3E_1)B_2C_1E_1$	5 (6804)	ΧI	$\mathrm{E}_4(\mathrm{C}_3\mathrm{D}_1)\mathrm{D}_1\mathrm{E}_3$	37 (56821)
11	$E_4(C_1D_2E_1)C_2E_2$	5 (10432)	XII	$E_4(C_3D_1)C_1D_1E_2$	(5686)
Ш	$E_4(C_1E_2E_1)B_1C_1E_2$	(3419)	XIII	$E_4(C_3D_1)C_2E_2$	(3918
IV	$E_4(C_1D_2E_1)B_2E_2$	3 (4724)	XIV	$\mathrm{E}_4(\mathrm{C}_4)\mathrm{C}_1\mathrm{D}_1\mathrm{E}_2$	8 (6934)

Rainfall	Rainfall pattern	No, of taluks with their total area in sq km
XV	$E_4(C_4)B_1C_1E_2$	10 (6301)
XVI	$E_4(B_1C_3)D_1E_3$	23 (35558)
IIVX	$E_{4}(B_{1}C_{3})C_{1}D_{1}E_{2}$	8 (7941)
XVIII	$E_4(B_2C_2)D_1E_3$	8 (16488)
XIX	$E_4(B_3C_1)D_1E_3$	5 (4936)
xx	$\mathbb{E}_4(A_1B_1C_2)D_1E_3$	8 (12705)
XXI	$E_4(A_2B_1C_1)D_1E_3$	(4000)
XXII	$D_1 E_3 (C_1 D_4 E_2) D_1 E_3$	3 (4862)
XXIII	$D_{1}E_{3}(C_{1}D_{2}E_{1})C_{1}D_{1}E_{2}$	(11261)
XXIV	$D_1E_3(C_1D_3)C_2E_2$	(7008)
XXV	$D_1E_3(C_2D_2)C_2D_1E_1$	(4790) (4790)
XXVI	$D_1E_3(C_4)C_1D_1E_2$	(1720) (17225)
XXVII	$D_2E_2(B_1C_3)C_1D_1E_2$	(3719)
XXVIII	$D_2E_2(B_3C_1)C_1D_1E_2$	(3719) 4 (6849)
Special L	$E_4(A_1B_1C_2)C_1D_1E_2$	(1616)
Special II	$E_4(A_2B_2)D_1E_3$	(3105)
Special III	$D_1E_3(C_2D_2)C_1D_1E_2$	(3103) 1 (756)

Rainfall Zone I— E_4 (D_3 E_1) B_2 C_1 E_1

4.2 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd_1	Nellore	,,
$Pd_2\ Jr_4/B_4$	Gudur Venkatagiri	*,
Pd ₃ Jr ₃ Pu ₄ /Mt ₄	Atmakur	,,
Jr ₃ Pu ₄ Pd ₄	Rapur	• •

- 4.3 The total area of the zone is 6,804 sq km. The areas of taluks vary between 1,100 and 1,700 sq km. The population density is not high. Nellore has an average density of 278 per sq. km. Rapur and Atmakur have a population density of less than 100.
- 4.4 Nellore and Gudur taluks are practically at sea level while Venkatagiri has an elevation of 1100 masl. The elevations in Rapur and Atmakur vary between 140 and 550 masl.
- 4.5 Forests account for about 40 per cent of the geographical area in Rapur and Venkatagiri taluks and land not available for cultivation is between 15 to

- 30 per cent. Cultivable waste is 10-15 per cent in Rapur and Atmakur taluks and negligible elsewhere. Pasture lands in this zone occupy 10 to 25 per cent of area. The sown area is only 17 per cent in Venkatagiri and in the rest of the zone it ranges from 25 to 40 per cent.
- 4.6 Ninetyone per cent of area in Nellore is irrigated and 75 to 80 per cent in Gudur and Venkatagiri taluks whereas it is only 40 per cent in Atmakur and 25 per cent in Rapur. Nellore and Gudur have deltaic or coastal alluvium. Red Sandy and mixed red and black soils prevail elsewhere.
- 4.7 The average rainfall of the zone is about 100 cm. in 40-50 rainy days. November is the month of maximum rainfall and October and November together account for 50 per cent of the annual rainfall. During the months of June to September rainfall is only 5-10 cm pm. or less. October and November get good rainfall of 20-30 cm pm and in December it is only 10-20 cm.
- 4.8 Paddy is the dominant crop of the zone occupying 90 per cent of cropped area in Nellore and about 60 per cent each in Gudur and Venkatagiri taluks. In the remaining two taluks, Jowar (rabi) is more important with 30 to 45 per cent area while paddy covers only 15 to 30 per cent area.
- 4.9 Yield data are available for the district as a whole, and these are given in Table 10. Rice yields are low considering that the crop is irrigated. The yields of jowar kharif and rabi and small millets are much lower than all-India. Yield of bajra is twice of all-India but the area is not large.
- 4.10 Sheep generally dominate among the livestock except in Nellore and Gudur where cattle are more important. In Nellore, the livestock pattern is cm₄ Cf₄ Cy₄ Bf₄ G₄/By₄ and Gudur based on neighbourhood data also, it is S₄ G₄ Cm₄ Cy₄ Bf₄. In the rest of the zone, livestock pattern is S₄ G₄ Cf₄ Cm₄.

 $\begin{tabular}{ll} Table & 10 \\ Area and Relative Yield Index values of Crops in Zone I \\ \end{tabular}$

Crop		Area ('000 ha)	R Y I*
rice	winter	114	107
	summer	83	64
	total	197	101
jowar	kharif	21	60
	rabi	75	79
	total	96	68
bajra		26	211
small millets		30	69
total pulses		28	32

^{*} RYI or Relative Yield Index represents Nellore district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone II— $E_4(C_1D_2E_1)C_2E_2$

4.11 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
$Jk_4/Mt_4/B_4/O_4/Ptt_4$	Podili	Ongole
	Kanigiri	,,
	Darsi	; 1
Mt ₃ B ₄ Pd ₄ Jk ₄ /Gn ₄	Markapur	,,
Mt4 B4 Pd4 Jk4 Ch4	Vinukonda	Guntur

- 4.12 The area of the zone is 10,432 sq km and the areas of all the taluks exceed 1000 sq km individually. The highest population density is 103 per sq km in Podili and less than 100 in the rest of the zone.
- 4.13 The maximum elevation in the zone is in Markapur being 870 masl; the elevations generally vary between 100 to 600 masl except in Podili which is at sea-level.
- 4.14 Markapur taluk has about 60 per cent of area under forests and Vinukonda and Kanigiri 20-25 per cent. Land not available for cultivation is 10 to 15 per cent and cultivable waste is 3-10 per cent. Fallow lands account for 20 per cent in Darsi and 10-15 per cent in Markapur and Kanigiri. The net sown area is only 20-25 per cent in Markapur and Kanigiri and 40-60 per cent elsewhere.
- 4.15 The annual rainfall in the zone is 65-70 cm in 40 rainy days. October is the month of maximum rainfall and together with November accounts for 40 per cent of annual rainfall. Over most of this zone there are 3 months from September with rainfall of 10-20 cm pm.
- 4.16 The main crops are jowar (kharif), small millets and bajra though some rice (about 10 per cent of total cropped area) is also grown in Vinukonda.
- 4.17 Since four of the five taluks of this zone are in Ongole district, the yields of the main crops in Ongole are given in Table 11. Only the yield of bajra is above all-India.
- 4.18 Sheep account for a large percentage (over 30) of livestock followed by goats and female buffaloes. The livestock pattern is S_3 G_4 Bf_4 By_4 .

TABLE 11

Area and Relative Yield Index Values of Crops in Zone II

Crops	Area ('000 ha)	RYA*
jowar (kharif)	89	51
small millets	120	70
bajra	58	162
paddy	77	90

^{*}RYI or Relative Yield Index represents Ongole district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone III— $E_4(C_1D_2E_1)B_1C_1E_2$

4.19 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Jr ₄ Mt ₄ Pd ₄ To ₄ F ₄ B ₄ R ₄	Kandukur	Ongole
To ₄ Mt ₄ Jr ₄ F ₄ /Pd ₄ B ₄	Ongole	,,

- 4.20 This is a small zone consisting of two taluks with an area of 3419 sq km. The population density in Kandukur and Ongole is 136 and 223 per sq km respectively.
- 4.21 The maximum elevation in Kandukar is less than 200 masl while in Ongole it is 640 masl.
- 4.22 Land not available for cultivation is 15 per cent, fallow lands 10 per cent and pastures 5—10 per cent. The net area sown is 50 per cent in Kandukur and 60 per cent in Ongole.
- 4.23 Kandukur taluk has 20 per cent of area under irrigation and Ongole about 10 per cent. Soils are coastal alluvium or sandy. Mixed red and black soils or deep black soils are present in patches.
- 4.24 The annual rainfall of the zone is 90 cm in 45 rainy days. The month of maximum rainfall is October and together with November account for 45 per cent of the annual rainfall. There are three consecutive months September, October and November which receive more than 10 cm pm rainfall.
- 4.25 All the crops in the patterns have areas in 10 to 20 per cent interval. Jowar and paddy occupy each 20 per cent of cropped area in Kandukur and Tobacco 22 per cent in Ongole. Small millets occupy about 10 to 15 per cent of cropped area. Yield of crops has been discussed in Zone II.
- 4.26 Sheep constitute 30 to 35 per cent of total livestock and the other livestock are goats and buffaloes (female and young stock). The livestock pattern is S_3 G_4 BF_4 By_4 .

Rainfall Zone IV— $E_4(C_1D_2E_1)B_2E_2$

4.27 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₁	Kovur	Nellore
$Pd_3 Jr_4 Mt_4/Pu_4$	Kavalt	,,
	Udayagiri	,,

- 4.28 The area of the zone is 4724 sq km. The population density varies from 238 per sq km in Kovur to 61 in Udayagiri.
- 4.29 Kovur and Kavali are coastal taluks and their elevation varies from sea-level to less than 200 masl and in Udayagiri, elevation ranges from 180 to 850 masl.

- 4.30 Area under forests is 30 per cent in Udayagiri and 10 per cent elsewhere. Land not available for cultivation is 15 to 25 per cent in the Zone. The net sown area is 17 per cent in Udayagiri, 29 per cent in Kavali and 48 per cent in Kavur.
- 4.31 Almost the entire area is irrigated in Kavur, but only 50 per cent in Kavali and 40 per cent in Udayagiri. Soils are coastal alluvium in the coastal taluks and red sandy and mixed red and black soils elsewhere.
- 4.32 The annual rainfall of the zone is 90 to 110 cm in about 45 rainy days. October and November are the months of maximum rainfall and together account for more than 45 per cent of the annual rainfall. Paddy occupies 90 per cent of cropped area in Kavur, but only 50 per cent area in Kavali and 12 per cent area in Udayagiri. Relative yields of Nellore district have been discussed under zone-1.
- 4.33 In Udayagiri sheep constitute 50 per cent of the total livestock of the taluk followed by goats and female buffaloes. Sheep account for 30 per cent of livestock in Kavali and the others are goats, female buffaloes, male and female cattle and youngstock of buffaloes each being 10 to 15 per cent of total.

The livestock pattern are as follows:

Udayagiri

S₃ G₄ Bf₄

Kavali

S₃ G₄ Cf₄ Cm₄ Bf₄

Kovur

Cm₄ Cf₄ Cy₄ Bf₄ By₄

Rainfall Zone V— $E_4(C_1D_3)D_1E_3$

4.34 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Gn ₃ Jk ₄ Mt ₄ /Pd ₄	Gooty	Anantapur
V 1 // .	Tadpatri	**
	Dhone	Kurnool
Gn ₄ Mt ₄ Jk ₄ /Jr ₄	P attikonda	,,

- 4.35 The area of the zone is 7014 sq km. The population density is 90-95 per sq km in Pattikonda and Dhone, 156 in Gooty and 110 in Tadpatri.
- 4.36 Elevation varies between 300 to 600 masl.
- 4.37 Area under forests is 20 per cent in Dhone and 10 per cent in Pattikonda and Tadpatri. Land not available for cultivation ranges between 10 and 20 per cent and fallow lands are 10 per cent. The net sown area is 70 per cent in Pattikonda and 50-60 per cent elsewhere.
- 4.38 Tadpatri has 16 per cent of area under irrigation and it is negligible elsewhere. Soils are mixed red and black with patches of deep black.
- 4.39 The annual rainfall of the zone is 55-60 cm in 35-40 rainy days. September is the month of maximum rainfall and the total of August and September accounts for 40 per cent of the annual rainfall. There are no consecutive months in this zone with more than 10 cm pm rainfall.

- 4.40 Groundnut and small-millets are the principal crops in this zone each occupying about 25 to 30 per cent of cropped area. Jowar occupies an area of 25 per cent in Tadpatri and 10 to 15 per cent in the rest of the zone.
- 4.41 Area and Relative Yield Index of Crops are indicated in Table 12. The yield of groundnut is about 80 per cent and that of jowar about 75 per cent of all-India level. The yield of small millets is only 53 per cent in Kurnool and 41 per cent in Anantapur.
- 4.42 Sheep constitute a third of total livestock and goats and male cattle are each 15 to 20 per cent. The livestock pattern is S_3 G_4 Cm_4 Cf_4 Bf_4 .

 $T_{ABLE\ 12}$ Area and Relative Yield Index values of Crops in Zone V

District	Crop	Area ('000 ha)	RYI*
Anantapur	groundnut	233	82
Kurnool	,,	219	83

Rainfall Zone VI $E_4(C_1D_3)D_2E_2$

4.43 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District	
Gn ₃ Jk ₄ Mt ₄ .	Pullivendla	Cuddapah	
Jk ₃ Gn ₄ Mt ₄ Pd ₅	Jammalamadugu	**	

- 4.44 The total area of the zone is 3062 sq km. The total population of the zone is about 3 lakhs with an average population density of 100 per sq km.
- 4.45 The elevation in Jammalamudagu varies between 170 to 300 masl and in Pullivendla 300-450 masl.
- 4.46 Forests form 10 per cent area of the zone and land not available for cultivation and cultivable waste together account for about 30 per cent of the total geographical area. The net sown area is 40 to 50 per cent.
- 4.47 Area under irrigation is only 10 per cent of cropped area. Soils are deep black or mixed red and black.
- 4.48 The annual rainfall in the zone is 55-60 cm in 40 rainy days. September is the month of maximum rainfall, the rainfall being 50 per cent higher than that of August or October. There is only one month getting about 10 cm rainfall.
- 4.49 Groundnut, Jowar (kharif) and small millets are the main crops in this zone. The areas and yields of crops are given in Table 13.
- 4.50 The yield of groundnut in Cuddapah district is practically the same as all-India but slightly less than

^{*}RYI on Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

the State average. Yield of jowar (Kharif) is 92 per cent of all-India whereas yield of small millets, is only half of all-India level.

4.51 Sheep constitute about 30 per cent of the total livestock, followed by goats (20 per cent) and female buffaloes (16-17 per cent).

The livestock pattern is:

 S_3 G_4 Bf_4

TABLE 13
Relative Yield Index values of crops in Zone VI

Crop	Area ('000 ha)	RYI*
groundnut	136	98
jowar (Kharif)	85	92
small millets	46	50

Rainfall Zone VII— E_4 (C_1 D_3) C_2 E_2

4.52 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₃ B ₄ Fr ₄ R ₄	Rajampet	Cuddapah
Gno Pda	Ravachoti	

- 4.53 The area of the zone is 5545 sq km. The population of this Zone is 4.9 lakhs with an average population density of 90 per sq km.
- 4.54 Rayachoti has an elevation of 300-600 masl whereas the maximum elevation goes upto 1000 masl in Rajampet.
- 4.55 Area under forest is 84 per cent in Rajampet and 31 per cent in Rayachoti. The net sown area in Rajampet is only 12 per cent and in Rayachoti 28 per cent.
- 4.56 Irrigated area in Rajampet is 77 per cent of cropped area whereas it is only 20 per cent in Rayachoti. Soils are red-sandy and mixed red and black with some mountainous soils in Rayachoti.
- 4.57 The annual rainfall of this zone is between 67 to 77 cm in 45 rainy days. The month of maximum rainfall is October in Rajampet and September in Rayachoti. September and October fall together account for 35 per cent of annual rainfall. September to November months get 10-20 cm pm.
- 4.58 Groundnut occupies 60 per cent of cropped area in Rayacheti followed by paddy (14 per cent) and bajra (13 per cent). In Rajampet paddy occupies 40 per cent of cropped area followed by 17 per cent under bajra.
 - *RYI or Relative Yield Index represents Cuddapah district yield expressed as percentage of the corresponding all-India average yield for 1968-69-1970-71.

 3-749 Agri/76

- 4.59 The Relative Yield Index of paddy in Cuddapah district is 122 for winter and 86 for summer. The yield of groundnut is the same as all-India level.
- 4.60 In Rayachoti sheep constitute a third of the total livestock with male and female cattle and goats accounting for another 48 per cent. The livestock patterns are:

Rajampet

S₄ G₄ Cf₄ Cm₄/Bf₄

Rayachoti

S₃ G₄ Cf₄ Cm₄

Rainfall Zone VIII— E_4 (C_1 D_3) A_1 B_1 C_1 E_1

4.61 The districts, taluks and the cropping patterns included in the zone are:

Cropping patterns	Taluk	District
Pd_1	Sulturpet	Nellore
Pd ₂ Gn ₄	Sri Kalahasti	Chittoor
	Satyavedu	,,

- 4.62 The area of the zone is 4006 sq km with the areas of taluks varying between 1000 and 1600 sq km. The population is about 4.9 lakhs with an average population density of over 120 per sq km. The population density ranges between 90 and 150 in the taluks.
- 4.63 Sullurpet is a coastal taluk at sea-level. Elsewhere the heights range between 150 to 900 masl.
- 4.64 Area under forests is 35 to 40 per cent in Satyavedu and Kalahasti and 35 to 40 per cent of area is not available for cultivation in Sullurpet and Kalahasti. The net sown area covers about 20 per cent in Sullurpet and 25 to 30 per cent elsewhere.
- 4.65 Area under irrigation is considerable being 75 to 85 per cent of cropped area. Soils are Coastal alluvium in Sullurpet and mainly red sandy elsewhere.
- 4.66 The annual rainfall is 115 cm in about 50 rainy days. November with more than 30 cm is the month of maxumim rainfall and with October accounts for 50 per cent of annual rainfall. This is a zone of relatively higher rainfall with more than 10 cm pm in the four consecutive months from September to December.
- 4.67 Paddy is the dominant crop of the zone occupying 70 per cent of cropped area in Sullurpet and 50 to 60 per cent elsewhere. Groundnut, bajra and ragi are the other crops grown in the zone.
- 4.68 The Yield of paddy in Nellore district in spite of its being entirely irrigated is low, but the RYI is 140 in Chittoor district. The yield of groundnut in Chittoor is 152 per cent of all-India.
- 4.69 Sheep constitute 20 to 25 per cent of livestock, followed by male cattle (20 per cent), female cattle (15-20 per cent) and goats (10 to 15 per cent). The livestock pattern is:

S₄ Cm₄ Cf₄ G₄

Rainfall Zone IX $-E_4$ (C_2 D_2) D_2 E_2

4.70 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₃ Gn ₄ Jk ₄ Mt ₅	Cuddapah	Cuddapah
Gn ₃ Pd ₄ Jk ₄	Proddatur	,,
Gn ₃ Jk ₄ Mt ₄	Kamalapuram	,,

- 4.71 The total area of the zone is about 3200 sq km. The areas of individual taluks vary between 800 and 1300 sq km. The total population of this zone is 5.4 lakh with an average population density of 170 per sq km the density ranges between 128 and 200 per sq km.
- 4.72 Kamalapuram and Cuddapah have elevations ranging between 150 and 200 masl whereas in Proddatur, the maximum elevation rises up to 700 masl.
- 4.73 Forests account for 40 per cent of area in Cuddapah and 20 per cent in Proddatur. Land not available for cultivation is 15 per cent and cultivable waste is 11 per cent. Net area sown is only 37 per cent in Cuddapah and varies from 50 to 60 per cent in the rest of the zone.
- 4.74 Area under irrigation is 60 per cent in Cuddapah, 36 per cent in Proddatur, and 10 per cent in Kamalapuram. Soils are mainly red sandy.
- 4.75 Rainfall varies from 60 to 75 cm in 40 to 45 rainy days. September is the month of maximum rainfall, and together with August accounts for 40 per cent of annual rainfall.
- 4.76 Groundnut, paddy and jowar (Kharif) are the main crops grown in this zone.
- 4.77 The Relative Yield Index values of crops are given in Table 14. The yield of Rice is 123 per cent of all-India level and of groundnut just all-India level.
- 4.78 Sheep constitute 30 to 40 per cent of the total livestock followed by female buffaloes (17 to 20 per cent), goats (12 per cent) and male cattle (13 per cent). The livestock pattern is:

S₃ Bf₄ G₄ Cm₄

TABLE 14

Relative Yield Index Values for Crops in Zone IX

	7474	
Crops	RYI*	
rice	123	
jowar (Kharif).	92	
small millets	50	
groundnut	98	

Rainfall Zone $X = E_4 (C_2 D_2) C_2 E_2$

4.79 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₃ Mt ₄ Pu ₄ R ₄	Badye!	Cuddapah
Pd ₃ B ₄ Fr ₄ R ₄	Sidhout	,,

^{*}RYI on Relative Yield Index represents Cuddapah district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.80 The area of the zone is 3,536 sq km. The total population of the zone is 2.4 lakh with an average population density of 68 per sq km.
- 4.81 The elevations range from 140 to 900 masl.
- 4.82 Nearly half of the area is under forests and 13 to 16 per cent area is not available for cultivation. Net sown area is only 8 per cent in Sidhout and 17 per cent in Badvel.
- 4.83 Half of Badvel taluk and a third of Sidhout are irrigated. Soils are mainly red sandy.
- 4.84 The average annual rainfall is 75 cm in 47 rainy days. September is the month of maximum rainfall in Sidhout and October-November in Badvel. The consecutive months August to November get more than 10 cm pm.
- 4.85 The principal crops of the zone are paddy, ragi bajra and small millets. Other pulses occupy about 10 per cent of cropped area in Badvel. The crop patterns show paddy as predominant crop and only in Sidhout, fruits occupy more than 10 per cent area.
- 4.86 The yield of paddy which is irrigated is not high. Bajra and ragi yields are above all-India and State averages.
- 4.87 Sheep constitute 45 per cent of livestock in Badvel and 36 per cent in Sidhout, followed by goats (22-24 per cent) and female buffaloes (11-14 per cent). The livestock pattern is:

S₃ G₄ Bf₄

Rainfall Zone XI -E₄ (C₃ D₁) D₁ E₃

4.88 The districts, taluks and cropping patterns in the zone are:

Cropping pattern	Taluk	District
Pd ₂ B ₄	Miryalguda	Nalgonda
Pd ₃ Jk ₄ O ₄	Hyderabad (U)	Hyderabad
V ₄ F ₄	Hyderabad (E)	27
Pd ₄ Jk ₄ Jr ₄ O ₄ Pu ₄ /B ₄	Ramannapet Nalgonda	Nalgonda
Pd ₄ Jk ₄ Gn ₄ Mt ₄ /Jr ₄	Nandyal Allagadda	Kurnool
Jk ₃ Pd ₄ O ₄ Pu ₄ /B ₄	Bhongir Jangaon	Nalgonda Warangal
Jk ₃ Mt ₄ Gn ₄ /C ₄ Pd ₅ /Jr ₄	Koilkuntla Banganpalle	Kurnool
Jk ₃ Gn ₄ O ₄	Achampet	Mahboobnagar
Jk ₄ Gn ₄ B ₄ Pu ₄	Gadwal	,,
Jk ₃ Gn ₄ Mt ₄ Pd ₄ /R ₄	Nagarkurnool	Mahboobnagar
Jk ₃ Gn ₄ Pd ₄ Mt ₄	Mahboobnagar Wanaparthi Atmakur	Mahboobnagar Mahboobnagar
Jk ₄ Pu ₄ R ₄ O ₄ Pd ₄	Shadnagar	Mahboobnagar
Jk ₄ Pd ₄ Jr ₄ O ₄ R ₄ /Pu ₄	Hyderabad (W)	Hyderabad
Jk ₄ Jr ₄ O ₄ V ₄	Chevella	Hyderabad

Cropping pattern	Tuluk	District
Jr ₃ Gn ₄ Pd ₄ /Mt ₄	Kurnool	Kurnool
	Nandikotkur	**
	Atmakur	33
Jr ₃ Mt ₄ Gn ₄ Jk ₄	Makhtal	Mahboobnagar
Jr ₃ Pd ₄ Gn ₄ Pu ₄	Huzurnagar	Nalgonda
	Suryapet	,,
Jr ₄ Pu ₄ O ₄ T ₄	Tandur	Hyderabad
Gn ₄ Mt ₄ Jk ₄ Jr ₄ /Pu ₄	Kollapur	Mahboobnagar
	Alampur	**
O3 Jk4 B4	Kalvakurti	Mahboobnagar
•	Ibrahimpatnam	Hyderabad
	Devarkonda	Nalgonda
C3 Mt4 Jr4/Gn4 Jk4	Alur	Kurnool
	Adoni	
Jr4 Pu4 Jk4 Mt4 G4	Kodangal	Mahboobnagar
M ₃ Pd ₄ Jk ₄	Medchal	Hyderabad
Mt ₃ B ₄ Pd ₄ Jk ₄ /Gn ₄	Giddalur	Ongole

4.89 This is the biggest of the 28 zones, comprising 37 taluks in six districts. The area of the zone is 56,821 sq km accounting for more than 20 per cent of the area of the State. The areas of taluks vary widely from less than 1,000 sq km to 3,000 sq km. The zone has a total population of 82 lakhs with an average population density of 144 per sq km.

4.90 The zone is a plateau with minimum and maximum elevations ranging mostly between 200 and 700 masl. A few taluks have maximum elevation ranging between 700 and 950 masl.

4.91 Atmakur and Achampet taluks have 65-75 per cent area under forests. In a few others forests occupy 30 to 50 per cent of their respective geographical areas. In other taluks forest area is 10 to 20 per cent or less. Land not available for cultivation is generally 10 to 20 per cent. Net sown area is generally more than 40 per cent excepting in Hyderabad and a few other taluks. The highest is 86 per cent rice in Alur taluk.

4.92 About twelve taluks have more than 20 per cent cropped area under irrigation. On the whole, this is a zone with very little irrigation. Soils are mainly red sandy though in some taluks mixed red and black soils are present.

4.93 The annual rainfall in this zone varies between 60 to 80 cm. September is the month of maximum rainfall though in a few taluks in Hyderabad and Mahboobnagar July has maximum rainfall. August and September in general account for about 50 per cent of annual rainfall. The months of July to September get 10-20 cm pm rainfall.

4.94 The zone covers most of the taluks of four districts and the main crops of these districts are jowar, paddy, pulses and groundnut. The percentage areas

accounted for by these crops in the four districts are as follows:--

District	Jowar	Paddy	Pulses Gi	round- nut
Hyderabad	31	11	5	
Nalgonda	25	22	9	10
Kurnool	27		9	19
Mahboobnagar	32	10	9	1

4.95 The Relative Yield Index values of crops grown in the four districts of this zone are given in Table 15. The yield of rice ranges between 97 to 121 per cent of all-India level. Yields of jowar (both kharif and rabi) are low. The yields of bajra, small millets, cotton and pulses are very low, being around 50 per cent of all-India level.

4.96 Sheep predominate in a large part of the zone (31 taluks) followed by male cattle, The zone has seven livestock patterns of which four begin with sheep(s) and two with female buffaloes.

The livestock patterns of the zone are:

(i) S₃ Cm₄ Cf₄/G₄ Bf₄

(ii) S_4 Cm_4 Cf_4 Cy_4/G_4

(iii) S_4 G_4 Cm_4 Cf_4 Bf_4/By_4

(iv) S₄ G₄ Bf₄ By₄

(v) Cm₄ Cf₄ Cy₄ S₄ G₄

(vi) Bf₃ By₄ G₄ Cm₄

(vii) Bf₄ S₄ Cm₄ Cf₄

Special as they cover only one taluk each viz

(1) Hyedrabad urban and (2) Atmakur.

TABLE 15
Relative Yield Index Values of Crops in District of Zone XI

Crop	District			
	Hydera- bad	Nal- gonda	Mahboob- nagar	Kur- nool
rice	110	100	97	121
jowar (kharif)	87	67	96	60
jowar (rabi)	102	55	73	86
baira	62	62	66	89
small millets	45	47	36	53
total pulses	41	28	42	51
groundnut	88	88	81	83
cotton	42	56	27	37

Rainfall Zone XII— E_4 (C_3 D_1) C_1 D_1 E_2

4.97 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd4 Ch4 Jr4 Pu4 Gn4 Mt4	Sattenapalli	Guntur
Pd4 To4 Jr4 Fr4/Mt4	Narasaraopet	,,
Mt ₄ B ₄ Pd ₄ Jk ₄ Ch ₄ /Jr ₄	Palnad	,,

Note: Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.98 The area of the zone is 5,686 sq km and the areas of all taluks are above 1,000 sq km. The population in the zone is more than 9 lakhs with average population density of about 160 per sq km.
- 4.99 The heights range between 150 to 500 masl.
- 4.100 Forests occupy 20—30 per cent of geographical area in Sattenapalli and Palnad and negligible elsewhere. Land not available for cultivation is about 20 per cent in Palnad and Narsaraopet and 10 per cent in Sattenapalli. The net sown area is 55 per cent of geographical area in Sattenapalli and Narsaraopet and 41 per cent in Palnad.
- 4.101 About 25 per cent of cropped area in Palmad and 45 per cent in the rest of the Zone are under irrigation. Soils are red sandy and deep black.
- 4.102 The annual rainfall varies between 70 and 80 cm in 50 rainy days. July is the month of maximum rainfall in Sattenapalli and month of September elsewhere. The months July to October receive more than 10 cm pm rainfall.
- 4.103 Paddy, jowar, groundnut and small millets are the main crops grown in the zone, though bajra and chillies in Palnad and tobacco in Narsaraopet have significant areas. Yields of tobacco and small millets are 83 per cent of all-India level, whereas yields of others are above all-India. The relative Yield Index values of the main crops are given in Table 16.
- 4.104 Sheep constitute 28 per cent of livestock population followed by female buffaloes (20 per cent), young stock of buffaloes (11—15 per cent), goats (10 per cent), male cattle (11 per cent). The livestock pattern is:

S₄ Bf₄ By₄ Cm₄ G₄

Table 16

Relative Yield Index Values of Crops in Guntur District

Crop	RYI*
paddy	125
Jowar (kharif)	113
jowar (rabi)	128
small millets	83
bajra	119
tobacco	83

Rainfall Zone XIII—E₄ (C₃ D₁) C₂ E₂

4.105 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd_1	Repalle	Guntur
Pd ₂ Pu ₄	Bapatla	,,
Pd ₄ To ₄ Jr ₄ F ₄ /Mt ₄	Chirala	Ongole
Toa Mta Jra Fa/Pda Ba	Addanki	-

*RYI or Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.106 The area of this zone is 3,918 sq km. The total population is 1.1 million with average population density of about 280 per sq km.
- 4.107 Repalle and Bapatla are at sea level and the elevations in other two taluks rise upto 300 masl.
- 4.108 Forest area is insignificant and land not available for cultivation is 10—20 per cent. Net sown area is 82 per cent in Bapatla and 55 to 65 per cent elsewhere.
- 4.109 Irrigation facilities are good in Repalle and Bapatla whereas only 30 per cent of area is irrigated in Chirala and 15 per cent in Addanki. Soils are deep black and red sandy in Addanki but elsewhere deltaic alluvium and red sandy soils prevail.
- 4.110 The average annual rainfall is 90 to 100 cm in Repalle and Bapatla while chirala and Addanki receive about 80 cm. October is generally the month of maximum rainfall and together with September account for 30 to 40 per cent of annual rainfall. July to November months get 10—20 cm pm.
- 4.111 Paddy is the predominant crop of the zone occupying 78 per cent of cropped area in Repalle and 45 per cent in Bapatla, Tobacco is the major crop in Addanki Occupying about 30 per cent of cropped area.
- 4.112 The Relative Yield Index of rice is 125 in Guntur district and 89 in Ongole district. Yield of jowar and tobacco in Ongole is about 75 per cent of all-India level.
- 4.113 Buffaloes account for 55 to 65 per cent of the total livestock with male cattle and sheep accounting for about 10 per cent each. The livestock pattern is:

Bf₄ By₄ S₄ Cm₄/Bm₄

Rainfall Zone XIV— $E_4(C_4)$ C_1 D_1 E_2

4.114 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd_1	Gudivada	Krishna
	Kaikalur	,
	Gannavaram	,,
Pd ₃ Pu ₄ Gn ₄ Jr ₄ /Fr ₄	Vijayawada	,,
Jr ₃ Pu ₄ Pd ₄ /Gn ₄	Jaggayyapct	1,
	Nandigama	,,
Pd ₂ Pu ₄	Tenali	Guntur
Pd4 Ch4 Jr4 Pu4 To4	Guntur	,,

- 4.115 The area of the zone is 7,634 sq km and the areas of the taluks range from 600 to 1,400 sq km. The total population of the zone is about 3.4 million with a high average population density of 448 per sq km.
- 4.116 Taluks of Krishna district are practically at sea level except for these in the interior like Vijayawada and Nandigama where the maximum elevation is between 300 to 400 masl.
- 4.117 Vijayawada and Jaggayyapet have 15 per cent of geographical area under forests and elsewhere it is negligible. 10 to 15 per cent land is not available for

cultivation. The net sown area varies widely from 55 to 60 per cent in Kaikalur, Vijayawada and Jaggayyapet, 68 per cent in Gannavaram and Nandigama and more than 80 per cent elsewhere.

- 4.118 Kaikalur taluk is fully irrigated followed by Gudivada and Gannavaram (70 to 80 per cent), Tenali (58 per cent) and Nandigama (13 per cent). Jaggayyapet and Nandigama have deep black and red sandy soils and elsewhere the soils are mainly mixed red and black with small areas of deltaic alluvium.
- 4.119 The annual rainfall is 80 cm in Jaggayyapet and Nandigama, and 90 cm in Guntur. In the rest of the zone the annual rainfall is about 95 cm in 53 rainy days. July is the month of maximum rainfall and together with August accounts for 35 to 40 per cent of annual rainfall. All the five consecutive months June to October get more than 10 cm pm.
- 4.120 Paddy is the most important crop of the zone occupying almost the entire cropped area in Kaikalur, but elsewhere it ranges from 13 per cent in Nandigama to 78 per cent in Gudivada. Only in Guntur taluk, tobacco and chillies are cultivated on significant areas.
- 4.121 Area and Relative Yield Index Values of Crops are given in Table 17. Yield of rice in summer is low but the overall yield is above all-India level. Yield of jowar is good.
- 4.122 Female buffaloes constitute 20—35 per cent of livestock population in the zone. The livestock patterns are:

 $Bf_4 \ By_4 \ Cm_4 \ Cf_4/S_4/Bm_4$ $Bf_4 \ By_4 \ Cm_4 \ Cf_4 \ S_4$

TABLE 17

Area and Relative Yield Index Values of Crops in Zone XIV

Сго	p	Area ('000 ha)	RYI*
rice	autumn	230	131
	winter	57 ⋅8	125
	summer	83 •9	66
	total	372	128

* RYI or Relative Yield Index represents Krishna district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XV— E_4 (C_4) B_1 C_1 E_2

4.123 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₁	Kakinada Ramachandrapu-	E. Godavari
	ram	,,
	Mummidivaram	,,
	Razole	,,
•	Amlapuram	_ *1
	Narsapur	W. Godavari
	Bandar	Krishna
	Divi	**
	Alamuru	,,
$Pd_2 O_4 Fr_4$	Kothapeta	E. Godavari

- 4.124 The total area of the zone is 6,301 sq km with the areas of individual taluks varying from 280 to 1,200 sq km. The total population of the zone is about 27 lakhs with average population density of 435 per sq km. The population density in this zone is high, ranging from 233 in Divi to 670 in Kothapeta.
- 4.125 The entire zone is at sea level.
- 4.126 Area under forests is 25 per cent in Kakinada and elsewhere it is negligible. Land not available for cultivation is about 16 per cent and fallow lands are negligible. The net sown area generally exceeds 50 per cent of cropped area.
- 4.127 The zone has good irrigation facilities, the percentage area irrigated ranging from 70 to 90. The soils are deltaic alluvium.
- 4.128 The average annual rainfall of this zone exceeds 100 cm, the highest being in Mummidivaram (130 cm). October is the month of maximum rainfall and together with September accounts for about 35 per cent of the annual rainfall. There are six consecutive months from June to November which receive more than 10 cm of rainfall per month.
- 4.129 The main crop of this zone is paddy which occupies more than 70 per cent of cropped area excepting in Kothapeta where it accounts for about 50 per cent.
- 4.130 Area and Relative Yield Index Values of rice for the districts of East Godavari, West Godavari and Krishna are given in Table 18, the yields are generally above all-India and high in West Godavari district.
- 4.131 Female buffaloes and male cattle together account for about 40—50 per cent of total livestock. The livestock pattern is:

Bf₄ Cm₄ Cf₄ Cy₄ By₄.

TABLE 18

Area and Relative Yield Index Values of Rice in Zone XV

District	Autumn	Winter	Summer	Total
East Godavari:				
area (thousand ha)	188	44	84	316
*RYI	122	110	99	119
West Godavari:				
area (thousand ha)	228	31	104	363
*RYI	157	150	121	157
Krishna:				
area (thousand ha)	230	58	84	372
*RYI	131	125	66	128

* RY1 or Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XVI-E₄ (B₁ C₃) D₁ E₃

4.132 The districts, taluks and the cropping patterns in the zone are:

Cropping pattern	Taluk	District
$\mathrm{Pd}_3 \ \mathbf{M_4} \ \mathbf{S_4}/\mathrm{Jr_4}$	Narsapur Medak	Medak
Pd ₄ Pu ₄ M ₄ 3r ₄ /Jk ₄	Narsampet Warangal Huzurabad Karimnagar Sirsilla	Warangal ,, Karimnagar
Jk ₄ Pd ₄ Jr ₄ O ₄ R ₄ /Pu ₄	Vicarabad	Hyderabad
Jk ₄ Pu ₄ R ₄ Pd ₄ O ₄ /Mt ₄	Pargi	Hyderabad
Jr ₃ Pu ₄ Pd ₄ /Jk ₄ /Gn ₄	Khammam	Khammam
$Jr_3 Pu_4 Pd_4$	Mahbubabad Manthani Lakshettipet	Warangal Karimnagar Adilabad
J_{Γ_3} Pu_4 O_4	Asitabad	Adilibad
$Jr_4 Pu_4 Jk_4 Pd_4/T_4$	Zahirabad Narayankhed	Medak ,,
Jr ₄ Pd ₄ Pu ₄ M ₄	Sultanabad	Karimnagar
$J_{1_4} J_{k_4} Pu_4 O_4/Pd_4$	Sangareddy Andol	Medak
M ₃ Pd ₄ Pu ₄	Kamareddy	Nizamabad
M_4 Pd_4 Jk_4 O_4/R_4	Gajwel Siddipet	Medak ,,
Pu_4 M_4 Jk_4 Pd_4	Jagtial	Karimnagar

- 4.133 The total area of this zone is 35,558 sq km covering 23 taluks. The areas of all taluks excepting Narayankhed (960 sq km) exceed 1000 sq km.
- 4.134 The zone is mostly plateau, elevations ranging between 200 and 700 masl. In 13 taluks the maximum elevation is between 600 to 700 masl. The total population is 56 lakhs with an average population density of 157 per sq km, the taluk density ranging from 55 to 310.
- 4.135 Areas under forests account for quite a significant proportion of geographical area, the percentages ranging from 28 to 65. Land not available for cultivation is 10 to 15 per cent and the net sown area ranges from 40 to 60 per cent except in some taluks which have only 20 to 30 per cent area.
- 4.136 Area under irrigation is 30 to 40 per cent of cropped area in Narsapur, Huzurabad, Karimnagar,

Warangal, Vicarabad and Narasampet and ranges from 20 to 25 per cent in Manthani, Lakshettipet, Mahbubabad, Kamareddy, Gajwel, Siddipet, Khammam and Jagtial. Soils are mainly red sandy with medium black in a few taluks and laterite soils are reported in Andole and Zahirabad.

- 4.137 The annual rainfall of the zone ranges from 80 to 100 cm. July is the month of maximum rainfall with more than 20 cm and the months June to September receive more than 10 cm pm.
- 4.138 Paddy, jowar, maize and pulses are the main crops grown in the zone. Paddy occupies 25 to 48 per cent of cropped area in six taluks. Jowar is a major crop in twelve taluks the percentage areas ranging from 17 to 51. Maize is major crop in two taluks occupying about 30 per cent of cropped area. In all, there are 14 cropping patterns, 3 begining with paddy, 8 with jowar, two with maize and one with pulses.
- 4.139 The Relative Yield Index values of crops in the three districts in the zone are given in Table 19. The rice yields are just above all-India level but slightly lower than the State average. Yield of jowar is good and higher than State as well as all-India level. Yield of pulses is very low.
- 4.140 Sheep and male cattle are the main types of livestock. There are eleven taluks which have sheep accounting for more than 30 per cent of total livestock. The livestock patterns are indicated below:

(i) S ₃ Cm ₄ Ct ₄ Cy ₄	Narasampet
T.0 W	Warrangal
V.W. V	Huzurabad
49/4×	Karimnagar
	Sirsilla
制化ED	Sultanabad
2000	Sangareddy
	Kamareddy
1 의식적	Gajwal
	Siddipet
	Jagtial
(ii) S ₄ Cm ₄ Cf ₄ Cy ₄ /G ₄	Narsapur
	Medak
	Pargi
	Khammam
	Mahbubnagar
(iti) Cm ₄ Cf ₄ Cy ₄ S ₄ G ₄	Manthani
, , , , , ,	Lakshettipet
	Asifabad
	Zahirabad
	Narayankhed
	Vicarabad
(1V) G ₃ Cm ₄ Cf ₄ Cy ₄	Andole

TABLE 19
Reltive Yield Index Values of Crops in Zone XVI

District	Rice	Jawar (Kharif)	Jawar (Rabi)	Total Pulses	Maize
Medak	98	111	108	47	76
Karimnagar	114	96	63	16	119
Warangal	112	121	105	29	98

More: Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XVII-E₄ (B₁ C₃)C₁ D₁ E₂

4.141 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₁	Eluru	W. Godavari
•	Tadepalligudem	,,
	Bheemavaram	7:1
$Pd_2 S_4$	Tanuku	W. Godavari
Pd ₃ Pu ₄ Gn ₄ F ₄	Nuzvid	Krishna
Pd ₃ Pu ₄ Fr ₄ S ₄ /O ₄ /To ₅	Polavaram	W. Godavari
, , , ,	Chintalapudi	,,
	Kovvur	**

- 4.142 The total area of the zone is about 8,000 sq km and the areas of taluks vary from 555 sq km to 1,421 sq km. The population density varies very videly from 96 per sq km in Polavaram taluk to 674 in tanuku.
- 4.143 The area is mainly at sea-level except in a few taluks where the elevation goes up to 200 masl and in Polavaram to 400 masl.
- 4.144 Area under forests is 43 per cent of geographical area in Polavaram, 13 per cent in Nuzvid and Chintalapudi and negligible elsewhere. Land not available for cultivation ranges from 15 to 25 per cent and fallow lands are 5 per cent. Nct sown area is 25 per cent in Polavaram, 45 per cent in Chintalpudi, 80 per cent in Tanuku and 55 to 65 per cent in the rest of the zone.
- 4.145 Soils are mainly red sandy with deltaic alluvium in a few taluks. Bheemavaram taluk is completely irrigated. Eluru and Tadepalligudem have 80 per cent of cropped area under irrigation and in rest of the zone it is 40 to 50 per cent.
- 4.146 The annual rainfall of the zone is more than 100 cm in 55 to 60 rainy days. July is the month of maximum rainfall receiving 20 to 30 cm and together with August accounts for more than 35 per cent of annual rainfall. All the months from June to October get more than 10 cm pm.
- 4.147 Paddy is the main crop occupying more than 75 per cent of cropped area in Eluru, Tadepalligudem and Bheemavaram, 60 per cent in Tanuku and 30 to 40 per cent elsewhere. The other crops cultivated are other pulses, sugarcane and groundnut.
- 4.148 Area and Relative Yield Index Values of Crops of West Godavari district are given in Table 20. The paddy yields are well above State and all-India levels. The yields of pulses is very low (less than 30 per cent) and that of sugarcane is high being 175 per cent of all-India level.
- 4.149 Male and female cattle and female buffaloes together account for more than fifty per cent of the total livestock in the zone. The livestock patterns are:

Dotte.	1 110 11 toblook patterns
Eluru Tadepalligudem Bheemavaram Tanuku	Bf ₄ Cm ₄ Cf ₄ By ₄ S ₄ /Cy ₄
Nuzvid Polavaram Chintalpudi Kovvur	Cm ₄ Cf ₄ Cy ₄ Bf ₄ S ₄

Table 20

Area and Relative Yield Index Values of Crops in Zone XVII

Crops		Area ('000 ha)	RYI*
rice	autumn	230	157
	winter	58	150
	summer	24	121
	total	372	157
sugarc	ane	31	175
totalp	ulses	29	28

Rainfall Zone XVIII—E₄(B₂C₂)D₁E₃

4.150 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₃ M ₄ Pu ₄ /Jr ₄	Armur	Nizamabad
Jr ₃ Pu ₄ Pd ₄	Tiruyur	Krishna
Jr ₃ Pu ₄ Pd ₄ /Jk ₄ /Gn ₄	Yellandu	Khammam
	Bhoorgampadu	,,
	Bhadrachalam	,,
	Kothagudam	**
)	Madhira	**
$Pu_4 M_4 Jk_4 Pd_4$	Metepalle	Karimnagar

- 4.151 The total area of the zone is about 16,500 sq km. The zone has a total population of about 16 lakh and an average population density of 100 per sq km.
- 4.152 The elevation ranges between 80 and 700 masl.
- 4.153 The main soil types are deep black and red sandy and red loamy soils are present in the heavily forested taluks of Bhoorgampadu and Bhadrachalam, about 50 per cent of cropped area in Armur is irrigated and 15—25 per cent in the remaining taluks.
- 4.154 The annual average rainfall is about 100 cm in 50 to 60 rainy days. July is the month of maximum rainfall and together with August accounts for 50 per cent of annual rainfall. The months June to September receive more than 10 cm pm; both July and August get 20—30 cm pm.
- 4.155 Area under forests ranges from about 11 per cent in Madhira to about 80 per cent of geographical area in Bhadrachalam and Bhoorgampadu. Land not available for cultivation and fallow lands are between 10 to 20 per cent. Net sown area ranges from 12 to 16 per cent in two taluks to about 55 per cent in three taluks.
- 4.156 Paddy, other pulses and jowar are the main crops cultivated in this zone. Jowar (rabi) occupies nearly 30 to 44 per cent of cropped area in many taluks, followed by paddy ranging from 17 to 43 per cent.

^{*} RYI or Relative Yield Index represents West Godavari district yield as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.157 Area and Relative Yield Index values of crops in Khammam district are given in Table 21. The yield of jowar (rabi) is higher than all-India as well as State average. Rice yields are close to the State but higher than all-India level.
- 4.158 In Armur and Metepalle taluks sheep and male cattle constitute 50 to 60 per cent of total livestock whereas in Tiruvur and Madhira female buffaloes, sheep and cattle account for 70 per cent of the entire livestock. The livestock patterns are:

Armur } Metpalic }	S ₃ Cm ₄ Cf ₄ Cy ₄
Yellandu Bhoorgampadu Bhadrachalam Kothagudem	Cf ₄ Cm ₄ Cy ₄ S ₄ /G ₄
Madhira } Tiruvur }	Bf ₄ S ₄ Cf ₄ Cm ₄ Cy ₄

TABLE 21

Area and Relative Yield Index Values of Crops in Zone XVIII

Crop		Area ('000 ha)	RYI*	
Jowar	rabi	197	113	
rice	autumn	56	125	
	winter	29	119	
	summer	1 ·5	76	
	total	86	119	
total pulses		73	36	
total pu		= =		

^{*} RYI or Relative Yield Index represents Khammam district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XIX— E_4 (B_3 C_1) D_1 E_3

4.159 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd, M4	Nizamabad	Nizamabad
Pd3 Jr4 Jk4/S4/Pu4	Banswada	Nizamabad
	Yellareddy	,,
	Bodhan	,,
Jr ₄ Pu ₄ Jk ₄ Gn ₄	Madnur	Nizamabad

- 4.160 The total area of the zone is 4936 sq km and the total population is 8.1 lakh with an average population density of 165 per sq km.
- 4.161 The zone is an elevated plateau with heights ranging between 300 to 670 masl.
- 4.162 Area under forests is 40 per cent of geographical area in Yellareddy taluk and ranges from almost negligible to 25 per cent in other taluks. Land not available for cultivation accounts for about 15 per cent and fallow lands 15 to 25 per cent. Net sown area varies widely ranging from 30 to 80 per cent.
- 4.163 In Bodhan taluk, about 65 per cent of cropped area is under irrigation, and elsewhere it ranges from 40 to 50 per cent except in Madnur where irrigation

- facility is non-existent. Soils are mainly medium black with some parts having red sandy or deep black soils.
- 4.164 Annual rainfall is generally above 100 cm in about 55—60 rainy days, the principal rainy season being June to September accounting for 90 per cent or more of total rainfall. All the four months June to September get more than 10 cm pm and in particular July to September receive 20—30 cm pm.
- 4.165 Paddy is the main crop occupying 40 to 55 per cent of cropped area except in Madnur, where it is negligible. Maize, jowar, other pulses and sugarcane are the other crops grown in this zone.
- 4.166 The area and yield of crops in Nizamabad district are given in Table 22. The yield of paddy is the highest in the State and jowar (rabi) yield is the same as all-India. Yield of maize is good.
- 4.167 Male, female and youngstock cattle account for nearly 50 to 70 per cent of livestock population. The livestock pattern is:

Cm₄ Cf₄ Cy₄ S₄ G₄

TABLE 22

Area and Relative Yield Index Values of Crops in Zone XIX

Crep	Area ('000 ha)	RYI*	
rice	117	158	
jowar (rabi)	41	102	
jowar (kha ri f)	24	80	
maize	39	170	
gram	12	40	
total pulses	51	39	

Rainfall Zone $XX - E_4$ (A₁ B₁ C₂) D₁ E₃

4.168 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pd ₂ Jv ₄	Mulug	Warangal
Pd ₃ M ₄ Pu ₄	Khanapur	Adilabad
$Pd_4 Pu_4 M_4/Jk_4$	Parkal	Warangal
Jk ₃ C ₄ O ₄ /Pu ₄	Adilabad Boath Utnur	Adilabad
Jk ₄ C ₄ Pu ₄ Pd ₄ /O ₅	Mudhol Nirmal	Adilabad

4.169 The area of the zone is 12,705 sy km with most of the taluk areas exceeding 1000 sq km. This is a zone of low population density with four taluks having a population density of less han 100 per sq km.

^{*} RYI or Relative Yield Index represents Nizamabad district yield as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.170 The heights range between 150 and 600 masl.
- 4.171 The zone has significant area under forests, the percentage of geographical area accounted for by forests ranging from 25 to 60 per cent in most of the taluks. Land not available for cultivation is about 10 per cent with fallow lands being negligible in many taluks. Net sown area ranges from as low as 13 per cent in Mulug taluk to 73 per cent in Mudhol.
- 4.172 Parkal, Khanapur and Mulug taluks are having 35 to 50 per cent of cropped area under irrigation and in some taluks there is negligible area under irrigation. Soils are mainly mixed red and black or deep black.
- 4.173 The annual average rainfall exceeds 100 cm in about 60 rainy days. July is the month of maximum rainfall with more than 30 cm and together with August accounts for more than 50 per cent of annual rainfall. All the months June to September receive more than 10 cm. pm.
- 4.174 In taluks of Adilabad where irrigation is negligible jowar (kharif)and cotton are the main crops. Elsewhere paddy other pulses maize and jowar are the main crops.
- 4.175 The area and Relative Yield Index values of crops are given in Table 23. Yield of rice is low, that of Jowar (rabi) and Jowar (kharif) is satisfactory. The yields of maize, tur, total pulses and cotton are much below all-India level.
- 4.176 Male, female and younstock of cattle account for more than 60 per cent of livestock and together with sheep or goats the total exceeds 70 per cent. The livestock patterns are:

$Cm_4Cf_4Cy_4S_4$!	$Cm_3Cf_4Cy_4$			$S_3Cm_4Cf_4$			
			TABLE	E 23				- 1	
Area and	Relative	Yield	Index	Values	of	Crops	in	Zone	XX
									

Crop	Area ('000 ha)	RYI*	
rice	53 · 7		
jowar (kharif)	108	112	
(rabi)	109	94	
maize	18	33	
tur	27	63	
total pulses	113	46	
cotton	83	51	

Rainfall Zone XXI— E_4 (A_2 B_1 C_1) D_1 E_3

4.177 The district, taluks and the cropping patterns included in the zone are:

Cropping patterns	Taluks	District
Jr ₃ Pu ₄ O ₄ /Pd ₄	Sirpur	Adilabad
	Chinnur	•

4.178 The area of the zone is 4000 sq km. The population of the zone is about 2.9 lakhs with average population density of 71 per sq. km.

4-749 Agri./76

- 4.179 The heights range between 150 to 450 masl.
- 4.180 Forests occupy nearly 50 per cent of the geographical area, followed by land not available for cultivation accounting for about 15 per cent. Net area sown is 33 per cent in Sirpur and 22 per cent in Chinnur taluks.
- 4.181 Irrigation is negligible in the zone and soils are mainly red loamy.
- 4.182 The annual rainfall varies between 110 to 125 cm and the month of maximum rainfall is July or August—and these together account for 60 per cent of the annual rainfall. July and August get more than 30 cm pm and September 20—30 cm.
- 4.183 The predominant crop in the zone is jowar (rabi) which occupies 50 per cent of the cropped area in Sirpur and 40 per cent in Chinnur. Pulses other than tur and gram are cultivated on 20 per cent of the total cropped area.
- 4.184 Area and Relative Yield Index values of crops are given in Table 24. The Relative yield Index of paddy in the district is on the low side being only 90 per cent of all-India and that of jowar is the same as State average though slightly less than all-India. The yields of pulses and sesamum are low.
- 4.185 Male cattle constitute 30 per cent of livestock, followed by female cattle 23 per cent and youngstock 18 per cent. The livestock pattern is:

Cm₄ Cf₄ Cy₄

TABLE 24

Area and Relative Yield Index Values of Crops in Zone XXI

Crop	Area ('000 ha)	RYI*
rice	54	90
jowar (rabi)	109	94
total pulses	113	46
sesamum	38	71
castor seed	5 · 3	201

Rainfall Zone XXII— $D_1 E_3 (C_1 D_1 E_2) D_1 E_3$

4.186 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	Distric t
Jk4 Mt4 Gn4 Pu4/C4 Jr4	Kalyandurg	Anantapur
	Rayadurg	,,
Gna Mta Ca Jra	Uravakonda	,,

- 4.187 The area of the zone is 4962 sq km and the total population is 4.4 lakhs with average population density of 88 per sq km.
- 4.188 The zone is a plateau ranging from 450 to 1000 masl.
- 4.189 Forest area is negligible and area under fallow lands is 15 to 30 per cent of geographical area. Net sown area is 76 per cent in Uravakonda, 60 per cent in Rayadurg and 46 per cent in Kalyandurg.
- *RYI or Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

^{*}RYI or Relative Yield Index represents Adilabad district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.190 Area under irrigation is 15 per cent in Rayadurg and negligible elsewhere. Soils are mixed red and black and red sandy.
- 4.191 The annual rainfall of the zone is about 50 cm in 33 rainy days. September is the month of maximum rainfall and together with October, accounts for 40 per cent of annual rainfall. September is the only month during the year with more than 10 cm rainfall.
- 4.192 Jowar (kharif and rabi), groundnut, small millets, cotton and bajra are the main crops of the zone; small quantities of paddy and other pulses are also grown.
- 4.193 Area and Relative Yield Index values of crops are given in Table 25. Excepting rice, the yields of all crops are much below all-India level, jowar being 66, small millets 41 and cotton 34 per cent of all-India.
- 4.194 Sheep, goats, male and female cattle together account for more than 70 per cent of the total live-stock. The livestock pattern is:

S₃ G₄ Cm₄ Cf₄

Crop	Area ('000 ha)	RYI*
Jowar (kharif)	116	62
jowar (rabi)	32 · 7	74
total	148 · 7	66
small millets	150	41
groundnut	233	82
cotton	32 · 7	35
bajra	61 · 5	89
rice	57 ⋅8	136

Rainfall Zone XXIII— $D_1 E_3 (C_1 D_2 E_1) C_1 D_1 E_2$

4.195 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Gn ₂ B ₄	Kadiri	Anantapur
Gn ₃ Pd ₄ Pu ₄ Mt ₄ /R ₄ B ₄	Hindupur Penukonda Dharmavaram Anantapur	,, ,, ,,
Mt ₄ Gn ₄ Pu ₄ R ₄ Jk ₄	Madakasira	11

- 4.196 The area of the zone is 11261 sq km and the total population is 130 lakhs with an average population density exceeding 110 per sq km.
- 4.197 This is a plateau area, the elevations ranging between 300 and 950 masl.

4.198 Forest area accounts for nearly 20 per cent of geographical area in Kadiri and Penukonda and it is negligible elsewhere. Land not available for cultivation is 15 to 20 per cent, cultivable waste about 10 per cent and fallow lands 20 to 25 per cent.

Net sown area is 35 to 45 per cent except in panukonda where it is as low as 19 per cent.

- 4.199 Soils are red sandy and in some areas red loamy. About 20 to 30 per cent of cropped area is irrigated.
- 4.200 Annual rainfall is 50 to 60 cm in 35 to 40 rainy days. September is the month of maximum rainfall and together with October accounts for about 40 per cent of annual rainfall; both these months get 10—20 cm pm.
- 4.201 Groundnut is the principal crop in this zone, occupying 25 to 30 per cent of cropped area except in Kadiri where it is 53 and Madakasira 14 per cent. The other crops grown are small millets, paddy, other pulses and ragi.
- 4.202 Area and yields of crops in Anantapur district of the zone are given in Table 26. Yields of rice and ragi are well above all-India and State averages. Yield of groundnut is less than all-India level. The performance of small millets and jowar is poor.
- 4.203 Sheep constitute 40 to 50 per cent of livestock followed by goats (15%) and male cattle (15%). The livestock pattern is:

S₃ G₄ Cm₄ Cf₄

Area and Relative Yield Index Values of Crops in Zone XXIII

TABLE 26

Crop	Area ('000 ha)	RYI*
Groundnut	233	82
small millets	150	41
bajra	62	89
ragi	27	148
total pulses	76 · 5	51
jowar kharif	116	62
rice	58	136

Rainfall Zone XXIV $-\mathbf{D}_1 \mathbf{E}_3 (\mathbf{C}_1 \mathbf{D}_3) \mathbf{C}_2 \mathbf{E}_2$

4.204 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Gn ₃ Pd ₄ S ₄ /B ₄ /R ₄	Madanapalle	Chittoo
	Pungenur	,,
	Palamner	,,
Gn ₂ Pd ₄	Vayalpad	,,

^{*}RYI or Relative Yield Index represents An atapur district yield as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

^{*}RYI or Relative Yield Index represents Adilabad district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.205 The total area of the zone is 7008 sq km and areas of all taluks exceed 1000 sq km. The population of the zone is 8.7 lakhs with an average population density of 124 per sq km.
- 4.206 The zone is a plateau, heights ranging between 600 and 1200 masl.
- 4.207 Forests occupy 20 to 40 per cent of geographical area and land not available for cultivation is 18 to 28 per cent. Net sown area is 30 to 35 per cent.
- 4.208 Soils are red sandy and area under irrigation ranges from 20 to 25 per cent of cropped area.
- 4.209 The annual rainfall ranges from 75 to 85 cm in about 50 rainy days. September/October is the month of maximum rainfall and these two months account for 35 per cent of annual rainfall. September to November months get more than 10 cm pm.
- 4.210 Groundnut is the principal crop of this zone occupying about half of cropped area followed by paddy 13 to 22 per cent
- 4.211 Area and Relative Yield Index values of crops in Chittoor district are given in Table 27. The yields of all crops are above all-India level, groundnut being 152 and rice 140 per cent of all-India.
- 4.212 Sheep constitute 30 per cent of total livestock, followed by goats (15-20 per cent), female cattle (15 to 25 per cent), male cattle (15 per cent) and youngstock (11 per cent). The livestock pattern is:

S₃ G₄ Cf₄ Cm₄/Cy₄

TABLE 27

Area and Relative Yield Index Values of Crops in Zone XXIV

	40.21.154
Area ('000 ha)	RYI*
183	152
49 ⋅4	104
38 ·6	142
124	140
	('000 ha) 183 49 ·4 38 ·6

Rainfall Zone XXV-D₁ E₃ (C₂ D₂) C₂ D₁ E₁

4.212 The district, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Gn ₃ Pd ₄ S ₄ /B ₄ /R ₄	Bangarupalem	Chittoor
• • • • •	Chittoor	79
	Chandragiri	,,
	Puttur	,,

- 4.213 The area of the zone is 4790 sq. km. with the areas of taluks varying from 800 to 1600 sq km. The total population is 9.4 lakhs and the population density ranges from 160 to 270 per sq km.
- 4.214 Chandragiri taluk has elevations ranging from 600 to 1150 masl and elsewhere it is 100 to 600 masl.
 - * RYI or Relative Yield Index represents Chittoor district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

- 4.215 Area under forests ranges generally between 20 to 30 per cent, with about 55 per cent in Chandragiri and land not available for cultivation is about 20 per cent. Net sown area is only 20 per cent of geographical area in Puttur and Chandragiri and 32 per cent elsewhere.
- 4.216 About 70 per cent of cropped area in Puttur is under irrigation, 50 per cent in Chandragiri and Chittoor and 33 per cent in Bangarupalem. Soils are red sandy.
- 4.217 The annual rain fall varies between 85 to 95 cm in about 50 rainy days. The months from August to November get 10—20 cm pm rainfall.
- 4.218 Groundnut and paddy are the main crops of the zone and account for more than 50 per cent of the gross cropped area; the other important crops are sugarcane, jowar and ragi. The Relative yield Index values have been given under zone XXIV for Chittoor district.
- 4.219 Sheep constitute 30 per cent of the total live-stock followed by male cattle (20 per cent), female cattle (15 per cent) and goats (10 to 15 per cent). The livestock pattern is:

 S_{ii} (Cm₄ Cf₄ G₄ Cy₄)

Rainfall Zone XXVI $-D_1 E_3 (C_4) C_1 D_1 E_2$

4.220 The districts, taluks and the cropping patterns included in the zone are:

Cropping Pattern	Taluk	District
Pd ₂ Pu ₄	Pithapuram	E. Godavari
Pd ₂ Pu ₄ /R ₄ /Fb ₄	Tekkali Narsannapet Pathapatnam Srikakulam	Srikakulam
Pd ₃ R ₄ O ₄	Ichchapuram Sompeta	Srikakulam
Pd ₃ Pu ₄ B ₄ O ₄	Tuni Prathipadu Chodavaram Yellamanchili	E. Godavari ,, Visakhapatnam
Pd ₃ Pu ₄ Fr ₄ To ₅	Rajamundry Peddapuram	E. Godavari
Pd3 Gn4 Fb4/Pu4	Viziznagram Gajpatinagaram Srungavarapuko Bheemunipatnan	
Pd ₃ Gn ₄ Fb ₄ /Pu ₄	Bobbili	Srikakulam
Pd ₄ Fb ₄ Gn ₄ B ₄ R ₄	Salur	Srikakulam
B ₃ Pd ₄ R ₄ O ₄	Visakhapatnam	Visakhapatnam
Gn ₃ Pd ₄ Fb ₄ B ₄ Pu ₄	Anakapalle	,,
Gn ₃ Pd ₄ Fb ₄ B ₄ Pu ₄	Cheepurupalle	Srikakulam

4.221 This is a zone covering twenty two taluks located in the coastal districts of Srikakulam, Visakhapatnam and East Godavari. The area of the zone is 17225 sq km and the areas of taluks range from 225 to 1539 sq km. The total population of the zone is 54.5 lakh with an average population density of 316 per sq km.

- 4.222 Most of the taluks being in the coastal region the maximum elevation is 500—600 masl but only in two taluks, Pathapatnam and Gapapatinagaram the maximum elevation is 1100—1200 masl.
- 4.223 Area under forests is 30 per cent of geographical area in Salur, Srugavarapukota and Pathapatnan and 15 per cent in Sompeta and Bheemunipatnam. Land not available for cultivation is 15 to 30 per cent and fallow lands less than 10 per cent. Net sown area covers 40 to 60 per cent over most of the zone with Srikakulam ichchapuram and Bobbili having 70 per cent.
- 4.224 Coastal alluvium or red sandy soils prevail in the zone. Deltaic soils are present in Rajahmundry and Peddapuram with some laterite in Peddapuram. Area under irrigation is 90 per cent of cropped area in Salur and more than 40 per cent in most of the other taluks.
- 4.225 The annual average rainfall is 100 cm with September being the month of maximum rainfall. September and October together account for 35 to 40 per cent of the annual rainfall. All the five consecu-

tive months June to October get 10—20 cm. pm. rainfall.

- 4.226 Paddy, ragi and other pulses are the main crops of this zone with paddy occupying more than 50 per cent of cropped area. The zone has eight cropping patterns, six beginning with paddy, one with ground-nut and one with bajra.
- 4.227 The Relative Yield Index values of crops grown in this zone are given in Table 28. Paddy yields are low in Srikakulam and Visakhapatnam districts. Yield of ragi in Visakhapatnam and E. Godavari Districts is low. Yields of pulses are generally poor throughout the State but of groundnut and bajra are good.
- 4.228 Male cattle and sheep constitute a large per cent of the livestock population. The livestock patterns are:

Cm₄ Cf₄ S₄ G₄ Cy₄/Bf₄ S₁ G₄ Cm₄ Cf₄ Bm₄ B₂ Cm₄ Cf₄ By₄ G₁

TABLE 28

Relative Yield Index Values of Crops in Zone XXVI

District/Crop	Rice	Ragi	Total pulses	Groundnut	Bajra
Srikakulam	83	109	32	150	170
Visakhapatnam	89	68	23	97	123
East Godavari	119	84	32		103

Nore:—Relative Yield Index represents district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XXVII—D₂ E₂ (B₁ C₃) C₁ D₁ E₂

4.229 The district, taluks, and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
Pu ₄ Pd ₄ B ₄ O ₄ /Jk ₄ Gn ₄ / Mt ₄ /Jk ₄	Narasapatnam	Visakhapatnam
Pu ₃ Pd ₄ Mt ₄	Chintapalle	,,

- 4.230 The total area of the zone is 3719 sq km and population density is as low as 29 per sq km in Chintapalle and 200 in Narasapatnam.
- 4.231. The maximum elevation in Narasapatnam is 800 masl and 1700 masl in Chintapalle.
- 4.232 Area under forests is 62 per cent of geographical area in Chintapalle and 25 per cent in Narasapatnam. The net sown area is only 5 per cent in Chintapalle and 61 per cent in Narasapatnam.
- 4.233 Area under irrigation is 10 per cent of cropped area in Chintapalle and 23 per cent in Narasapatnam. Soils are coastal alluvium and red sandy in Narasapatnam and red sandy/loamy soils in Chintapalle.
- 4.234. Anual rainfall is 113 cm received in 70 rainy days. June to October months receive more than 10 cm pm rainfall.

- 4.235 Other pulses, paddy and small millets are the main crops cultivated in this zone. The Relative Yield Index values are given in Table 29. It will be seen that the yields are low.
- 4.236 In Chintapalle male cattle constitute 34 per cent of livestock, followed by female cattle (22 per cent) and youngstock cattle (21 per cent). The pattern is:

$$Cm_3 Cf_4 Cy_4/G_4$$

In Narsapatnam sheep and male cattle are predominant and the livestock pattern is:

S₄ Cf₄ G₄ Bf₄ Bm₄

TABLE 29

Relative Yield Index Values of Crops in Zone XXVII

RYI*
89
56
23

* RYI or Relative Yield Index represents Visakhapatnam district yield expressed as percentage of the corresponding all-India average yield for 1968-69 to 1970-71.

Rainfall Zone XXVIII—D₂ E₂ (B₃ C₁) C₁ D₁ E₂

4.237 The districts, taluks and the cropping patterns included in the zone are:

Cropping pattern	Taluk	District
$Pd_2 Pu_4/R_4/Fb_4$	Parvathipuram	Srikakulam
Pd ₃ Gn ₄ Fb ₄ /Pu ₄	Palakonda	,,
Pu ₄ Pd ₄ B ₄ O ₄ /Jk ₄ Gn ₄ /		
Mt ₄ /Jk ₄	Yellavaram	East Godavari
	Rampachodava	ram ,,

- 4.238 The area of the zone is 6849 sq km and the areas of taluks vary from 1300 to 2200 sq km. The total population of the zone is 7.5 lakhs with taluk population density ranging from 40 to 285 per sq km.
- 4.239 Elevations vary widely from 150 to 1400 masl excepting in Palakonda where they range from 50—300 masl.
- 4.240 Yellavaram and Rampachodavaram in East Godavari district have 55 per cent of geographical area under forests, whereas it is 33 per cent in Parvathipuram and 15 per cent in Palakonda. The net sown area is only 8 per cent of geographical area in Yellavaram and Rampachodavarm, 27 per cent in Parvathipuram and 51 per cent in Palakonda.
- 4.241 The area under irrigation in Parvathipuram an Palakonda is about 50 per cent of cropped area and negligible elsewhere.
- 4.242 The annual average rainfall is about 120—130 cm. The month of maximum rainfall is July/August except in Ramapachodavaram where it is October. This zone has three consecutive months of July to September with 20—30 cm pm and 5 to 6 months from June with more than 10 cm pm.
- 4.243 Paddy is the principal crop in Parvathipuram and Palakonda taluks occupying 50 per cent of gross cropped area. Yields of principal crops of East Godavari district have already been discussed earlier. Relative Yield Index values of rice and total pulses in Srikakulam district are given below:

Crop	RYI
rice	83
total pulses	32

- 4.244 The yields of rice and total pulses are low.
- 4.245 Cattle constitute 70 per cent of total livestock in Yellavaram and Rampachodavaram and 40 per cent in Parvathipuram and Palakonda. The livestock patterns are:

Yellavaram	} Cm ₄ Cf ₄ G ₄ /Cy ₄
Rampachodavaram	} Citi4 Ci4 G4/Cy4
Parvatipuram	Cm_4 S_4 G_4 Cf_4 Cy_4/Bm_4
Palakonda	S4 Cm4 G4 Cf4 Cy4/Bm

Rainfall Zone (Special I) $-E_4$ (A₁ B₁ C₂) C₁ D₁ E₂

- 4.246 This zone comprises of Paderu taluk of Visakhapatnam district and the cropping pattern is Pd₃ R₄ O₄. The area of this taluk is 3105 sq km and the population is 1.8 lakhs with a population density of 59 per sq. km. It is an elevated plateau with elevations ranging from 1200 to 1680 masl.
- 4.247. The area under forests is 50 per cent of geographical area, land not available for cultivation 20 per cent, cultivable waste 10 per cent and fallow lands 8 per cent. Net sown area is only 14 per cent of geographical area. Nearly 25 per cent of cropped area is under irrigation and soils are red loamy.
- 4.248 The annual rainfall is about 120 cm. July is the month of maximum rainfall and together with August accounts for 50 per cent of annual rainfall.
- 4.249 Paddy occupies 39 per cent of cropped area, ragi (21 per cent), other oilsceds (16 per cent) and small millets (12 per cent). The Relative Yield Index values of rice, ragi and small millets are low being 89, 68 and 68 per cent of all-India level respectively.
- 4.250 Male cattle constitute 30 per cent of livestock, followed by goats (16 per cent) and male buffaloes (12 per cent). The livestock pattern is:

Cm₄ G₄ Bm₄ Cf₄

Rainfall Zone (Special II)—E₄ (A₂ B₂) D₁E₃

- 4.251 This zone comprises of Nugur taluk in Khammam district and the cropping pattern is Pd₂ Jr₄. Area is 1616 sq km and the population density 33 per sq km. The elevations range between 80 and 460 masl.
- 4.252 Area under forests is 82 per cent of geographical area and net sown area is 13 per cent. Only 20 per cent of area is irrigated and soils are red loamy.
- 4.253 The annual rainfall is about 150 cm. in 70 rainy days. The maximum rainfall occurs in July and together with August contributes more than fifty per cent of annual rainfall.
- 4.254 Paddy occupies 64 per cent of gross cropped area and jowar 15 per cent. The Relative Yield Index of paddy in Khammam district is 119 per cent and that of rabi jowar 113 per cent of all-India level.
- 4.255 Sheep, goats and buffaloes are negligible with only cattle dominating. The livestock pattern is:

 $Cf_3 Cm_4 Cy_4$

Rainfall Zone (Special III)— $D_1 E_3 (C_2 D_2) C_1 D_1 E_2$

- 4.256 The zone comprises of Kuppam taluk in Chittoor district and the cropping pattern is R_4 Pd $_4$ Mt $_4$ Pu $_4$ Gn $_4$. The area of Kuppam is 756 sq km and the population is 1.1 lakhs with a population density of 150 per sq km. It is a plateau, heights ranging between 450 and 750 masl.
- 4.257 Area under forests is 36 per cent of geographical area, land not available for cultivation is 18 per cent and the net sown area is about 40 percent About

20 per cent of cropped area is irrigated. Soils are red sandy.

4.258 The annual rainfall is only 75 cm in 48 rainy days. September is the month of maximum rainfall and 55 per cent of annual rainfall occurs during September-October.

4.259 A number of crops are grown on more than 10 per cent of cropped area, with ragi occupying 23

per cent of cropped area. The Relative Yield Index values of rice and ragi are above all-India level.

4.260 Sheep constitute 32 per cent of total livestock followed by female cattle (25 per cent). The livestock pattern of the zone is:

S₃ Cf₄ G₄

5. FUTURE CROPPING PATTERNS—SOME OBSERVATIONS

General

5.1 In the foregoing sections we have dealt with in detail the rainfall, cropping and livestock patterns which emerge from the existing information. We have also grouped the rainfall patterns into zones and discussed how the other patterns viz. crops and livestock, feature in those zones. Among other information that on soils, which ought to play an important role in determining cropping patterns, is lacking in such detail as is required for this analysis. Data on orography and population density have featured in this analysis but their exact role on cropping and livestock patterns could not be brought out owing to lack of detailed information. We are, however, convinced that studies and analysis indicated in the preceding sections are important for the guidance they may give in deciding cropping and livestock pattern vis a vis rainfall patterns. The greater the accuracy of the primary information and the more detailed such information is the more useful the data would be in drawing up the most efficient cropping and livestock patterns in an area or a zone. With this purpose in view the following procedures are suggested :-

- (i) Delineation of rainfall zones;
- (ii) Identification of the existing cropping patterns;
- (iii) Assessment of area needed for each crop and its ideal distribution;
- (iv) Comparison of (iii) with (ii) in order to determine possible changes; and
- (iv) Consideration of other related factors like soil, irrigation facilities, density of population livestock patterns and then arriving at the future cropping patterns.
- 5.2 The methods of delineating rainful patterns or zones and cropping patterns have been fully discussed in Section 2. For the purpose of locating suitable area for a crop, soil and topography of the land are important factors. The approximate area to be put under each crop will be decided by the demand for it not only at the State level but at the national level, either for internal consumption or for the purpose of export. The Departments responsible for crop planning of a State should, therefore, be cognisant of the demand for a crop, so that production efforts are not rendered

futile because of lack of demand and marketing. The part each of the factors mentioned in item (v) of para 5.1 is likely to play in deciding croping patterns has already been discussed. For this purpose not only detailed data but also knowledge about the correlation between these factors and crop performance would be necessary. Knowledge gained, through long experience, by farmers would also be most helpful.

- 5.3 It may be mentioned that the raifall intervals which form the basis of identifying rainfall patterns are subject to minor modifications. Thus, the condition that not less than 30 cm pm of rainfall for three consecutive months is good for paddy may not be rigorously adhered to. If the soil is favourable with a high water retention capacity or, what is more important, water management is efficient with an eye to economise water use, rainfall lower than 30 cm for three months may sustain a good crop of paddy.
- 5.4 The choice of a cropping pattern is not decided by the farmer only on technical grounds. He is also guided by the profitability of the crops or requirements for his household consumption. Farmers may not be inclined to accept a crop unless the necessary in puts and infrastructure are assured. Of all the inputs water is the most important as is made evident by the spread of groundnut in the country, sugarcane in Gujarat, maize and cotton in Karnataka and recently of wheat in West Bengal. These are excellent instances of the manner of introduction of new crops in the cropping patterns of a State or a region.

Some observations pertaining to Andhra Pradesh

- 5.5 Three crops of rice are taken in Andhra Pradesh in a year. The rainfall by itself is not sufficient to sustain any of the three crops. However, the performance of all the three crops is good because or irrigation. Diversifications could be attempted. It is possible to grow many other crops like cotton, groundnut, maize, fruits, vegetables, fodder grasses and legumes with advantage. Detailed studies with this objective are worthwhile.
- 5.6 The performance of cotton crop in Mahboobnagar. Kurnool and Anantapur districts is very poor. The rainfall in some or all of the monsoon months varies between 10 and 20 cm per month in these districts, which is insufficient for cotton growing. Unless

irrigation water could be provided for growing—this crop, it is desirable to divert substantial area under cotton crop in these districts to some other—hardy crops like castor and safflower.

5.7 Opinion is already in favour of reducing the area under tobacco in heavy black cotton soils and increasing the same in lighter soils. This will also require change in cropping patterns. The irrigation need of tobacco crop will also increase when it is diverted to lighter soils.

5.8 The area under tapioca could be increased. Rubber plantations could also be tried in this State provided varities suitable for its agro-climatic conditions could be evolved. The area under cashewnut and coconut could also be increased with advantage.

APPENDIX 1

Talukwise Land Use (1969-70) and Population Statistics
ANDHRA PRADESH

	·		NDHRA PI					T 11	Not -
District/taluk	Population 1971		Forests	Nac	Cw	Pp≷	Mtc&g	Fallow lands	Net are
1	total 2	per sq. km	4	5	6	7	8	9	10
		3	4						
	Rainfal	l Zone1	• •	• •		Rainfall	Pattern—E	$(D_3 E_1)$	$B_2 \subset_1 E$
Nellore	2/21//	250				15.5	3	12	41
Nellore	363166	278	. 8	15.5	5	15.5	3	2	28
Gudur	173436	145	7	31	4	25		5	16
Venkatagiri	112871	102	45	16.7	4	12	0 ·4		
Atmakur	159567		10	22	14	9	5	5	3:
Rapur	112192	73	36	15	10	10	1	4	2
	Rainfal	l Zone—II			••	Rainfall	PatternI	E_4 (C_1 D_2 .	E_1) C_2
Ongole									
Podili	113893	103	11	10	4	5	5	6	5
Kanigiri	181762	70	24	16	9	12	1	13	25
Darsi	142113	93		9	10	5	1	21	4
Markaour	174977	49		7	5	2	0.3	10	2
Guntur									
Virukonda	153111	92		14	3	9	7	2	4:
	Rainfall	Zone—III				Rainfall Pa	attern—E ₄ ($C_1 D_2 E_1$	$B_1 C_1 E$
Ongole									
Kandukur	274446	136	10	16	3	10	4 · 4	7 · 6	49
Ongole	311055	223	0000	14	6	6	1	11 .	6
		l Zone—IV	SINE			Raintall	Pattern-E.	(C_1, D_2)	E_1) B_2 E_2
Nellore		20110 17		100 S			-	, , 1 2	1. 2
Kovur	237465	238	7 - 3	17	2 ·4	13	3.6	9	47 -
	179416		9.6	26	10.7	3	1	20 . 6	2
Kavali Udayagiri	136781	61	31	20	14	13	ı	. 4	17
Odayagiii			77/14 4	M. V.					
	Kainjai	l Zone—V	A 443 E	1787	• •	Kainjau	Pattern—L	4 (C ₁ D ₃)	D_1
Anantapur	10-04-		A TAKER	W5.T.	,	0.2	1	0.2	z.
Gooty	195365	156	10	18	4	0.3	1	9.3	57
Tadpatri	182398	110	11	15	8	2	2	3	59
Kurnool			सन्यभूव	जयते	2.5	0.6		0	~
Pattikonda	182945	95		13	3 · 5	0.5		8	7
Dhone	196698	91	20	10	8	1	1	13	47
	Rainfall	Zone-VI	• •			Rainfall i	Pattern—E ₄	$(C_1 D_3)$	D_2 E
Cuddapah									
Pulivendla	148515	101	10	15.6	11 •7	1	8 · 0	9	5:
Jammalamadugu	157138	99	11	20	10	6	5	7	4:
-	Rainfall	Zone-VII				Rainfa	all Pattern-	E_4 (C_1 D	3)
Cuddapab									
Rajampet	230216	86	84	1	0.3	0.5	0.2	1 ·4	12 %
Rayachoti	263663	92	31	20	8	5	1	7	28
Rayaviiou					intall Patte	$ern-E_4$ (C_1	$D \rightarrow A$		
	Kainjali	Zone—VIII	• •	• •	Nu	/444 1 14410	4 (0]	27 37 241 2	-1 -1 L
Nellore	124604	O.t	α	40	10	13	1	8	1:
Sulluppet	134694	16	9	40	10	13	ı	o	1
Chittoor	4440==	• • • •	24.5	26	_	1 -	7 1.7	6	2.
Srikalahasti	203975		34 · 5	26	5 3.5				2:
Satyavedu	152831	152	42	17	2 · 5	3 ·	6 0⋅8	0	28

-nil or negligible

Nac =not available for cultivation,

Cw =culturable waste.

Pp&gl =permanent pastures and other grazing lands.

Mtc&g = miscellaneous tree crops and groves not included in net area sown.

Note: Figures of land use represent percentages to total reporting area.

APPENDIX 1 (Contd.)

1	2	3	4	5	6	7	8	9	10
	Rainfall 2	one—1X				Raintall	Pattern -E ₄	$(C_2 D_2)$	D_2 E
Cuddapah						•			
Cuddapah	223286	169	42 · 4	13	2	3 - 2	0.3	2 · 4	37
Proddatur	221772	196	23	15	6	2	0 ·4	1	5:
Kamalapuram	94779	121	2	17	11	5	0.2	7	58
			_			D 1 4 11		(C P)	c 19
Cuddapah	Rainfall Zo	ne—X	• •			Kamjaii	Pattern—E ₄	$(C_2 D_2)$	C_2 E
	4.40500								
Badvel	142083	72	44	16	14	7]	1	16 :
Sidhout	95815	61	52	13	12	7	2	6	1
	Rainfall Zo	ne—XI				Rain	fall Pattern—	$E_4 (C_3 D_1)$	$D_1 E$
Valgonda				•					
Miryalguda	222366	119	10.5	10 ·4	7	3 · 5	2	27	40
Ramannapet	224805	127	0.5	12	2	5 • 4	0 • 2	37	4.
Nalgonda	339943	138	3	14	1	4	1	30	46 %
Bhongir.	243724	153	2 · 1	14	3	13	0.2	32	3
Huzuranagar	261641	153	6.6	16.7		9	-	14 -4	53 -
Suryapet	288018	142	0.2	14	10	15		17	4
Devarkonda	229241	85	17	7.2	1.2	2.2	0.3	25	4
	DE JETI	05	• 1		. ~		0.2		
Iyderabad	4 # # 400 #	CO CO		62		_	0.4	15.6	
Hyderabad (U)	1776805	6267		63	2	6	0 ·4	15.6	1.
Hyderabad (E)	116433	175	11	25	5	15	1	15	28
Hyderabad (W)	115721	222	2	35	1	19	3	10	3
Chevella	117438	122	Par	3 11	0 ·4	4	0 ·4	20	6
Tandur	119699	125	18	a Lib	1	3	0.3	2	ϵ
Ibrahimpatnam	146940	108	13	11	2	11	2	15 · 4	45 -
Medchal	102836	134	10	19 -4	3	19	2	20	26 -
Kurnool			REPRESENTATION OF THE PERSON O	1370					
Nandyal	199942	116	45	27677	3 .7	0.2	(neg)	4	4
	159127	101	29	7	10	0.2		5 · 4	4
Allagadda	131583	90	3	18	10	0.1		16	5
Koilkuntla	69542	101	32	2		_		2	6
Banganapalli	33 45 33	202	3	25	4	0.2	www.h	2	6
Kurnool				10	7.3	0.2	neg	12	6
Nandi Rotkur	118512	124	**************************************	0.4			neg	0.6	
Atmakur	126159	67	75						2
Alur	140301	88	3 · 3	जयत् 7	1		→	2	86
Adoni	322748	163	3	14	4	0 · 1	0 · 1	8	7
Varangal									
Jangaon	349641	146	1	12	2	14	1	25	4
/ahbuhnagar									
Achampet	111079	38	6 6	8	0 ·4	2	0 · 1	2	2
Gadwal	161906	121	1	10	1	5	0 · 1	4	7
Nagarkurnool	177698	122	1	9	3	7	1	16	6
Mahbubnagar	222356	187	14	12 ·4	3	4	1	14	51
Wanaparthi	165746	119	6	10	1	4	1	36	4
Atmakur	124041	107	2	12	3	4	0.4	15	ϵ
	165583	131	0.6	15	2	4	0.6	23	5
Shadnagar	158399	115	6	8.	3	4	0.4	14	6
Makhtal	148615	87	33 -5	11	2	2	0 · 1	2	5
Kollapur		109		10	- 1	2	0 · 1	4	8
Alampur	122836			12	1	3	1	25	
Kalvakurthi	200007	85	5		3	6	2	23 7	5
Kodangal	173816	146	3	13	٥	O	۷	/	e
Ongole						•		_	
Giddalur	201148	74	52	12	4	2	1	7	2
	Rainfall Z	one—XII				. Rainfa	ll Pattern—E.	$(C_3 D_1) C$	C_1 D_1 D_2
Suntur	•		21.7	10	o	4 · 6			
Sattenapalle	332087	185	21 · 7	10	8	4.6	0.5	0 · 3	54 •
Narasaraopet	310937	259	5	20	4		5 0.4	4	2
Palnad	300425	112	28	23	2 .6	3	0.6	2	4

APPENDIX 1 (Contd.)

				. (000						
1	2	3	4	5	6	7	8	9	10	
	Rainfall Zon	e—XII I				Raintall	Pattern-E ₄	$(C_3 D_1)$	C_2 E_2	
ntur										
Repalle	265821	336	11	14 · 3	4	3	4	3 •4	60	
Bapatla	299345	342	5	4	2	2	1	4	82	
ngole										
Chirala .	265406	305	0.2	22	1	2	2	18	55	
Addanki	254997	303 184	2	11	2	7			64	
Addanki	434331	104	4	()	2	,	0.4	7-4	·	
	Rainfall Z o	ne-XIV	• •	• •		Rainfall i	Pattern—E ₄	(C_4) C_1	$D_1 E$	
rishna										
Gudivada	253149	426		14		_		0 · 2	8	
Kaikalur	187578	257		17	17		1	4	6	
Gannavaram	233270	305	3	17	2	4	2	4	(
Vijayawada	604822	536	16	18	4	4	1	4	4	
Jaggayyapet	79425	206	15	10	4	12	0.2	3	5	
Nandigama	209074	200	9	14	1	8	0 ·3	1	(
untur										
	446047	530		1.4			•		8	
Tenali	446947 735915	529 503		14		1				
Guntur	735815	503	1	9	3	1	l	3		
	Rainfall Ze	oneXV	••			Rainfall	Pattern—E.	(C_4) B	C_1	
ast Godavari			ant 100 to 1							
Kothapeta	1 9942 2	670	ON THE	15	5	2		0 ·4		
Alamur	173435	612	y KPAR	E437	8	3	_	11		
Kakinada	483773	486	25	12	7	1 ·6	`2	1 ⋅6	50	
Ramchandra Puram	267229	575	4	19	4	2	1	0 · 1		
Mummidivaram	153171	438	12	9	12		3	4		
Razole	216240	474	AND BETTER	21	14	1	1	7		
Amalapuram	263412	469	1,170	17	7	1	0 ·4	12		
Vest Godavari			THIN	16						
Narsapur	394887	547	0.6	12	12	1	4	5		
rishna		- 1	HESSE	N.53						
Bandar .	310619	322		22	25	0 ·4	6	5		
Divi	280758	233	ਹਵਾ 10 ਤ	25	2	3			4	
27111			General A	142 -2	~					
led ak	Rainfall Z	one—XVI	• •	• •	••	Rair	ıfall Pattern	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Narsapur	139341	129	57	1	2	1	,	2		
-	201081	167	37 36	4 10	2	1				
Medak l Zahirabad	189028	151	36 18		2 0·3	7				
Narayankhed	122027	127	18	6		3				
	204795	173		11 16	5 3 · 3	4	-			
Sangareddy	195460	173	15	16		7				
Andole	193460	136		12	3	4				
Gajwel	252821	139 178	34	13	4	4				
Siddipet	232021	170	23	12 · 7	3 •6	8	5 1.5	7		
Varrangal										
Narsampet	204586	101	40	17	i	3				
Warrangal	650312	310	0.3	20	_	13				
	321715	183	10	10	1	4	0.2	17		
Mahbubabad										
Mahbubabad										
Mahbubabad	315767	218	_	23 .5	4	9	1.7	2.1		
Mahbubabad Karimnagar Huzurabad		218 209	<u> </u>	23·5 12	4 2	9				
Mahbubabad K arimnagar Huzurabad Karimnagar	315767			12	2	8	0.3	33		
Mahbubabad K arimnagar Huzurabad Karimnagar Sirsilla	315767 390282	209	1 16	12 18	2 2	8 6	3 0·3 5 1	33 16		
Mahbubabad Karimnagar Huzurabad Karimnagar Sirsilla Peddapalli	31 57 67 390282 302043	209 162	1 16 12	12 18 15	2	8 6	3 0·3 5 1	33 16 17		
Mahbubabad Karimnagar Huzurabad Karimnagar Sirsilla Peddapalli Jagtial	315767 390282 302043 355498	209 162 194	1 16	12 18	2 2 3 1	8 6 6 5	3 0·3 5 1 5 0·3	33 16 17 6		
Mahbubabad Karimnagar Huzurabad Karimnagar Sirsilla Peddapalli	315767 390282 302043 355498 283781	209 162 194 162	1 16 12 28	12 18 15 14	2 2 3	8 6	3 0·3 5 1 5 0·3	33 16 17	19	

APPENDIX 1 (Contd.)

1	2	3	4	5	6	7	8	9	10
	Rainfall Zoi	ne—XVI ((Contd.)	• •		Rainfall	Pattern—E ₄	$(B_1 C_3)$	D_1 E_3
Hyderabad						_	•	0.6	5.0
Vicarabad	163955	133	12.5	14	3	3	3	8 .6	56
Pargi	131935	131	5	12	1 .5	8	1 -5	22	50
Khammam									
Khammam	352822	201	5	18	2	8	1	3	63
Adilahad									
	174801	92	35 · 4	17	3	3 · 3	0 - 1	12.1	29
Lakshettipet	139368	65	57·5	8 · 5	0 · 1	.4	-2	0 · 1	33 ·6
Asifabad			3, 5	0.0			Pattern—E ₄	(B C)	C. D. E.
	Rainfall Zoi	ne—XVII	• •	• •		Kangan	1 ustern—L4	$(D_1 \cup 3)$	C ₁ D ₁ L ₂
W. Godavari	271761	201	4.7	20	8-8	4.6	0.9	6	55
Eluru	371361	281	4 - 7	20 18	5	4	1	6	62
Tadepalligudem	306678	330	4		7	0.2	0.1	2	76
Bheemavaram	338541	451	5	14		1	1.5	2	79 · 6
Tanuku	374138	674	42	13	2.8	4	0.1	3	25
Polavaram	135880	96	43	23 •6	2 10	6.3	2	2	44
Chintalapudi	149157	138	13 ·2	22	2.8	0.8	0.6	6	64 .8
Kobbur	303664	300	·2	25	2.0	0.0	0.0	•	07 0
Krishna					_	4	•	5	54
Nuzvid	153727	177	13	14	5	4	5		
	Rainfall Zo	neXVIII	• •			Rair	ıfall Pattern-	$-E_4$ B_2 C_3	$D_1 E_3$
Khammam						_	2 4	4.4	22
Yellandu	229345	69	45	16	1	3	0 · 4	11	23
Bhoorgampadu	114882	56	78	12.5	1	0 •4	0.1	1	15.6
Bhadrachalam	116502	48	83	3	1		neg	1	12
Kothagudam	229430	82	52	9	3	4	1	9	22
Madhira	274316	146		12	12	12	1	8	55
Karimnagar			ANALOSS .	469					
Metpalli	197403	207	4	9	3			22	57
•			19015	1.10					
Nizamabad	298140	152	22	18	6	7	1	11	35
Armur	270140	172		11727	.•	-			
Krishna	4004		Marin Salar		0.4	4	•1	3	57
Tiruvur	186152	164	19	16	0.4				
	Rainfall Zo	ne—XIX	सत्यमेव	जयसे		Rainfall	Pattern—E	$(B_3 C_1)$	D_1 E_3
Nizamahad			-1	1 -1 -1					
Nizamabad	304811	216	27	18	1	6	1	14	33
Banswada	124715	105	21	19	0.3	4	1	26	29
Yellareddy	103283	109	42	14	3	5	0 ·4	1	34
Bodhan	193026	243	3	15	1	4	1	17	59
Madnur	87792	146	16	2	1	1		2	78
	Rainfall Zo	110-XX				Rainfall	Pattern—E4	$(A_1 B_1 C_2)$	$D_1 E_3$
Warangal	Rangus 20	7171	• •	••			•		
_	131236	41	56	9	1	2	1	18	13
Mulug	131430	71	50	,	•	_			
Adilabad		0.5	<i>(</i> 2	7	0.5	2	0.5	3	24
Khanapur	66237	82	63	7	0.2	2	U -3	J	4-
Warangal					_			22.7	4.4
Parkal	213443	157	3	10	2	6.6	1	32 • 7	45
Adilabad								_	_
Adilabad	149810	100	24	6	4	3	3	6	54
Booth	89248	62	48	7 · 6	1 ·5	3		2	38
Utmur	93823	50	62	3	1	1	i .	2	30
Mudhol	114837	110	5	10.8	3 ·4	5	0.2	5	71
Nirmal	172147	117	29	18	1 ·3	8 • 5	1	1	4
2 10- ecept -	Rainfall Zo					Raintall	Pattern-E ₄	$(A_2 B_1 C$	P_1) D_1 E
A Attahori	Kainjau Zo	me—AAI	• •	• •	• •	- Mar. () 1416			
Adilabad	,==<45	40	4.4	15	2	2	0.3	3	3.
Sirpur	175675 11 24 02	79 63	44 53	13	1	4		6	22
Chinnur	117407	D.3	3.3	13	1			•	_

APPENDIX 1 (Contd.)

- 1	2	3	4	5	6	7	8	9	10
	Rainfall Zon	e—XXII		• •	,. R	ainfall Patt	$ern-D_1$ E_3	$(C_1 D_1 E_2)$	$D_1 E_3$
nantapur									
Kalyandurg	162406	76	5 · 4	13.4	6 • 4	1 .2	1 -1	31 -2	41 -3
Rayadurg	169099	96	6	11	2	1	1	19	60
Uravakonda	109995	103	3	5	1	1	0 ·4	15	75
	Rainfall Zoi	ne—XXIII			Ra	infall Patte	$rn-D_1 E_3$ ($C_1 D_2 E_1$ C	$D_1 E_2$
Anantapur									
Kadiri	304611	102	19	27	10	1	0.2	8	35
Hindupur	217427	195	9	15·5	10	2	1 ·8	18	44
Penukonda	166269	94	18	20 · 3	12	4	2	25	19
Dharmavaram	172180	91	6	21	8	1	0 · 3	28	3
Anantapur	286700	120	8	17	6	1	2	23	43
Madakasira	148262	137	8	16	12 •4	1	4 -3	19	39
	Rainfall Zo	ne-XXIV				Rainfall I	Pattern— D_1	E_3 (C_1 D_3)	C_2 E
Chittoor									
Madanapalle	284615	131	18	17 ·5	11	2	2	14	3
Vayalpad	254115	124	20.5	21	6.5	7	2 · 4	8	3:
Punganur	201409	117	27	28	5	4	2	4	3
Palmaner	136247	128	40	17	3	. 0.3	0 •4	5 · 7	34
	Rainfall Zo	neXXV	• •		Rain	njall P atte	$rn-D_1$ E_3	$(C_2 D_2) C_2$	D_1 E
Chittoor		,	200	1					
Bangarupalem	132402	163	20	20	5	ſ	i	21	3
Chittoor	271420	268	22	25.5	5 • 6	2	7	6	3
Chandragiri	271007	192	54 •4	13 · 2	4	2 • 4	1	6	1
Puttur	263694	169	29	27	4	2	1	16	2
	Rainfall Zoi	ne-XXVI	1	19		Rainfall I	Pattern—D ₁	E_3 (C_4) C_4	D_1
East Godavari			13/14/1	8.8					
Pithapuram	188998	529		16	7	5	4	9	5
Srikakulam		ß		11727					
Tekkali	212037	301	8	33	1	0.3	1	1	5
Narasannapet	180963	349	All Indiana	22	3	2	1	6	(
Pathapatnam	261587	218	28		5	4	1	4	2
Srikakulam	257281	437	2	21	1	1	1	3	•
Ichchapuram	99199	440		17	3	2	2	4	,
Sompeta	160754	293	16 · 4	21 •2	2	2	0.1	2.2	
Salur	159610	155	27	24	2.5	3	0.6	6	
Bobbili	281707	330	6	19	2	1	1	0.4	·
Cheepurupalle	361292	302		24	9	1	2	6	
Visakhapatnam	501272	302				•	_	· ·	
Vizianagaram	273247	397	8.	23	1	8	3	2	
Gajapathinagaram	143219	223	_	38	9	0.4	6	5	
Srungavarapukota	238219	226	37	9.6	0.2	0.2	2	0.3	
Bheemunipatnam	270300	310	17	20	3	0.9	1.8	5	
Visakhapatnam	470666	927	4	51	14	ĺ	2	1	
Ankapalle	2 7 8593	354	8	23	6	0.5	7	6	
		213	34	23	2	0.1	1	2	
Chodavaram Yellama nch ili	327950 282710	315	26	23 11	1	1	0.2	1	
East Godavari	202710	515			•	•	0 2	*	
Rajahmundry	464959	475	6	16	9	2	1	13	
Peddapuram	225896	231	10	18	7	7		13.5	
Prathipadu	159100	273	32	6		7	4	13.3	
Prainipadu Tuni	153692	324	3.4	18.4	10	3	4	2	
AUILL		one—XXVI		10 4		_	•	$E_2 (B_1 C_3)$	
Visakhapatnam	Z Servery with ZZ		• •	• •	• •	-101/19/1111	1/2	-2 (-1 -3)	-1 -1
Narasapatnam	269168	201	26	11	0.3	0 · 4	0.2	1	
	68204	29	62	30	2		0.4	1	•

33

APPENDIX 1 (Concld.)

1	2	3	4	5	6	7	8	9	10
	Rainfall Zor	ne—XXVII	<i>i</i>		1	Rainfall Patt	$ern-D_2 E_2$	$(B_3 C_1) C$	D_1 E_2
Sri <u>k</u> akulam									
Parvathipuram	250509	164	33	29	6	1	2	2	27
Palakonda	365052	285	12.6	21	6.6	2	1	6	51
East Godavari									
Yellavaram	83610	38	53	9	23	5	0.2	2	8
Rampachodavaram	54325	30	56 • 4	24	2	3	4	2 ·8	7 · 5
	Rainfall Zo	ne-⊶Spl. 1		, .	1	Rainfall Patt	ern—E ₄ (A	$B_1 C_2 C$	D_1 E_2
Paderu	183090	59	48	19	9	0.6	1 .7	8	14
	Rainfall Zo	neSpl. 11				Rainfall	Pattern—E	$A_4 (A_2 B_2)$	D_1 E_3
Nugur	52535	33	82	3	j		0 ·4	1	13
	Rainfall Zo	neSpl. II	<i>l</i>		R	ainfall Patte	$rn-D_1 E_3$	$(C_2 D_2) C_1$	$D_1 E_2$
Chittoor		•						-	
Kuppam	113821	150	35 •4	14	3 · 3	6	1	•4	39

Talukwise Livestock Population-1966 APPENDIX 2

ANDHRA PRADESH

						ANDHRA	ANDHRA PRADESH	h					(e)	(thousands)
		Cattle			Buffaloes		Sheep	Goats	Horses	Mules	Donkeys	Camels	Pigs	Total Livestock
District/taluk	Male	Female	Young	Male	Female	Young			ponies					
-	73	m	stock 4	5	9	stock 7	∞	6	10	11	12	13	14	15
	Rainfall	Rainfall Zone—I	:			:		:		:	Rainfall	Rainfall Pattern—E4	$E_4\left(D_3E_1 ight)$	$B_2 C_1 E_1$
Nellore													•	1
Nellore	45	42	39	ణ్	38	(1 ₀)	16 (6)	ଅକ୍ର	1	1	$\frac{1}{(\text{neg})}$	11	Έ ⁷	252
Gudur	<u>9</u> 16	333	19 19 19	ე თ @	(12) (12) (13)	<u>ှိ</u> စ်	(18) (18)	(15) (15)	1	1 🧻	neg (neg)	1	-∃	153
Venkatagiri	<u> </u>	<u>3</u> 65	<u></u> 26	ე∿.€) 216	£. 8	. 48 (35)	(11)	1 (1	neg (neg)	1	neg (neg)	136
Atmakur	<u>j</u> a@	£%§	546	£ ©∞©	<u> </u>	নিত	(38) (38) (38)	(16)	IJ	11	neg (neg)	IJ	(neg)	254
Rapur	<u>⊊</u> €	(13.8g))# <u>@</u>	re	86	Ξ©	1 7 (37)	4 (15)	1]	1	neg (neg)	11	neg (neg)	607
	Rainfal	Rainfall Zone—II	:		भेव व	1		200		;	Rainfall	Rainfall Pattern—E4	4 (C ₁ D ₂	E_1) C_2 E_2
Ongole					14-	1							ŕ	140
Podili	218	9 (4)	"6	ه 4	¤€	2 E	ය(<u>5</u>	(1 <u>6</u>)	1	1 ①	J.	I J	νΞ'	443
Kanigiri	⊚≊હ	£2.€)^@	≘€	4. 4.4.	'4⊛	(38)	9 (7 (7 (8)	l Ĵ	1	neg)	Œ	√£ ,	99 2
Darsi	<u>≘</u> €	ે€	_∞ €) ⁷ @	(13) (13)	<u>8</u> 7,	6 4 3)	(E)	1	1	neg)	1ĵ	*@ '	*
Markapur	(<u>1</u> 982)	74©	38	(B°2)	(15)	ନ୍ତି ନ	(38)	(13)	1	11	Iĵ	1	9	577
Guntur								!					•	20
Vinukonda	81 (01)	15 (8)	6 (S)	<u>⊬</u> €	(16)	(<u>F</u>	(30)	(1 4)	11	11	1 1	1 ①	±3	104
	,	;									Rainfa	Rainfall Pattern-	$E_{\epsilon}(C,D,E_{\epsilon})$	5) 8, C, E,
	Rainfa	Rainfall Zone—III	:			:	•			:	france		7 - 7 - 7	รี
Orgole				,	į	Ġ		72			-	ļ	7	331
Kandukur	% &	8E	4 4	පල	(E.3.	ଷ୍ଟ	(35)	353	1	ĵ	(neg)	1	€.	300
Ongole	¥5 <u></u>	15 (6)	(2)	$\hat{\sigma}^{12}$	(17)	(12)	(28)	€ (6)	(BeU)	1 ①	1	ĵ.	36	

B2 E2	201 179 235	D_1 E_3	118	165	D_2 E_2	139	C_2/E_2	196 317	$C_1 E_1$	113	158	
$^{1}_{1}$ D_{2} E_{1}	(3) (1) (neg)	(C ₁ D ₂)	-9-6	(E)	$(C_1 D_3)$	neg (neg) 1 (0·3)	$(C_1 D_2)$	(I) 4 (I)	$(1 D_3) A_1 B_1$	neg (neg)	3 ⁷ 3 ¹	
ern— E_4 (C_1	1]1]1]	Pattern—E4	1 ① 1 ①	1 🗓 1 🗓	Pattern—E4	1 ① 1 ①	Pattern—E4	1 🗓 1 🗓	Rainfall Pattern— $E_{ullet}(C_1 D_3) A_1 $	11	1]1]	
Rainfall Pattern—E4	neg (neg)	Rainfall	-879	-9-9	Rainfall P	£251	Rainfall i	(1) (neg)	Rainfall Pat	(gen)	neg (neg)	
	1.1.1.1.1	:	1 🗓 1 🗓	111	:	111	:	1]1]	:	1 ①	1 🗓 1	
	11111		neg (neg) reg (neg)	neg ()		1 🗓 1 🗓		1 🗓 1 🗓		1 ①	neg (neg)	
	4528 5 46	:	16 (14) 26 (18)	23 (14) (20)	~	26 (19) (20)	:	(22) 52 52 (16)	:	(11)	17 (11) 17 (15)	
	(7) (2) (29) (48)		38 (32) 50 (34)	33 33 63 (29)		8.66 4.0 (15)		45 100 (32)		25 (22)	(25 (25) (21)	
	35865	:	λ&π®	6. (4) (4) (4)	Į.	# © 25	:	6.61. 4	:	2 (4)	& & &	
	(15,25,25) (13,25,25) (11)		و⊛8. 4	4 8 12 (0)	HZ.	20 20 20 31 31 31		<u> </u>		6 (8)	4 858	
	7.825°, E	:	£279°	====	:	neg (neg) 3 (2)	;	6,33	:	, (6)	5 (3) (3)	
	32 <u>9</u> 23		16 , 4	56 4 6		4 €.€		36 8) 8)		E (6E)	4 @11@	
Rainfall Zone—IV	(H) (H) (H) (H)	Zone-V	(E) 8 (S)	(10) (20) (11)	me-VI	°€ §	оне—VII	21 (11) 48 (15)	one—VIII	23 (20)	25 (16) 21 (18)	neg = neglible
Rainfall.	35 (17) 18 (10) 11 (5)	Rainfall Zone—V	(18) 21 21 (14)	34 (21) 36 (17)	Rainfall Zone—VI	16 (12) (11) (11)	Rainfall Zone—VII	30 (15) 56 (16)	Rainfall Zone—VIII	21 (19)	34 (21) (20)	neg
Notions	Kovur Kavali Udayag	Anantapur	Gooty Tadpatri	Authonda Pattikonda Dhone	Cuddono	Cudaban Pulivendla Jammalamadugu		Cuddapah Rajampet Rayachoti	Nellore	Sullurpet Chittoor	Srikalahasti Satyavedu	

neg=neglible
Note: Figures in brackets represent percentages to total livestock.

Contd.)
~
Ч
Ž
₽
包
PP
⋖

						AFFEN) 7 XIO	onta.)					(thou	(thousands)
	2	3	4	5	9	7	∞	6	10	=======================================	12	13	1. 4. 1. 1.	15
Cuiddanah	Rainfall Zone—IX	one—IX	:		;		;		:		Rainfall I	Pattern—E4	$(C_2 D_2)$	$D_2 E_2$
Cuddapah Proddatur Kamalapuram	15 (14) 15 (13) 12 (11) Rinfall Zone-	6 (6) 5 (4) (2) (2)	: 3 ² 2 ² 3 :	33,556 33,556	21. 24. 28. 28. 18. (17.)	10 (11) (11) (10)	36 (33) 38 (32) 45 (41)	4 (2) 4 (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	neg (neg)	1 <u></u>	neg (neg) 1 (1) (1) (1) (1)	() () () all Pattern-	$\begin{array}{c} 1 \\ (1) \\ 0 \cdot 3 \\ (\text{neg}) \\ 1 \\ (1) \end{array}$	111 117 108
Cuddapah Badvel Sidhout	1996		£248	3. (E)	18 (11) 16 (14)	51 6,7 8	76 (45) 41 (36)	(24) (24) (22) (22)	111	111	neg (neg) 1	1 🗓 1 🗓	neg (neg) 1 (1)	170
	Rainfall	Rainfall Zone—XI	:		:		É			:	Rainfall	ll Pattern—	$-E_4\left(C_3\;D_1\right)$) D ₁ E ₃
Nalgonda						The state of the s	Sec. Sec.	0						
Miryalguda Ramannapet Nalgonda	4.51 (5.1) (4.1) (9.0) (9.1)	(13) (13) (13) (13)	¥ £ 28≋8	@7:07:20°°	≈ €≈€%®	ନ୍ତ 2ପଥତ	28888E	%(1) %(1) %(1) %(2) %(1)	11111	1 🛈 1 🛈 1 🛈	1 🗓 1 🗓 1 🗓	11111	4040°	271 265 362
Bhongir Huzurnagar Suryapet Devarkonda	(48) 44 (5) 88 (6)	(38 (5 8 (5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 8 0 3 1 1 2 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 3 0 3 3 3 0 3 3 3 0 3	64 6 5©∞0	::::::::::::::::::::::::::::::::::::::	෭ඁඁඁ෬ඁ෭ ඁ෪ ෪෧෪ඁ෫	\$5.54 <u>(2</u> 8.68 \$6.44.68	<u> </u>					E4,E1,E2,E4,E	360 259 318 293
Hyderabad (U) Hyderabad (U) Hyderabad (W) Chevella Tandur Ibrahimpatnam Medchal		9 9 9 9 9 9 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		`	£166167666655555555555555555555555555555	, _α Θ΄ _α Θ _α Θ _α Θ _α Θ _α Θ _α ΘΘΘΘΘΘΘΘΘΘΘΘ	(4) 4 (3) 8 (3) 1 (1) 8 (5) 3 (4) (4)	1.00			() () () () () () () () () ()		(3) (3) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	63 55 130 180 99
Nantyal Nantyal	18 (13)	11(5)	12 (9)	E	28 (19)	19 (13)	30 (22)	18 (13)	neg (neg)	1 ①	1 (E)	ıĵ	232	140

95 112 63 203 104 71 71	313	145 178 188 190 193 121 125	16 110 257 146	161
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4 (E)	-8-6 ⁴ 6-6 ⁴ 6-6-6	3-3-3-8°	(1)
$(\underbrace{1},\underbrace{1},\underbrace{1},\underbrace{1},\underbrace{1},\underbrace{1},\underbrace{1},\underbrace{1},$	1	$ \widehat{\mathbb{J}} \widehat{\mathbb{J} \widehat{\mathbb{J}} \widehat{\mathbb{J} \widehat{\mathbb{J}} \widehat{\mathbb{J} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}$	$(\mathbb{I}_{1},\mathbb{I}_{1},\mathbb{I}_{1},\mathbb{I}_{1})$	1 🗍
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	neg (neg)	neg (neg) (neg) (-) (-) (-) (neg) (neg) (1)	1 (neg)
$\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1\mathbb{L}_1$	1	$ \widehat{\mathbb{T}} \mathbb$		1 1
	**	(-) neg	neg (neg) neg (neg) neg (neg)	1 🗍
88.22 23.24 23.24 23.24 23.25 23	31 (10)	21(1) 24(1)	(10) (11) (12) (13) (14) (14)	21 (13)
25 27 28 28 26 26 26 33 33 33 33 33 33 33 33 33 33 33 33 33	73 (24)	£ (£) \$ (£)	(42) (44) (45) (58) (12) (12)	42 (26)
$_{\mathcal{O}}$ $\mathfrak{S}_{\mathcal{O}}$	18 (6)	ი <u>. </u>	9 (£ 4 (£ 5); \$ (£ 6)	16 (10)
(8) 13 (1.1.2) 1.1. (1.1.2) 1.1	88(6)	<u>⊬®≈€1®5®∞®~€58</u> 0°8	e € € € € € € € € € € € € € € € € € € €	36 (22)
(1) (1) (1) (1) (1) (2) (2) (2) (2) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	8 <u>6</u>	ო 	4 (£) (£) (£) (\$\phi\$)	(3)
© 4 © 4 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32 (10)	845667676768868686868686868686868686868686	(8) (8) 5 (1) (11) (13) (13)	r (4)
(11) (11) (11) (11) (11) (11) (11) (11)	51 (16)	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	22 (52) 53 (52) 54 (52) 52 (52)	12 (7)
(18) (18) (14) (16) (16) (17) (17) (17) (17) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19	53 (17)	(19) (21) (21) (22) (23) (23) (23) (23) (23) (23) (23	35 (21) 26 (28) (20) (27) 46 (27)	19 (12)
Allagadda Koilkuntla Bangana palli Kurnool Nandikotkur Atmakur Alur	Warangal Jangaon	Mahbubnagar Achampet Gadwal Nagarkurnool Mahbubnagar Wanaparthi Atmakur Shadnagar	Kolhapur Alampur Kalakurthi Kodangal	Ongole Giddalur

(thousands)	15	D_1 E_2	270 222 240) C_2 E_2	131	B_1 E_2		91 80 115 172 52 153	182	C_1 E_2	52 116
(tho	14	3 D_1) C_1	10 (4) (2) (5) 12 (5) (5) (5)	() 6 (2) 3	$-E_4$ (C4) C_1 B_1 E_2		~⊕494€,64.©,4	8 (4) 111 (5)	$-E_4$ (C_4) B_1	4 () (2)
	13	$ern-E_4$ (C ₃	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	[11]	Rainfall Pattern–			111	Rainfall Pattern—	1 🗍 1 🗍
	12	Rainfall Pattern—E4	neg (_) (_) neg (neg)	1]1]	Rainf	•	ineg ineg ineg ineg ineg ineg ineg ineg	1]1]	Rainf	1 🗓 1 🗓
	11	R	Î Î Î Î :	1]1]		:	$(\mathbb{T}_1T$	111	:	1 🗓 1 🗓
	10	:	(neg)	neg (neg) neg (neg)		:	() () () () () () () () () ()	neg (neg)	:	neg (neg) neg (neg)
	6	:	22 (11) (12) (13) (14) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	رج (ح) 8	1a	5),	4 6 4 8 8 4 9 9 9 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	6.3.5 (5)	:	4⊗°∂.€
(Contd.)	8		(27) (29) (28) (28) (28) (28) (28)	7 (10) 16 (10)	֓֞֞֞֞֞֜֞֜֞֜֞֜֞֜֜֞֜֞֜֞֜֞֞֜֞֜֞֜֞֜֜֞		66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5	\$1.88 \$4.00 (10)	:	®*@
APPENDIX 2	7	:	(12) (13) (15) 27 (11)	24 (18) 40 (26)	M		(2) 8 (2) 8 (2) 25 (2)	(23) (23) (26)	:	8 (15) 14 (12)
APPE	9	:	55 (20) 43 (19) 48 (21)	38 (29) 46 (30)	स्यमेव स्थामेव		(28) (28) (28) (33) (33) (45) (25) (25) (25) (25)	54 (30) 67 (26)	:	13 (25) 21 (18)
	8	:	: 2,50 5,50 1,50 1,50 1,50 1,50 1,50 1,50 1	11 (9) 16 (10)	पालगान	414	6860 60 60 60 60 60 60 60 60 60 60 60 60 60	61 11 (4)	:	128 173 173
	4	:	e (E)	£ (§)		:	°648°616°6116	(5) 7 (3)	:	\$ (9) 113 (11)
	3	Rainfall Zone—XII	22 (8) 7 (3) 17 (7) Zone—XIII	11 (9) 5 (3)	Raintall Zow-XIV		(19) (19) (19) (19) (19) (19) (19) (19)	3,93	Rainfall Zone—XV	(11) 15 (13)
	2	Rainfall	29 · 2 (11) (8 23 (10) (3 29 (12) (12) (7	16 (12) 14 (9)	Raintal		(15) (15) (15) (15) (13) (13) (14) (16) (16) (16)	17 30 30 (12)	Rainfall .	10 22 (19)
	1		Guntur Sattanapalli Narasaraopet Palnad	Genatur Repalle Bapatla	Ongole Chirala Addanki	Krishtta	Gudivada Kaikalur Gannavaram Vijayawada Jaggayyapet Nandigama	Guntur Tenali Guntur		East Godavari Kothapeta Kakinada

129	123.	122.	190	$\lambda_1 E_3$	142 164 128 109 134 171 273	210 457 340	292. 363 306 289.
(B)	4 (£) 2 (£)	46	49,49	(B ₁ C ₃) I	_=====================================	6.3 £.3 ¢.5	$1 \widehat{\mathbb{L}}_{\omega} \mathbb{S}_{\omega} \mathbb{S}_{\omega} \mathbb{S}_{\omega} \mathbb{S}_{\omega} \mathbb{S}_{\omega}$
1 ①	1]1]	l Ĵ	111	attern—E4	$(\widehat{\mathbb{J}}_1\widehat{\mathbb{J}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\mathbb$	1 1 1 1 1 1	111111111
ŀĵ	1]1]	I Ĵ	1)1)	Rainfall P	$1 \widehat{\bigcup} 1 \widehat{\bigcup} - \widehat{\ominus}_{-} \widehat{\ominus}_{\alpha}^{\bullet} \widehat{\mathcal{G}}_{\alpha} \widehat{\mathcal{G}}_{-\frac{4}{3}} \widehat{\mathcal{G}}_{\alpha}^{\bullet} \widehat{\mathcal{G}}_{\alpha}^{\bullet} \widehat{\mathcal{G}}_{\alpha}^{\bullet}$	1 1 - 5 1 1	
11	1]]	1 1	1111	:		1 1 1 1 1 1	451[1]1[1]
neg (neg)	neg (neg) neg (neg)	neg (neg)	1111		$1 \widehat{\bigcup}_{1} \widehat{\bigcup}_{2} G_{1} \widehat{G}_{1} \widehat{G}_{2} \widehat{G}_{1} \widehat{G}_{1} \widehat{G}_{2} \widehat{G}_{1} \widehat{G}_{2} $	1 1 1 1 1 1	-31J1J1J1J
4 (3)	_ @4@	8	~£29~	:	(22) (17) (14) (13) (13) (14) (13) (14) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17	11.85.89.89.65.64.64.89.89.89.89.89.89.89.89.89.89.89.89.89.	######################################
(2) -n.a.	(5) (5) (4)	73	5 (6) (9)		£ (5) \$ (5) \$ (5) \$ (6)	65 (31) 136 (30) (20) (20)	118 (40) (40) 126 (35) 98 (33) (43) (43) (43) (43) (35)
19 (51)	(11) 9 (13)	13	12 (13) 41 (22)	:	$4\mathfrak{S}_{\mathcal{L}} \mathfrak{F}_{\mathcal{A}} \mathfrak{F}_{\mathcal{A}} \mathfrak{S}_{\mathcal{A}} \mathfrak{E}_{\mathcal{A}} \mathfrak{S}_{\mathcal{A}} \mathfrak{E}_{\mathcal{A}} \mathfrak{S}_{\mathcal{A}} S$	9 24 24 24 18 (5) (5)	54445254316
28 (22)	(17) (17) 15 (21)	32 (26)	27 (28) 80 (26)		°€°°€2828°°€°°€26°	11 (5.45) 22 (5.50)	4086867620
16 (12)	(12) (8)	17 (14)	્® ν®	:	\$\frac{\partial}{2} \tau_{\tau} \frac{\partial}{2} \tau_{\tau}	(3·4) 18 (4) (4) (4·4)	5 4 4 4 5 5 6 6 6 6 4
14 (11)	(11) 9 (13)) 19 (8)	68 (3) (8)		7 (13) (23) (24) (25) (25) (25) (25) (25) (25) (25) (25	29 (14) (10) (10) (18·4)	25884383 2035894
17	16 (13) 10 (14)	(12) (10) (10)	26.08 (1.08 (1.08)	Rainfall Zone—XVI	25 25 28 28 28 28 21 21 22 23 24 25 26 26 26 27 28 28 28 28 28 28 28 28 28 28	43 (20) (69 (15) (20·4)	75 (13) 4
(20)	(22) 14 199	5 차원	65 65 65 65 65 65 65 65 65 65 65 65 65 6	Rainfall	(18) (23) (23) (23) (23) (23) (23) (23) (23	30 (14) 82 (18) (18) 49 (14·4)	26.65 26.65
Ramachandra puram Alamini	Mummidvaram Amalapuram Razole	West Godavari Narsapur	Krishna Bandar Divi:	Medak	apur ak rabad syankhed sareddy ole vel ipet	t bad	Karimnagar Karimnagar Sirsilla Sultanabad Jagtial

Contd.)
7
APPENDIX

					AFFEN))	omia.)						(tho	(thousands)
1	2	3	4	5	9	7	œ	6	10	11	12	13	14	15
Minetheol	Rainfal	Rainfall Zone—XVI (Contd.)	T (Contd.)	:	r	:	ć	: `		:	1 7	Rainfall Pattern	-E4(B1	$C_3)D_1E_2$
Nimeter	(29)	(2 <u>0</u>)	(15·5)	(5) ⁷	(9)	(4·7)	(17-6)	(4·7)	1	1 ①	1 ①	I ①	(7.0)	Ç
Kamareddy	39	23 (15)	1 9	63	10 (6 ·6)	7 (4 ·6)	45 (29)	14	1 ①	1	1 🗓	Ιĵ	-1 (E	158
Hyderabad		,			,	,		•						
Vicarabad	33	29	18	~£	8. 2. 8.	4 E	25 (8)	¥5	0.05 4.05	1	IJ	1	2 5	140
Pargi	(S) (S)	(13 4)	16.7 (11)	j.∞ 4	ક~ છે ક~ છે	6. 6. 6. 6.	(5 8)	(12) (12)	5 0 0 g è é]1]	0.6 (9.4)	<u> </u>	1,2, <u>1</u>	148:
Khammam														
Khammam	37 (12)	47 (15)	#E	6 4.50	38 (12)	36 (12)	53 (17·3)	33 (11)	1	1	Iĵ	Ιĵ	φ@	307
Adila bad Laksheltipet	7.72	18.6	13	. 2	9	4	23	· vo	-	1	1	1		101
Asifabad	31.4 31.4 39.4	(18) 24:3	(13) 16 15	Q 6	මි∾දි	€6	25.23 3.33 3.33 3.33 3.33 3.33 3.33 3.33	<u>3</u> 20	3 13	[]	<u> </u>	<u> </u>	£~6	107
	(67)	(0.77)		(0.0)	1	(6)	(17)	(71)	<u> </u>	<u>ĵ</u>		<u> </u>	_	
	Rainfe	Rainfall Zone—XVII	VII	:	FU			1		:	Rainfall Pa	$ttern-E_4$ (B ₁ C ₃) C ₁	D_1 E_2
West Godavari	;	ì		,	भव			21	,				•	,
Eluro	S 6	31.3 67.5	18·5 (10)	15:3 9:3	30 4 C	21.5 5.25	18 194 194	12 is	0.1 (0.1)	IJ	1 [1 [• ნ	184
Tadepalligudem	£ 6	,45 54.5	24 25	E.25	8 8	15.2	(원년 (원년 (원년	∞હ)1[)]]	3. 14.6	156
Bheemayaram	24.5	92	Sr 9	SRS	98 98 9	<u>7</u> 5	===	§ωξ	0.1				ુ∾ ફ	109
Tanuku	ទួន(<u></u> 6∞€	(1)	52 53 53 53 53 53 53 53 53 53 53 53 53 53	61 10 10 10 10 10 10 10 10 10 10 10 10 10	≘ო§	€4€) () ()			֜֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	<u>G</u> r (109
Polavaram	78.6 78.6 78.6 78.6 78.6 78.6 78.6 78.6	<u>e</u> 88	5 <u>17</u>	<u></u> 973	<u>9</u> =9	⊕r (ე^(€=€	9 / 9 `	<u> </u>	[]		9 43	1117
Chintalapudi	(44.47) 33 33	(; 5 4 6	98 9	⊝ ¤(585	5≊€			<u>]</u> []	<u>[</u>](⊕ ‰6	159.
Kowur	(12) 31 (7-91)	63 (F 62 (F 7) (F)	(I) (15.21)	6. 5 6. 5 7.	(12.7) 19 (12)	Sz (§	(1.5) 18 5)	(14 (5) (5)	Ìį] []	[1]	<u>]</u> <u>[</u>	<u> 3</u> 04	156.
Krishta	,	`	·	•	,	,	,	,		•			,	
Nuzvid	19 (15)	02 (16)	13 (10)	&⊕	23 (19)	14 (12)	15 (12)	13 (10·4)	I Ĵ	I ①	1]	1 ①	(1.3)	123:
	Rainfa	Rainfall Zone—XVIII		:	:		:		:		-	Pattern—E4	$(B_2 C_2)$	$D_1 = E_3$
Khammam														
Yellandu	42	59	33	76	19	12	31	24	1	ľ	1	ľ	46	232:
Bhoorgampadu	(19) 26 (74)	(3C)	18	ે" ∈	°°8	ે°૯) 9 (5)	6°8	[1]]1]] [³™ €	107
Bhadrachalam	31.	£ 5	289	6 4 4	§°€	ე, მ	9*€	37) I] [[l]	j' (g	128
Kottagudam	(18) (18)	£8.	(18) (18)) 54 <u>(</u> 3	£ 8 5 8	£2⊛	@ 1 2	(E)			11		(2.4°)	188.

235-181-217-217-) $D_1 E_3$	154 90° 91 79°	$D_1 E_3$.	132	19	103	58 .	134	$^{\circ}D_{1}$ E_{3}	110
(2) (3) (4) (1) (1) (2)	$-E_4$ (B_3 C_1		4 (A1 B1 C2)	1 (f) (1)	43	<u>\$</u> 6 1	113	(E) (0 · 4)	$(A_2 B_1 C_1)$	_6-6
וֹן וֹן וֹן וֹלָו	Rainfall Pattern		Pattern—E	1] 1]	1 ①	1 🗓 1	111	<u> </u>	Pattern $-E_4$	1]1]
1) 1) 1) 1)	Rain	$ \widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_1\widehat{\mathbb{J}}_{-\widehat{\mathbb{S}}}$	Rainfall	11 11	1	171	J. J.	(1) 0-2 (0-1)	Rainfall	(0.25.2 (1.25.25.2
1] 1] 1] 1]	:	$(\widehat{J}_{1},$;	1] 1]	1 ①	1 🕕 1	<u> </u>	ĵ1ĵ	:	1 🗓 1 🗓
		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1] 1]	1 ①	0.2	0.5.5. 0.5.5.	€ 1 ①		0.1 (·1) 0.3 (0·3)
(8) (5) (8) (10) (10) (10)	:	1.7.6 (0.5.8 (0.5.8) (08	0 <u>8</u> 4 8	و(ئ	11 (11) \$	⊛ _~	£98	:	56. 69. 80.
(11) 59 (32) 60 (28) 29 (18)		34 (24) (14) (16) (16) (17) (12) (12) (12)		15 (11) 9 (21)	62 (32)	2.S. ₅	මදී උද	(E) 25 (18)		4 (4) 20 20 (18)
29 (13) (4) (4) (7) (8) (11)	:	15.64 & & & & & & & & & & & & & & & & & & &		8 6 7 4	8 (4)	£.©£.	&&2	ଡ ^ଲ ୍ଟ	:	46.4
(18 ·5) 10 10 (5) (5) 20 20 (9) (17)		(19) (19) (2) (3) (4) (13) (13) (6) (6) (6)	स्य स्थ	3 3 3 3	119	8 5	®£€,	€ <u>4</u> €		6 (5) 5 (4)
17 (5) (8) (8) (2) 13 (7.5)	:	_w &&&@ _w &&&&	:	⊕ 66	(3)	0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.5 (3.2)	:	(0.6) 1 (1)
(10) (10) (12) (3) (8) (8)	ν.	12 (3) (13) (13) (16) (10) (13.4)	Ŋ.	21 (16) (15)	86	(12) 10)	(2) (19) (3) (19) (4) (19) (19) (19) (19) (19) (19) (19) (19	(13) (13) (13)	L	20 (18) (18)
35 (15) 18 (10) 27 (12.5) 22 22 (13)	Rainfa l l Zone—XIX	(14) (20) (20) (21) (14) (14) (19)	Rainfall Zone—XX	31 (24) (23)	31 (16)	28 (273) 19	(3) 13) 12) 13)	(5) (1) (1) (1)	Rainfall Zone—XXI	26 (23 ·6) 24 (22)
37 (15·5) 55 (31) 49 (23) 24 (14)	Rainfall	38 (25) 20 (22) (23) 22 22 22 (28) (28) (18)	Rainfal	29 (22) 14 (26)	45 (23)	34 (33) 20	(3) (3) (3) (3) (3)	3 ⁴ 3	Rainfal	38 (34) 30 (27)
Madhira Karimagar Metpalle Nizamabad Afmur Krishna	Nizamabad	Nizamabad Banswada Yellareddy Bodhan Madnur		Warangał Mulug Adilabad Khanapur	Warangal Parkal	Adilabad Adilabad Boath	Utnur Mudhol	Nirmal	,	Adhahad Sirpur Chinnur

thousands),

APPENDIX 2 (Contd.)

	c	64	4	*	9	7	œ	0	1		15	-	14	15
	•	,	+	,		`	0	`	2		77	CI	±	3
A 25 m 25	Rainfal	Rainfall Zone—XXII		:	•	:		:	;		Rainfall Pattern	ttern $-D_1$ E	$_3\left(C_1\ D_1\ E_2\right)$	$D_1 E_3$
Ka lyandurg Kalyandurg Rayadurg Uravakonda	(15) (15) (18) (20)	26 (11) 16 (11) 8 (10)	(6·6) 13 (9) (10)	(1) (3.6) (0.3) (0.3)	10 (4·5) 9 (6·5) 6	(3) 7 7 (4·5) 4 (5)	39 (27) (27) (24)	40 (18) 27 (19) 15 (20)	(0·1) (0·1) (0·1) (0·1) (0·1)	-≘-ĵıĵ	1 (j. 1 (j. 1);	1 🗓 1 🗓 1 🗓	(1) (1) (1) (1)	230° 145 78
	Rainfall .	Rainfall Zone—XXIII		:	•		•		:	Ra	infall Patter	$n-D_1 E_3$ (($S_1 D_2 E_1 C$	$_1$ D_1 E_2
Anantapur Kadiri Hindupur	46 (13) 28 (15)	(12) (12) (12)	86,48	(0·3)	4 · 6 (4 · 6) 11	6. 2) 6. 3) 6. 3)	120 (35) 74	(21) 25 25	(0.0) 0.1 0.1 0.1	1313	0 9 9 9 7	1 🗍 1	4 E.u. 8	346
Penukonda Dharmavaram	£84 84 84 84 84 84 84 84 84 84 84 84 84 8		ಶಿವ ಅವ ತ	F-E-6	6 4 C	⊙″©″6	(43) (43) (43)	£25%	; 1] ; ;		97 9 76		3~E- (192
Anantapur Madakasiro	(13.7) (13.7) 26 (14) Rainfall 2	(13) (2) (13) (6) (13.7) (8.7) 26 17 (14) (10) Rainfall Zone—XXIV	9)		E. (. 6.00)	(2.7) (2.7) (3.5)	(\$2 (\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$	(15) (15) (15)		['[']	$\begin{array}{c} (1) \\ 2 \\ 1 \\ (2) \\ 1 \end{array}$		5 ÷£_ ££_ ££_ ££	292 179
Chittoor	,				। ज			S)		•	T imformer	7)— <i>Wa</i> un :	7 53 (51 5	3) C2 E2
Madinapalle Vayalpad	4 (1 4 6	45 (14) 52	35 32 32	(0·2)	<u>~</u> €9	°(3)	(32) 84 84	(21) 50	111	1 🕕 1	(0 +) 0 · 5	1 ① 1	6 <u>3</u> 6	304
Punganur	(1) (1) (1) (1)	<u>.</u> 849	(11) (12) (12)	(†) (†) (†)	⊕"©	g+6	<u> </u>	(16) (16)	<u> </u>	<u> </u>	6 0.25 0.15 0.15	11	'@‴∈	200
Palamner	21 (14)	36 (24)		1 (1)	4 ©	(3)	(30)	(14)		11	0·j	11	3 ⁻ 3	148
	Rainfal.	Rainfall Zone—XXV	$A\lambda$:		:		:		:	Rainfall Pa	ttern—D ₁ H	$c_3(C_2D_2)C_3$	$^{i_2}D_1E_1$
Bangarupalem Ciltor	(18) 38 38	28 (18) 25	14 (10) 15	0 ·3 (0 ·2) 1	<u> 4 © ⊏</u>	43°	(31) 54	(19 (19)	105	1 ① 5	1)	1	73,	139
Chandragiri	(5) (5)	(15)	<u>6</u> 21	Έ ⁷	:E2	. ((31) (40)	368	(G.) (G.)	(0.1 (1.0)	<u> </u>	1]1	. <u>G</u> .	17.7
Puttur	(139) 57 (22)	E8E	(E) 81(C)	(B [*] (E)	ତ୍ୟର	⊕, €	(28 (33) (33)	(16 (16 (16)	<u> </u>	<u> </u>	0 0 1 0 3	<u> [] []</u>	'⊕‴⊕	256.
East Godavari	Rainfall Z	Rainfall Zone—XXVI	7	:		:		:		:	Rainfall	l Pattern—l	$O_1 E_3 (C_4) C_4$	$\frac{1}{4}D_1E_2$
Pithapuram S-lbcl-alam	(19)	(10)	4(5)	(5)	13 (22)	9 (15)	(5)3	7 (12)	0.1	1	1 ①	ľĵ	₄ 4	57.
Tekkali -	24 (12)	27 (13)	32 (16)	29 (14)	14 (7)	21 (10)	29 (14)	15 (8)	8 (4)	1 ①	1	1 ①	(0.4)	202

132 174 117 38 74	127	152	162	162	289	61 165 1 D ₁ E ₂	231 35 1 E ₂	124
"©1Ĵ~32€-€	5 (3)	(3)	3 (3) 10 (4)	9 (4)9	8(3)	$ \begin{array}{c} 2\\ 5\\ (3)\\ 2(B_1 C_3) C_3 \end{array} $	14 (6) 1 (2) 2 (B, C ₁) C ₂	5 (5)
$ \widehat{\mathbb{J}}_{\mathbf{a}}\widehat{\otimes} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} $	111	11	111	1 🗓 1 🗓	1 🛈	$(-)$ $(-)$ $(-)$ tern— $D_1 E$	$(-)$ $(-)$ tern— D_2 E	10
$ \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{J}} \widehat{\mathbb{G}}_{\mathcal{G}}^{\widehat{\mathfrak{G}}}$	1 🗓 1 🗓	1]	1 🗓 1 🗓	1]1]	1	(—) (—) (—) Rainfall Pat	0 · 2 (0 · 1) — (—) Rainfall Pat	10
	1 🗓 1 🗓	1 ①	1] 6 8	1 🛈 1 🛈	1ĵ	1 Î.; <u>.</u> .	1111 :	11
	ê -4 l <u>(</u>)	0.1	(0.00) (1.00)	1 🗓 1 🗓	1 ①	1 (10° 6° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	0·2 (0·1) (1)	10
e (C) (2) (2) (2) (3) (4) (6) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(9) (10)	22 (14)	25 (15) 46 (17)	(15.25 (13.35)	41 (14)	(23) 37 (23) (23)	35 (15) 4 (13)	(17)
(13) (13) (13) (13) (13) (13) (13) (13)	e (C) e (E)	(26.5)	19 (12) (66) (27)	(23) 37 (22)	98 (33)	(22) 41 41 (25)	45 (19) (2) :	(17)
48.8.8.8.85	e €.	£.	4000	9 <mark>9</mark> 48	11.6)	(6) (5) 3 (6) (6) 3	15 (1) (1) (1)	(3)
a&r&a&uc4	11 (11) 14 (14)	12 (8)	9 (4) (7)	4.9 3.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	16 (5)	(12) 21 21 (13)	23 (10) 0.3 (1)	(4)
(12) (13) (13) (20) (20) (20) (20) (20) (20) (20) (20	3333	118	19 (12) 27 (11)	27 (17) 15 (9)	17 (6)	69 68 (8) (8)	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	(14)
2622 2622 264 6622 662 662 662 662 662 6	15 (55) 12 (12)	8(5)	5. (3. (3.	8 5 6 6 6	22 (8)	(4) (4) (2) (7) (7)	16 (7) 7 (21)	(10)
25 25 26 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	23 (18) 17 (17)	(10)	25 (16) 18 (8)	15 (9) 16 (10)	34 (12)	10 5 17) (8) 25 7 15) (4) Rainfall Zone—XXVII	45 19 (8) (19) (8) (34) (22) (C	(13)
(22) 33 33 33 33 33 33 33 33 (29) 15 (29) (29) (29) (29) (29) (29) (29) (29)	33 (26) 25 (24)	(18)	45 (28) 42 (17)	(13) 32 (19)	42 (15)	10 (17) 25 (15) Rainfal,	45 (19) 12 (34) Rainfall	(21)
Narsannapet Pathapatnam Srikakulam Ichchapuram Sompeta	East Godavari Rajahmundry Peddapuram Visakhapatnam	Vizianagaram Gajapathinagaram	Srikakulam Salur Bobbifi	Visakhapatnam Srungavarapukota Bheemunipatnam	Srikakulam Cheepurupalle	Visakhapatnam Vişakhapatnam Anakapalle	Visakhapatnam Narasipatnam Chintapalle	Srikakulam Parvatipuram

								(Conclus)					(thou	(thousands)
	2	6	4	S	9	7	8	6	10	11	12	13	14	15
	Rainfall	Rainfall Zone—XXVIII (Contd.	VIII (Conto	d.)	:	:	:	:	:	:	Rainfall Pattern— D_2 E_2 (B_3 C_1) C_1 D_1 E_2	tern—D2 E2	(B ₃ C ₁) C ₁	$D_1 E_2$
Palakonda	77 (14)	30 (15)	86 86	35 (18)	∞ . €	36	44 (22)	(11)	1 ①	1 ①	1 ①	1 ①	r (4)	197
E ast Godavari Yellavaram Ramapachodavaram	(30) 16 16	(<u>2</u>)	14 (18) 11	353°	-8-6	-6-6	-3-6	15 13 13 13	1313	111	111	1010	· 6	74
	(28) Rainfall	(25) Rainfall Zone—Special	cial I	3 :	3 :	€ .	:	<u>}</u> :	<u> </u>	<u> </u>	(—) Rainfall Pai	Rainfall Pattern— E_4 (A ₁ B ₁ C ₂) C ₁ D ₁ E ₂	$^{(2)}_{1}B_{1}C_{2})C_{1}$	$D_1 E_2$
Visakhapatnam Paderu	25·5 (30)	19 (22)	°\$ (9)	10.5	322	0.3 (0.4)	(2)°	13 ·5 (16)	0 ·3 (0 ·4)	1 ①	0.5	1 ①	(3)	85
·	Rainfal	Rainfall Pattern—Special II	pecial II	:	:	:	:	:	;	:	Rain	Rainfall Pattern— $E_4(A_2 B_2) D_1 E_3$	$-E_4(A_2 B_2)$	$D_1 E_3$
Khammam Migur	19 (31)	21 (34)	9 (21)	3	35	3	(3)	4 (9)	1	1 ①	1 ①	11	13	61
	Rainfall	Rainfall Pattern —Special III	pecial III	•	र्था यमे		:	£2	:	;	Rainfall Pat	Rainfall Pattern— D_1 E_3 $(C_2$ $D_2)$ C_1 D_1 E_2	$(C_2 D_2) C_1$	$D_1 E_2$
Киррат	(10)	(25)	(14)	1 ①	-T⊖	\mathbb{G}_1	(32)	(16)	10	1]	0.2	13	$\frac{1}{(1)}$	118

APPENDIX 2 (Concld.)

Rainfall and Cropping Patterns ANDHRA PRADESH APPENDIX 3

Cronning natterns	District	Te T	Δrea in	Elevation (masl)	(masl)	Annual	Annual	Month of	Rainfall in secutive m cluding the maximum preceding o ing month ever is high	Rainfall in two consecutive months in- fluding the month of maximum plus the preceding or succeed- ing month which- ever is higher	Consecu	Consecutive months*	
J Co. M.J			sq. km.	тах.	min.	fall (cm)		rainfall	шo	no. of rainy days	(a)	(p)	(0)
-	2	3	4	5	9	7	∞	6	10	11	12	13	14
	Rainfall Zone	~-	:						:	R	Pattern-	$E_4(D_3E_1)B_2C_1E_1$	C_1E_1
Pd ₁ . Pd ₂ Jr ₄ /B ₄	Nellore	Nellore Gudur	1305 1199	140 158	41 52	₹		==	43 (7)		10 -3	2 4	
Pd3Jr4Pu4/Mt4 Jr.Pu.Pd.		Venkata Giri Atmakur Rapur	1106 1655 1530	554 554	89 166 146	₹ 8 5	48 41 6	= ==	N4.	52 18 41 16	10 10 10 10 10 10 10 10 10 10 10 10 10 1	\$48	12121
*	Rainfall Zone—II	mdm.	.:	, i	1	9	6	11	ŗ		all Pattern	$\frac{\partial}{\partial F_{i}(C,D,F_{i})}$	77. E.
Jk4Mt4B4O4/Pu4	Ongole	Podili Kanigiri	2590	638 437	TS EOI		0	10 10	;		9-3	38 42 42	722-7 18 20
Mt3B4Pd4JK4/Gn4 Mt4B4Pd4JK4Ch4	Guntur	Darsi Markapur Vinukonda	3537 3537 1668	रमेव व	146 150 92	65 65 69 69	37 43 42 42	10 10 9—10		24 13 24 13 26 14	9-2-2	33 26 33	192
Ir. Mt. Dd. To E (p. p.	Rainfall Zone — III	- <i>III</i> Vondatun		14-	Ě		1	•		Rai	l Pattern—E.	$A \left(C_1 D_2 E_1 \right) I$	$3_1C_1E_2$
J4M14F44 104F4/B4K4 T04Mt4Jr4F4/Pd4B4	Ougole (Nandukur Ongole -IV	1396	1/3 638	Siz	85 94	44 74	10	. ,	43 15 41 17 Poinfell	9-3 9-3	L	
Pd ₁ Pd ₃ Jz4Mt4/Pu4 Jr ₄ Mt4Pd4B4R4	Nellore	Kovur Kavali Udayagiri	997 1471 2256	70 173 844	SI SI 184	108 82,52	n.a. 42 45	1191	; - v) 4	65 n.a. 55 17 43 16	1	-24(~1 <i>D</i> 2£1) 93 66 53	7 <i>6</i> 2 <i>E</i> 2 n.a. 23
	Rainfall Zone-V	· /	•		:		;		:	Raint	all Pattern-	_	D. E.
Gn3 JK4Mt4/Pd4	Anantapur	Gooty	1251		300			6	146			· (5-1-)+	<u>.</u> 1
Gn4Mt4C ₄ JK ₄ /Jr ₄ Gn ₃ JK ₄ Mt ₄ /Pd ₄	Kurnool	Pattikonda Dhone	1936 2167	548 586 586	36.55 30.55	3.65	- 848	× ◆ ◆	4 c.	22 25 15 23 15			11
	Rainfall Zone-	_	:		:		:		;	**	all Pattern—	$-E_{\delta}(C,D_{\delta})D_{\delta}F$	ا
Gn ₃ JK ₄ Mt ₄ . Jk ₃ Mt ₄ Gn ₄ Pd ₅	Cuddapah	Pulivendla Jammala	1474 1588	449 300	300	56 60	38 39	6	स्वाप	22 13 24 15	1 1		1 1
		Amadugu		1	:		:	!	:				!
	•	Tonconstitue m	in anomathe wi	th minfall o	fanore the	non suo Ui a	danom.					1	

• = Consecutive months with rainfall of more than 10 cm per month.

a = Initial month with more than 10 cm of rain fall and number of consecutive months with more than 10 cm per month separated by hyphen, b = Total rainfall of consecutive months under 'a' in cm.

c = Total number of rainy days of consecutive months under 'a' masl = metres above sea level.

Notes: 1. Information on rainfall and rainy days based on Memoirs of India Meteorological Department, Vol. XXXI Part III.

2. For explanation of coded form of rainfall and cropping patterns, reference may be made to section 2 in the text.

7-749Deptt of Agri/76

1 2 3	Rainfall Zone—VII Pd3B4Fr4R4 Cuddapah Rajampet	d4 Rainfall Zone—VIII	•	Satyavedu Rainfoll Zone—1X		Rainfall Zone—X	Pd ₃ Mt ₄ Pu ₄ R ₄ Cuddapah Badvel Pd ₃ B ₄ Ffr ₄ R ₄ Sidbout	Rainfall Zone—X	ų	,	Nalgonda	r4 Kurnool	4Pu4/B4 Nalgonda Warangal Sn4Pds Kunool	C4 J14	Jk ₃ Gn ₄ O ₄ Mahbub Nagar Achampet Jk ₄ Gn ₄ B ₄ Pu ₄ Jk ₅ Gn ₄ Mt ₄ Pd ₄ R4 Kurnool	Jk ₃ Gn ₄ Pd ₄ Mt ₄ Mahbub Nagar Wanaparthi	Jk, Pu, R,O,Pd, Shadnagar Jk,Pd,Jr,O,R,Pu, Hyderabad Hyderabad	West) Jk Jt O4 V4 Chevella Jr3Gn4Pd4/Mt4 Kurnool Kurnool Namidiketur	JraMt,Gn,Jk, Mahbubnagar Makhtal JraPd,Gn,Pu, Nalgonda Huzurnagar	Jr. Pu.O.T.4 Hyderabad Tandur Gn4Mt4Jk4Jr4/Pu4 Mahbubnagar Kollapur Alampur	O ₃ Jk ₄ B ₄ Mahbubnagar Kalvakurthi
4	2688	/92/	1484 1579	1003	1321 1131 785		1961 1575	1050	284	8	1772 2470	1721 1571	1591 2395 1461	1	686 2917 1341 1454	1192 1388	1157 1263 520	962 1659 957	1872 1379 1710	2028 961 1712 1127	2349
5	1047	080	35 679	828	230 674 15 4	:	842 893		635	3	523 450	902 912	635 621 450		300 846 600 600	554 639	450 616 600	600 454 450	868 711 250	581 600 635	506
9	142	300	SL 150	2	150 150 150		150 137	Ş		J. 004-1	300 300	150 150	200 202 202	7	210 300 300 450	450 450	300 600 567	567 450 250	345 446 86 86 87	300 300 300	450
7	77	67	116 114		75 62 61		70 81	ř	2 12	8	67 66	F.8	888 89	1	68 77 73 63	83	56 57 77	60 51 51	£288	5 5 27 27	19
8	47	4	 48 53		: \$49	:	44	: 1	50		n.a. 47	74 74	49 39		n.a. n.a. 44	51 n.a.	п.а. 50	n.a. 43	n.a. 10.a. 45.	53 10.a. 10.a.	n.a.
6	10-11	5 ^	11		999		11-10	c	, o		φφ.	a a	0 L 0		91.00	90	000	900	,0×1-0	v Q ∞ ∞	6
10	. 62	47	61 56	na 	52 52 53 53	:	¥ <i>\$</i>	. 55	30 %	1	ଷ୍ଟ	32 31	30 S 22 30 S		31 32 27 27	33	36 30	253	, 25 23 33 33 33 33 33 33 33 33 33 33 33 33	33 34 6 33 34 6 34 6 36 6 37 6 38 6 38 6 38 6 38 6 38 6 38 6 38 6 38	31
11	Rain, 15	14 Rainfall	18 18	Raint	21 24 41	Rain	14 16	Rainfall	19		n.a. 17	18 18 18	18 n.a. 15		n.a. n.a. 18	20 n.a.	n.a. n.a. 19	n.a. 17 18	18 n.a. n.a.	1./ n.a. n.a.	П.а.
12	Rainfall Pattern	y—3 Pattern—E	44	Rainfall Pattern	7-4 8-3 8-2	Rainfall Pattern	2 1 2 4 2	all Pattern-	; I		1J.	2 L	447		8-7 7-3 7-3 7-3	45	4 6 7	7-3	452	1445	7-3
13	$-E_4(C_1D_3)$ 41	$A = (C_1 D_3) A_1$	84 28 79 29	$-E_4$ (C_2D	35 25	$i-E_4$ (C_2D	63	$-E_4 (C_3 D_1)$	57	ç	340	, 4	43 %		33 33 39	38	24.5	41 36 40	% 4 <i>F</i> S	1987 1987	47
14) C_2E_2	$E_1C_1E_1$	29.88	$(C_2D_2)D_2E_2$	20 14 17 18	$_{2})C_{2}E_{2}$	37	D_1E_3	37	ç	39.	127	n.a. 15		n.a. n.a. 29	40 n.a.	n.a. n.a. 37	n.a. 26 28	3 6 n.a. n.a.	1.a.	D.a.

X ~ H(Kurnool Mahbubnagar Hyderabad	Alur Adoni Kodangal Medchal	1589 1982 1194 767	954 626 501 635	450 450 600 600	59 66 78 82	39 43 1.a.	9911	4888 888 888	14 17 19	1241	38 57 65	25 33
,	Giddalur		2714	898	300	89	49	۰,۵	55	16	4-7	94	32
Kanjan Zone—XII	-XII	:			!		:		:	Rainfall	Pattern-E	$\frac{1}{4}\left(C_3D_1\right)C_2$	D_1E_2
Guntur Sattenapalle Narasaraopet Palnad	Sattenapa Narasarae Palnad	lle opet	1795 1200 2691	480 511 300	150 150 150	80 75 70	50 49 n.a.	7 9—10 9	27 25 26	19 15 na	444	234	32 D.a.
Rainfall Zone—XIII	TIIX-	:			ı		:		:	Rainfal	ll Pattern-	$-E_4\left(\mathrm{C}_3D_1\right)$	C_1E_2
Guntur Repalle Bapatla Oncole	Repalle Bapatla Chirolo		791 875 860	01 05 66	SSS	97 90	52 49	9 10 - 9	34	18 16	7-5	78	41 19
	Addanki		1383	308	150	77	41	109	30	14	8 4	52	2
Rainfall Zone—XIV	AIX-	:			:		:		:	Rainfall	il Pattern—	E. (C.) C	$C_1D_1E_2$
Krishna Gudivada Kaikalur	Gudivada Kaikalur	i	595 731	13 10 10	ოო	28	22.23	1-1-1	35 35	21	55		4.5
Guntur Genalayaram Krishna Vijayawada Guntur Guntur Krishna Jaggayyapet	Caunayaran Tenali Vijayawada Guntur Jaggayyapet Nandigama	c	765 846 1129 1163 1386 1019	386 258 150 300	SL 8 150 10 8	488888 48888	£252 44 44 55 55 54 54	2	30 30 30 30 30 30	828828		76 78 78 70 70 70	£444464
Rainfall Zone—XV	AX-	:		र् यमेव	Į,		egric.		:	Rainfe	Rainfall Pattern-	 -E4 (C4) B	1,41,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
East Godavari Kothapeta Alamuru Kakinada Ramchandra Puram	Kothapeta Alamuru Kakinada Ramchandr	es	298 283 995 465		SE SE	115 110 111	52 % % % % % % % % % % % % % % % % % % %	10 7 10 10	40 39 38	18 22 18 17	IIII	5558 558 558 558 558 568 568 568 568 568	44 49 51 55
Mummidivaram Razole Amlapuram West Godavari Narsapur Krishna Bandar Divi		Tam Tam	350 456 562 722 966 1204	ттфффф	SE SE SE SE SE	130 119 123 112 107 103	55 57 58 57 56 11a	10 10 10 10 10 10 10	644 74 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	18 19 18 18 18	177777	120 111 194 198 88	52 53 53 4 4 53
Rainfall Zone—XVI	-XVI	:			:	•	:		:	Rain	fall Pattern	$-E_4\left(B_1C_3\right)$	D_1E_1
Medak Narsapur Medak Warangal Narasampet Warangal Karimnagar Huzurabad	Narsapur Medak Narasampet Warangal Huzurabad		1078 1201 2025 2099 1450	664 635 730 450 459	600 238 300 300	88 25 26 88 88 88 88 88 88 88 88 88 88 88 88 88	na 57 60 na 53	~~~~	34 52 68 34 52 68	na 27 30 na 25	<u></u>	88 87 73 87	a.4.4.4.6.6.4.6.6.6.4.6.6.6.6.6.6.6.6.6.
Karimbagar Sirsilla Medak Zahirabad	Karimbagar Sirsilla Zahirabad		1855 1870 1252	900 1100 1100	909 90 909 31 909 31	888 9	52 na na	トトウ	888	24 na 198	141	25.82	1.4 4.4 1.2 4.4
Narayankhed Karimnagar Sultanabad Medak Sangareddy	Narayankhe Sultanabad Sangareddy	.	960 1830 1186	\$4 \$40 \$60 \$40	450 150 512	28 2	E 4 2	トトタ	44 36 36	2.74 m	.441	£7.83	7.5 3.7.5
Andole Nizamabad Kamareddy Medak Gajwel Siddipet	Andole Kamareddy Gajwel Siddipet		1255 1163 1172 1417	634 635 678	450 600 450	2 828	0.2 0.2 0.3 0.3	r. & 6 r	764 764 86	na 113	,44°,	3E2E	n.a. n.a. n.a.
	*							-	57	Pin I	5	35	n.a.

3
Ξ
ε
. 1
≊
2
臣
Ō,

					AFFENDE		f ::			41,100,000			
	2		4	S	9	1	%	6	10	=	12	13	14
	A Com Land				:		:		:	Rainfall	Pattern—E.	4 (B1C3) C	$_{1}^{1}$ D_{1} E_{3}
n. 14 th. Da	ł	204	1756	569	150	\$	54	1	45	56	4	55	4 ²
PugMgJK4F04 Jk, Pd, Jr, O, R, / Pu,	Hyderabad	Vicarabad	1235	703	900	& 4 & 4	n.a.	00	38	ทล กล	17	762	n.a. n.a.
Jk.PugR4Pd4O4/Mt4		Pargi	1010	616 206	9 9 9	č, č	n.a. 57	٧ ١~) % (%	29	5	26.	48
Jr3Pu4Pd4/Jk4/Gn4 Jr D:: Dd	Khammam Warangal	Khammam Mahhubabad	1755	88	150	5	57	~	47	7	7	æ8	÷ 5
סולו חלו מל	Karimnagar	Manthani	2161	300	150	55 % 80 %	n.a. 53	r- 1-	գ ռ Ծ 4	E (V	14	828	4
, ,	Adilabad	Lakshettipet	1901	65 645	210	38	57	- 1-	49	56	1	83	45
Jr3C4Pu4O4	Poinfull Zone YVII	Asiidoau YVII	77	!	:		:			Rainfall	Pattern-	$E_4 (B_1 C_3)$	$C_1D_1E_2$
ř	West Godennii	Flur	1321	5	т	86	55	7	39	53	6-5	% 6	<u>4</u>
\mathbf{F}^{d_1}	west Godayan	Tadepalligudem	930	£6;	m	907	88.	<i>ر-</i> د	41	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ς <u>ν</u>	2 %	\$ 4
		Bheemavaram	751	25	m V	101	4 % 4 %	~ F~	s 4	2.5] }	95	49
Pd2S4	Vrichna	Nuzvid	868	150	13	101	57	~	\$	24	J,	888	47
Fu3Fu4Fu4Ft4S4/O4/Tos	West Godavari		1421	417	150	119	8 t	r- r-	/ ₄ 84 / ₈	88	ĵĵ	85	48
		Chintalapudi	1012	32	212	106	;8	. ~	40	25	6-5	87	49
	Painfall Zone	XVIII	1	!	:		:		:	Rainf	all Pattern-	$-E_4$ (B_2C	$_{2})$ $D_{1}E_{3}$
Ir. D. Dd. (IV. /Cro.	Khammam	Yellandu	3315	730	201	112	n.a.	[~ I	3:	na	\$,	8 ,8	n.a
313t u41 u4/3n4/ Ou4		Bhoorgam Padu	2039	260	225	96 1	n.a.	<i>اس وس</i>	\$ X	па 20	17	92	11:8: 49:
		Bhadrachalam Vottegudem	2408	716	150	103	rie d	٠,	88	na	. S	8	n.a.
		Nornagueem Madhira	1877	689	150	102	n.a.	۲,	45	na	5,	83	
Pu,MJk,Pd4	Karimnagar	Metpalli	953	900	569	38	D.a.	۰,	જે ;;	na 7	Ţ Ţ	g %	11.ä.
Pd3M4Pu4/Jr4	Nizamabad	Armur	1963	5 5 5 4	355	199	25	. [~	45	; \$;	Ç	85	\$
$Jr_3Pu_4Pd_4$	Nishna Rainfall Zone	111 LV UII - X1 X	ACT.				:		:	Rainf	all Pattern	$1-E_4$ (B_3 (r_1) D_1E_3
Pd,M,	Nizamabad	Nizamabad	1409	664	450	101	28	r- c	ଝ	29	6 4	87	48
Pd3Jr4JK4/S4/Pu4		Banswada	1187	979	450	114	n.a. n.a.	× ۲-	ઈ દ	al et	17	5 8	. e
Pd3Jr4Jk4/S4/Pu4		Yellareddy Rodhan	24.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26	450	329	109	59	. 6.	33.5	73	64	673	49
Jk.Pu,Jk,Gn,		Madnur	601	475	450	28	n.a.	r~	53	na T	4 :	84	. n.a.
T	Rainfall Zone-	XX	:		: 5	,	: 0	r	: 53	Rainfal	l Pattern—	E4 (A1B1C 87	$^{2)}_{1}^{1}_{1}^{E_{3}}_{48}$
Pd2Jr4	Warangal	Mulug	3202	430 50 54	38	105	39 n.a.	- [28	ra na	7	86	n.a.
Pd3M4Pu4 Pd4Pu4M4Ir4/Jk4	Adilabad Warangal	Parkal	1360	515	150	211	п.а.	۱ م	85 4	na %	4	£ 8	n.a
Jk3C4O4/Pu4	Adilabad	Adilabad	1504	626 450	300	101 708	50 E	- [~	22	na na	[]	3 %	11.2
		Boaun Utnur	1881	550	88	125	n.a.	(~ (73	กล	9 °	113 91	n.a.
Jk4C4Pu4Pd4/O5	,	Mudbol	1043	\$ 5 5 %	300 300 300	3.8 3.8	n.a. 60	٠, ٢-	32	73 73	4	800	48
	Rainfall Zone	-XXI	:		;		:		:	Rainfe	all Pattern-	$-E_4(A_2B_1C_1)$	$C_1)D_1E_3$
Jr.,Pu4O4/Pd4	Adilabad	Sirpur	2216	450	150	109	n.a.	∞ _[-	55 7	na n a	7 7	105 111	п.а. с. с.
		Chinnur	1/84	300	130	671	: :		;	Rainfall	Pattern-D	$_{1}E_{3}\left(C_{1}D\right)$	$(E_2) D_1 E_3$
	Rainfall Zone-	- 4 X II		7	. 003	Ş	. u	œ	25	Ξ	ı	. 1	;
Jk4 Mt4Gn4Pu4/C4 Jr4	Anantapur	Kalyandurg Ravadurg	2176 1766	1003	450	33.5	38	,000	333	:2:	9—2	23	12
Gn4Mt4C4Jr4		Uravakonda	1070	954	450	21	33	э`	2.3 R	12 ainfall Patı	tern— D_1E_3	$(C_1D_2E_1)$	$C_1D_1E_2$
Gn,B4	Kamtali Zone- Anantapur	-AAIII Kadiri	. 2997	882	395	62	9 6	ę, o	24	14	9-7-6 2-7-6	7 7 7 4	4 5
Gn. Pd.Pu.		Hindupur Penukonda	1114 1766	859 941	600 450	899	, ee (00	‡ 7 5	325	3-2	54	13
***************************************		Dharmavaram Anantanur	1906 2398	707 560	300 300	58	33.55 33.55	ر ره د	25	12:	176	22	22
Mt4Gn4Pu4R4Jk4		Madakasira	1080	808	009	29	\$	9—10	77	13	7-6	47	3

$\begin{array}{c} P_3 \ C_2 E_2 \\ 21 \\ 28 \\ 31 \\ 21 \\ 21 \\ 21 \\ \\ 31 \\ 38 \end{array}$	C_1D_1 C_1D_1 C_1E_2 C_1E_3 C_1E_4 C	C_1D_1	55 50 51 51 51 51 51	$C_{1}D_{1}D_{2}$ $D_{2}D_{1}E_{3}$ $S_{2}D_{3}D_{4}E_{3}$	$C_1D_1E_2$
D ₁ E ₃ (C ₁ D ₃) 37 47 52 38 86 (E ₃ (C ₂ D ₂) C ₂ 53 72	P ₁ E ₃ (C ₄) 81 82 83 84 87 87 87 88 88 88 88 87 87 87 87 88 88	$^{2}E_{2}\left(^{2}B_{1}C_{3} ight) C_{2}^{2}$ $^{2}E_{2}\left(^{2}B_{3}C_{1} ight) C_{2}^{2}$	102 100 103 100 (A.B.C.2)	$\frac{109}{126}$ $-E_4 (A_2B_2)$ 126	\geq
Pattern 9-3 8-4 8-4 9-3 9-3 9-3 9-3 Pattern Dy 7-5 7-5		Partern—D 6—5 6—5 Pattern—D	25 6—5 24 6—5 24 6—5 17 6—6 Rainfall Pattern—E ₄	a. 6–5 Rainfall Pattern 4 6–4	Pattern— D_1E_3 8—3
Rainfall 15 15 17 17 15 15 17 17 17 17 17 17 17 17 15 15 16	Rainfall 16 11 11 11 12 12 12 12 17 17 17 17 17 17 17 17 17 17 17 17 17	77 77	25 24 24 17 Rainfall P	n.a. Rain 34	Rainfall P
26 27 27 30 27 27 31 31 31	: %44%%45%%44%%4%4 %%%%	3 : 4% : 1	744 747 38 :	58 	27
: 00 00 00 00 00 00 00 00 00 00 00 00 00	: 0.0 6 10 6 10 6 10 6 10 6 10 6 10 6 10	, or :	8 8 <i>L</i> 0 :	, r	: 6
: \$48.88 : 84.8	: &&& 448%&&&&&&&& 44 4 \$: 338 : :		n.a. 	: 84
:4586 : 888	: 85525255555555555555555555555555555555	113	123 129 111 :	120	.: 75
: 600 600 600 600 600 1150 1150	SZ S	300	150 150 150	1200	450
	1130 1130 1130 1130 1130 1130 1130 1130	813 1729	1216 300 1316 826	1680	789
2172 1724 1061 2051 	357 705 705 705 705 705 705 705 873 873 873 873 873 873 873 873 873 873	1336 2383	1528 1280 2202 im 1839	3105	756
XXIV Madanapalle Punganur Palamner VaijalpadXXY Bangarupalem Chittoor Chandragiri Puttur	Pithapuram Tekkali Tekkali Narsannapet Pathapatnam Schapeta Tuni Sompeta Tuni Prattipadug Chodavaram Yellamanchili Peddepuram Vizianagaram Gajapathinagaram Gajapathinagaram Srungavara pukota Bheemunipatnam Stuksakhapatnam Stuksakhapatnam Salur Salur	KXVII Narasapatnam Chintapalle XXVIII	Parvathipuram Palakonda Yellavaram Rampachodavaram Special-I	Paderu Special-II Nugur	-Special-III Kuppam
Rainfall Zone Chittoor Rainfall Zone- Chittoor	Rainfall Zone—XXVI East Godavari Pith Srikakulam Tek Srikakulam Iche Son East Godavari Tur Prata Visakhapatnam Che Visakhapatnam Visi Srikakulam Sriu Srikakulam Bote Do. Visakhapatnam Visakhapatnam Visakhapatnam Visakhapatnam Visi	Rainfall Zone—) Visakhapatnam Rainfall Zone—)	Srikakulam Parvatt Palakor East Godavari Yellava Rampac Rampal	Visakhapatnam Paderu Rainfall Zone—Special-II Khammam Nugur	Rainfall Zone — S Chittoor
Gn ₃ Pd ₄ S ₄ /B ₄ /R ₄	Pd2Pu4 Pd2Pu4/R4/Fb4 Pd3R4O4 Pd3Pu4E4O4 Pd3Pu4Fr4To5 Pd3Ga4Fb4/Pu4 Pd4Fb4Ga4B4R4 B3Pd4R4O4	PusPd4Mt4 PusPd4B4O4/JK4Gn4/Mt4/ JK4	Pd2Pu/K4/Fb4 Pd3Gn4/Fb4/Pu4 Pu4Pd4B4O4/JK4 Gn4/Mt4 JK4	Pd ₃ R,O 4 Pd ₂ Jr ₄	R4Pd4Mt4Pu4Gn4

APPENDIX 4
Area under Principal Crops (Percent of Gross Cropped Area)
ANDHRA PRADESH

																				1
District/taluk	Gross cropped area (000 ha)	Pd	K	Jr	<u></u>	×	a	≥	Ba	¥	D T	Pu	S	G	0	C	1	Щ	Misc.	Sc.
I	2	3	4	5	9	7	∞	6	10	=	12	13	14	15 1	16 17		18	19	23	21
Nellore	Rain	Rainfall Zone-	7	:	: .	:	:	:	:	:	:	:	:	Rainfall	Patter	Pattern-E4	(D ₃	E ₁) B ₂	ت	E F
Nellore	63.9		.	ŗ	, P					ç	. !		,		•		9	۲,		œ
Gudur Venkatagiri	38.0	57.6	0.4	, O,	, v.	1		l	ĺį	٠ <u>ـ</u> ،	1)	l j	٠ ٥٠	0.1	>	3.44) o	ίĊ	, ,	Ģ,
Atmakur Rapin	21 ·0 62 ·3	32.7		30 ·3	4 v		34	1		. w	0·1 0·1	4		1:0	44	~ <u>`</u>	; ; } ;		ا 4 -	4
	39.7 Rain	89-7 15-0 Rainfall Zone-	<u> </u> <u> </u>	4 ;	9	1	-	1	1	ς.	0	7.0	2	- Rainfall	6 1.	ن ا إ أ	٤	0 اور 19 و	ئ	ر ا
Ongole Poditi			<u> </u>	:	:			:	:			:	:			•	5	4	7	3
Fouri Kanigiri	70 · 07 0 · 47	mæ	32	7100	∞ <u>r</u>	1	\$ [1	1	30	ī	N-		ī	~			, .	7:	ф¢
Larsi Markapur	78:1	4 27	3.4.5	~ ~	190	11	- Kn 4		: را ا	123	115	- <i>(</i> 2) (54:				-4°	· ·	4 1 +	ن ن
Guntur	6.11	-	2	4	J.	Á	o //	(S)	14 4	ġ.	7.0	~	_	4.	_				7 -	.1
Vinukonda	76 -1	11	15	10	22	싞	0.2	ì	H	23 (0 · 1	ť'n	m	ı	7	4	ى 1		2	Ġ
Ongole	Rainf	Rainfall Zone—	III-	मिन		LA.			2	:	:	:	:	Rainfall	l Pattern	I-E	$(C_1 D)$	$_2E_1)$	ζ_1	E_2
. Kandukur Ongole	107.6	18	ν	87	W.	M.	+-: ¢	1		∞ :	0	خە ،	0	2.0	6.	 	,		6,	42
	es o Rainfi	89-0 Sainfall Zone—	+ <i>A</i>		50	1	7		R	<u>.</u>	١	-	7	– 2 Rainfall	D	. }	9	٠ د د	ر الر	<u>ئ</u> لا
Nellore					1			P)	λ	:	:	:	:	and the second				-1	1	21
Kovur Kavali	28 44		150	14	5.	11	25	11	0	0.1		١٩	2 0.1		1 0 1	0.1	0	4	4 z	φŗ
Udayagıri	46.5		, 0	23.	13	1	12	ı	1	13		4		0.5		0.1			, 4	, i
Agantanur	Kainfa	Kainfall Zone—	~	:	:	:	:	:	:	:	:	:		Ra	Rainfall F	Pattern–	Ę.	$(C_1 D_3)$	D_1	E_3
Gooty Tadpatri	72.0 98·3	20	15	77	6 9 4	Ιį	1.0	11	11	31 0	<u>4</u> ŵ	23	1 0.1	88		1	e-		44	÷÷
Aumbol Pattikonda Dhone	143.7	44	11	94	∞ 4	1	1	0.1	J	25	ŵ.	7	· "	72.		13	1	1;		œ c
	Rainfa	Rainfall Zone—	Z	· ;	· ;	; ;		921			.	+	,	. 8	Hall	atte	L.			ָה ה
Cuddapah Policion	•								:	:			•				1		3	Ÿ
Fuitvendia Jammalamadugu	78 ·S 67 ·6	 ℃	35	-4	0.1	11	24	0·1 0·1		21 17			e in	1. 38	50.3	200	100		9 %	Ġй
Warangal Jangaan Mahbumbasa	126 -7	19	31	∞	9	7	0.5 0	0.1	0	ů	1	4	6	٠,	11	0.1	1		,	m
Achampet Gadwal	63.9 109.3	'nω	30	1 "	7 7	- 	9:	1 1	11	_		7"	4"	1 1		1 "	1 1	11	~ 0	٥×
N agarkurnool M ahbubnagar	92:3 64:7	38	32		4-1	11	10.5	15	11	6 0	40	, — m		11	. 2	1 1		0.31	`	200

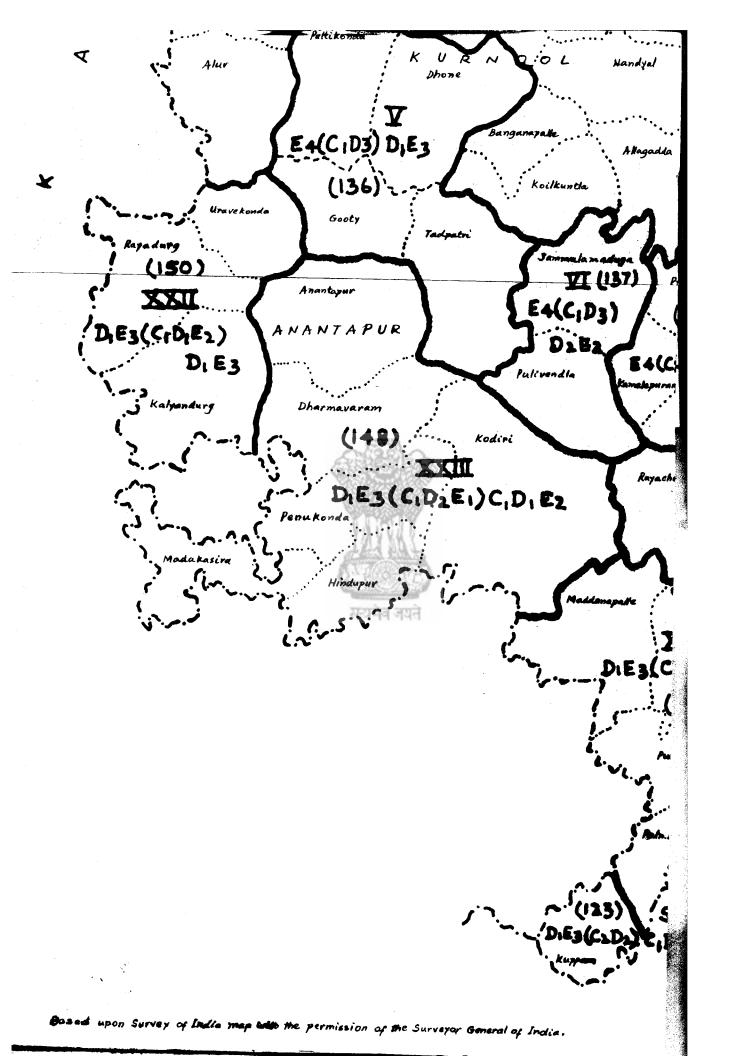
Cuddenate	Rainfa	Rainfall Zone-	11/4-	:	:	:	:	:	•	:	:	:	:	:	Rainf	Rainfall Pattern— $E_4(C_1 D_3)$	ittern–	-E4 (C	$_{1}$ D_{3}	C_2 E_2	Á.
Rajampet Rayachoti	38 ·4 85 ·3	38 14	7	0.3	17	1.1	∞ r⁄	11	1.1		Н	1-	44	0.1	48	9.3	1.5	۳ J	6 4 1	20.3 3.5	**
Nellore	Rainf	Rainfall Zone–	-VIII	:	:	:	:	:	:	:	:	:	:	:	Rainfall Pattern—E4	l Patter	m-E4	(C_1D)	(C_1D_3) $A_1B_1C_1E_1$	$_1C_1E_1$	1.1
Sulfurper	32.0	71 -4	ł	1	3	1	4	ł	ı		1	ŀ	4.0	0.1	10	0.3	1	1	1	8	
Srikalahasti Satyavedu	48 ·6 36 ·4	61 48	0 ·1		7	1.1	96	11	!	1	1.1	11		0 · 1 0 · 4	20	7	1 1	1.1	11	13 7.5	مُذمه
	Rainf	Rainfall Zone	ZI-	:	:	:	:	:	:	;	:	:	:	:	Rainfa	Rainfall Pattern—		E4 (C ₂	2 D ₂)	$D_2 E_2$	Ą.
Cudapen Cuddapeh Proddatus Kamiapuram	48 ·2 63 ·1 46 ·9	30 44 6	15 22.5 28.5	971	ω −	111	4mm	0.1	111	6 7 11	1:0	0.1	7	1 0 ·1	20 25 45 ·5	1	42	111	0.1	0.4 w & & &	m d m
Cuddanah	Rainfe	Rainfall Zone—	: ¥	:	:	:	:	:	:	:	:	:	:	:	Rain	Rainfall Pattern—	ttern-	-E4 (C2	D_2)	C_2 E_2	. 81
Badvel Sidhout	35.2 15.4	29 ·5 25	7-	9	23	11	11	+1	11	17.5	11	4	2	1	% 60	40	11	11	- 1	3.2 13.0	20
	Rainf	Rainfall Zone-	-XI	:	8	Á	;	-	É	:	:	:	;	:	Rain	Rainfall Pattern— $E_4(C_3)$	ttern–	-E4 (C	D_1)	D_1 E_3	. 10
Nalgonda	7.113.7	ç	٧	स	7	H	1			•	•	ç	v		`	•			ì	•	,
Ramannapet Nalgonda	91.5	19	17.5	6 9	185	111	111	111	ΙH	0.5	44.	; '	n Φ Φ	Ш	989	-25	: 1 :	111	115		000
Bhongir Huzurnagar Suryapet Devarkonda	121 4 144 5 141 6	7880	९ । − ≊	32 1	4 4 4 2	71:1	1111	1111	111	3010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ω ω	27 27	1111	0 173°3	0.1 3,1 3,1	1011		00.1	,0	, 0 ,40,
Hyderabad Hyderabad (U) Hyderabad (E)	4.5 19.8	31	5	7 7	19		150	0.5	ş H	150	17	10	10	11	, I w	24 2	[1 23	4	o ~ 1
Hyderabad (W) Chevella	16.2		26 27	13	2-0	0 ·4	—en•		1-	-4	6.0	-7	04	11	0 4 1	94	- 1	1.1	,		2 23
Fandur Ibrahimpatnam Medebal	62.7 63.9 20.6	15 26	8 27 4	0.3 2	1∞4	11%	4 17 N	0.3	111	0 · 3	0.3	2000	<u>∞</u> ~7	1.1.1	00 444	10 37 7	<u>5</u> 11	111			/
Kurnool Nandyal Aliagadda	78.9	27.5	15	20,5	0 · 1	11	17	0.1	11	21	0.2		44	0.1	15	I∞	4 6	1 1	0.5		, 4 0 =
Koilkuntla Banga Napalli	6.08 6.45 6.45		41	I ^ 2	0 - 4	1-1	- I		11	∞ 2 !	и	·- ·		11	4 4	4 0	10.5	11	1 1 1	200	4 m jv
Kurnool Nandikotkur ************************************	72.0 72.0 72.0		*	%8 <i>f</i>	- I i	121		0.5		182	0.5	7		11;	883	0.5	<1 ← ·	11	0.5	, o w	10 m
Atliaku Alur Adoni	155 0		12	6.5	4		0.1	0·1 0·1		17 19 · 5	0.2	0.3	400	313	21 4 16·5			1 1 1	51-	-30	, o vi ç
Pd —paddy Jk —jowar kharif Jr —jowar rabi B —bajra	M -maize G -Gram O -other oilseeds R -ragi T -tur C -cotton W -wheat Pu -other pulses L -plantations Ba -barley F -fodder Misc. -miscellaneous crops Norre -processes states Norre -miscellaneous crops	ize i sat Jey lets	age frem	oct have	130 140	- Pario	S Pu	Gram -fur -other -sugarc -ground	Gram -tur -other pulses -sugarcane -groundnut	es Fear	300	,		Misc.	other oilseeds cotton plantations fodder miscellaneou	other oilseeds cotton plantations fodder miscellaneous crops	ls us croj	sd			, 1
	11011 1 710KT	r perental	dgy u.g.	I PO LIGIT	3	לכווים	יייים קיי	וחואומו	any an	O Deliv	CLOSS	forais i	nay no	Sour so	me case	s, add	upto 1	8			

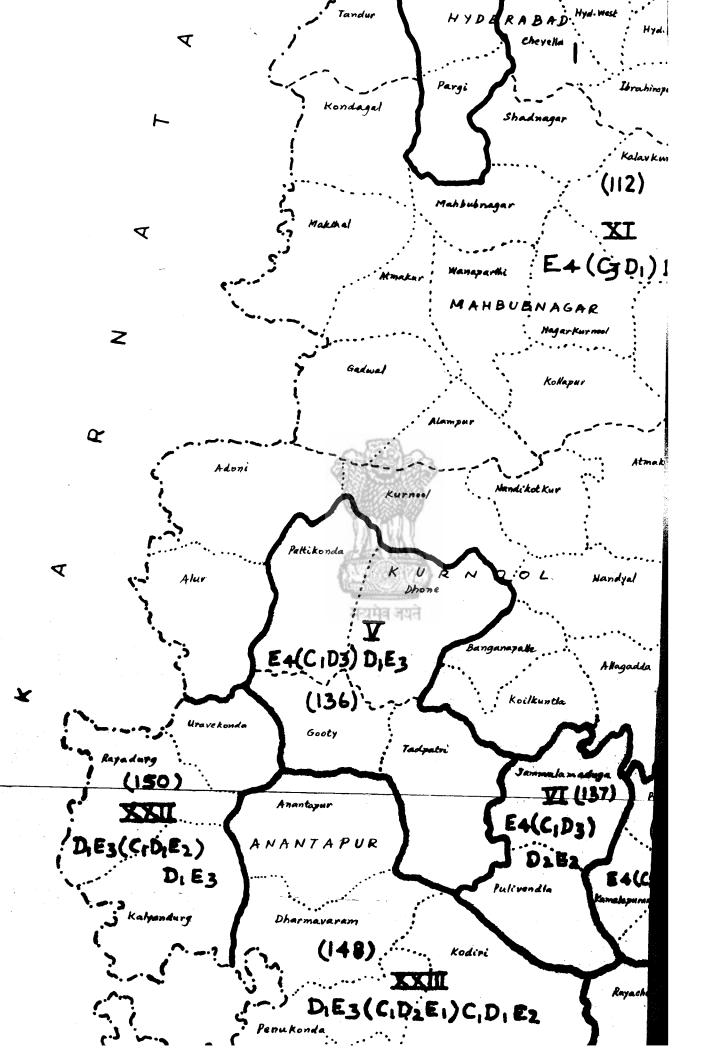
hally and hence cross totals may not, in some cases, add upto 100.

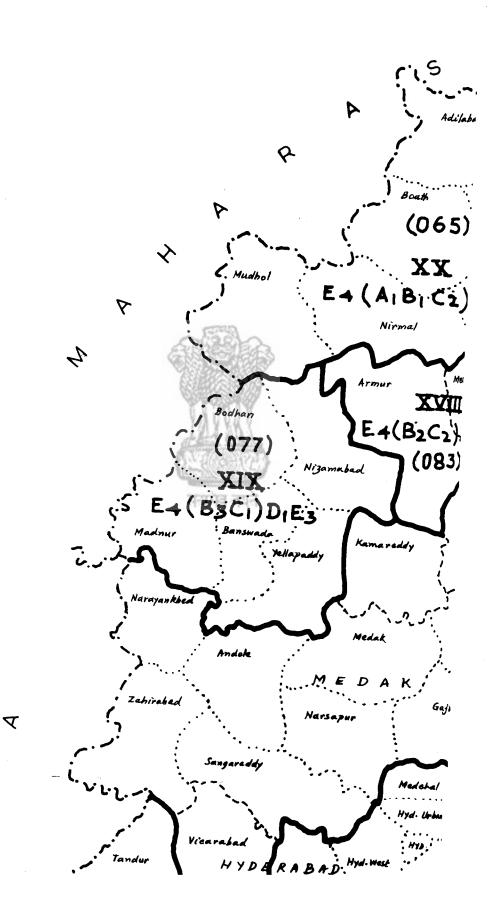
APPENDIX 4 (Contd.)

	2	3	4	5	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	8	21
	Rainfall Zone	Zone-	1 T	(concld.	:	:	:	:	:	:	:	:	:	:	Rainfall F	fall Pattern	1	E4 (C,	D_1) D_1	Ē,
Wanaparthi	62.3	23		0.3	4	I	7	1	ļ	12	0.1	I	9	-	16				-	
Atmakur	76 -1	-		10	14	ļ	-	1	ļ	12	0.3	ł	œ	ı	14	-	,	!	l	, 1
Shadhagat	72.8	 , \		71	ب ب	ļ	16	_	{	4,	— ;	m i	01	0.1	c1	19	l	1	7.	1-
Makiliol	7.06	٥٥	۰ ح	3,	^ '	1	C	١	İ	5	4.	7	٠,	1	15	7	7			Ė
Alamnir	85 	ю _с	Üń	ر د م	ے د	1	ø	l		<u>ي</u> ن ت	l	71		1	٠. ن	-	1	1	÷;	– Š
Kalvakurthi	125.5	. 0	, 962 97	, ç Ç	10		l (1			7 -		4 m	† w	i 	1.7	.5.	ر ا	- 	- -	`-
Kodanagal	83 ·8	6	έ	14	0.3	١	∞	0 ·3	ļ	10	7		24 ·5	ł	9	m	J	1	· <u>-</u> -	_
Ongole																				
Giddalur	65 .6	6 :	~	~	12	1	ю	0.1	I	37		-	9	4.	6	9 1		T	1.	90
	Rainfal	Rainfall Zone-	ı	i	:	:	:	:	:	:	:	:	:	:	Rainfa	ill Patte	"rn-E	$E_4(C_3D_1)$	Ç	D_1E_2
Gantur																				
Sattanapalli	125 -5	26	œ	7		1.0	ŀ	l	1	Ξ		-	7	1	12	-		1	-	9.2
Narasaraopet	83.4	53	v.	77	۲٦;		1;	į	ļ	∞ ;	0 .	-;	4.	1	4	-	(1)	'n	3	œ
aniau	=	<u>۲</u>	13	7	11	ı	T. 0	l	ļ	87	-	7-0	4			۳,			- '	رن ان
	Kamjati	-auo7	-7111	:	:	:	:	:	:	:	:	:	:	Ka	Kainfall F	Pattern-	-F	$(C_3 D_1)$	ς C	E_2
Guntur		i		,		,														
Kepalle Banatla	75.3	8/4	i	. -	1	7. 7.	-	Ì	ļ	1 -	1.	, , ,	10 10	,, ¢	m \	0 .3	٠.	ļ		4 0 0
Organe		o O	1	-	i	.	-	1	j		_			5.		<u>-</u>	_	1	<u> </u>	Ö
Chirala	72.8	59	ł	9	4	1	_	0.5	đ			0 · 1	8	١	7	_	-	}	23	8
Addanki	8.68		S	80	6	1.0	1.0	1	2	10	9.4	-	4	1	4	1 0	0.4	1	٥	8
	Rainfall	Zone-	1	य	3		M-1	1	Į.	:	:	:	:	:	Rainfall	!! Pattern	Ī	E4 (C4)	C_1 D_1	Ę
Krishna				4	2	1			2000									:	,	,
Gudivada	78.5	78	1	7	Veg			1	8	ı	ı	1	16 0	0.3				1	4	
Kaikalur	. 6/ . 6	81	i	12	X.	1;	ľ	1	E	1		•	13	Ι,	, , , «			i		
Gannavaram Vijavawada	7 5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200	ة ا	- <u>-</u> 2	Í	 0	9	1	2	1	<u> </u>	0.5 -	3.5 7.	ب ب		0 -1	4.		۸ ، 4 ه	∞ 4
Jaggayyapet	23.5	18	- 1	385	_	- 1	٦	300		4	171	٠ د	81		21.			- 		
Nandigama	86.2	_	0 - 1	37	-	1.0	{	i		0.5 (0 · 1	7	56	-		0.1	1	1		5.1
Guntur																				
Fenali	128-7 5	53.5	F-0	0.1		1	1	I	1		0 · 1	-	26	1						Ç
Guntur	153 · 4 20	0.5		<u>۲</u>	ر ر	4.0		0 · 1	!	C 1	n	1	16	-	<i>د</i> ه	71	1 0	0 · 3	١.	34
**************************************	Kainfall Lone-	Lone-	14	:	:	:	:	:	:	:	:	:	:	æ; :	Rainfall	Pattern	!—E4	(C_4) B_1	ت	E2
ast Countain	;																			
Afamuru Kakinda	33.6 66.6) 228	0.7		- 	7.0	- 5	j	ت ا	0.5	1	c	m -	ო (1		j	70	9.	¢,
Ramchandrapuram			1:0	<u>:</u> ا			7 			10		7.0	c			· ·) (<u>.</u> .	خ خ
Razole			i	0.4	1	0.1		1	į	1	1	1	· 		0.2	.0.				, ¢
Mummdivaram			ښ.	[ļ	1	1	ı	0	Ξ	{	1	_				0			ď
Amalapuram		77) (0.00	0 ن	1	13		ļ	0	0 ?•	ı	١,	_,				j			
Noting polari W. Godavari			٠ ن	4	- 	5. (}	1	_	i	-		٠	<u>.</u> 				∞ ∞	.
Narsanir	7.4.5	81	ا	٠.٠			7.0					<	1. 0	4	-	v	ć	ų	-	<
Krishna) t	10	- 	1	ļ	ا	!	ļ	ļ	ŀ	ĺ	> 	. .	0	7	ו	i I	ņ	٠ -	ņ
Bandar	53 ·8	95	i	1	1	1	1	ļ	1	1	i		0.1		3	1	i	3 0	Ġ	1
DIVE	96.0 2.0 3.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	£ 1	•	7	<u> </u>	0.5	1	,	ŀ	l	0	0.5	12	ю ,		 1	. !	•	<u>, </u>	7
Međak	ramjali Lone-	.zone-	-X 1/1	:	:	:	:	:	:					≈	Rainfall	Pattern	$i-E_4$ ((B ₁ C ₃)	D_1	E3
Narsapur		37			ı	0	4	_	į	1			"						.,	¢
edak	49.4 47	47.5	ا	وم	_ 20	Ň	٠.		· •	7	$\frac{1}{1}$ 0	άû	ı w	⊢∞		2		0.1		> —
Canira dad		_{در}				· 0	<u>-</u>	7	 -1	4	9	•	5						_	Ó
											1							-		1

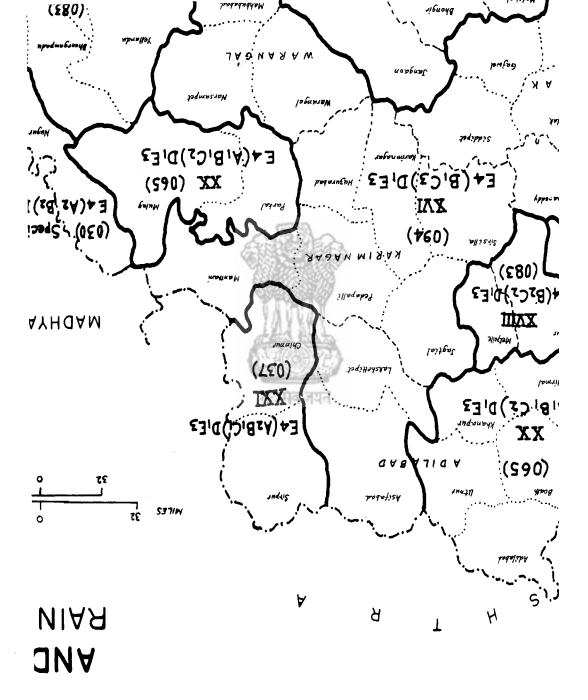
						00							
60 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~0 ~~44~~~	14	9.	5.6	1.1	$_1$ E_2	651 755 75 75 75 75 75 75 75 75 75 75 75 75	35	E3	2 121 7 6 4 4	و بَهِ و	15
1-411	0 0 4 2 2	111111	1	ю -	0.3	11	c_1 D_1	1-1-2 60	0 ·1	C_2) D_1		1 5	-
11111	121	111111	ţ	11	1	11	$B_1 C_3$	-12111-	ł	(B ₂	11111	1 1	1
-1111	151	1-2511	ļ	51	1	0.3	-E4 (1111111	ļ	tern—l	11111	7	1
6 11 6 4 17	-2-	2 <u>5</u> 4448	e	12	I	17	Pattern	20 40:00 40:00 40:00		Rainfall Pattern—E4	4 £ 1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14	0.3
0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9	16 10 13 13 10 10 10		4 ω	19	11	Rainfall Pattern— E_4 (B_1 C_3)	4-146	17	Rain	101 23	ო, ი	∞
0 0 17 17 17 17 17 17 17 17 17 17 17 17 17	111	1-4111	4	. 11	١	1.1	R	0 ÷ 6 22 22 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	7	:	11111	1 4	ı
21 7 8	22 16 22	14 13 15 30 17	15.5	13 ·5 14 ·5	10	23	:	s 10 16 16 9	6	:	22°624	21	15
1-223	16-	-4 40	0.5	44	6	9	:	0000	1	:	2526	0.3	-
~~~~4	0.5	0 0 0 0 0 0 0 0 0 0	4	41	i	11	:	1111115	ļ	:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3	
242	0.1	115111	m	8	ı	12	3	0.111 _{6.1} .	l	:	0.112	1 =	1
89   89     Z	111	111111	i	7	1	11		3111111	1	:	11111	1 1	1
1	171	0000	0.3	0.3	6	0.1		1111111	1	:	11111	0 0	
0.2 0.3 3 3.1	111	112111	4	14.5	I	FI	W	6411 ₋₂	1	:	11118	1 (	0.5
0.4 0.1 32 24.4	<u>7</u> ∞7	18 12 18 19 · 5	31 .5	11	0.3	Ь.Ю.		0.115	0.5	:	44-4-	19	-
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	999	111111	1		7	स्यमेव	्राप्त जयने	000 001 14	-	•	0000 41464	1 1	-
17 27 1 1	19 13	$\frac{1}{24}$	'n	φ. <i>κ</i> υ	20	36 51	:	25. 1 25. 2 2 3 3 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5	9	111	\$£ £ £ \$ 4	1 %	. e
28 19 13 11 17	18	17 20 ·6 19 3 12 0 ·1	m	25 · 5 16	0 · 1	m	Rainfall Zone—XVII	1 1 0 2	1	e—XVIII	€ € 4 €	19	
10 8 17 23	27 24 19	25 27 - 5 26 19 15 22	23	13	16	3	l Zone	84888848 84888888	27	Rainfall Zone-	17 27.5 25 17 23	16	75
51.8 72.0 46.9 64.3	73·2 151·8 131·9	73.7 86.6 76.9 102.0 85.4 44.5	51 ·8	72 ÷ 51 ÷	130-3	56 ·3 71 ·6	Rainfal	83 81 82 72 72 83 84 95 95 95 95 95 95 95 95 95 95 95 95 95	49 .4	Rainf	78.5 38.4 29.5 65.6 111.7	57.5	70.8
Narayankhed Sangareddy Andole Gajwel Siddipel	Warrangaf Narsampet Warangal Mahbubabaɗ	Karinnagar Huzurabad Karinnagar Sirsilla Sultanabad Jagial Manthani	Ni <b>zamabad</b> Kamareddv	Hyderabad Vicarabad Parei	Khammam Khammam	Adilabad Lakshetipet Asifabad		West Godavari Eluru Tadepalligudem Bheemavaram Tanuku Polavaram CChintalapudi	Krishma Nuzvid		Khammam Yellandu Bhoorgampadu Bhadrachalam Kottagudam Madhira	Karumagar Metpalle Nizamabad	Armur Krishna Tiruvur


APPENDIX 4 (Contd.)

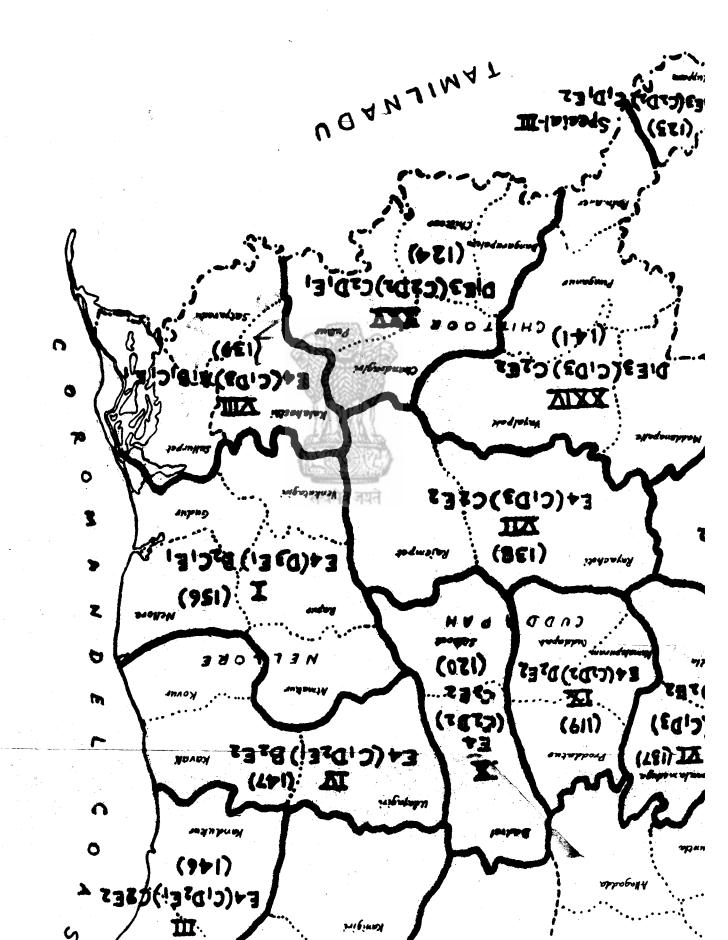

						t	0		=	1.1	1.5	13	14	15	16	17	81	19	50	21
	۲۱	٠	4	ر م	٥	_				11	77	:	;		2		- 1			:
	Rainfall Zone-	Zone—	XIX	:	:	:	:	:	;	;	:	:	:	•	Rainfall Pattern	l Patte	1	-E4 (B3 C	$C_1$ ) $D_1$	$\vec{E}_3$
Nizamabad								٠		÷		-	7						-	
Nizamabad		55		ν,	1			4-	i		٦ ،	-, <del>,-</del>	) )						٠, ا	10
Bodhan	47 ·3	6 6 ,	-	۲. در	- 1	; ; ;		٠٠.	۱ ۱		, cr	. 7	12				1.0	, 1	, —	
Banswada		58	-				1 W	4.	1	~	, 9		13	2	0.3	4	1		.3	***
Yellareddy Madmir	47.8 8.7	5 1	1.5 2	28.5	1	·		<u>س</u>	ł	0.3	6	3 14	5.1		'n	ڼ	4	i	ŧ	9
	Rainfall Zone-	Zone-	-XX	:	:	:	:	:	:	:	:	:	:	Rainfa	ıfall Pa	ittern-	-E4 (A	$_1B_1C$	$C_2$ $D_1$	٦.
Warangal						,					•		9		7		,			į
Mulug	42.5	27	-	200	j	4	i	I	ì	- -	<del>,</del>	i	2	) 	•	-	,	ł	-	و ر
Adilabad	7	'n	ć	<		35	ļ	ļ	١	0.2	1	0.5	16		1	33	ų.	ļ	.1	m
Khanapur	رد 21 د	ç	٨	t	l	2				! >										
Warangal Darkel	74 -1	25	1	22	1	17	ļ	l	}	0.2	-	0 ·2	24	i	4		ļ	١	ı	4.5
raikai	•									,	,				Ş	G	20			-
Adilabad	81 -7			1	1	13		٥ 4 د		77.				0.5	?-	<u>-</u> -	38	<b>,</b>	į I	3.2
Boath		ж О			4.0	; ~		1	1	0.5					<b>~</b> !	W)	77	1	1;	1.5
Mudhol	なら	, vo ĉ	30	'n		0.1	}	C1 -	10	0.1	φ-	9 4	e,= . ο	ا د	2.7	91	22		 	8 <del>.</del>
Nirmal	5.79	5	-	l	H			Sec. Sec.	5						Rainfall P	attern	~	A, B,	$C_{D}$	, P2
	Kaințaii Lone	-auo7	1YY-	Her.					2224	:	:	:	:				•	1	1	î
Adilabad				(4)		·	Y	,,	COL		-		21	i	1	11	i	1	0.1	0
Sirpur	39.3	17.6		₹ <b></b>	1 1	4 v	Ų			 	9.0	$0.\overline{2}$ 1	18.5	1	0.5	81	1	. }	<u>'</u>	, 1
	1	Zone-	-XXII	45			Y			:	:	:	;	Rainfall Patt	l Patter	$m-D_1$	E ₃ (C	Di I	$E_2$ ) $D_1$	$E_3$
Anantanur					d	A		1	6											,
Kalyandurg	88.2	4 <u>11</u>	26.7	13.6	6.9	1 1	7	=	11	<b>4</b> 2	1:0	ω 7 Η	13.7	1-1	15 16	- P	711	1	[]	v 1-
Najadus Uravakonda	6.08			18	4	1	?	<del></del>	1	20	-	7	-	1	21		2	ļ	1	17
	Rainfall Zone	Zone	XXIII	:	:	:	:	:	:	:	:	:		Rainfall I	Pattern	$-D_1$	² 3 (C ₁	$D_2 E_1$	C [†] D	$_1$ $E_2$
Anantapur					:		•	•		4	-	•	٥		3,5	-			·c	,
Kadiri	105-6	wr	e 0	-	14·5 14·5		4 2	-લ		₽ Ç∧	<del>.</del>	4 m	¢ 00	o o o	25.		1 1	1	<u>.</u> –	11-
Penukonda	35.6	15	<b>00</b> 0	٠.	90	Ξ.	11	٠i-	1 1	∞ <u>7</u>	ر: ا			m	<u> </u>	7.9	ن د	1 1	ω:	n w N é
Dharmavaram Anantamir	5 5 1 4 4	0	2 0	:	4	1	· m	: 1	}	52	.2	4	6		27.5	<b>61</b> +		ł	ļ	13
Anantapu Madakasira	43.7	10	01	7	.3	}	12		ł	73	1	7	13		4			1		4·
	Rainfo	Rainfall Zone	e XXII	:	:	:	:	:	:	:	:	:	:	ž	Rainfall f	Pattern	-017	رِي چ	اري (ج	$E_2$
Chittoor	6		r		8	-	ve	ç	ļ	Ç.	١		٧,		ŝ	-	ł	I		
Madanapalle Vavainad	78 -1	18	7 -	0.3	20	-	P (1)	1	.	, <del></del> ,	ì		) <del>,</del> 1				1	ļ	12	. C1
Punganur Palampet	57 ·1 38 ·8	22	9	<u>:</u> 1	0 :1 4	51	ដង	<u>:</u> 1	11	<b>o o</b>	11	7.7	4 <b>L</b>	W	32 ·5	 	1 4	ij	31	nΜ
T APPLICATION T	Rainfe	Rainfall Zone	Ĵ	:	;	:	:	:	:	:	:	:	:	Rainfall	il Patte	n-D	1 E3 (C	2 D2)	$C_2$	, E
Bangariinalem	27.9	20	00	0.3	-	l	ί,	1	I	0 ·4	i	0.3	4		33	<del></del> (	}	I	ł	5.6
Chitton	36.1	22,5	4 -	0.3	⇔∝	1 1	r 4	1 1		0.5			4-	13 3 7	32.5 34.5	7-	1-1		1 1	သ ပဲသု
Chandragili Puttur	24 25	35		0.0	10	ł	-	ł	l	-	1	0 4	-		31 -5	7	i	1	ł	<b>-</b>
														! !	!		ı			


	Rainfall Zone-		ххи	:	:	:	:	:	:	:	:	:	Rainfal	Rainfall Pattern— $D_1$ $E_3$ ( $C_4$ )	$n-D_1$	E3 (C4)	C ₁ D ₁	1 E2	
Srikakulam															٠	•	,	ç	
	26.7	,	į	,,,	_		ł	í	-	0.3	0.3 1	4.5			7	~	•	Ξ,	
Pithapuram	- 07	. ·	}	, ,	•	10.4	1	!	,	!		'n			١	Ì	ł	- (	
Tekkalı	(a)		-	- د	ļ	5		1	۳, ا	ļ	1	4.5			١	}	1	ė,	
Narsannapet			-	-		۰.	ł	ļ	-	ļ	ł	9			١	l	ļ	ი. :	
Patbapalnam	01 1.65 3.33 3.03	7.7	10	-	:	, v	1		. 7	0.1	1	16	3		1	ļ	}	YO V	
Srikakulam			1	- ٠	;	3.5	ł	ĺ	0.3	I	1					1	}	0 9	
Ichchoparam	33.2		4	13	1	in	1	1	<del>. –</del>	7	И	<b>00</b> (	33.4	٠.	0 ¢	1	1	21	
			۳.	~	0.3	~	į	ļ	~	٠ ن	7					۱ ;	1	- 0	
Prath ipadu			,	'n	, 1	14	1	1	7	}					1	ç		77.	
Sompeta			_	=	1	4	}	{	m	ļ					ł	1 5	ļ	4	
Chodavarani Vellamanchiji	8.8	0.5	7	18.5	0.1	00	1	i	0.3	1;	С,	Ξ,	9			7	m	26	
Deichmunder			-	~	0	7	ì	(	۰ ب	0.1		ç.			١ -	· ·	, ;	25	
Daddaniram			0.1	S	0.1	4	1	ļ	0.5	7		, رح						7.5	
Virianamam				-	0.1	4	1	1	-	1		۰				}	į	12	4
Cainatinagaram	3		1	æ	1	<u>-</u>	1	ĺ	m	1		<u>.</u>			1		. }	6.5	
CringaVriipukota		4 0.4		m,	1	4	}	l	7,	ŀ								900	
Rheemininatnam	50.5	  -		14		σ,	}	١	٦,	1						1	ļ	34	
Bobbili	6.65	ω, 	, 0	.; 0	1 -	wē	}	1	- 0	1	ł				1	1	]	17.6	
Salur	•			10	1.0	10	ļ	Ę	r	il					1	١	]	16.0	_
Vasakhapatnam	16.6		'	2,0	0.0	1/2	16	Í	7		0.3	7	10.5		}	1	}	55.5	٠.
Anekapalle Cheemranalli			171	'n	<u>,</u> 1	90	1	1	0.3	1			0.5	7		1	1		_
	Dainfall Zone	Y	NVIII	中		li				:	:	:	Rainfall Pattern-	Pattern-	$-D_2 E_2$	2 (B ₁ C ₃ )	J	$D_1$ $E_2$	~
	rumidan Ec	300		FF FF					TEX,									,	
Visakhapatnam Narsapatnam	110 1 21 5	5	4	12	0.1	1	1	4	2	0.5		19.5	3 7	9,1	0.1		1 1	w So C	~ ~
Chintapalle				11	9	4	0.5		13	l	<b>-</b>	₽	1	_ (		ç		, P	
	Rainfall Zone	ne—XX	ZVIII.	:	)	:	)		;	:	:	:	Rainfall	Pattern	-02	£2 (B3	رارا د	7, 72	<b>~</b> 1
Srikakulam						1			•		٠	,		7	i	İ	i	24.0	_
Parvathipuram Pala Konda	44.9 53.5 91.5 46	5 0.3	5-	0.5	90 77	- 9	1 1	1 1	. <del>.</del>	11	0.5	16	· m	9	1	l	Ì	16	vn.
East Godavari					•	•			t		,	7	6	_		ł	1	67	<b></b>
Yellavaram	23.9 24	7 7	- 17	<u>9</u> =	71 m	., o	] ]	1 1	- 6	1 4	171	18	0.4		: l	1	}	7	₹
Kampachouovalam	10	- l	Special-I	: :	:	:	:	:	:	:	:	:	nfa	Pattern-	$-E_4$ (A1	1 B1 C2)	2) C ₁	$D_1 E_2$	. 61.
Padem	42.5 39		4		4	21	١	į	12	1	-	0 4	0.1 0.2	7	}	1	•	_	٥
	Rainfall Zone-	- 1	Special-II	;	:	:	:	;	:	:	:	:	Rainfall	_	Pattern—I	-E4 (A2	$B_2$ ) $D_1$	ر ت	
Nugur	21.0		15	1	7	1	1	1	-	l	4.0	4	i	_ 	, , _	,	- ·	۱ : ۱	>
•	211 2	1	Special-III	:	:	: ;	:	:	:;	:	:•	: ;	Rainfall Pattern-	Pattern	-01 <i>t</i>	$-D_1 E_3 (C_2 D_2)$	2	ر ارد ارد	oc.
Kuppam	31 ·6	16 1	4.0	7	0.1	23	1	1	4	1	-	2	7			1			. !

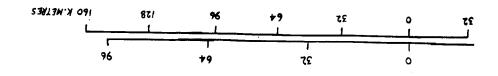


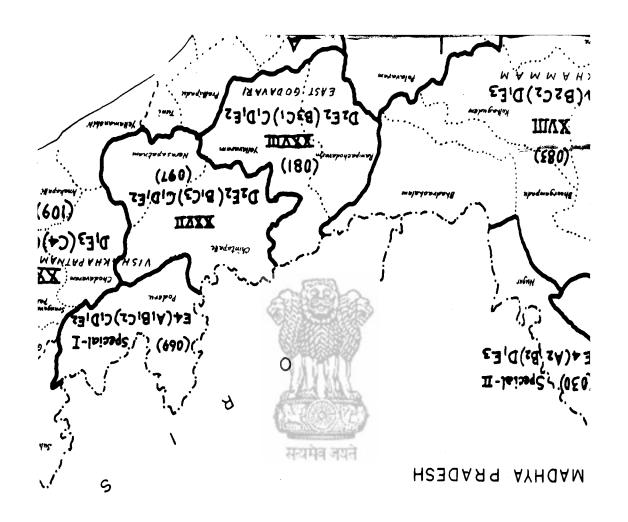

सन्यमेव जयते

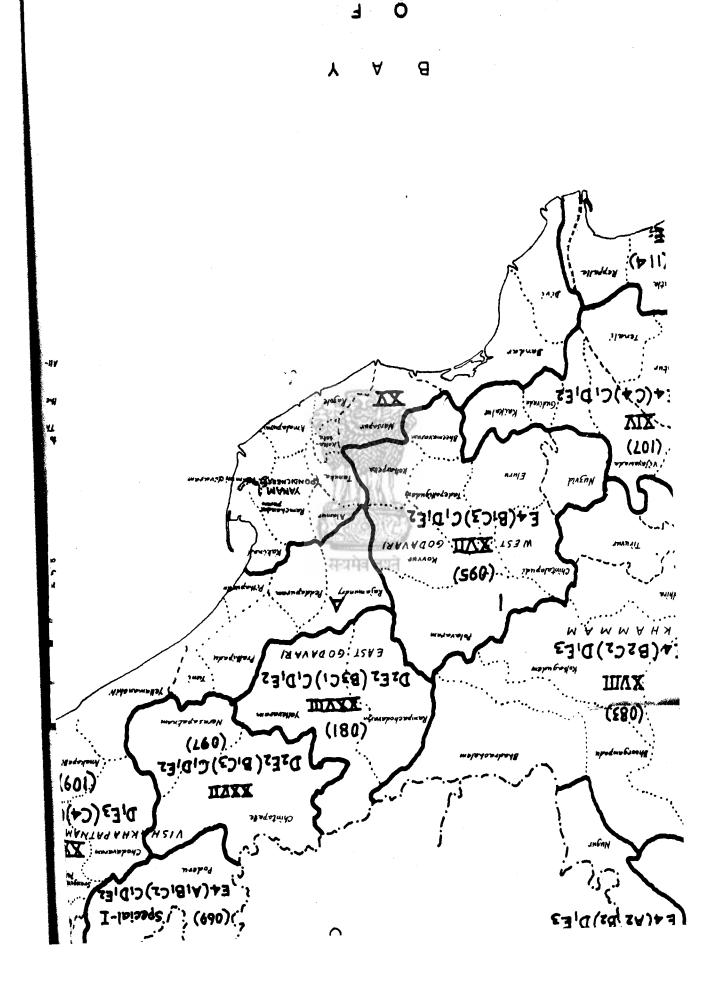








×

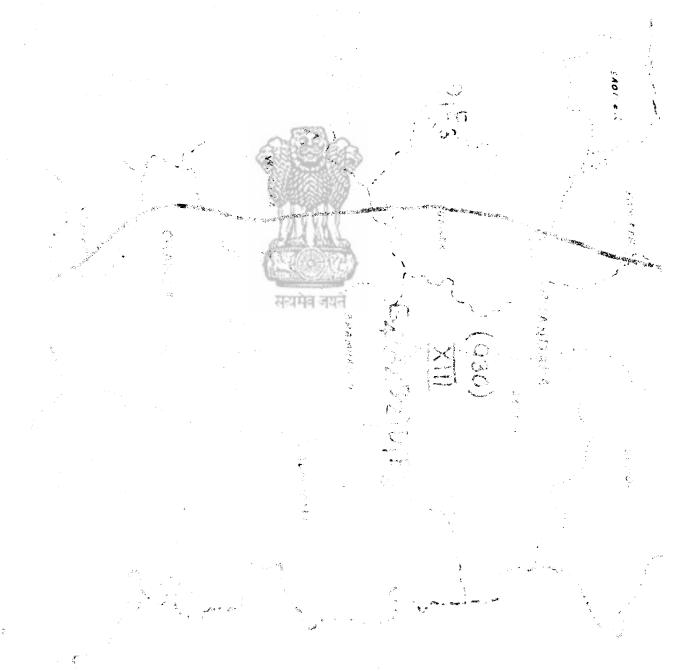


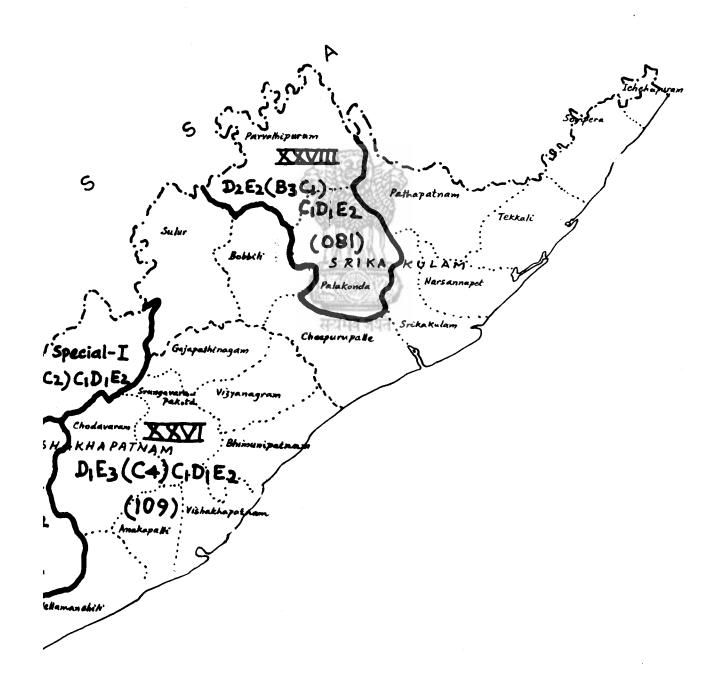



## ANDHRA PRADESH RAINFALL PATTERNS

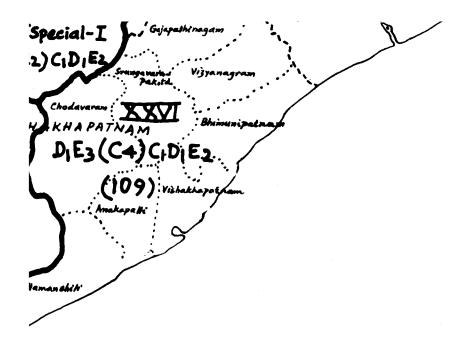








BAY

0 F


B E N G A L



The territorial waters by India extend into the sea to a distance of twelve nautical miles measured from the appropriat



LEGEND



## LEGEND

The rainfall pattern which describes the distribution of monthly rainfall throughout the year is espressed in coded form with letter symbols and numerical subscripts. A letter denotes a rainfall interval and subscript to each letter the number of months in the interval

Symbol	Mainfall interval centimetres per month
A	Greater than 30
8	20-30
C	10-20
D	5 - 10
E	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Less than 10 if the pattern begins with A or B Less than 5 if the pattern begins with C, D or E

The coded form of each pattern consists of three groups corresponding to the three Seasons February to May, June to September and October to January. The central is entered in brackets.

The area covered by a rainfall pattern is termed a Zone and the yones in the map are serially numbered.

Roman numbers indicate State rainfall goves.

Three-digit figures in Arabia numerals within brackets give their corresponding All-India aquivalents.

## REFERENCE

TALUK BOUNDARY
ZONE BOUNDARY

G Government of 3nd & copyright, 1976. t trom the appreparate base line सन्यमेव ज्ञयत The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

TONE BOUNDARY

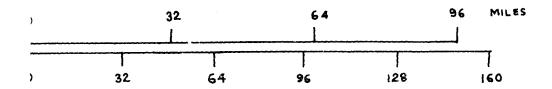
TONE BOUNDARY

30 - 10 10 - 30 Legs than

PADDY COVERS MORE YEAR TO PERCENT OF MERCE CROPPED AREA OF THE TALUK. RAD. (50 - 70%) AREA OF THE TALUK. BYMER FREDES (10-30%) AREA PARON (10-30%) AREA

## 

STATE BOUNDARY


DISTRICT BOUNDARY

TALUK BOUNDARY

ZONE BOUNDARY

SUB-ZONE BOUNDARY





## END



ITS OF ONE OR MORE CROPS, EACH WITH A SUBSCRIPT TREENTAGE AREA OF THE CROP CONCERNED.

PERCENTAGE OF GROSS CROPERS ACES

GREATER THAN 70

50 - 70

30 - 50

LESS THAM 10

PADDY COVERS MORE THAN TO PERCENT OF GROSS CROPPED AREA OF THE TALUK.

RAGI (50 - TO%) AREA
OTHER PULSES (10-30%) AREA
PADDY (10-30%) AREA



SNA

400RGA

0 6

MAIZE
WMEAT
GRAM
TUR
OTHER PULSES
COTTON
GROUND NUT
OTHER OILSEEDS
SUGARCANE
BARLEY
OATS
TOBACCO
FRUITS

A CROPPING PATTERN CONSISTS OF ONE I WHICH INDICATE THE FERCENTAGE

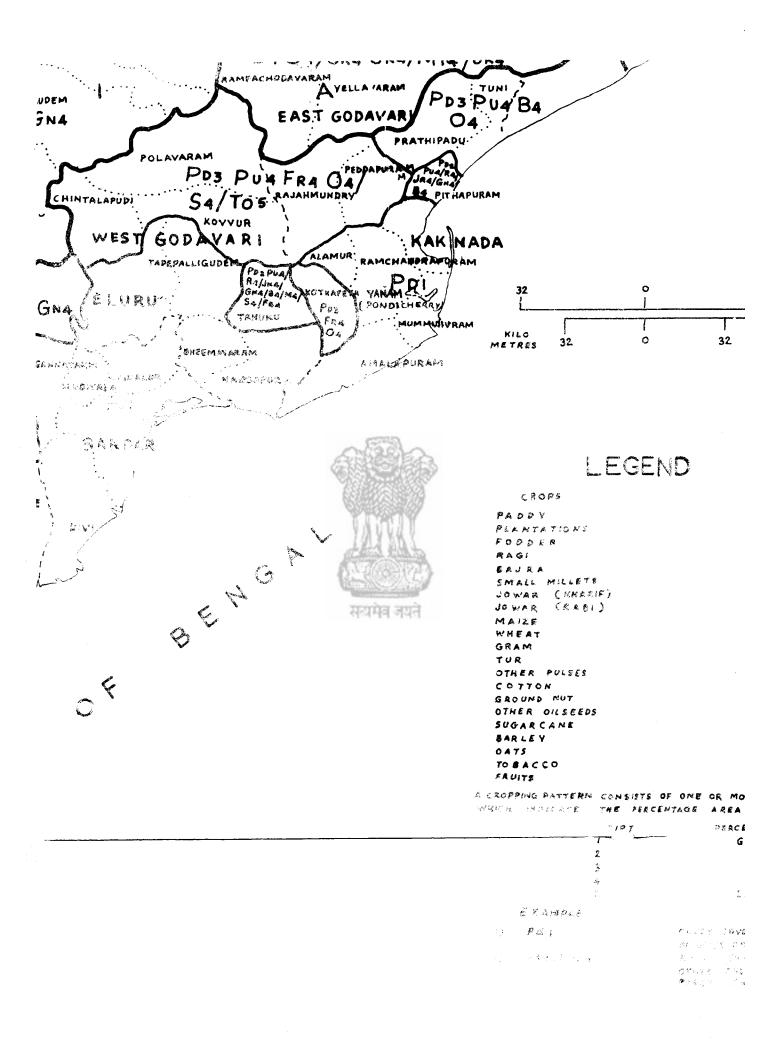
हें ४३<del>७०</del>४६५

Par

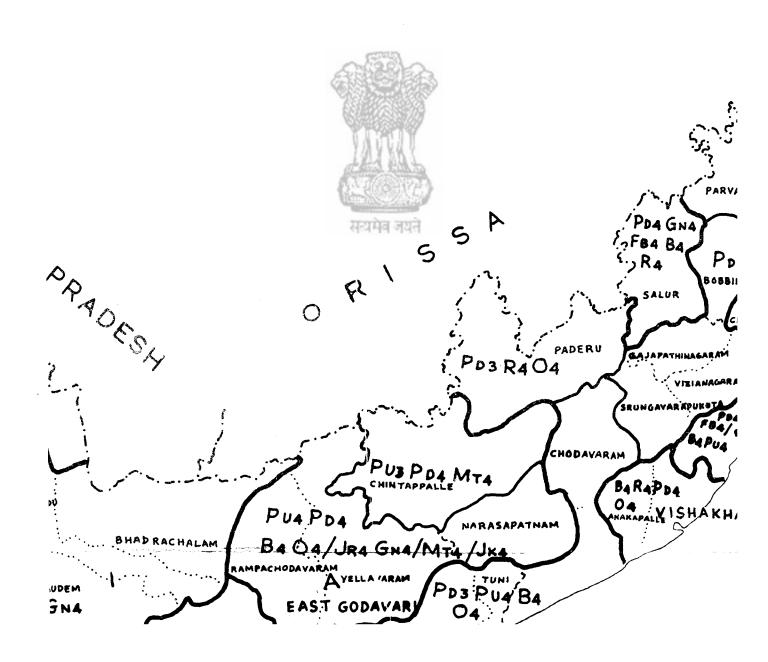
4.7

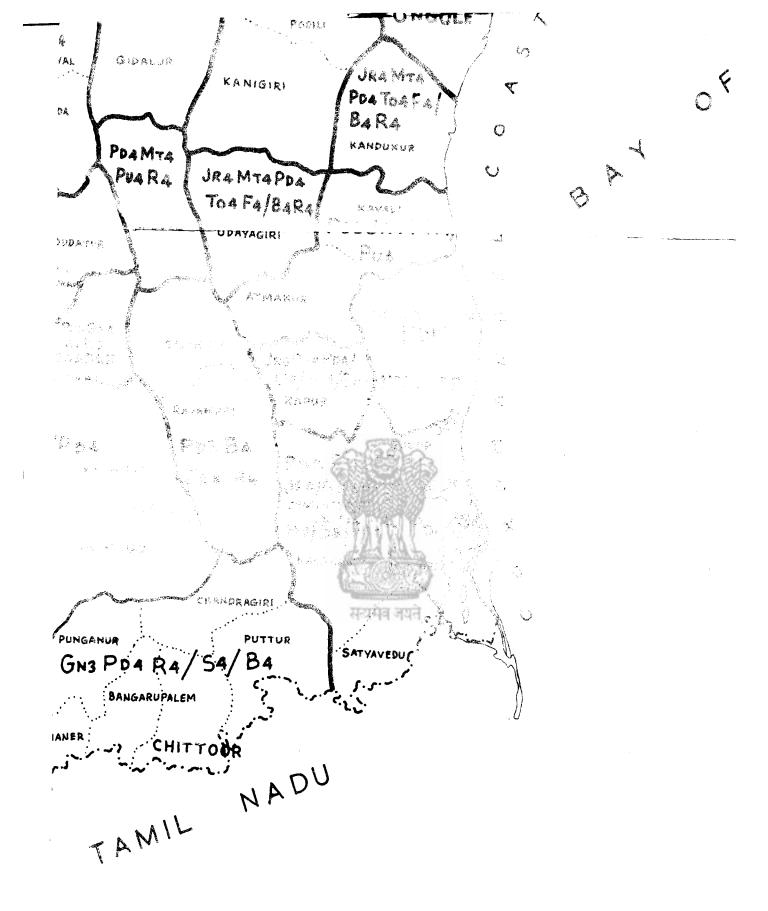
原料 强烈数 克 大小。 腹門胸皮敷 塞口蛋皮供

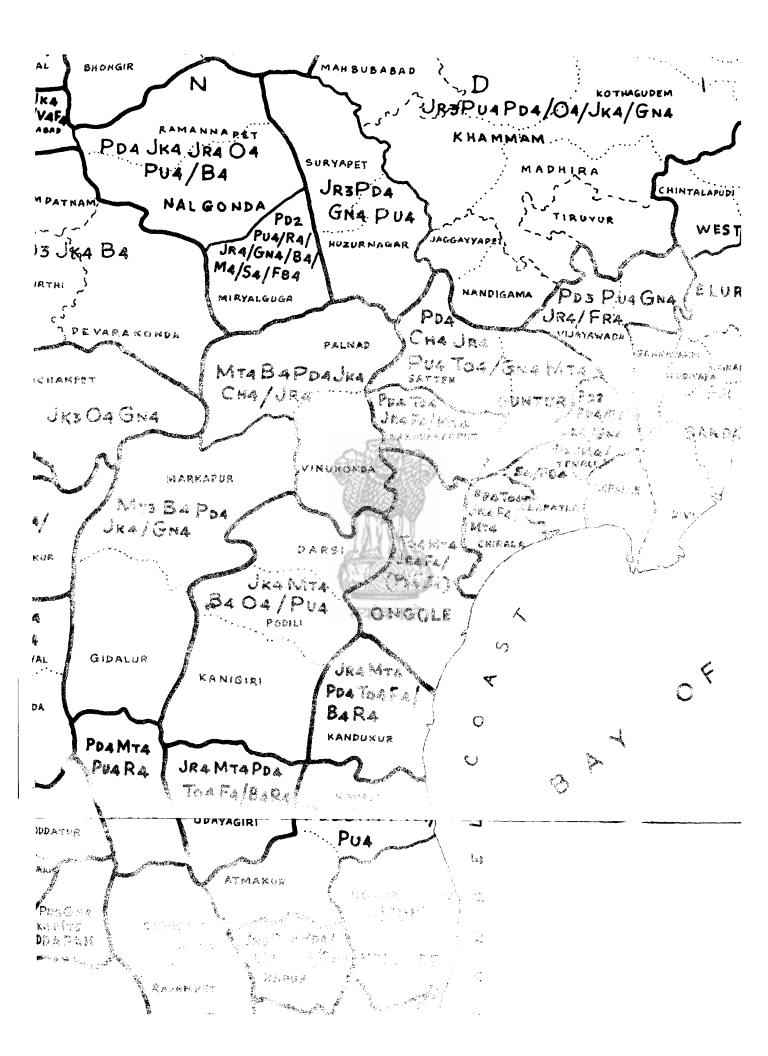
1. 128


सन्यमेव जयते

THE PERSON OF


Sub-


ZON

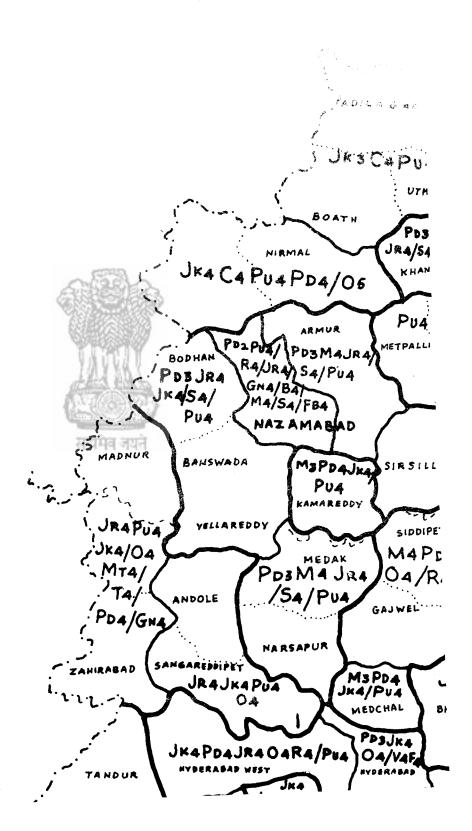

dealer musical rills meetured from the open opinion has time.



## ANDHRA PRADESH LOSERNO PATTERNS

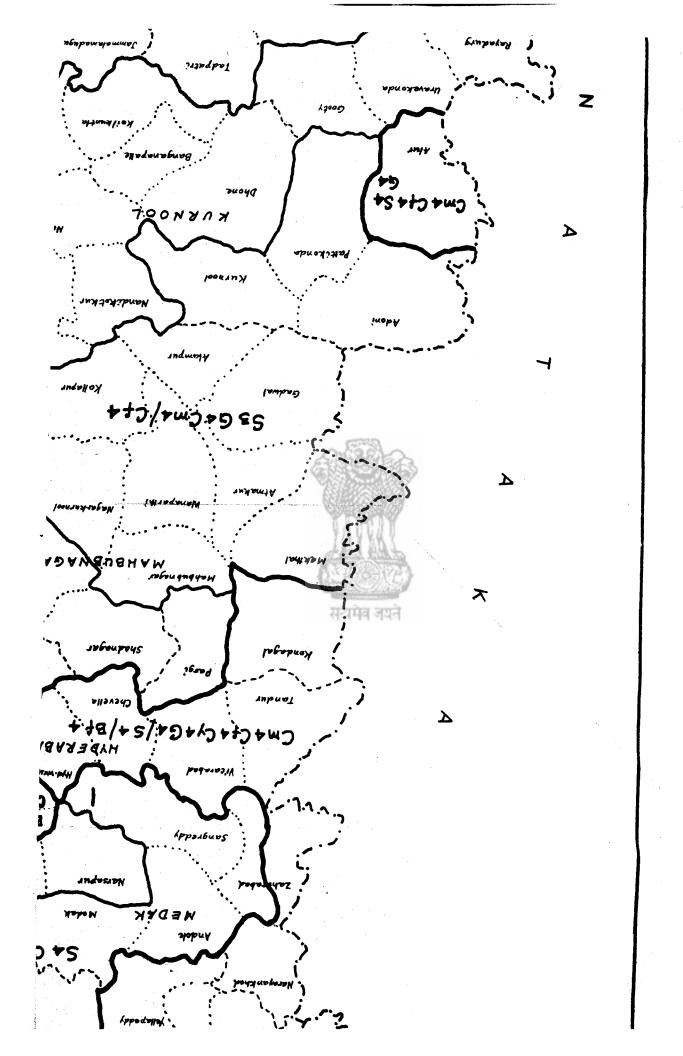


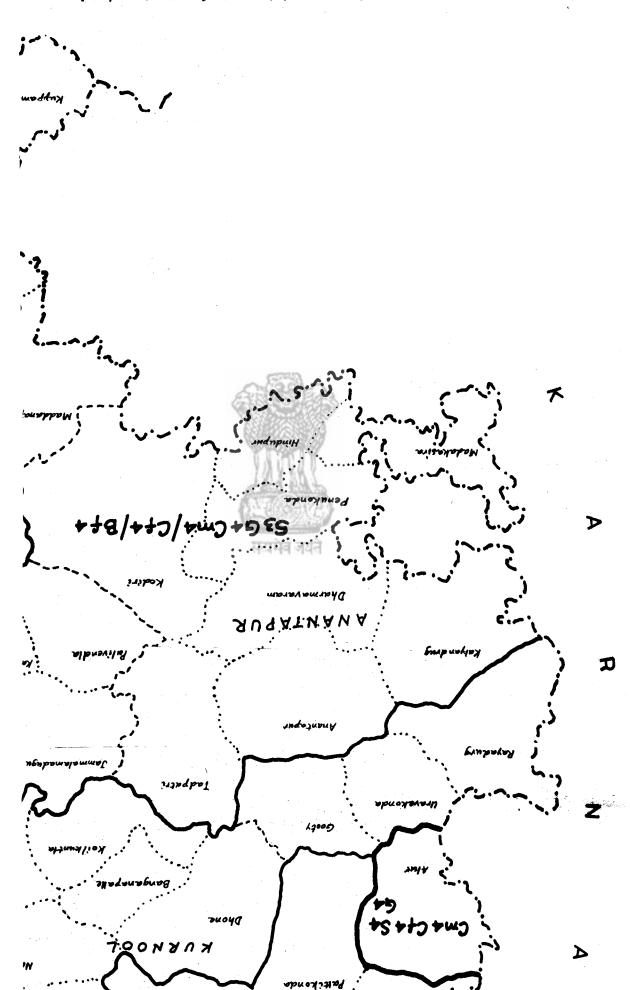








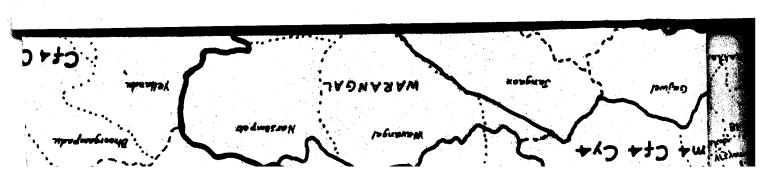


based upon Survey of India map with the permission of the Surveyor General of India.

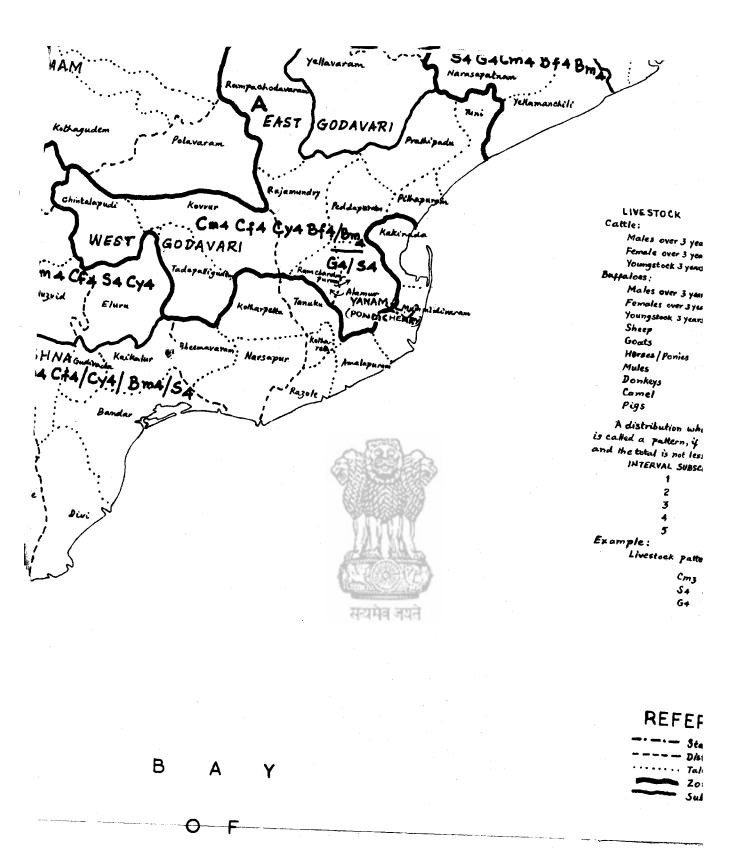

04 Z MEDCHAL  $\triangleright$ PDSJK4 JK4PD4JR4O4R4/Pu4 04/V4F4 TANDUR JK4 JR404V4 不 JK4 PUASHA DNAGAR IBRA HIMPATH  $\triangleright$ KODANGAL JR4PU4JKA/ R4 PDA O4/MT4 04 MT4/T4/ O3 J1 PD4/GN4 KALVAKURTHI MAHBUBNAG MAKTHAL JK3GH4 PD4 MT4 ACHAM! JK: JHA GHA CAPUA KOLLABUR GADWA SHOPETA JEAJEA! ALAMPUR 4 JREGNAMTA/ ADONI NANDIKOTKUK Poa C3MT4JR4/ KURROOL GNAMTA (GM4 JX4) C4JKA/ JR4 BB PDAJKA GNA MT4/JR4 PATTIKOND ALUR DONE NANDYAL JK3 MT4 GNA/CA PDS GOOTY JKA/JRA TAPPATEL JAMMALAWAPHOD RAYADURG PRODUCATUR ANANTAPUR JKA MTAGNA TEN STATE GN3PD4 PU4 > KALYANDRUG PULIVENEL JER Mys MTA/R & BA TOWNDARA ^{全可}MGK 在时的有 Gar Ba/Pos CADI



K A RZ ATA

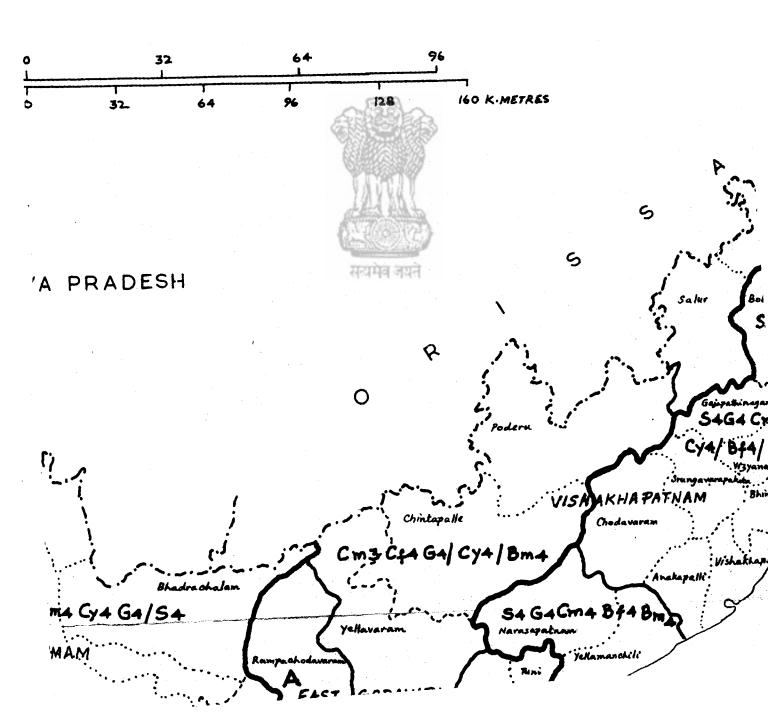


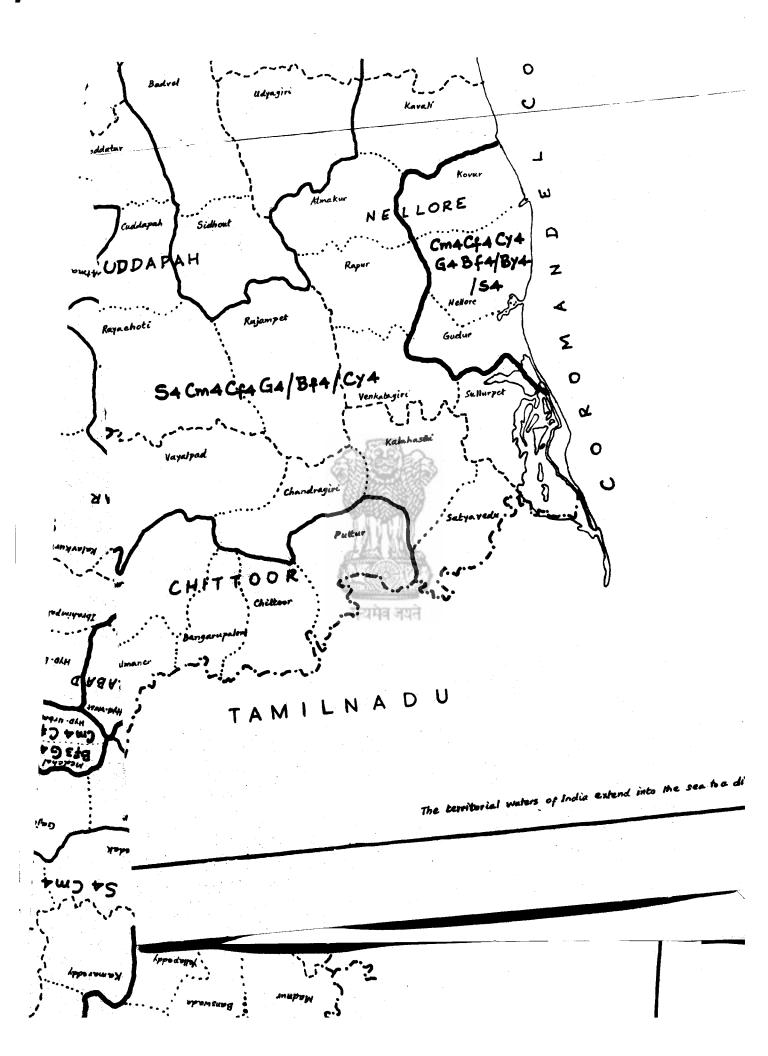


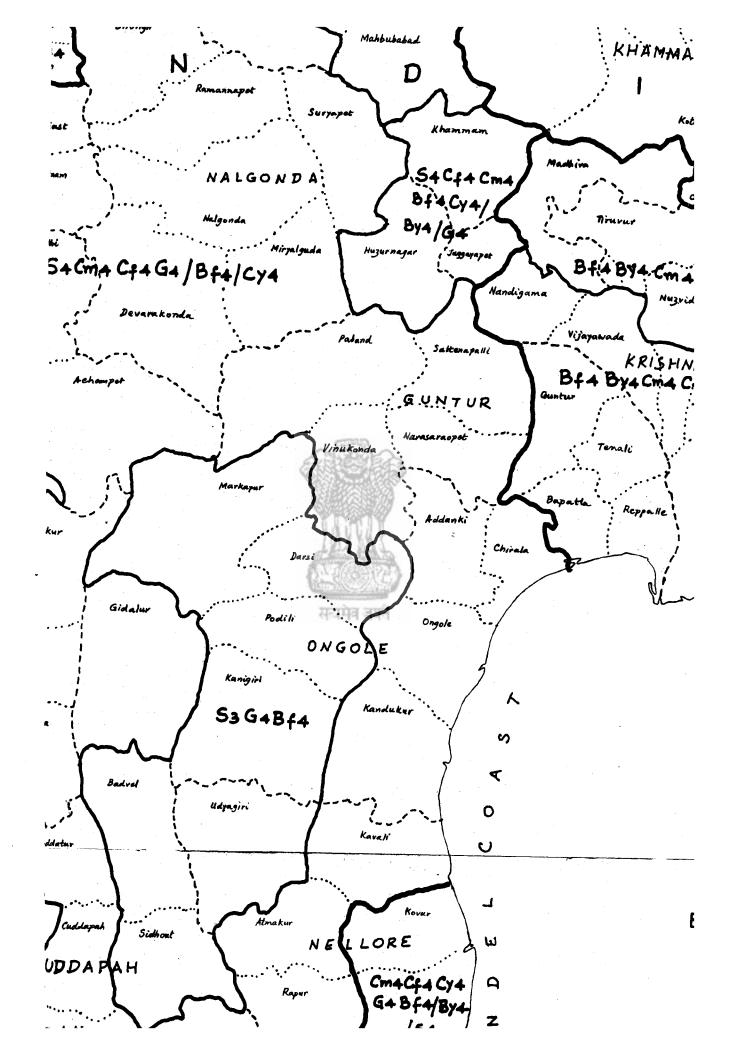



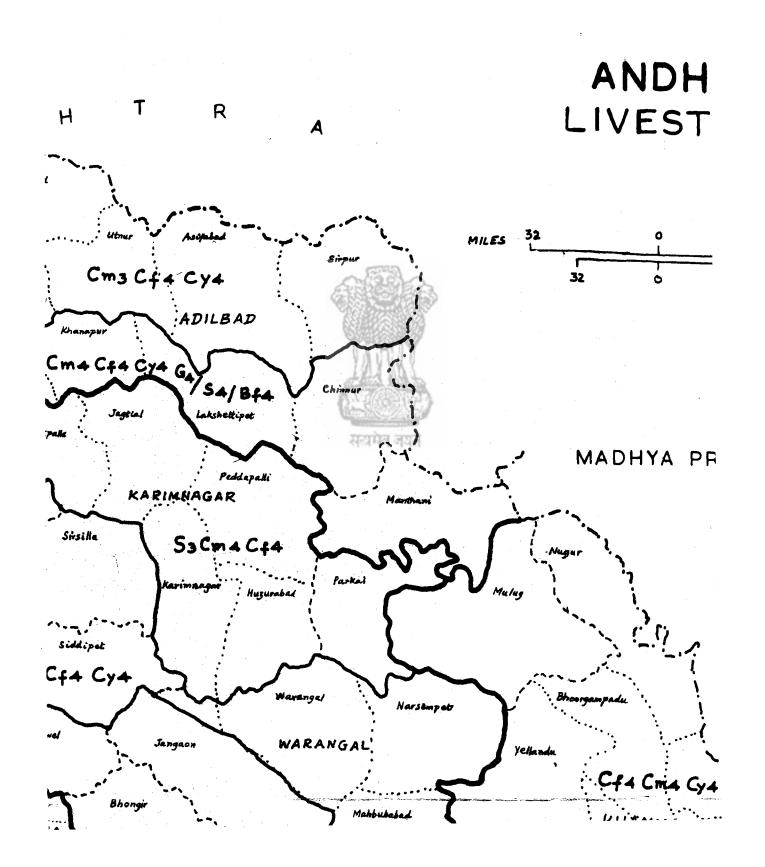

BENGAL




ance of twolve nautical miles measured from the appropriate base like.

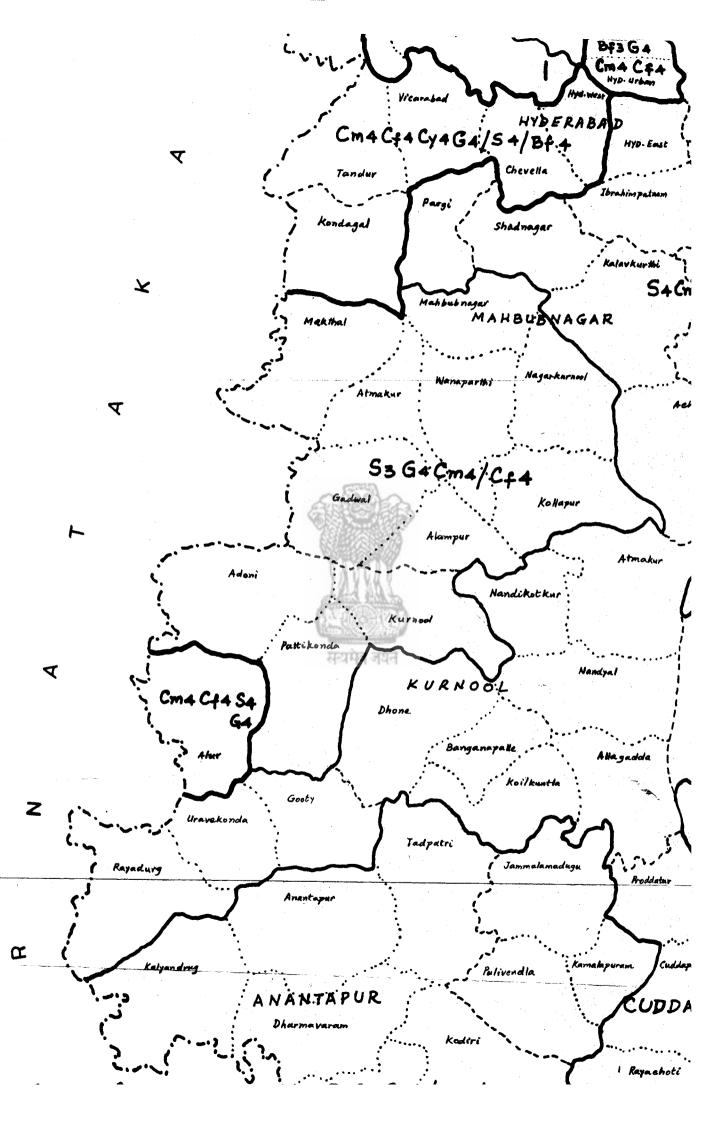


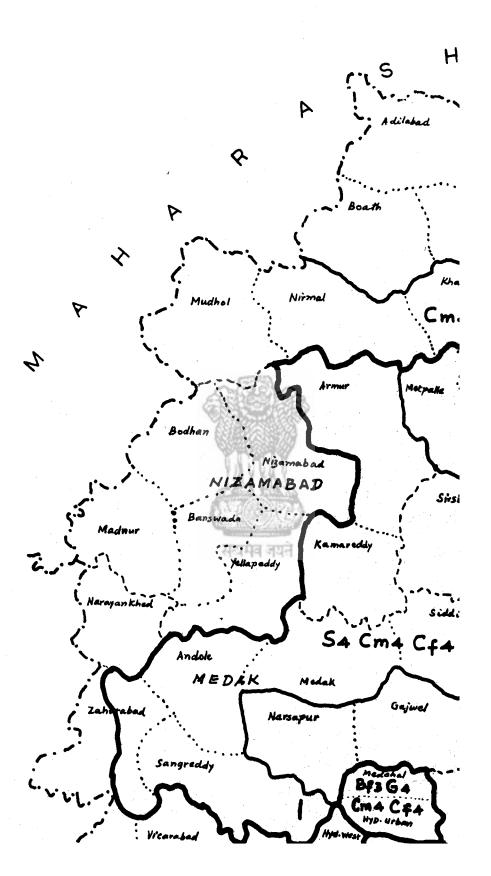





BENGAL

## DHRA PRADESH STOCK PATTERNS










Based upon Survey of India map with the permission of the Surveyor General of India.



