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Development and Mathematical Analysis of

Double Gravity Well Exhibit

Abstract

Double Gravity Well is a highly interesting exhibit,
demonstrating the movement of a ball of mass 'm’
simultaneously under the attractive forces of two
centers of gravitation. When attempts to simulate the
exact space-time curvature of such a force field by trial
and error method failed, we resorted to a mathematical
modeling using 3-D analytical geometry and plotted
the exact surface. We then devised a practical method
of fabrication calculating the cross sections of the
surface at regular intervals. The solution of the
equation of motion of the ball was worked out by
solving the Euler-Lagrange Equation in elliptical
coordinates. The solution shows unpredictable
trajectories of the ball in the space-time curvature
which is highly sensitive to initial conditions. We also
extended the method in exploring fields with three or
more gravity wells. The exhibit demonstrates some
important phenomena in classical mechanics,
classical electrodynamics, molecular physics and
planetary physics and in some other fields.

Double Gravity Well exhibit demonstrates the
movement of a ball (Planet) of mass m simultaneously
under the attractive forces of two centers of gravitation
(Suns). In physics, the problem is known as Euler-Jacobi
problem or two-center Kepler problem. The
mathematics involved in this particular exhibit is known
as Euler's restricted three-body method which is used to
solve for the motion of a particle under the gravitational
field of two other point masses that are fixed in space.
This problem is significant as an exactly solvable special
case of the three-body problem, and an approximate
solution for particles moving in the gravitational fields
of prolate and oblate spheroids. This problem is named
after Leonhard Euler, who discussed it in 1760. In this
article, we apply Euler's method in designing a double
gravity well as well as solving the equation of motion.

Modeling the exhibit

For a single gravity well exhibit, the force acting on a
rolling ball is f-) = - £5. The gravitational potential
7

V(r)is proportional to 1 When we plot V(r)~r curve,
-

where #°= x" + y", we get a rectangular hyperboloid,

which is our familiar space-time curvature of a single
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gravity well (fig. 1). The trajectories of motion on such
a surface can be easily calculated to be elliptical in
nature from classical mechanics.

Fig. 1. A Single Gravity Well.

As the single gravity well modeling was successful, we
applied the method of modeling to a double gravity
well. It can be understood that the equation of the
surface must have singularities at two points on the
surface, say at x=+ a, y=0. Thus we assume two centers
of force acting on the ball to be fixed in space and let
these centers be located along the x-axis at +a. The ball
is likewise assumed to be confined to a fixed plane
containing the two centers of force. The potential
energy of the ball in the field of these centers is given
by

Vxy) = ] £

_,/(x—a}! + 5 _‘/(x Fay + ¥

where y, and ., are constants. We have assumed that
the two gravitational fields are identical. Therefore,
i, = i, = i (say). To plot this surface, we take V(x,y)
along negative z-axis, and we get

1 1

z(x,y) =- J(x- ¥ T ] _-/(x+ T _1‘:

w1(2)

We have taken a=1 and for scaling, we have taken = 1.
The computer generated plot is a double gravity well
(fig. 2).
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Fig. 3. Asymmetric Double Gravity Well.

The symmetric well has a cross section at its center as
given below.

L | P ST P LY SR Laet S R S

] 4 2 I 2 4 6

Fig. 4. Vertical Cross Section of a Double Gravity Well.

The above method can be used to design multiple well
potential surfaces as shown below:

Fig. 2. Double Gravity Well (three different views).

However, if the strengths of the fields are different, the
well takes an asymmetric form (fig. 3). Fig. 5. Multiple Well potential.
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Equation of motion and its solution

The problem of two fixed centers conserves energy.
The total energy £ is a constant of motion. In our
problem (taking a symmetric double gravity well), the
potential energy is given by

1 |
-1 + v oA+ Iy + v

Mx,y) =

The kinetic energy can be simply written as

where z is again related to x and y by the equation (2).
So. there are practically two degrees of freedom for the
rolling ball.

However, as the ball moves in a curved path, it has
a rotational kinetic energy too. Taking this into
account and taking mass and all other constants
equal to one, the Lagrangian takes the form as
given below (@ is the angular velocity of the ball,
which is nota constant):

L2 a2 2 1 i
il x +9v7+7 ]+ — + - poboges 2
b [" ['\ T ] Ja-F +v Ada+r vy 20 @)

Theoretically, the equation of motion can be solved by
solving Lagrangian equation (6) for each generalized
coordinate (¢).

d faL\ aL
E(@')'@—O ............ (6)

We shall, however, solve the equations of motion by
Euler's method in elliptic coordinate. The two centers
of attraction can be considered as the foci of a set of
ellipses. By treating Euler's problem as a Liouville
dynamical system, the exact solution can be expressed
in terms of elliptic integrals. Introducing elliptic
coordinates,
x=acosh{cosy .........(7a)

v =asinhl sinn .......... (7b)

and using the particular solutions for a Liouville
dynamical system (- u,-1), we get

dc d.
u= 3 - T .8
J E cosh” &+ 2 coshé -y ‘/ -E cosh n+y

Since these are elliptic integrals, the coordinates & and
ncan be expressed as elliptic functions of z.

The Orbits

The solutions give a series of orbits as shown below
[Ref. Select bibliography No. 8]. The interesting point
is the 8-shaped paths where the ball forms cross loops
around the wells:

Fig. 6. Orbitsaround a double gravity well.

However, the practical orbits will be much different
from this theoretical model because of three reasons:

1. Due to friction between the ball and the
surface, the ball will continuously lose energy
and move from an outer orbit to an inner orbit.
In fact, the friction will act as a perturbation
and we can see the precession of the orbit. The
actual path will also depend upon the initial
conditions.

2. Due to roughness of the ball and the surface at
microscopic level, the ball may take any
unpredictable turn near the central hump.

3, The effective potential of the moving ball is
different from pure gravitational potential
because the centrifugal force acting on the
orbiting ball will contribute a potential of the
value mae’(x’+ y°)/2  which will oppose the
gravitational potential.

For an asymmetric well, if the mass of Sun 1 is double
that of Sun 2, then the ball will be drawn towards the
bigger mass even if it is released near the smaller ene
(fig. 7).

Fig. 7. Motion inanasymmetric well.
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It has also been found that the motion is highly
sensitive to initial condition and paths of two balls
released from the same point diverge after some time
(indicated with red and green lines):

Fig. 8. Divergence of paths of two balls with same initial
conditions.

One can easily see that if either center were absent, the
ball would move on one of simple ellipses, as a solution
to the Kepler's problem. Legendre and Bonnet have
shown that according to the principle of superposition,
the same ellipses are also the solutions for the Euler
problem.

The ball's linear and angular momenta are not
conserved in Euler's problem, since the two centers of
force act like external forces upon the ball, which may
yield a net force and torque on the ball. As a result, the
ball will continuously change its path from an ideal
superposition of two ellipses. However, the ball has a
second conserved quantity that corresponds to the
angular momentum or to the Laplace-Runge-Lenz
vector as limiting cases.

The solution to the original Euler problem is an
approximate solution for the motion of a particle in the
gravitational field of a prolate spheroid. The
corresponding approximate solution for a particle
moving in the field of an oblate spheroid is obtained by
making the positions of the two centers of force into
imaginary numbers. The oblate spheroid solution is
astronomically more important, since most planets,
stars and galaxies are approximately oblate spheroids.

Fabrication

To start fabrication, we must revisit the equation (2)

1 1
Ja-17 + 5 S+ 1) + )

z(xy) =-

Putting different values of z at a fixed interval, we gota
series of contours in xy plane.
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Fig.9. Contour Plots.

These plots were used as templates to cut ply woods as
shown below.

Fig. 10. The ply wood stack before surface finishing and
molding.

Several slices have been taken from the contour plot of the
double gravity well generated in computer. The plots were
converted into Auto Cad drawing and the well was
developed in 3D by laying those slices one above the
other. These slices were cut in 6mm thick ply wood pieces
and stacked in order to obtain the shape of the well just
like generating topographical model of land forms. Since
the contours are symmetrical, the foci were maintained by
placing the contours at appropriate position with respect to
four reference points (two on x axis and two on y axis). The
contour of the well has been generated in discrete steps.
The steps have been made smooth by applying epoxy
resin putty in the groove to obtain a smooth surface. Once
the shape of the well had been generated, it was checked
by rolling a ball on it, which showed the motion similar to
the simulation done by computer software. Then, a
fiberglass mold has been taken. The final model of the
well has been fabricated with fiberglass cast.
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Fig. 11, The final exhibit (grid digitally superimposed).

Further works

The technique developed by us can be applied to
generate and investigate upon multiple gravity wells as
well as any arbitrary trial potential which may yield
interesting result.
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